JPH07161327A - Focusing method in charged particle beam - Google Patents

Focusing method in charged particle beam

Info

Publication number
JPH07161327A
JPH07161327A JP5307903A JP30790393A JPH07161327A JP H07161327 A JPH07161327 A JP H07161327A JP 5307903 A JP5307903 A JP 5307903A JP 30790393 A JP30790393 A JP 30790393A JP H07161327 A JPH07161327 A JP H07161327A
Authority
JP
Japan
Prior art keywords
particle beam
charged particle
focusing
signal
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5307903A
Other languages
Japanese (ja)
Other versions
JP3236433B2 (en
Inventor
Naoki Date
直毅 伊達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP30790393A priority Critical patent/JP3236433B2/en
Publication of JPH07161327A publication Critical patent/JPH07161327A/en
Application granted granted Critical
Publication of JP3236433B2 publication Critical patent/JP3236433B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To realize a focusing method in a charge particle beam capable of focusing easily in a short time and in high accuracy. CONSTITUTION:An exciting electric power 16 supplies exciting current varying in step shaped synchronized with a vertical scan signal to an objective lens 3. Accordingly, a scanning area of an electron beam of a sample is irradiated by an electron beam in a different focusing condition by every horizontal scanning line. A secondary electron signal detected by a detector 6 in a focusing condition due to the respective step shaped exciting current is converted into a digital signal by an AD converter 12 and then supplied to a memory 13 and stored in it. An integrating signal stored in the memory 13 is compared by a CPU 14 and a line for obtaining a max. integrating signal is found out and exciting current of this line is supplied from an exciting electric power 16 to a focusing lens 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動的に荷電粒子ビー
ムの焦点合わせを行うことができる走査電子顕微鏡など
の荷電粒子ビーム装置における焦点合わせ方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a focusing method in a charged particle beam apparatus such as a scanning electron microscope capable of automatically focusing a charged particle beam.

【0002】[0002]

【従来の技術】走査電子顕微鏡では、自動的な焦点合わ
せ機能が備えられている。この焦点合わせは、集束レン
ズの励磁をステップ状に変化させ、各励磁状態、すなわ
ち、電子ビームの各集束状態のときに試料の所定領域を
電子ビームで走査し、その際、検出器によって2次電子
や反射電子を検出し、各集束状態ごとに検出信号を積算
するようにしている。そして、各集束状態のときの検出
信号の積算値を比較し、最大値が得られたときの集束状
態を合焦点位置と判断し、その状態に集束レンズの励磁
を設定するようにしている。
2. Description of the Related Art A scanning electron microscope has an automatic focusing function. In this focusing, the excitation of the focusing lens is changed stepwise, and a predetermined region of the sample is scanned with the electron beam in each excitation state, that is, in each focusing state of the electron beam. Electrons and backscattered electrons are detected, and detection signals are integrated for each focusing state. Then, the integrated values of the detection signals in each focusing state are compared, the focusing state when the maximum value is obtained is determined to be the focus position, and the excitation of the focusing lens is set in that state.

【0003】[0003]

【発明が解決しようとする課題】焦点合わせの他の方式
として、集束レンズに垂直走査信号に同期した連続掃引
信号を与えることも行われている。この場合、試料の垂
直走査に伴って電子ビームの集束状態が変化するので、
画面を観察していると、特定の水平走査位置で合焦点状
態を確認することができる。この合焦点状態が画面の中
央に位置されるように集束レンズにオフセット電流を重
畳する。そして、最終的には、画面の中央部分(垂直走
査信号の中心部)における集束レンズの励磁条件を全走
査領域に渡って適用することによって焦点合わせを終了
する。
As another method of focusing, a continuous sweep signal synchronized with the vertical scanning signal is given to the focusing lens. In this case, since the focusing state of the electron beam changes as the sample is vertically scanned,
When observing the screen, the focused state can be confirmed at a specific horizontal scanning position. An offset current is superimposed on the focusing lens so that this focused state is located at the center of the screen. Finally, focusing is completed by applying the exciting condition of the focusing lens in the central portion of the screen (the central portion of the vertical scanning signal) over the entire scanning area.

【0004】上記した焦点合わせ方式では、画面の中央
部分を合焦点状態とする操作などはマニュアルで行われ
ており、走査が繁雑であると共に正確さに欠け、更に時
間が掛かる欠点を有する。
In the above-mentioned focusing method, the operation for bringing the central portion of the screen into the focused state is performed manually, and there is a drawback that the scanning is complicated and lacks in accuracy, and further it takes time.

【0005】本発明は、このような点に鑑みてなされた
もので、その目的は、簡単に短時間に、高い精度で焦点
合わせを行うことができる荷電粒子ビームにおける焦点
合わせ方法を実現するにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to realize a focusing method for a charged particle beam capable of performing focusing with high accuracy in a short time in a simple manner. is there.

【0006】[0006]

【課題を解決するための手段】本発明に基づく荷電粒子
ビーム装置における焦点合わせ方法は、荷電粒子ビーム
を試料上に集束するための集束レンズと、試料上の荷電
粒子ビームの照射位置を走査するための走査手段と、試
料への荷電粒子ビームの照射によって得られた信号を検
出する検出器と、試料上の荷電粒子ビームの集束状態を
連続的に変化させる手段とを備えた荷電粒子ビーム装置
において、荷電粒子ビームの集束状態を垂直走査信号に
同期して連続的に変化させ、検出器によって検出された
信号に関し、荷電粒子ビームの各集束状態における検出
信号を積算し、各積算された信号を記憶し、記憶した一
連の積算値から最適焦点位置を求め、最適焦点位置に集
束レンズを設定するようにしたことを特徴としている。
A focusing method in a charged particle beam apparatus according to the present invention scans a focusing lens for focusing a charged particle beam on a sample and an irradiation position of the charged particle beam on the sample. Particle beam apparatus including a scanning means for scanning, a detector for detecting a signal obtained by irradiating the sample with the charged particle beam, and a means for continuously changing the focused state of the charged particle beam on the sample In, the focusing state of the charged particle beam is continuously changed in synchronization with the vertical scanning signal, the detection signals in each focusing state of the charged particle beam are integrated with respect to the signal detected by the detector, and each integrated signal Is stored, the optimum focus position is obtained from the stored series of integrated values, and the focusing lens is set at the optimum focus position.

【0007】また、荷電粒子ビームの集束状態を連続的
に変化させると共に、各変化の都度、荷電粒子ビームの
集束状態を垂直走査信号に同期して変化させ、検出器に
よって検出された信号に関し、単位変化量毎荷電粒子ビ
ームの各集束状態における検出信号を積算し、各積算さ
れた信号に基づいて最適焦点位置を求め、最適焦点位置
に集束レンズを設定するようにしたことを特徴としてい
る。
Further, regarding the signal detected by the detector, the focused state of the charged particle beam is continuously changed, and the focused state of the charged particle beam is changed in synchronization with the vertical scanning signal at each change. It is characterized in that the detection signals in each focusing state of the charged particle beam for each unit change amount are integrated, the optimum focus position is obtained based on each integrated signal, and the focusing lens is set at the optimum focus position.

【0008】[0008]

【作用】本発明に基づく荷電粒子ビーム装置における焦
点合わせ方法は、荷電粒子ビームの集束状態を垂直走査
信号に同期して連続的に変化させ、荷電粒子ビームの各
集束状態における検出信号を積算し、各積算された信号
を記憶し、記憶した一連の積算値から最適焦点位置を求
め、最適焦点位置に集束レンズを設定する。
The focusing method in the charged particle beam apparatus according to the present invention continuously changes the focused state of the charged particle beam in synchronization with the vertical scanning signal, and integrates the detection signals in each focused state of the charged particle beam. , Each integrated signal is stored, the optimum focus position is obtained from the stored series of integrated values, and the focusing lens is set at the optimum focus position.

【0009】[0009]

【実施例】以下、図面を参照して本発明の実施例を詳細
に説明する。図1は本発明に基づく焦点合わせ方法を実
施するための走査電子顕微鏡の一例を示しており、1は
電子銃である。電子銃1から発生した電子ビームEB
は、集束レンズ2と対物レンズ3によって試料4上に細
く集束される。また、電子ビームEBは、偏向コイル5
によって偏向され、試料4上の電子ビームの照射位置は
走査される。試料4への電子ビームの照射によって発生
した2次電子は、2次電子検出器6によって検出され
る。検出器6の検出信号は、増幅器7によって増幅され
た後、陰極線管9に供給される。
Embodiments of the present invention will now be described in detail with reference to the drawings. FIG. 1 shows an example of a scanning electron microscope for carrying out a focusing method according to the present invention, and 1 is an electron gun. Electron beam EB generated from electron gun 1
Is finely focused on the sample 4 by the focusing lens 2 and the objective lens 3. Further, the electron beam EB is applied to the deflection coil 5
And the electron beam irradiation position on the sample 4 is scanned. Secondary electrons generated by the irradiation of the sample 4 with the electron beam are detected by the secondary electron detector 6. The detection signal of the detector 6 is amplified by the amplifier 7 and then supplied to the cathode ray tube 9.

【0010】前記検出信号は、AD変換器12を介して
メモリー13に供給される。このAD変換器12あるい
はメモリー13はCPU14によって制御される。15
は操作盤であり、操作盤15は、CPU14に指示信号
を送る。CPU14は、対物レンズ3の励磁電源16と
偏向コイル5に走査信号を供給する走査信号発生回路1
7を制御する。このような構成の動作は次の通りであ
る。
The detection signal is supplied to the memory 13 via the AD converter 12. The AD converter 12 or the memory 13 is controlled by the CPU 14. 15
Is an operation panel, and the operation panel 15 sends an instruction signal to the CPU 14. The CPU 14 is a scanning signal generation circuit 1 that supplies a scanning signal to the excitation power supply 16 of the objective lens 3 and the deflection coil 5.
Control 7 The operation of such a configuration is as follows.

【0011】通常の2次電子像を観察する場合、操作盤
15からの指示信号に基づき、CPU14は走査信号発
生回路17を通常の走査状態に制御する。走査信号発生
回路17から所定の走査信号が偏向コイル5に供給さ
れ、試料4上の任意の領域が電子ビームEBによって走
査される。試料4への電子ビームの照射によって発生し
た2次電子は、検出器6によって検出される。その検出
信号は、増幅器7を介して偏向コイル5への走査信号と
同期した陰極線管9に供給され、陰極線管9には試料の
任意の領域の2次電子像が表示される。
When observing a normal secondary electron image, the CPU 14 controls the scanning signal generating circuit 17 to a normal scanning state based on an instruction signal from the operation panel 15. A predetermined scanning signal is supplied from the scanning signal generation circuit 17 to the deflection coil 5, and an arbitrary region on the sample 4 is scanned by the electron beam EB. Secondary electrons generated by irradiating the sample 4 with the electron beam are detected by the detector 6. The detection signal is supplied to the cathode ray tube 9 synchronized with the scanning signal to the deflection coil 5 through the amplifier 7, and the secondary electron image of an arbitrary region of the sample is displayed on the cathode ray tube 9.

【0012】次に、電子ビームの焦点合わせ動作を行う
場合について説明する。操作盤15を操作し、焦点合わ
せモードの指示を行うと、CPU14は、対物レンズ3
の励磁電源16と偏向コイル5の走査信号発生回路17
とを制御する。この制御により、励磁電源16は対物レ
ンズ3に、図2(a)に示すような垂直走査信号に同期
したステップ状に変化する励磁電流を供給する。この
間、走査信号発生回路17は、試料の所定領域の操作を
行うための走査信号を偏向コイル5に供給する。この結
果、試料の電子ビームの走査領域は、各水平走査ライン
ごとに異なった集束状態で電子ビームが照射される。図
2(b)は陰極線管9の画面を示しているが、この走査
画面は、垂直方向に512ステップ(ライン)で水平走
査が行われ、各水平走査ラインごとに電子ビームの集束
状態は変化している。
Next, the case of performing the focusing operation of the electron beam will be described. When the operation panel 15 is operated and the focusing mode is instructed, the CPU 14 causes the objective lens 3
Excitation power supply 16 and scanning signal generation circuit 17 for deflection coil 5
And control. By this control, the excitation power supply 16 supplies the objective lens 3 with an excitation current that changes stepwise in synchronization with the vertical scanning signal as shown in FIG. During this time, the scanning signal generation circuit 17 supplies the scanning signal for operating the predetermined region of the sample to the deflection coil 5. As a result, the electron beam scanning region of the sample is irradiated with the electron beam in a different focusing state for each horizontal scanning line. FIG. 2B shows the screen of the cathode ray tube 9, but this scanning screen is horizontally scanned in 512 steps (lines) in the vertical direction, and the focusing state of the electron beam changes for each horizontal scanning line. is doing.

【0013】各ステップ状の励磁電流によるフォーカス
の状態における検出器6によって検出された2次電子信
号は、増幅器7によって増幅された後、AD変換器12
によってディジタル信号に変換された後、メモリー13
に供給されて記憶される。
The secondary electron signal detected by the detector 6 in the focus state by the stepwise exciting current is amplified by the amplifier 7 and then AD converter 12
After being converted into a digital signal by the memory 13
Are stored and stored in.

【0014】上記したステップによってメモリー13に
おいては、各水平走査ラインごとに2次電子検出信号が
記憶される。そして、上記した垂直方向に集束レンズの
励磁状態を変化させながら試料の所定領域の走査を行う
ステップは、多数回実行され、その間、2次電子検出信
号は回帰型フィルター処理の機能を備えたメモリー13
内において積算処理が行われる。この結果、記憶された
2次電子検出信号のSN比は著しく向上する。
By the steps described above, the secondary electron detection signal is stored in the memory 13 for each horizontal scanning line. Then, the step of scanning the predetermined region of the sample while changing the excitation state of the focusing lens in the vertical direction is executed many times, during which the secondary electron detection signal is stored in the memory having the function of the recursive filter processing. Thirteen
Integral processing is performed inside. As a result, the SN ratio of the stored secondary electron detection signal is significantly improved.

【0015】上記した所定回数の積算処理が終わると、
CPU14は、メモリー13内に記憶された512ライ
ン毎の2次電子信号の積算処理を行ない、得られたライ
ン毎の積算信号を比較し、最大積算信号が得られるライ
ンを見出だす。図2(c)はメモリー13に記憶された
信号値を示しており、縦軸が垂直走査位置、横軸が積算
信号強度である。この図2(c)のケースでは、ライン
kにおいて最大積算信号が得られている。CPU13
はラインLkの時の励磁電源から集束レンズに供給され
る励磁電流を見出だし、この励磁電流を励磁電源から集
束レンズに供給されるように制御する。この集束レンズ
の励磁状態で電子ビームの2次元走査を実施することに
より、焦点の合った状態で走査電子顕微鏡像の観察を行
うことができる。
When the above-mentioned predetermined number of integration processes are completed,
The CPU 14 performs an integration process of the secondary electron signals for each 512 lines stored in the memory 13, compares the obtained integration signals for each line, and finds a line at which the maximum integration signal is obtained. FIG. 2C shows the signal value stored in the memory 13, where the vertical axis represents the vertical scanning position and the horizontal axis represents the integrated signal intensity. In the case of FIG. 2C, the maximum integrated signal is obtained on the line L k . CPU13
Finds an exciting current supplied from the exciting power source to the focusing lens at the line L k , and controls the exciting current to be supplied from the exciting power source to the focusing lens. By performing two-dimensional scanning of the electron beam in the excited state of the focusing lens, it is possible to observe the scanning electron microscope image in a focused state.

【0016】さて、上記した方式で、水平走査ラインL
k上の試料表面に凹凸がなく、滑らかな面である場合、
期待したピーク値を得ることができない。例えば、図2
(b)で焦点のあっていない水平走査ラインLn付近に
にのみ凹凸部分Qが存在する場合に、上記した方式で
は、水平走査ラインLnに基づく信号の積算値は、電子
ビームの焦点があっていないために必ずしも大きくな
い。
Now, in the above-mentioned system, the horizontal scanning line L
If there is no unevenness on the sample surface above k and it is a smooth surface,
You cannot get the expected peak value. For example, in FIG.
In the case where the uneven portion Q exists only near the non-focused horizontal scanning line L n in (b), in the above method, the integrated value of the signal based on the horizontal scanning line L n is Not necessarily big because it doesn't exist.

【0017】このような問題点を解決するための本発明
の第2の実施例では、図3に示すような励磁電流が励磁
電源16から対物レンズ3に供給される。すなわち、第
1回目の試料走査期間には、図3(a)に示すような垂
直走査信号に同期した励磁電流を供給すると、第2回目
の試料走査期間には、図3(b)に示すような図3
(a)のステップ状の励磁電流に対してオフセット電流
oが重畳された励磁電流が供給される。
In the second embodiment of the present invention for solving such a problem, an exciting current as shown in FIG. 3 is supplied from the exciting power supply 16 to the objective lens 3. That is, when the exciting current synchronized with the vertical scanning signal as shown in FIG. 3A is supplied in the first sample scanning period, it is shown in FIG. 3B in the second sample scanning period. Figure 3 like
An exciting current in which the offset current I o is superimposed on the step-like exciting current in (a) is supplied.

【0018】次に、第3回目の試料走査期間には、図3
(c)に示すような図3(a)のステップ状の励磁電流
に対してオフセット電流2Ioが重畳されたステップ状
の励磁電流が供給される。このようにして、垂直走査信
号に同期してステップ状に変化する励磁電流iに対して
オフセット電流Io〜Inが重畳され、n回の試料走査が
実行される。
Next, in the third sample scanning period, as shown in FIG.
A step-like exciting current in which the offset current 2I o is superimposed on the step-like exciting current of FIG. 3A as shown in FIG. 3C is supplied. In this way, the offset current I o ~I n is superimposed on the excitation current i changes stepwise in synchronization with the vertical scanning signal, a sample scanning n times is performed.

【0019】このような操作により、例えば、Ik
i,Ik+1+i,Ik+2+iでそれぞれ画面のkステッ
プライン、(k+1)ステップライン、(k+2)ステ
ップラインで焦点があったとすれば、順次各焦点があっ
たラインが観察画面の中央に位置されるように直流電流
信号を変化させる。そのときの各々の直流電流を平均化
し、その平均化した電流値を合焦点電流値とする。この
ような処理をすることにより、試料の走査領域の一部に
しか凹凸部分がなく、大部分の試料表面が滑らかであっ
ても、焦点合わせを正確に行うことかできる。また、こ
の実施例では、複数回の合焦点電流値を平均化している
ので、SN比も向上させることができる。
By such an operation, for example, I k +
If there is a focus at the k step line, (k + 1) step line, and (k + 2) step line of the screen at i, I k + 1 + i, and I k + 2 + i, the lines at which the respective focus points are sequentially located at the center of the observation screen. The DC current signal is changed as described above. The respective DC currents at that time are averaged, and the averaged current value is set as the focused current value. By carrying out such a treatment, even if a part of the scanning region of the sample has uneven portions, and most of the sample surface is smooth, it is possible to perform accurate focusing. In addition, in this embodiment, since the focused current values of a plurality of times are averaged, the SN ratio can also be improved.

【0020】以上本発明の一実施例を詳述したが、本発
明はこの実施例に限定されない。例えば、2次電子を検
出したが、反射電子を検出してもよい。また、実施例で
は、走査電子顕微鏡を例に説明したが、イオンビームを
用いた装置などにも本発明を適用することかできる。更
に、焦点合わせ動作の際に対物レンズの励磁を変化させ
たが、対物レンズの補助レンズを設け、補助レンズの励
磁を変化させるようにしてもよい。更にまた、電粒子ビ
ームの集束状態は連続的に変化させればよく、前記実施
例のようにステップ状に変化さてもよいし、リニアに変
化させるようにしてもよい。
Although one embodiment of the present invention has been described in detail above, the present invention is not limited to this embodiment. For example, although secondary electrons are detected, reflected electrons may be detected. Further, in the embodiments, the scanning electron microscope has been described as an example, but the present invention can also be applied to an apparatus using an ion beam. Further, although the excitation of the objective lens was changed during the focusing operation, an auxiliary lens of the objective lens may be provided and the excitation of the auxiliary lens may be changed. Furthermore, the focusing state of the electron particle beam may be continuously changed, and may be changed stepwise as in the above-mentioned embodiment or may be changed linearly.

【0021】[0021]

【発明の効果】以上説明したように、本発明に基づく荷
電粒子ビーム装置における焦点合わせ方法は、荷電粒子
ビームの集束状態を垂直走査信号に同期して連続的に変
化させ、荷電粒子ビームの各集束状態における検出信号
を積算し、各積算された信号を記憶し、記憶した一連の
積算値から最適焦点位置を求め、最適焦点位置に集束レ
ンズを設定するするようにしたので、簡単に短時間に、
高い精度で焦点合わせを行うことができる。
As described above, the focusing method in the charged particle beam apparatus according to the present invention continuously changes the focused state of the charged particle beam in synchronization with the vertical scanning signal, so that each of the charged particle beam can be changed. Since the detection signals in the focused state are integrated, each integrated signal is stored, the optimum focus position is obtained from the stored series of integrated values, and the focusing lens is set at the optimum focus position, so it is easy and short time. To
Focusing can be performed with high accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法を実施するための走査電子顕微鏡
の一例を示す図である。
FIG. 1 is a diagram showing an example of a scanning electron microscope for carrying out the method of the present invention.

【図2】本発明の一実施例の動作を説明するための図で
ある。
FIG. 2 is a diagram for explaining the operation of the embodiment of the present invention.

【図3】本発明の他の実施例における対物レンズへの励
磁電流を示す図である。
FIG. 3 is a diagram showing an exciting current to an objective lens in another example of the present invention.

【符号の説明】[Explanation of symbols]

1 電子銃 2 集束レンズ 3 対物レンズ 4 試料 5 偏向コイル 6 検出器 7 増幅器 9 陰極線管 12 AD変換器 13 メモリー 1 Electron Gun 2 Focusing Lens 3 Objective Lens 4 Sample 5 Deflection Coil 6 Detector 7 Amplifier 9 Cathode Ray Tube 12 AD Converter 13 Memory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 荷電粒子ビームを試料上に集束するため
の集束レンズと、試料上の荷電粒子ビームの照射位置を
走査するための走査手段と、試料への荷電粒子ビームの
照射によって得られた信号を検出する検出器と、試料上
の荷電粒子ビームの集束状態を連続的に変化させる手段
とを備えた荷電粒子ビーム装置において、荷電粒子ビー
ムの集束状態を垂直走査信号に同期して連続的に変化さ
せ、検出器によって検出された信号に関し、荷電粒子ビ
ームの各集束状態における検出信号を積算し、各積算さ
れた信号を記憶し、記憶した一連の積算値から最適焦点
位置を求め、最適焦点位置に集束レンズを設定するよう
にした荷電粒子ビーム装置における焦点合わせ方法。
1. A focusing lens for focusing a charged particle beam on a sample, a scanning means for scanning an irradiation position of the charged particle beam on the sample, and a sample obtained by irradiating the sample with the charged particle beam. In a charged particle beam apparatus equipped with a detector for detecting a signal and means for continuously changing the focused state of a charged particle beam on a sample, the focused state of the charged particle beam is continuously synchronized with a vertical scanning signal. , The detection signal in each focusing state of the charged particle beam is integrated with respect to the signal detected by the detector, each integrated signal is stored, and the optimum focus position is obtained from the stored series of integrated values. A focusing method in a charged particle beam device in which a focusing lens is set at a focal position.
【請求項2】 荷電粒子ビームを試料上に集束するため
の集束レンズと、試料上の荷電粒子ビームの照射位置を
走査するための走査手段と、試料への荷電粒子ビームの
照射によって得られた信号を検出する検出器と、試料上
の荷電粒子ビームの集束状態を連続的に変化させる手段
とを備えた荷電粒子ビーム装置において、荷電粒子ビー
ムの集束状態を連続的に変化させると共に、各変化の都
度、荷電粒子ビームの集束状態を垂直走査信号に同期し
て変化させ、検出器によって検出された信号に関し、荷
電粒子ビームの各集束状態における検出信号を積算し、
各積算された信号に基づいて最適焦点位置を求め、最適
焦点位置に集束レンズを設定するようにした荷電粒子ビ
ーム装置における焦点合わせ方法。
2. A focusing lens for focusing a charged particle beam on a sample, a scanning means for scanning an irradiation position of the charged particle beam on the sample, and a sample obtained by irradiating the sample with the charged particle beam. In a charged particle beam apparatus comprising a detector for detecting a signal and means for continuously changing the focused state of a charged particle beam on a sample, the focused state of the charged particle beam is continuously changed and each change In each case, the focused state of the charged particle beam is changed in synchronization with the vertical scanning signal, and with respect to the signal detected by the detector, the detection signals in each focused state of the charged particle beam are integrated,
A focusing method in a charged particle beam apparatus, wherein an optimum focus position is obtained based on each integrated signal, and a focusing lens is set at the optimum focus position.
JP30790393A 1993-12-08 1993-12-08 Focusing method in charged particle beam device Expired - Fee Related JP3236433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30790393A JP3236433B2 (en) 1993-12-08 1993-12-08 Focusing method in charged particle beam device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30790393A JP3236433B2 (en) 1993-12-08 1993-12-08 Focusing method in charged particle beam device

Publications (2)

Publication Number Publication Date
JPH07161327A true JPH07161327A (en) 1995-06-23
JP3236433B2 JP3236433B2 (en) 2001-12-10

Family

ID=17974565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30790393A Expired - Fee Related JP3236433B2 (en) 1993-12-08 1993-12-08 Focusing method in charged particle beam device

Country Status (1)

Country Link
JP (1) JP3236433B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007200595A (en) * 2006-01-24 2007-08-09 Toshiba Corp Charged particle beam device, focus adjusting method of charged particle beam, measuring method of fine structure, inspection method of fine structure, and manufacturing method of semiconductor device
JP2010153320A (en) * 2008-12-26 2010-07-08 Fujitsu Ltd Chromatic aberration coefficient measuring method in electromagnetic lens and scanning transmission electron microscope
JP2010256444A (en) * 2009-04-22 2010-11-11 Casio Computer Co Ltd Focus adjusting device, focus adjusting method and program

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007200595A (en) * 2006-01-24 2007-08-09 Toshiba Corp Charged particle beam device, focus adjusting method of charged particle beam, measuring method of fine structure, inspection method of fine structure, and manufacturing method of semiconductor device
US7521678B2 (en) 2006-01-24 2009-04-21 Kabushiki Kaisha Toshiba Charged particle beam apparatus, charged particle beam focusing method, microstructure measuring method, microstructure inspecting method, semiconductor device manufacturing method, and program
JP2010153320A (en) * 2008-12-26 2010-07-08 Fujitsu Ltd Chromatic aberration coefficient measuring method in electromagnetic lens and scanning transmission electron microscope
JP2010256444A (en) * 2009-04-22 2010-11-11 Casio Computer Co Ltd Focus adjusting device, focus adjusting method and program

Also Published As

Publication number Publication date
JP3236433B2 (en) 2001-12-10

Similar Documents

Publication Publication Date Title
JP3021917B2 (en) Automatic focusing and astigmatism correction method in electron beam device
US5495110A (en) Observation method and apparatus for removing an oxidation layer and forming an image from a sample
JP2003151484A (en) Scanning type charged particle beam device
JPH07161327A (en) Focusing method in charged particle beam
JP3524776B2 (en) Scanning electron microscope
JPH09274883A (en) Fib/sem compounded apparatus
JP3114416B2 (en) Focusing method in charged particle beam device
JP3101089B2 (en) Brightness correction method for scanning electron microscope
JP2000195457A (en) Scanning microscope
JPH08167396A (en) Electron beam device provided with field emission type electron gun
JPH10172489A (en) Adjusting method of electron beam in scan electron microscope
JP3114335B2 (en) Focusing method in scanning electron microscope
JP3112548B2 (en) Image signal processing method in charged particle beam device
JP3790629B2 (en) Scanning charged particle beam apparatus and method of operating scanning charged particle beam apparatus
JP3364400B2 (en) Method of adjusting electron beam in scanning electron microscope and scanning electron microscope
JPS6364255A (en) Particle beam radiating device
JP3414602B2 (en) Scanning electron microscope and control method thereof
JPH08138605A (en) Focusing method and astigmatism correcting method in electron beam device, and electron beam device
JPH08273568A (en) Method for adjusting diaphragm position in electron beam device, and electron beam device
JP4163393B2 (en) Focus adjustment method in particle beam apparatus
JP2005311018A (en) Inspection method and device using electronic beam
JPH07288096A (en) Electrification detecting method for sample and scanning electron microscope
JPH09204892A (en) Focusing method for charged particle beam device
JPH07201299A (en) Method and device for focusing in charged particle beam device
JPH05290780A (en) Focusing method and astigmatism correcting method in charged particle beam device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010911

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080928

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090928

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090928

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees