JPH08138605A - Focusing method and astigmatism correcting method in electron beam device, and electron beam device - Google Patents

Focusing method and astigmatism correcting method in electron beam device, and electron beam device

Info

Publication number
JPH08138605A
JPH08138605A JP26894194A JP26894194A JPH08138605A JP H08138605 A JPH08138605 A JP H08138605A JP 26894194 A JP26894194 A JP 26894194A JP 26894194 A JP26894194 A JP 26894194A JP H08138605 A JPH08138605 A JP H08138605A
Authority
JP
Japan
Prior art keywords
electron beam
scanning
focusing
sample
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP26894194A
Other languages
Japanese (ja)
Inventor
Toshiji Kobayashi
利治 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP26894194A priority Critical patent/JPH08138605A/en
Publication of JPH08138605A publication Critical patent/JPH08138605A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE: To provide focusing and astigmatism correcting methods in such an electron beam device that highly accurately performs focusing and correcting astigmatism in a short time even in a sample having a characteristic region only in a specified part of the sample, and to provide such an electron beam device. CONSTITUTION: Thinning raster scanning is performed in a prescribed area of a sample 4 before focusing and astignatism correction action. A signal obtained from a detector 6 based on each raster scanning is supplied to an integrator 11 so as to perform integration processing according to each scanning line. The integration results according to each line are stored in a memory 13. A control circuit 14 compares the integration results according to each scanning line, which are stored in the memory 13 and a scanning line on which the maximum strength is obtained is detected. The control circuit 14 specifies a prescribed width of a scanning region including this scanning line based on the detected scanning line and controls a deflection control circuit 17 so as to perform focusing and astigmatism.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動的に電子ビームの
焦点合わせを行ったり非点の補正を行う際に用いて最適
な走査電子顕微鏡などの電子ビーム装置における焦点合
わせ方法および非点補正方法並びに電子ビーム装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a focusing method and astigmatism correction in an electron beam apparatus such as a scanning electron microscope which is optimal for automatically focusing an electron beam and correcting astigmatism. The present invention relates to a method and an electron beam device.

【0002】[0002]

【従来の技術】走査電子顕微鏡では、自動的な焦点合わ
せ機能が備えられている。この焦点合わせは、集束レン
ズの励磁をステップ状に変化させ、各励磁状態、すなわ
ち、電子ビームの各集束状態のときに試料の所定領域を
電子ビームで走査し、その際、検出器によって2次電子
や反射電子を検出し、各集束状態ごとに検出信号を積算
するようにしている。そして、各集束状態のときの検出
信号の積算値を比較し、最大値が得られたときの集束状
態を合焦点位置と判断し、その状態に集束レンズの励磁
を設定するようにしている。
2. Description of the Related Art A scanning electron microscope has an automatic focusing function. In this focusing, the excitation of the focusing lens is changed stepwise, and a predetermined region of the sample is scanned with the electron beam in each excitation state, that is, in each focusing state of the electron beam. Electrons and backscattered electrons are detected, and detection signals are integrated for each focusing state. Then, the integrated values of the detection signals in each focusing state are compared, the focusing state when the maximum value is obtained is determined to be the focus position, and the excitation of the focusing lens is set in that state.

【0003】[0003]

【発明が解決しようとする課題】ところで、焦点合わせ
において、試料の走査領域の全面に渡って凹凸が存在し
ていれば、精度の高い焦点合わせを実行することができ
る。しかしながら、ICパターンのように、電子ビーム
の走査領域の一部分に特徴部分が存在し、他の大部分は
滑らかな平面となっている試料の場合には、焦点合わせ
のために用いられる検出信号の積算値が、電子ビームの
各集束状態によっても差が小さくなり、焦点合わせの精
度が低下することがある。
By the way, in focusing, if unevenness is present over the entire scanning region of the sample, highly accurate focusing can be performed. However, in the case of a sample in which a characteristic part exists in a part of the scanning region of the electron beam and the other part is a smooth plane like the IC pattern, the detection signal used for focusing is The difference in the integrated value may be small depending on each focusing state of the electron beam, and the focusing accuracy may be lowered.

【0004】従来の走査電子顕微鏡における焦点合わせ
の際の電子ビームの走査形状は、多くの場合、所定の試
料領域をラスータ走査する全画素型の走査である。図1
はこのような走査の状況を示しており、Sが試料の電子
ビームの走査領域を示している。この走査領域Sに対し
て電子ビームはD1〜Dnのようにラスター走査され
る。ここで、試料領域Sの一部分にしか凹凸などの特徴
部分Pが存在しない場合、焦点合わせのために用いられ
る検出信号の積算値が、電子ビームの各集束状態によっ
ても差が小さくなり、焦点合わせの精度が低下すること
があることは前に述べた通りである。更に、このような
ケースでは、特徴部分Pを横切る走査ラインDk以外の
ラスター走査は、焦点合わせに実質的に寄与していない
ので、その走査に要する時間は無駄なものとなる。この
ような問題は電子ビームの非点の補正を行う場合にも生
じる。
In many cases, the scanning shape of the electron beam at the time of focusing in the conventional scanning electron microscope is an all-pixel type scanning in which a predetermined sample area is raster-scanned. FIG.
Shows the situation of such scanning, and S shows the scanning region of the electron beam of the sample. The electron beam is raster-scanned on the scanning region S as in D1 to Dn. Here, when the characteristic portion P such as the unevenness exists only in a part of the sample region S, the difference between the integrated values of the detection signals used for focusing becomes small depending on each focusing state of the electron beam, and the focusing is performed. As described above, the accuracy of may decrease. Further, in such a case, the raster scanning other than the scanning line Dk that crosses the characteristic portion P does not substantially contribute to the focusing, so that the time required for the scanning is wasted. Such a problem also occurs when the astigmatism of the electron beam is corrected.

【0005】本発明は、このような点に鑑みてなされた
もので、その目的は、試料の特定部分にのみ特徴領域が
存在している試料であっても、短時間に高い精度で焦点
合わせや非点の補正を行うことができる電子ビーム装置
における焦点合わせおよび非点補正方法並びに電子ビー
ム装置を実現するにある。
The present invention has been made in view of the above circumstances, and an object thereof is to perform focusing with high accuracy in a short time even in a sample in which a characteristic region exists only in a specific portion of the sample. It is to realize a focusing and astigmatism correction method in an electron beam apparatus and an electron beam apparatus capable of correcting astigmatism and astigmatism.

【0006】[0006]

【課題を解決するための手段】本発明に基づく電子ビー
ム装置における焦点合わせおよび非点補正方法並びに電
子ビーム装置は、事前に第1の試料領域で所定の走査単
位ごとに電子ビームの走査を行い、各走査単位ごとの信
号強度から最大の信号強度が得られた走査単位を選択
し、選択された走査単位に基づく第2の試料領域で焦点
合わせや非点補正動作を実行するようにしたことを特徴
としている。
A focusing and astigmatism correction method in an electron beam apparatus and an electron beam apparatus according to the present invention scan an electron beam in a predetermined scan unit in advance in a first sample region. , A scanning unit having the maximum signal intensity is selected from the signal intensities of the respective scanning units, and focusing and astigmatism correction operations are executed in the second sample region based on the selected scanning unit. Is characterized by.

【0007】[0007]

【作用】本発明においては、焦点合わせや非点補正動作
に先立って、事前に第1の試料領域で所定の走査単位ご
とに電子ビームの走査を行い、各走査単位ごとの信号強
度から最大の信号強度が得られた走査単位を選択し、選
択された走査単位に基づいく第2の試料領域で焦点合わ
せや非点補正動作を実行する。
In the present invention, prior to the focusing and astigmatism correction operations, the electron beam is scanned in the predetermined sample unit in advance in the first sample region, and the maximum signal intensity is obtained from the signal intensity of each scan unit. The scanning unit for which the signal intensity is obtained is selected, and the focusing and astigmatism correction operation are executed in the second sample area based on the selected scanning unit.

【0008】[0008]

【実施例】以下、図面を参照して本発明の実施例を詳細
に説明する。図2は本発明の一実施例である走査電子顕
微鏡を示しており、1は電子銃である。電子銃1から発
生した電子ビームEBは、集束レンズ2と対物レンズ3
によって試料4上に細く集束される。また、電子ビーム
EBは、偏向コイル5によって偏向され、試料4上の電
子ビームの照射位置は走査される。試料4への電子ビー
ムの照射によって発生した2次電子は、2次電子検出器
6によって検出される。検出器6の検出信号は、増幅器
7によって増幅された後、ハイパスフィルタ8と陰極線
管9に供給される。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 2 shows a scanning electron microscope which is an embodiment of the present invention, and 1 is an electron gun. The electron beam EB generated from the electron gun 1 is focused on the focusing lens 2 and the objective lens 3.
Then, it is finely focused on the sample 4. Further, the electron beam EB is deflected by the deflection coil 5, and the irradiation position of the electron beam on the sample 4 is scanned. Secondary electrons generated by the irradiation of the sample 4 with the electron beam are detected by the secondary electron detector 6. The detection signal of the detector 6 is amplified by the amplifier 7 and then supplied to the high-pass filter 8 and the cathode ray tube 9.

【0009】ハイパスフィルタ8を通過した信号は、絶
対値回路10を経て積分器11に供給される。積分器1
1の積分結果は、AD変換器12を介してメモリー13
に供給される。メモリー13に記憶された信号は適宜制
御回路14に供給される。15は操作盤であり、操作盤
15は、制御回路14に指示信号を送る。制御回路14
は、対物レンズ3の駆動電源16と偏向コイル5の偏向
制御回路17を制御する。このような構成の動作は次の
通りである。
The signal passed through the high pass filter 8 is supplied to the integrator 11 via the absolute value circuit 10. Integrator 1
The integration result of 1 is stored in the memory 13 via the AD converter 12.
Is supplied to. The signal stored in the memory 13 is appropriately supplied to the control circuit 14. Reference numeral 15 is an operation panel, and the operation panel 15 sends an instruction signal to the control circuit 14. Control circuit 14
Controls the driving power supply 16 for the objective lens 3 and the deflection control circuit 17 for the deflection coil 5. The operation of such a configuration is as follows.

【0010】通常の2次電子像を観察する場合、操作盤
15からの指示信号に基づき、制御回路14は偏向制御
回路17を制御し、偏向制御回路17から所定の走査信
号が偏向コイル5に供給され、試料4上の任意の2次元
領域が電子ビームEBによってラスター走査される。試
料4への電子ビームの照射によって発生した2次電子
は、検出器6によって検出される。その検出信号は、増
幅器7を介して偏向コイル5への走査信号と同期した陰
極線管9に供給され、陰極線管9には試料の任意の領域
の2次電子像が表示される。
When observing a normal secondary electron image, the control circuit 14 controls the deflection control circuit 17 based on an instruction signal from the operation panel 15, and the deflection control circuit 17 sends a predetermined scanning signal to the deflection coil 5. It is supplied, and an arbitrary two-dimensional area on the sample 4 is raster-scanned by the electron beam EB. Secondary electrons generated by irradiating the sample 4 with the electron beam are detected by the detector 6. The detection signal is supplied to the cathode ray tube 9 synchronized with the scanning signal to the deflection coil 5 through the amplifier 7, and the secondary electron image of an arbitrary region of the sample is displayed on the cathode ray tube 9.

【0011】次に、通常の電子ビームの焦点合わせ動作
を行う場合について説明する。操作盤15を操作し、焦
点合わせモードの指示を行うと、制御回路14は、対物
レンズ3の駆動電源16と偏向コイル5の偏向制御回路
17とを制御する。この結果、駆動電源16は対物レン
ズ3にステップ状に変化する励磁電流を供給し、偏向制
御回路17はステップ状の励磁電流の変化の都度、試料
の所定領域の走査を行うための走査信号を偏向コイル5
に供給する。
Next, a case where a normal electron beam focusing operation is performed will be described. When the operation panel 15 is operated to instruct the focusing mode, the control circuit 14 controls the driving power supply 16 for the objective lens 3 and the deflection control circuit 17 for the deflection coil 5. As a result, the driving power supply 16 supplies the objective lens 3 with a stepwise exciting current, and the deflection control circuit 17 sends a scanning signal for scanning a predetermined region of the sample each time the stepwise exciting current changes. Deflection coil 5
Supply to.

【0012】各ステップ状の励磁電流によるフォーカス
の状態における検出器6によって検出された2次電子信
号は、増幅器7によって増幅された後、ハイパスフィル
タ8によって直流分が除去された後、絶対値回路10に
よって正の信号に変換させられる。絶対値回路10の出
力は、積分器11に供給され、対物レンズ3の各励磁ス
テップごとの1回の電子ビームの走査に基づく信号が積
分される。積分器11の積分値は、AD変換器12によ
ってディジタル信号に変換された後、メモリー13に供
給される。
The secondary electron signal detected by the detector 6 in the focus state by each step-like exciting current is amplified by the amplifier 7, the direct-current component is removed by the high-pass filter 8, and then the absolute value circuit. It is converted by 10 into a positive signal. The output of the absolute value circuit 10 is supplied to the integrator 11, and the signal based on one scanning of the electron beam for each excitation step of the objective lens 3 is integrated. The integrated value of the integrator 11 is converted into a digital signal by the AD converter 12, and then supplied to the memory 13.

【0013】メモリー13においては、対物レンズ3の
各励磁ステップごとに積分器11の積分値を記憶する。
図3はこのときの記憶された積分値変化を示しており、
縦軸が積分値、横軸が対物レンズ3の励磁強度である。
制御回路14は、メモリー13に記憶された積分値の変
化曲線にスムージングを行った後、2次関数からなる曲
線でフィティングを行い、信号量積分値変化のピークの
時の対物レンズ3の励磁強度を検出する。制御回路14
は、駆動電源16を制御し、ピークの時の励磁強度に対
物レンズ3を設定し、このようにして焦点合わせ動作が
行われる。
The memory 13 stores the integrated value of the integrator 11 for each excitation step of the objective lens 3.
FIG. 3 shows the change in the stored integral value at this time,
The vertical axis represents the integrated value, and the horizontal axis represents the excitation intensity of the objective lens 3.
The control circuit 14 smooths the change curve of the integrated value stored in the memory 13 and then performs fitting with a curve made up of a quadratic function to excite the objective lens 3 at the peak of the change in the integrated value of the signal amount. Detect intensity. Control circuit 14
Controls the driving power supply 16 to set the objective lens 3 to the excitation intensity at the peak, and the focusing operation is performed in this way.

【0014】さて、上記した焦点合わせ動作に先立っ
て、電子ビームの走査領域の選択処理が実行される。先
ず、制御回路14から偏向制御回路17が制御され、試
料4の所定領域において間引き走査が実施される。図4
はこの間引き走査の様子を示しており、試料の走査領域
Sにおいて電子ビームはD1〜Dmのようにラスター走
査の間隔を開けて間引き走査される。各ラスター走査に
基づいて検出器6から得られた信号は積分器11に供給
されて走査ラインごとに積分処理が行われる。各ライン
ごとの積分結果はメモリー13に記憶される。
Prior to the above-mentioned focusing operation, the selection processing of the scanning area of the electron beam is executed. First, the deflection control circuit 17 is controlled by the control circuit 14 and thinning scanning is performed in a predetermined region of the sample 4. FIG.
Shows the state of this thinning-out scanning. In the scanning region S of the sample, the electron beam is thinned-out scanning at intervals of raster scanning like D1 to Dm. The signal obtained from the detector 6 based on each raster scan is supplied to the integrator 11 to be integrated for each scanning line. The integration result for each line is stored in the memory 13.

【0015】制御回路14は、メモリー13に記憶され
た各走査ラインごとの積分結果を比較し、最大強度が得
られた走査ラインDhを検出する。制御回路14はこの
検出された走査ラインDhに基づき、この走査ラインを
含む所定の幅の走査領域を指定し、偏向制御回路17を
制御する。図5は選択された所定の幅の走査領域Ssを
示しており、この走査領域Ssでの電子ビームの走査に
基づいて、前記した電子ビームの焦点合わせ動作が実施
される。すなわち、走査領域Ssでの走査の都度対物レ
ンズ3の励磁強度がステップ状に変化させられ、各励磁
強度ごとの電子ビームの走査に基づいて検出された信号
の積分結果により、合焦点位置が求められる。この焦点
合わせ動作は、電子ビームの走査領域Ssに試料の特徴
部分Pが含まれており、また、滑らかな試料部分の占め
る割合が小さくなっているので、焦点合わせに用いる検
出信号の積算値が、電子ビームの各焦点状態によって差
が大きくなり、焦点合わせの精度を高くすることができ
る。また、焦点合わせに実質的に寄与しない試料の滑ら
かな部分への電子ビームの走査を行わないので、比較的
短時間に焦点合わせを行うことができる。
The control circuit 14 compares the integration results for each scanning line stored in the memory 13 and detects the scanning line Dh where the maximum intensity is obtained. Based on the detected scanning line Dh, the control circuit 14 designates a scanning region of a predetermined width including this scanning line and controls the deflection control circuit 17. FIG. 5 shows the selected scanning region Ss having a predetermined width, and the above-described focusing operation of the electron beam is performed based on the scanning of the electron beam in the scanning region Ss. That is, the excitation intensity of the objective lens 3 is changed stepwise each time scanning is performed in the scanning region Ss, and the in-focus position is obtained from the integration result of the signals detected based on the scanning of the electron beam for each excitation intensity. To be In this focusing operation, since the characteristic portion P of the sample is included in the scanning region Ss of the electron beam and the proportion of the smooth sample portion is small, the integrated value of the detection signal used for focusing is Further, the difference becomes large depending on each focus state of the electron beam, and the focusing accuracy can be improved. Further, since the electron beam is not scanned on the smooth portion of the sample that does not substantially contribute to focusing, focusing can be performed in a relatively short time.

【0016】図6は本発明の他の実施例を示しており、
図2に示した第1の実施例と同一ないしは類似部分には
同一番号が付されている。この実施例では非点補正を行
っており、非点補正コイル18が設けられている。非点
補正コイル18には電源19から非点補正信号が供給さ
れる。電源19は制御回路14によって制御される。こ
のような構成において、操作盤15を操作し、非点補正
モードの指示を行うと、制御回路14は、非点補正コイ
ル18の駆動電源19と偏向コイル5の偏向制御回路1
7とを制御する。この結果、駆動電源19は非点補正コ
イル18にステップ状に変化する非点補正信号を供給
し、偏向制御回路17はステップ状の非点信号の変化の
都度、試料の所定領域の走査を行うための走査信号を偏
向コイル5に供給する。
FIG. 6 shows another embodiment of the present invention.
The same or similar parts as those of the first embodiment shown in FIG. 2 are designated by the same reference numerals. In this embodiment, astigmatism correction is performed, and an astigmatism correction coil 18 is provided. An astigmatism correction signal is supplied to the astigmatism correction coil 18 from a power supply 19. The power supply 19 is controlled by the control circuit 14. In such a configuration, when the operation panel 15 is operated to instruct the astigmatism correction mode, the control circuit 14 causes the drive power source 19 for the astigmatism correction coil 18 and the deflection control circuit 1 for the deflection coil 5.
7 and control. As a result, the driving power supply 19 supplies the astigmatism correction signal that changes stepwise to the astigmatism correction coil 18, and the deflection control circuit 17 scans a predetermined area of the sample each time the stepwise astigmatism signal changes. And a scanning signal for supplying the scanning signal to the deflection coil 5.

【0017】各ステップ状の非点状態における検出器6
によって検出された2次電子信号は、増幅器7によって
増幅された後、ハイパスフィルタ8によって直流分が除
去された後、絶対値回路10によって正の信号に変換さ
せられる。絶対値回路10の出力は、積分器11に供給
され、非点補正コイル18への非点補正信号の変化ステ
ップごとの1回の電子ビームの走査に基づく信号が積分
される。積分器11の積分値は、AD変換器12によっ
てディジタル信号に変換された後、メモリー13に供給
される。
Detector 6 in each step-shaped astigmatism state
The secondary electron signal detected by is amplified by the amplifier 7, the direct current component is removed by the high-pass filter 8, and then converted into a positive signal by the absolute value circuit 10. The output of the absolute value circuit 10 is supplied to the integrator 11, and the signal based on one electron beam scan for each change step of the astigmatism correction signal to the astigmatism correction coil 18 is integrated. The integrated value of the integrator 11 is converted into a digital signal by the AD converter 12, and then supplied to the memory 13.

【0018】メモリー13においては、非点補正コイル
18の各信号変化ステップごとに積分器11の積分値を
記憶する。制御回路14は、メモリー13に記憶された
信号の内、最大強度が得られたときの非点信号を検出
し、その時の非点信号を非点補正コイル18に供給する
ように電源19を制御する。このようにして非点補正動
作が行われる。このような非点補正動作に先立って、こ
の実施例でも、図2の実施例と同様に走査領域を選択す
ることが行われる。すなわち、最初に所定の走査領域で
電子ビームの間引き走査を行い、この間引き走査に基づ
いて最大信号強度が得られた走査ラインが選択され、選
択された走査ラインの近傍で非点補正のための電子ビー
ムの走査が行われる。
The memory 13 stores the integrated value of the integrator 11 for each signal change step of the astigmatism correction coil 18. The control circuit 14 detects the astigmatism signal when the maximum intensity is obtained from the signals stored in the memory 13, and controls the power supply 19 to supply the astigmatism signal at that time to the astigmatism correction coil 18. To do. In this way, the astigmatism correction operation is performed. Prior to such an astigmatism correction operation, also in this embodiment, the scanning area is selected as in the embodiment of FIG. That is, the thinning scanning of the electron beam is first performed in a predetermined scanning region, the scanning line having the maximum signal intensity is selected based on the thinning scanning, and the astigmatism correction is performed in the vicinity of the selected scanning line. The electron beam is scanned.

【0019】以上本発明の一実施例を詳述したが、本発
明はこの実施例に限定されない。例えば、2次電子を検
出したが、反射電子を検出してもよい。また、走査領域
を選択するためにラスター走査を間引きするようにした
が、この走査領域の選択のために所定の走査領域を正方
形の単位走査ブロックに仮想的に分割し、単位走査ブロ
ックごとの検出信号を比較するようにし、焦点合わせや
非点補正の動作を最大信号強度が得られた単位走査ブロ
ックで行うようにしても良い。更に、焦点合わせ動作の
際に対物レンズの励磁を変化させたが、対物レンズの補
助レンズを設け、補助レンズの励磁を変化させるように
しても良い。更にまた、焦点合わせの際、1走査ごとに
検出信号を積算し、積算信号を比較して最適焦点位置を
得るように構成したが、検出信号の最大の振幅値(ピー
クツーピーク値)を検出するようにしても良い。
Although one embodiment of the present invention has been described in detail above, the present invention is not limited to this embodiment. For example, although secondary electrons are detected, reflected electrons may be detected. Further, although the raster scanning is thinned out in order to select the scanning area, the predetermined scanning area is virtually divided into square unit scanning blocks for the selection of the scanning area, and the detection for each unit scanning block is performed. The signals may be compared, and the focusing and astigmatism correction operations may be performed in the unit scanning block in which the maximum signal strength is obtained. Furthermore, although the excitation of the objective lens was changed during the focusing operation, an auxiliary lens of the objective lens may be provided and the excitation of the auxiliary lens may be changed. Furthermore, when focusing, the detection signals are integrated for each scanning and the integrated signals are compared to obtain the optimum focus position. However, the maximum amplitude value (peak-to-peak value) of the detection signal is detected. It may be done.

【0020】[0020]

【発明の効果】以上説明したように、本発明では、焦点
合わせや非点補正動作に先立って、事前に第1の試料領
域で所定の走査単位ごとに電子ビームの走査を行い、各
走査単位ごとの信号強度から最大の信号強度が得られた
走査単位を選択し、選択された走査単位に基づいく第2
の試料領域で焦点合わせや非点補正動作を実行するよう
にした。その結果、焦点合わせや非点補正動作を行うと
き、その時の電子ビームの走査領域には確実に凹凸など
の試料の特徴部分が含まれており、また、滑らかな試料
部分の占める割合が小さくなっているので、焦点合わせ
や非点補正に用いる検出信号の積算値が、電子ビームの
各焦点状態によって差が大きくなり、焦点合わせや非点
補正の精度を高くすることができる。また、焦点合わせ
や非点補正に実質的に寄与しない試料の滑らかな部分へ
の電子ビームの走査を行わないので、比較的短時間に焦
点合わせを行うことができる。
As described above, according to the present invention, the electron beam is scanned in a predetermined scanning unit in advance in the first sample region prior to the focusing and the astigmatism correction operation, and each scanning unit is scanned. The scanning unit that gives the maximum signal intensity is selected from the signal intensities for each
Focusing and astigmatism correction operations were performed in the sample area of. As a result, when performing focusing or astigmatism correction operation, the scanning area of the electron beam at that time surely includes the characteristic parts of the sample such as unevenness, and the ratio of the smooth sample part becomes small. Therefore, the integrated value of the detection signal used for focusing and astigmatism correction has a large difference depending on each focus state of the electron beam, and the accuracy of focusing and astigmatism correction can be improved. Further, since the electron beam is not scanned on the smooth portion of the sample that does not substantially contribute to focusing and astigmatism correction, focusing can be performed in a relatively short time.

【図面の簡単な説明】[Brief description of drawings]

【図1】焦点合わせのための電子ビームの走査の様子を
示す図である。
FIG. 1 is a diagram showing how an electron beam is scanned for focusing.

【図2】本発明に基づく走査電子顕微鏡の一実施例を示
す図である。
FIG. 2 is a diagram showing an embodiment of a scanning electron microscope according to the present invention.

【図3】対物レンズの励磁強度と積分値との関係を示す
図である。
FIG. 3 is a diagram showing a relationship between an excitation intensity of an objective lens and an integrated value.

【図4】電子ビームの間引き走査の様子を示す図であ
る。
FIG. 4 is a diagram showing a state of thinning scanning of an electron beam.

【図5】選択された試料領域での電子ビームの走査を示
す図である。
FIG. 5 is a diagram showing scanning of an electron beam in a selected sample region.

【図6】本発明の他の実施例を示す図である。FIG. 6 is a diagram showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 電子銃 2 集束レンズ 3 対物レンズ 4 試料 5 偏向コイル 6 検出器 7 増幅器 9 陰極線管 12 AD変換器 14 制御回路 15 操作盤 16 駆動電源 17 駆動電源 18 非点補正コイル 19 電源 1 Electron Gun 2 Focusing Lens 3 Objective Lens 4 Sample 5 Deflection Coil 6 Detector 7 Amplifier 9 Cathode Ray Tube 12 AD Converter 14 Control Circuit 15 Operation Panel 16 Drive Power Supply 17 Drive Power Supply 18 Astigmatism Correction Coil 19 Power Supply

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電子ビームを試料上に集束するための集
束レンズの強度をステップ状に変化させ、その変化の都
度、試料上の所定領域を電子ビームによって走査し、こ
の走査に伴って得られた信号に基づき、最適集束レンズ
の強度を検出し、その強度に集束レンズ強度の設定を行
うようにした電子ビーム装置における焦点合わせ方法に
おいて、事前に第1の試料領域で所定の走査単位ごとに
電子ビームの走査を行い、各走査単位ごとの信号強度か
ら最大の信号強度が得られた走査単位を選択し、選択さ
れた走査単位に基づく第2の試料領域で前記焦点合わせ
動作を実行するようにしたことを特徴とする電子ビーム
装置における焦点合わせ方法。
1. The intensity of a focusing lens for focusing an electron beam on a sample is changed stepwise, and a predetermined region on the sample is scanned by the electron beam each time the intensity is changed. In the focusing method in the electron beam apparatus in which the intensity of the optimum focusing lens is detected on the basis of the signal and the focusing lens intensity is set to that intensity, in advance for each predetermined scanning unit in the first sample region. Scanning with an electron beam is performed, a scanning unit having the maximum signal intensity is selected from the signal intensities for each scanning unit, and the focusing operation is performed in the second sample region based on the selected scanning unit. A focusing method in an electron beam apparatus, characterized in that
【請求項2】 電子ビームの非点を補正する補正手段へ
の信号をステップ状に変化させ、その変化の都度、試料
上の所定領域を電子ビームによって走査し、この走査に
伴って得られた信号に基づき、最適な非点補正手段への
信号強度を検出し、その強度に非点補正手段への補正信
号の強度の設定を行うようにした電子ビーム装置におけ
る非点補正方法において、事前に第1の試料領域で所定
の走査単位ごとに電子ビームの走査を行い、各走査単位
ごとの信号強度から最大の信号強度が得られた走査単位
を選択し、選択された走査単位に基づく第2の試料領域
で前記非点補正動作を実行するようにしたことを特徴と
する電子ビーム装置における非点補正方法。
2. A signal to a correction means for correcting astigmatism of an electron beam is changed stepwise, and a predetermined region on a sample is scanned with the electron beam each time the signal is changed. In the astigmatism correction method in the electron beam device, which detects the optimum signal strength to the astigmatism correction means based on the signal and sets the strength of the correction signal to the astigmatism correction means in advance, The electron beam is scanned in a predetermined scan unit in the first sample region, the scan unit that gives the maximum signal intensity is selected from the signal intensities of the respective scan units, and the second scan unit based on the selected scan unit is selected. The astigmatism correction method in the electron beam apparatus, wherein the astigmatism correction operation is executed in the sample region.
【請求項3】 電子ビームを試料上に集束するための集
束レンズと、電子ビームの非点を補正する手段と、複数
の単位走査領域より成る試料上の所定領域を電子ビーム
によって走査するための走査手段と、試料への電子ビー
ムの照射によって得られた信号を検出する検出器と、検
出器からの信号を積算する積算手段と、電子ビームの単
位走査領域ごとの積算手段の積算結果を比較する手段
と、最大の積算結果が得られた単位走査領域に基づいて
電子ビームの焦点合わせあるいは非点補正の際の試料の
走査領域を選択する手段とを備えた電子ビーム装置。
3. A focusing lens for focusing the electron beam on the sample, a means for correcting the astigmatism of the electron beam, and a predetermined region on the sample composed of a plurality of unit scanning regions for scanning with the electron beam. Comparing the scanning means, the detector that detects the signal obtained by irradiating the sample with the electron beam, the integrating means that integrates the signals from the detector, and the integrating results of the integrating means for each unit scanning area of the electron beam And a means for selecting a scanning area of the sample for focusing or astigmatism correction of the electron beam based on the unit scanning area where the maximum integration result is obtained.
JP26894194A 1994-11-01 1994-11-01 Focusing method and astigmatism correcting method in electron beam device, and electron beam device Withdrawn JPH08138605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26894194A JPH08138605A (en) 1994-11-01 1994-11-01 Focusing method and astigmatism correcting method in electron beam device, and electron beam device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26894194A JPH08138605A (en) 1994-11-01 1994-11-01 Focusing method and astigmatism correcting method in electron beam device, and electron beam device

Publications (1)

Publication Number Publication Date
JPH08138605A true JPH08138605A (en) 1996-05-31

Family

ID=17465417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26894194A Withdrawn JPH08138605A (en) 1994-11-01 1994-11-01 Focusing method and astigmatism correcting method in electron beam device, and electron beam device

Country Status (1)

Country Link
JP (1) JPH08138605A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007200595A (en) * 2006-01-24 2007-08-09 Toshiba Corp Charged particle beam device, focus adjusting method of charged particle beam, measuring method of fine structure, inspection method of fine structure, and manufacturing method of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007200595A (en) * 2006-01-24 2007-08-09 Toshiba Corp Charged particle beam device, focus adjusting method of charged particle beam, measuring method of fine structure, inspection method of fine structure, and manufacturing method of semiconductor device

Similar Documents

Publication Publication Date Title
US6740877B2 (en) Scanning electron microscope and sample observation method using the same
JPH1173903A (en) Autofocusing method for scanning electron microscope
JPH0689687A (en) Automatic focusing device for scanning electron microscope
JP3021917B2 (en) Automatic focusing and astigmatism correction method in electron beam device
JPH05190132A (en) Automatic focusing of scan type electron microscope
US20210327048A1 (en) Adjusting Method of Charged Particle Beam Device and Charged Particle Beam Device System
JPH08138605A (en) Focusing method and astigmatism correcting method in electron beam device, and electron beam device
JP3114416B2 (en) Focusing method in charged particle beam device
JPH1050245A (en) Focusing method in charged particle beam device
JP3236433B2 (en) Focusing method in charged particle beam device
JP2001006599A (en) Method for controlling electron beam in electron beam device
JPH10172489A (en) Adjusting method of electron beam in scan electron microscope
JP3112548B2 (en) Image signal processing method in charged particle beam device
JP3101089B2 (en) Brightness correction method for scanning electron microscope
JP3114335B2 (en) Focusing method in scanning electron microscope
JP3037006B2 (en) Automatic image adjustment method for scanning electron microscope
JP3202857B2 (en) Focusing method and apparatus in charged particle beam apparatus
JP2000195457A (en) Scanning microscope
JPH08167396A (en) Electron beam device provided with field emission type electron gun
JPH05290780A (en) Focusing method and astigmatism correcting method in charged particle beam device
JPH08273576A (en) Focusing method for use in electron beam device, and electron beam device
JP2001110347A (en) Automated focusing method for charged-particle beam apparatus
JP3112541B2 (en) Astigmatism correction method for electron beam device
JP3414602B2 (en) Scanning electron microscope and control method thereof
JPH05128989A (en) Scanning electron microscope for observing three-dimensional figure

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020115