JPH09274883A - Fib/sem compounded apparatus - Google Patents

Fib/sem compounded apparatus

Info

Publication number
JPH09274883A
JPH09274883A JP8081200A JP8120096A JPH09274883A JP H09274883 A JPH09274883 A JP H09274883A JP 8081200 A JP8081200 A JP 8081200A JP 8120096 A JP8120096 A JP 8120096A JP H09274883 A JPH09274883 A JP H09274883A
Authority
JP
Japan
Prior art keywords
sem
fib
specimen
sample
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8081200A
Other languages
Japanese (ja)
Inventor
Takeshi Onishi
毅 大西
Toru Ishitani
亨 石谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8081200A priority Critical patent/JPH09274883A/en
Publication of JPH09274883A publication Critical patent/JPH09274883A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To carry out SEM(scanning electron microscope) observation of a cross section of a specimen which is processed with high precision by FiB (focused ion beam) processing while preventing charging up. SOLUTION: A means to radiate beam to an electrode is installed in a SEM apparatus 2 which accelerates and converges electrons to scan a specimen 4 and forms on observation image be secondary electrons and reflected electrons generated by the specimen 4. This compounded apparatus comprises a SEM apparatus part of which a normal SEM mode and a secondary electron generating mode by irradiation of the electrode can be selectively employed, an FIB apparatus part 1 having a scanning ion microscopic function to accelerate and converge ions 11 and scan the specimen 4 and form an observation image by secondary electron signals emitted out of the specimen 4 and a function to irradiate a defined region of the specimen 4 selectively with converged ions and process the specimen 4, and a specimen chamber part 3 to hold the specimen in vacuum and the FIB 1 and the SEM 2 are so arranged as to cross respective beam axes of the FIB 1 and the SEM 2 approximately at the same position of the same specimen.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は集束イオンビーム(F
ocused Ion Beam:以下FIB)を利用して試料に断面加
工を施し、その断面部を走査電子顕微鏡(Scanning Ele
ctron Microscope:以下SEM)で観察する装置に係
り、特に、試料の微細構造の観察に有効な装置に関す
る。
TECHNICAL FIELD The present invention relates to a focused ion beam (F
ocused Ion Beam (hereinafter referred to as FIB) is used to process the cross section of the sample, and the cross section is scanned with an electron scanning electron microscope (Scanning Ele
The present invention relates to an apparatus for observing with a ctron microscope: SEM), and particularly to an apparatus effective for observing a fine structure of a sample.

【0002】[0002]

【従来の技術】従来技術として、特開平1−181529 号公
報がある。これには、FIBとSEMとの複合装置に中
和専用の電子線シャワー銃が装着された構成が記載され
ている。この構成により、チャージアップを防止した高
精度FIB加工と、FIB加工部のその場SEM観察が
行えるようになっている。
2. Description of the Related Art As a conventional technique, there is Japanese Patent Laid-Open No. 1-181529. This describes a configuration in which an electron beam shower gun dedicated to neutralization is attached to a combined device of FIB and SEM. With this configuration, it is possible to perform high-precision FIB processing that prevents charge-up and in-situ SEM observation of the FIB processing portion.

【0003】[0003]

【発明が解決しようとする課題】従来技術は専用の電子
線シャワー銃を装着しているため、低加速エネルギの電
子が潤沢に試料に供給できる。従って、様々な材質や大
きさの試料を様々なFIB電流で加工しても、確実にチャ
ージアップの防止ができる特徴がある。しかし、それ専
用のハードウエアを試料の近くに配置する必要があり、
コスト及びスペースの面で問題がある。
Since the prior art is equipped with a dedicated electron beam shower gun, electrons with low acceleration energy can be amply supplied to the sample. Therefore, even if samples of various materials and sizes are processed with various FIB currents, it is possible to reliably prevent charge-up. However, the dedicated hardware must be placed near the sample,
There are problems in terms of cost and space.

【0004】コスト及びスペースの面からは、FIB加
工時のチャージアップの中和にSEMの電子プローブを利
用することが考えられる。これにより、電子線シャワー
銃のハードウエアが省略できる。しかし、SEM観察の
ビーム条件をそのまま使って中和を行うと、ビーム電流
量が非常に制限されているため、試料の絶縁性,絶縁部
の面積,FIBの加工ビーム電流が大きい条件下では、
十分な中和効果が得られない場合が生じる欠点がある。
様々な条件で確実に中和を行うには、低エネルギの電子
を潤沢に試料に供給する必要がある。低エネルギ電子を
潤沢に供給するために、SEMの加速電圧やレンズの集
束条件を変える手法も考えられるが、これを行うと、S
EMの動作条件を(1)試料上の加工部位探し(SEM
モード)、(2)FIB加工時の中和(中和モード)、
(3)FIB加工後の断面観察(SEMモード)、の一
連の操作の中で変化させる必要があり、装置の安定稼働
の観点から望ましくない。
From the viewpoint of cost and space, it may be considered to use an SEM electron probe for neutralizing charge-up during FIB processing. Thereby, the hardware of the electron beam shower gun can be omitted. However, if neutralization is performed using the beam conditions of SEM observation as they are, the amount of beam current is extremely limited. Therefore, under conditions where the sample insulation, the area of the insulating portion, and the FIB processing beam current are large,
There is a drawback that a sufficient neutralizing effect may not be obtained.
In order to reliably perform neutralization under various conditions, it is necessary to supply low energy electrons to the sample in abundance. A method of changing the accelerating voltage of the SEM and the focusing condition of the lens may be considered in order to supply a lot of low-energy electrons.
The operating conditions of the EM are (1) Search for a processed part on the sample (SEM
Mode), (2) Neutralization during FIB processing (neutralization mode),
(3) It is necessary to change in a series of operations of cross-section observation (SEM mode) after FIB processing, which is not desirable from the viewpoint of stable operation of the apparatus.

【0005】[0005]

【課題を解決するための手段】本発明では、SEMの一
次ビームを直接利用せず、それを電極に照射して二次電
子に変換することで、電子ビームの低エネルギ化と電流
量の増大を図る。これは、(1)SEMカラムの試料上
のビーム照射点付近に電子−電子変換電極を装着し、偏
向により変換電極にビームが照射されるようにするか、
(2)SEMカラムの試料上のビーム照射点付近に機械
的に変換電極を挿入するか、いずれかの手法で実現でき
る。(1)の場合、ビーム偏向制御のみで良いため、S
EMモードと中和モードが瞬時に切り替えられる特長が
ある。(2)の場合、SEM部の改造なしに、中和機能
が実現できる特長がある。
According to the present invention, the primary beam of the SEM is not directly used but is irradiated onto the electrode and converted into secondary electrons, thereby lowering the energy of the electron beam and increasing the amount of current. Plan. This is either (1) mounting an electron-electron conversion electrode near the beam irradiation point on the sample of the SEM column and irradiating the conversion electrode with a beam by deflection, or
(2) It can be realized by either mechanically inserting the conversion electrode near the beam irradiation point on the sample of the SEM column or by any method. In the case of (1), since only beam deflection control is required, S
It has the feature that EM mode and neutralization mode can be switched instantly. In the case of (2), there is a feature that the neutralizing function can be realized without modifying the SEM part.

【0006】FIB加工時には変換電極から二次電子を
発生させ、FIB照射による絶縁性試料のチャージアッ
プを中和する。電極電位を接地電位とした場合、電極か
ら発生する二次電子のエネルギは数eVであるため、チ
ャージアップした場所に速やかにひきつけられる。物理
的な平衡現象となるため、チャージアップの度合に応じ
て供給される二次電子量が自動制御される。従って、試
料の絶縁性,面積,FIB加工電流の違いがあっても、
適切な中和条件でチャージアップが防止できる。二次電
子の量はSEMの一次ビーム量に依存するが、電極を二
次電子イールドの高い材料(例えばアルミニウム)で作
製すると、一次ビーム電流よりも多い二次電子電流が得
られる。
During FIB processing, secondary electrons are generated from the conversion electrode to neutralize the charge up of the insulating sample due to FIB irradiation. When the electrode potential is set to the ground potential, the energy of the secondary electrons generated from the electrode is several eV, so that it can be immediately attracted to the charged-up place. Since this is a physical equilibrium phenomenon, the amount of secondary electrons supplied is automatically controlled according to the degree of charge-up. Therefore, even if there is a difference in the insulation property, area, and FIB processing current of the sample,
Charge-up can be prevented under appropriate neutralization conditions. The amount of secondary electrons depends on the amount of the primary beam of the SEM, but if the electrode is made of a material having a high secondary electron yield (for example, aluminum), a secondary electron current larger than the primary beam current can be obtained.

【0007】[0007]

【発明の実施の形態】以下、本発明の実施の形態を図を
用いて説明する。図1は第1の実施の形態で用いたFI
B/SEMの説明図である。まず、FIB部について説
明する。液体金属イオン源11から放出したイオンはコ
ンデンサレンズ12と対物レンズ14により、試料4上
に集束する。対物レンズ14の前段には偏向器13が配
置され、これにより発生させた偏向電界によりビームが
偏向され、試料上の任意の場所がFIBで照射できる。
FIB照射により試料4から発生した二次粒子は検出器
15で検出され、輝度信号として制御装置50に送ら
れ、コンピュータ51のCRT上に走査イオン顕微鏡
(Scanning Ion Microscope:略してSIM)像として画
像表示される。二次粒子は、二次電子と二次イオンが選
択的に検出できる。FIBはSEMと類似の画像取得の
みならず、得られた画像を元に、その特定部分を選択的
に加工する機能も有する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows the FI used in the first embodiment.
It is explanatory drawing of B / SEM. First, the FIB section will be described. Ions emitted from the liquid metal ion source 11 are focused on the sample 4 by the condenser lens 12 and the objective lens 14. A deflector 13 is arranged in front of the objective lens 14, and a beam is deflected by a deflection electric field generated by the deflector 13, so that an arbitrary place on the sample can be irradiated with the FIB.
Secondary particles generated from the sample 4 by FIB irradiation are detected by the detector 15 and sent to the control device 50 as a luminance signal, and are imaged as a scanning ion microscope (abbreviated as SIM) image on the CRT of the computer 51. Is displayed. Secondary electrons and secondary ions can be selectively detected in the secondary particles. The FIB has not only an image acquisition similar to that of the SEM, but also a function of selectively processing a specific portion based on the obtained image.

【0008】次にSEM部について説明する。電子源2
1から放出した電子はコンデンサレンズ22と対物レン
ズ24により、試料4上に集束する。対物レンズ24の
前段には偏向器23が配置され、これにより発生させた
偏向磁界によりビームが偏向される。偏向されたビーム
が試料に照射されると、試料から二次電子が発生し、そ
れは対物レンズ24を通って検出器25により検出され
る。検出信号は輝度信号として制御装置50に送られ、
コンピュータ51のCRT上に画像表示される。偏向器
23には二つの巻き線が施されている。一つは通常のS
EM像観察時に利用されるラスタスキャン用、もう一つ
は、中和モードを実現するための大角偏向用である。大
角偏向されたビームはSEMカラム2のビーム出口の近
くに配置された変換電極5を照射し、電極から二次電子
が発生する。電極の電位が接地電位の場合、発生する二
次電子のエネルギは数eVとなり、チャージアップ発生
部位に効率良く引き寄せられる。また、電極5の電位を
変化させて試料への二次電子供給を加減することもでき
る。
Next, the SEM section will be described. Electron source 2
The electrons emitted from 1 are focused on the sample 4 by the condenser lens 22 and the objective lens 24. A deflector 23 is arranged in front of the objective lens 24, and the beam is deflected by a deflection magnetic field generated by the deflector 23. When the sample is irradiated with the deflected beam, secondary electrons are generated from the sample, which pass through the objective lens 24 and are detected by the detector 25. The detection signal is sent to the control device 50 as a brightness signal,
An image is displayed on the CRT of the computer 51. The deflector 23 is provided with two windings. One is a normal S
It is for raster scanning used during EM image observation, and the other is for large-angle deflection to realize the neutralization mode. The beam deflected at a large angle irradiates the conversion electrode 5 arranged near the beam exit of the SEM column 2, and secondary electrons are generated from the electrode. When the potential of the electrode is the ground potential, the energy of the generated secondary electrons is several eV and is efficiently attracted to the charge-up generation site. Further, the potential of the electrode 5 can be changed to adjust the supply of secondary electrons to the sample.

【0009】FIBカラム1とSEMカラム2は試料室
3に実装されており、FIBビーム軸とSEMビーム軸
とが試料上で交差する構成となっている。
The FIB column 1 and the SEM column 2 are mounted in the sample chamber 3, and the FIB beam axis and the SEM beam axis intersect each other on the sample.

【0010】制御装置50はFIB及びSEMのカラム
制御他を統括的に行っており、その操作用のGUI(グ
ラフィカル・ユーザ・インターフェイス)やSEM及び
SIMの画像はコンピュータ51のCRT上に表示され
る。
The control device 50 controls column control of the FIB and SEM, etc., and the GUI (graphical user interface) for the operation and images of the SEM and SIM are displayed on the CRT of the computer 51. .

【0011】図2は顕微鏡画像を表示するウインドウの
説明図である。このイメージモニターウインドウ100
にはイメージ信号の入力切り替えボタン101があり、
表示部103に表示する画像を選択する。例えば、SE
Mを選択した場合、画像の輝度信号は検出器25からの
信号が接続され、スタート/ストップボタン102をク
リックすることにより、SEMのラスタ走査が行われ、
SEM像がCRT上に表示される。
FIG. 2 is an explanatory diagram of a window for displaying a microscope image. This image monitor window 100
Has an image signal input switching button 101,
An image displayed on the display unit 103 is selected. For example, SE
When M is selected, the image brightness signal is connected to the signal from the detector 25, and the SEM raster scan is performed by clicking the start / stop button 102.
The SEM image is displayed on the CRT.

【0012】図3はFIB加工を行う際に重要な加工位
置設定を行うエリアエディタウインドウ200である。
ゲットイメージボタン201をクリックすると、イメー
ジモニター100の画像表示部103と同様の画像がコ
ンピュータ内のエディタ用イメージメモリに格納され、
表示部204に表示される。例えば、格納された画像を
元に、その所望場所に矩形加工を行うには、矩形図形選
択ボタン202をクリックし、表示部204上でマウス
操作することによって、矩形加工エリア205を設定す
る。
FIG. 3 shows an area editor window 200 for setting an important processing position when performing FIB processing.
When the get image button 201 is clicked, an image similar to the image display section 103 of the image monitor 100 is stored in the image memory for the editor in the computer,
It is displayed on the display unit 204. For example, based on the stored image, in order to perform the rectangular processing at the desired location, the rectangular processing area 205 is set by clicking the rectangular figure selection button 202 and operating the mouse on the display unit 204.

【0013】図4は加工条件設定ウインドウ300であ
る。ここでは、加工時間等の設定と加工中の帯電中和機
能の有無を設定するようになっている。中和設定ボタン
301をオンにすると、加工中にSEMカラム1内の偏向
器23が大角偏向のモードで動作して中和モードとな
り、変換電極5から発生した二次電子によりチャージア
ップが中和される。加工はエリアエディタウインドウ2
00内の加工ボタン203をクリックすることにより開始
される。
FIG. 4 shows a processing condition setting window 300. Here, the processing time and the like and the presence or absence of the charge neutralization function during processing are set. Neutralization setting button
When 301 is turned on, the deflector 23 in the SEM column 1 operates in the large-angle deflection mode during processing to enter the neutralization mode, and the secondary electrons generated from the conversion electrode 5 neutralize the charge-up. Processing is in the area editor window 2
It is started by clicking the processing button 203 in 00.

【0014】図5は第2の実施の形態で用いたFIB/
SEMの構成図である。第1の実施の形態との違いは、
変換電極を可動型としている所にある。SEM像観察時
は変換電極5を変換電極移動機構6によりSEMのビー
ムに影響を与えない所まで退避しておく。チャージアッ
プ中和時には変換電極5をSEMのビーム軸上に移動
し、変換電極から二次電子を発生させる。これにより、
SEMに大角偏向機能を付加することなく、チャージア
ップが防止できる。
FIG. 5 shows the FIB / used in the second embodiment.
It is a block diagram of SEM. The difference from the first embodiment is
The conversion electrode is in a movable type. When observing the SEM image, the conversion electrode 5 is retracted by the conversion electrode moving mechanism 6 to a position that does not affect the beam of the SEM. At the time of charge-up neutralization, the conversion electrode 5 is moved on the beam axis of the SEM, and secondary electrons are generated from the conversion electrode. This allows
Charge-up can be prevented without adding a large-angle deflection function to the SEM.

【0015】変換電極にビームを照射する手法として、
(1)ビーム偏向と(2)変換電極の機械的移動とを上
述したが、これらを組み合わせて、二次電子発生位置の
最適化等を行うこともできる。
As a method of irradiating the conversion electrode with a beam,
Although (1) beam deflection and (2) mechanical movement of the conversion electrode have been described above, they can be combined to optimize the secondary electron generation position.

【0016】変換電極に長時間電子ビームを照射する
と、観察部にコンタミネーションが付着する現象が生じ
る。この現象は試料室真空度に大きく依存し、真空度の
低い条件では、二次電子の発生効率が低下する。これに
は、(1)変換電極に加熱手段を設ける、(2)電子ビ
ームを変換電極上でスキャンし、単位面積当たりのビー
ム照射量を少なくする、等の手法が活用できる。
When the conversion electrode is irradiated with an electron beam for a long time, a phenomenon occurs that contamination adheres to the observation part. This phenomenon largely depends on the vacuum degree of the sample chamber, and the secondary electron generation efficiency decreases under the condition of low vacuum degree. For this purpose, methods such as (1) providing heating means on the conversion electrode, (2) scanning the conversion electrode with an electron beam to reduce the beam irradiation amount per unit area, and the like can be utilized.

【0017】以上、FIBとSEMとの複合装置につい
ての実施の形態を述べたが、FIBとFIBとの複合装
置についても、同様な効果が期待できることは自明であ
る。
Although the embodiment of the combined device of FIB and SEM has been described above, it is obvious that the same effect can be expected in the combined device of FIB and FIB.

【0018】[0018]

【発明の効果】本発明により、FIB加工のチャージア
ップ防止が低コストで確実に行えるようになる。これに
より、高精度にFIB加工した試料断面のSEM像観察
が容易に行えるようになった。
According to the present invention, it is possible to reliably prevent charge-up in FIB processing at low cost. As a result, it becomes possible to easily observe the SEM image of the cross section of the sample processed by the FIB with high accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例で用いたFIB/SEM
装置の説明図。
FIG. 1 is an FIB / SEM used in the first embodiment of the present invention.
Explanatory drawing of an apparatus.

【図2】イメージモニターウインドウの説明図。FIG. 2 is an explanatory diagram of an image monitor window.

【図3】エリアエディタウインドウの説明図。FIG. 3 is an explanatory diagram of an area editor window.

【図4】加工条件設定ウインドウの説明図。FIG. 4 is an explanatory diagram of a processing condition setting window.

【図5】本発明の第2の実施例で用いたFIB/SEM
装置の説明図。
FIG. 5 is a FIB / SEM used in the second embodiment of the present invention.
Explanatory drawing of an apparatus.

【符号の説明】[Explanation of symbols]

1…FIBカラム、2…SEMカラム、3…試料室、4
…試料、5…変換電極、11…イオン源、12,22…
コンデンサレンズ、13,23…偏向器、14,24…
対物レンズ、15,25…検出器、21…電子源、50
…制御装置、51…コンピュータ。
1 ... FIB column, 2 ... SEM column, 3 ... sample chamber, 4
... sample, 5 ... conversion electrode, 11 ... ion source, 12, 22 ...
Condenser lens, 13, 23 ... Deflector, 14, 24 ...
Objective lens, 15, 25 ... Detector, 21 ... Electron source, 50
... control device, 51 ... computer.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】電子を加速及び集束して試料上を走査し、
上記試料から発生する二次電子及び反射電子により観察
像を形成するSEM装置に、電極にビームを照査する手
段を設け、通常のSEMモードと電極照射による二次電
子発生モードが選択的に利用できるようにしたSEM装
置部と、イオンを加速および集束させて上記試料上を走
査し、上記試料から放出される二次粒子信号により観察
像を形成する走査イオン顕微鏡機能と、上記試料の限定
された領域に選択的に集束したイオンを照射し、上記試
料を加工する機能とを有したFIB装置部と、上記試料
を真空中に保持する試料室部からなり、上記FIBと上
記SEMそれぞれのビーム軸が同一試料上のほぼ同一位
置に交差するように設置されたことを特徴とするFIB
/SEM複合装置。
1. An electron is accelerated and focused to scan on a sample,
The SEM device for forming an observation image by secondary electrons and reflected electrons generated from the sample is provided with a means for inspecting a beam on an electrode, and a normal SEM mode and a secondary electron generation mode by electrode irradiation can be selectively used. The SEM device section configured as described above, the scanning ion microscope function of accelerating and focusing the ions to scan the sample, and form an observation image by the secondary particle signal emitted from the sample, The FIB device section has a function of irradiating the region with selectively focused ions to process the sample, and a sample chamber section for holding the sample in a vacuum, and the beam axes of the FIB and the SEM respectively. FIBs, which are installed so as to intersect at almost the same position on the same sample.
/ SEM combined device.
【請求項2】上記電極に上記SEMのビームを偏向照射
し、上記二次電子発生モードを実現する請求項1に記載
のFIB/SEM複合装置。
2. The FIB / SEM composite apparatus according to claim 1, wherein the electrode is deflected and irradiated with the beam of the SEM to realize the secondary electron generation mode.
【請求項3】上記電極が機械的な移動手段によりSEM
のビーム軸上に挿入され、上記二次電子発生モードを実
現する請求項1または2に記載のFIB/SEM複合装
置。
3. The SEM by which the electrodes are mechanically moved.
The FIB / SEM combined device according to claim 1 or 2, wherein the FIB / SEM combined device is inserted on the beam axis of, and realizes the secondary electron generation mode.
JP8081200A 1996-04-03 1996-04-03 Fib/sem compounded apparatus Pending JPH09274883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8081200A JPH09274883A (en) 1996-04-03 1996-04-03 Fib/sem compounded apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8081200A JPH09274883A (en) 1996-04-03 1996-04-03 Fib/sem compounded apparatus

Publications (1)

Publication Number Publication Date
JPH09274883A true JPH09274883A (en) 1997-10-21

Family

ID=13739841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8081200A Pending JPH09274883A (en) 1996-04-03 1996-04-03 Fib/sem compounded apparatus

Country Status (1)

Country Link
JP (1) JPH09274883A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1039528A2 (en) * 1999-03-26 2000-09-27 Infineon Technologies North America Corp. In-situ method for preparing and highlighting of defects for failure analysis of semiconductor chips
JP2002033069A (en) * 2000-05-31 2002-01-31 Advantest Corp Particle beam device
EP1451849A1 (en) * 2001-10-05 2004-09-01 Canon Kabushiki Kaisha Information acquisition apparatus, cross section evaluating apparatus, and cross section evaluating method
US7053370B2 (en) 2001-10-05 2006-05-30 Canon Kabushiki Kaisha Information acquisition apparatus, cross section evaluating apparatus, cross section evaluating method, and cross section working apparatus
US7173261B2 (en) * 2004-02-25 2007-02-06 Sii Nanotechnology Inc. Image noise removing method in FIB/SEM complex apparatus
JP2009148889A (en) * 2009-03-19 2009-07-09 Sii Nanotechnology Inc Microfabrication method using atomic force microscope
KR20200010120A (en) * 2018-07-19 2020-01-30 칼 짜이스 마이크로스카피 게엠베하 Method for operating a plurality of fib-sem systems
WO2022004401A1 (en) * 2020-07-02 2022-01-06 株式会社ブイ・テクノロジー Focused ion beam device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1039528A3 (en) * 1999-03-26 2005-10-05 Infineon Technologies North America Corp. In-situ method for preparing and highlighting of defects for failure analysis of semiconductor chips
EP1039528A2 (en) * 1999-03-26 2000-09-27 Infineon Technologies North America Corp. In-situ method for preparing and highlighting of defects for failure analysis of semiconductor chips
JP4562945B2 (en) * 2000-05-31 2010-10-13 株式会社アドバンテスト Particle beam equipment
JP2002033069A (en) * 2000-05-31 2002-01-31 Advantest Corp Particle beam device
EP1451849A1 (en) * 2001-10-05 2004-09-01 Canon Kabushiki Kaisha Information acquisition apparatus, cross section evaluating apparatus, and cross section evaluating method
US7053370B2 (en) 2001-10-05 2006-05-30 Canon Kabushiki Kaisha Information acquisition apparatus, cross section evaluating apparatus, cross section evaluating method, and cross section working apparatus
EP1451849A4 (en) * 2001-10-05 2007-07-18 Canon Kk Information acquisition apparatus, cross section evaluating apparatus, and cross section evaluating method
US7615764B2 (en) 2001-10-05 2009-11-10 Canon Kabushiki Kaisha Information acquisition apparatus, cross section evaluating apparatus, cross section evaluating method, and cross section working apparatus
US7173261B2 (en) * 2004-02-25 2007-02-06 Sii Nanotechnology Inc. Image noise removing method in FIB/SEM complex apparatus
JP2009148889A (en) * 2009-03-19 2009-07-09 Sii Nanotechnology Inc Microfabrication method using atomic force microscope
JP4700119B2 (en) * 2009-03-19 2011-06-15 エスアイアイ・ナノテクノロジー株式会社 Microfabrication method using atomic force microscope
KR20200010120A (en) * 2018-07-19 2020-01-30 칼 짜이스 마이크로스카피 게엠베하 Method for operating a plurality of fib-sem systems
WO2022004401A1 (en) * 2020-07-02 2022-01-06 株式会社ブイ・テクノロジー Focused ion beam device

Similar Documents

Publication Publication Date Title
JP3291880B2 (en) Scanning electron microscope
US9275828B2 (en) Source for selectively providing positively or negatively charged particles for a focusing column
JP3897271B2 (en) Processing observation apparatus and sample processing method
JP2000200579A (en) Scanning electron microscope
JPH10223574A (en) Machining observation device
US10636615B2 (en) Composite beam apparatus
JPH05151927A (en) Scan type electron microscope and its observing method
US6812462B1 (en) Dual electron beam instrument for multi-perspective
JPH09274883A (en) Fib/sem compounded apparatus
US5739528A (en) Fast atom beam source
JP2000133183A (en) Charged-particle beam device
US20230078510A1 (en) Method for focusing and operating a particle beam microscope
JP2714009B2 (en) Charged beam device
JP2683951B2 (en) Scanning electron microscope for cross-section observation and cross-section observation method using the same
EP0190251B1 (en) Method and apparatus for the micro-analysis or imaging of samples
US20220384140A1 (en) Method for operating a particle beam device, computer program product and particle beam device for carrying out the method
EP4376047A2 (en) Particle beam system
JPH0620638A (en) Complex charged particle beam processing observation device
JPH11213936A (en) Fib-sem device
JP2001143649A (en) Scanning electron microscope
JP3524737B2 (en) Electron gun and electron beam device
JPH10208683A (en) Scanning electron microscope
JP2001338600A (en) Electron beam device
CN117174558A (en) Method for imaging, processing and/or analysing an object with a particle radiation device, computer program product for performing the method and particle radiation device
JP2003203597A (en) Scanning electron microscope