JPH11232442A - 赤目低減システム - Google Patents
赤目低減システムInfo
- Publication number
- JPH11232442A JPH11232442A JP10304736A JP30473698A JPH11232442A JP H11232442 A JPH11232442 A JP H11232442A JP 10304736 A JP10304736 A JP 10304736A JP 30473698 A JP30473698 A JP 30473698A JP H11232442 A JPH11232442 A JP H11232442A
- Authority
- JP
- Japan
- Prior art keywords
- red
- color
- area
- pupil
- image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/90—Determination of colour characteristics
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/18—Eye characteristics, e.g. of the iris
- G06V40/193—Preprocessing; Feature extraction
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30216—Redeye defect
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Ophthalmology & Optometry (AREA)
- Human Computer Interaction (AREA)
- Multimedia (AREA)
- Image Processing (AREA)
- Color Television Image Signal Generators (AREA)
- Stroboscope Apparatuses (AREA)
- Processing Of Color Television Signals (AREA)
Abstract
(57)【要約】
【課題】目の自然な外観を維持しつつ、最小限のユーザ
の介入で、画像の赤目を自動的に低減させることができ
る。 【解決手段】画像が赤い瞳孔の眼を含む場合において、
赤色のピクセルを表す第1の状態領域および他の色のピ
クセルを表す第2の状態領域を持つマスクに、画像を変
換するマスキング・モジュールと、マスキング・モジュ
ールに連結され、瞳孔に似たマスクの実質的な第1の状
態領域を探知する瞳孔探知モジュールと、瞳孔探知モジ
ュールに連結され、予め定められた色に前記領域の赤色
のピクセルを変更するカラー置換モジュールであって、
前記領域の近傍ピクセルの色が十分赤に近いと判断され
る場合には、該近傍ピクセルの色を、前記予め定められ
た色に変更することにより、前記領域の境界を調整する
カラー置換モジュールと、を備える赤目低減システムに
より自動的に赤目を低減させる。
の介入で、画像の赤目を自動的に低減させることができ
る。 【解決手段】画像が赤い瞳孔の眼を含む場合において、
赤色のピクセルを表す第1の状態領域および他の色のピ
クセルを表す第2の状態領域を持つマスクに、画像を変
換するマスキング・モジュールと、マスキング・モジュ
ールに連結され、瞳孔に似たマスクの実質的な第1の状
態領域を探知する瞳孔探知モジュールと、瞳孔探知モジ
ュールに連結され、予め定められた色に前記領域の赤色
のピクセルを変更するカラー置換モジュールであって、
前記領域の近傍ピクセルの色が十分赤に近いと判断され
る場合には、該近傍ピクセルの色を、前記予め定められ
た色に変更することにより、前記領域の境界を調整する
カラー置換モジュールと、を備える赤目低減システムに
より自動的に赤目を低減させる。
Description
【0001】
【発明の属する技術分野】本発明は、デジタル画像処理
に関する。より具体的には、本発明は、目の自然な外観
を維持しつつ、デジタル画像の赤目を自動的に低減させ
ることに関する。
に関する。より具体的には、本発明は、目の自然な外観
を維持しつつ、デジタル画像の赤目を自動的に低減させ
ることに関する。
【0002】
【従来の技術】既知であるように、比較的暗い環境で人
の写真を撮ることは、露光不足を避けるためにフラッシ
ュを必要とする。しかしフラッシュの使用は、多くの場
合写真で人の目が赤くなるという結果になり、写真にお
ける人を「幽霊のように」すなわち不自然にする。通常
これを、「赤目」現象または単に赤目と呼ぶ。
の写真を撮ることは、露光不足を避けるためにフラッシ
ュを必要とする。しかしフラッシュの使用は、多くの場
合写真で人の目が赤くなるという結果になり、写真にお
ける人を「幽霊のように」すなわち不自然にする。通常
これを、「赤目」現象または単に赤目と呼ぶ。
【0003】通常赤目は、暗さの中でフラッシュに素早
く適応することができていない人の瞳孔から生じる。既
知のように、人の瞳孔は暗い環境では広がる。フラッシ
ュが生ずるとき、フラッシュのその突然さのために、瞳
孔はサイズを小さくすることができない。これが通常、
目の後ろの網膜から反射するフラッシュを引き起こし、
赤目を生じさせる。
く適応することができていない人の瞳孔から生じる。既
知のように、人の瞳孔は暗い環境では広がる。フラッシ
ュが生ずるとき、フラッシュのその突然さのために、瞳
孔はサイズを小さくすることができない。これが通常、
目の後ろの網膜から反射するフラッシュを引き起こし、
赤目を生じさせる。
【0004】いくつかの従来技術が、赤目の影響を低減
させるために提示されている。一般的な従来技術のアプ
ローチは、カメラで複数のフラッシュを使用し、画像を
露光して取り込むのに最後のフラッシュが使用される前
に、瞳孔を収縮させることである。しかし不利な点が、
この従来技術のアプローチに関連して存在する。
させるために提示されている。一般的な従来技術のアプ
ローチは、カメラで複数のフラッシュを使用し、画像を
露光して取り込むのに最後のフラッシュが使用される前
に、瞳孔を収縮させることである。しかし不利な点が、
この従来技術のアプローチに関連して存在する。
【0005】1つの不利な点は、最初のフラッシュが生
じる時と、写真が実際に撮られる時の間の遅延である。
これは、露光ボタンが押された後、写真が撮られるのに
数秒かかることを意味する。これは混乱を引き起こし、
画像が取り込まれる前に、対象がポーズをとった位置か
ら動くことがある。さらに、実写の間にカメラのこの機
能が使えることをユーザが忘れると、すなわちカメラが
そのような赤目防止の機能を備えていないとき、赤目の
問題がなお生じる。さらに、この従来技術のアプローチ
は、すでに撮影された写真については、赤目の問題を解
決することができない。
じる時と、写真が実際に撮られる時の間の遅延である。
これは、露光ボタンが押された後、写真が撮られるのに
数秒かかることを意味する。これは混乱を引き起こし、
画像が取り込まれる前に、対象がポーズをとった位置か
ら動くことがある。さらに、実写の間にカメラのこの機
能が使えることをユーザが忘れると、すなわちカメラが
そのような赤目防止の機能を備えていないとき、赤目の
問題がなお生じる。さらに、この従来技術のアプローチ
は、すでに撮影された写真については、赤目の問題を解
決することができない。
【0006】画像処理技術の進歩により、コンピュータ
システムで画像をデジタル化し、そのデジタル化された
画像を格納することが可能である。これは通常、デジタ
ルカメラを使用してデジタル的に画像を取り込むか、ま
たは画像をデジタル形式に変換するスキャナを使用する
かのどちらかで行われる。デジタル画像は、マトリクス
に並べられた画像ピクセルを表すデータを含む。デジタ
ル画像のデータは、その後コンピュータに格納される。
デジタル画像を、表示のため検索することができ、また
コンピュータでデジタル的に変更することもできる。
システムで画像をデジタル化し、そのデジタル化された
画像を格納することが可能である。これは通常、デジタ
ルカメラを使用してデジタル的に画像を取り込むか、ま
たは画像をデジタル形式に変換するスキャナを使用する
かのどちらかで行われる。デジタル画像は、マトリクス
に並べられた画像ピクセルを表すデータを含む。デジタ
ル画像のデータは、その後コンピュータに格納される。
デジタル画像を、表示のため検索することができ、また
コンピュータでデジタル的に変更することもできる。
【0007】画像がデジタル画像として取り込まれ、ま
たはデジタル画像に変換されるので、画像の赤目の問題
をデジタル的に訂正することが可能である。いくつかの
従来技術方式が、デジタル的に赤目問題を訂正するため
に提示されている。そのような従来技術方式の1つは、
単にユーザに、デジタル的に赤目を手動で塗るための手
段を提供する。この従来技術方式の不利な点は、赤目を
塗りつぶすのに何らかの描画技術がユーザに必要とされ
ることである。他の不利な点は、赤目の訂正が自動的に
行われるというより、手動で行われるということであ
る。
たはデジタル画像に変換されるので、画像の赤目の問題
をデジタル的に訂正することが可能である。いくつかの
従来技術方式が、デジタル的に赤目問題を訂正するため
に提示されている。そのような従来技術方式の1つは、
単にユーザに、デジタル的に赤目を手動で塗るための手
段を提供する。この従来技術方式の不利な点は、赤目を
塗りつぶすのに何らかの描画技術がユーザに必要とされ
ることである。他の不利な点は、赤目の訂正が自動的に
行われるというより、手動で行われるということであ
る。
【0008】別の従来技術のアプローチは、瞳孔の中央
を正確に探知するようユーザに要求し、そのため黒い円
が赤目領域にかぶさって置かれるというものである。こ
の従来技術のアプローチの不利な点は、赤目領域が多く
の場合に円形の領域ではないということである。これに
より、赤目領域の一部が黒い円によって覆われないこと
が生じる。さらに、黒い円が赤目領域の周辺領域(すな
わち、ピンクの輪)を覆うことができないことがある。
さらにまた、赤い瞳孔を完全な黒い円で置き換えるの
は、瞳孔のきらめきを覆ってしまうこともある。既知の
ように、瞳孔のきらめきは、通常明るい「白」スポット
である。このように、この種の訂正の結果は、多くの場
合非常に人目をひいて望ましくなく、しかも時々画像の
目の自然な外観を破壊する。
を正確に探知するようユーザに要求し、そのため黒い円
が赤目領域にかぶさって置かれるというものである。こ
の従来技術のアプローチの不利な点は、赤目領域が多く
の場合に円形の領域ではないということである。これに
より、赤目領域の一部が黒い円によって覆われないこと
が生じる。さらに、黒い円が赤目領域の周辺領域(すな
わち、ピンクの輪)を覆うことができないことがある。
さらにまた、赤い瞳孔を完全な黒い円で置き換えるの
は、瞳孔のきらめきを覆ってしまうこともある。既知の
ように、瞳孔のきらめきは、通常明るい「白」スポット
である。このように、この種の訂正の結果は、多くの場
合非常に人目をひいて望ましくなく、しかも時々画像の
目の自然な外観を破壊する。
【0009】
【発明が解決しようとする課題】本発明は、目の自然な
外観を維持しつつ、ユーザの最小限の介入で、画像の赤
目を自動的に低減させることを目的とする。
外観を維持しつつ、ユーザの最小限の介入で、画像の赤
目を自動的に低減させることを目的とする。
【0010】
【課題を解決するための手段】本発明の1つの特徴は、
デジタル画像の赤目を低減させることである。本発明の
他の特徴は、ユーザの最小限の介入で、画像の赤目を自
動的に低減させることである。本発明のさらなる特徴
は、目の自然な外観を維持しつつ、画像の赤目を低減さ
せることである。また本発明の特徴は、赤目を訂正する
ため、丈夫でユーザフレンドリーな取り合わせを提供す
ることである。
デジタル画像の赤目を低減させることである。本発明の
他の特徴は、ユーザの最小限の介入で、画像の赤目を自
動的に低減させることである。本発明のさらなる特徴
は、目の自然な外観を維持しつつ、画像の赤目を低減さ
せることである。また本発明の特徴は、赤目を訂正する
ため、丈夫でユーザフレンドリーな取り合わせを提供す
ることである。
【0011】マスキング・モジュールを含む赤目低減シ
ステムについて記述する。マスキング・モジュールは、
画像の赤色のピクセルを表す第1の状態領域および画像
の他の色のピクセルを表す第2の状態領域を持つマスク
に、画像を変換する。画像は、赤い瞳孔をもつ眼を含
む。瞳孔探知モジュールはマスクキングモジュールに連
結され、瞳孔に似たマスクの実質的な第1の状態領域を
探知する。カラー置換モジュールは瞳孔探知モジュール
に連結され、領域の赤色のピクセルを、モノクロ(グレ
ー)または他の予め定められた色に変更する。またこれ
らのピクセルの色が十分赤に近いと判断される場合に
は、カラー置換モジュールは、領域の近傍のピクセルの
色を変更することにより、領域の境界を調整する。
ステムについて記述する。マスキング・モジュールは、
画像の赤色のピクセルを表す第1の状態領域および画像
の他の色のピクセルを表す第2の状態領域を持つマスク
に、画像を変換する。画像は、赤い瞳孔をもつ眼を含
む。瞳孔探知モジュールはマスクキングモジュールに連
結され、瞳孔に似たマスクの実質的な第1の状態領域を
探知する。カラー置換モジュールは瞳孔探知モジュール
に連結され、領域の赤色のピクセルを、モノクロ(グレ
ー)または他の予め定められた色に変更する。またこれ
らのピクセルの色が十分赤に近いと判断される場合に
は、カラー置換モジュールは、領域の近傍のピクセルの
色を変更することにより、領域の境界を調整する。
【0012】デジタル画像の赤目を低減させる方法につ
いて記述する。方法は、画像の赤色のピクセルを表す第
1の状態領域および画像の他の色のピクセルを表す第2
の状態領域を持つマスクに、赤い瞳孔の眼をもつ画像を
変換するステップを含む。その後マスクが処理され、瞳
孔に似たマスクの実質的な第1の状態領域を探知する。
方法は、領域の近傍ピクセルの色が赤に十分近いと判断
されるときには、領域の赤色のピクセルを、モノクロ
(グレー)または境界の調整により予め定められた色に
変更する。
いて記述する。方法は、画像の赤色のピクセルを表す第
1の状態領域および画像の他の色のピクセルを表す第2
の状態領域を持つマスクに、赤い瞳孔の眼をもつ画像を
変換するステップを含む。その後マスクが処理され、瞳
孔に似たマスクの実質的な第1の状態領域を探知する。
方法は、領域の近傍ピクセルの色が赤に十分近いと判断
されるときには、領域の赤色のピクセルを、モノクロ
(グレー)または境界の調整により予め定められた色に
変更する。
【0013】本発明の他の特徴および利点は、以下の詳
細な説明および添付図面から明らかである。
細な説明および添付図面から明らかである。
【0014】
【発明の実施の形態】図1は、本発明のある実施形態を
実現する赤目低減システム10を示す。本発明のある実
施形態によると、赤い瞳孔が置かれる領域にユーザが印
をつけると、赤目低減システム10は画像の赤目を低減
または最小にする。目の自然な外観を維持しつつ、赤目
低減システム10は自動的に赤目を低減させる。
実現する赤目低減システム10を示す。本発明のある実
施形態によると、赤い瞳孔が置かれる領域にユーザが印
をつけると、赤目低減システム10は画像の赤目を低減
または最小にする。目の自然な外観を維持しつつ、赤目
低減システム10は自動的に赤目を低減させる。
【0015】以下詳細に記述するように、赤目低減シス
テム10はユーザ・インターフェース15を含む。ユー
ザ・インターフェース15は、赤目低減システム10の
ユーザが、赤目の影響を低減させるため赤目低減システ
ムで処理されるべき領域に印をつけ、すなわち領域を定
めることを可能にする。領域は、赤い瞳孔を含む。さら
に、赤目低減システム10はマスキング・モジュール1
6を含む。マスキング・モジュール16は、赤い瞳孔を
含む印がついた領域を、第1の状態領域(例えば、白)
および第2の状態領域(例えば、黒)のバイナリマスク
に変換する。バイナリマスクの「白」領域は、画像の印
がついた領域の赤色のピクセルを表す。「黒」領域は、
画像の印がついた領域の他の色のピクセルを表す。
テム10はユーザ・インターフェース15を含む。ユー
ザ・インターフェース15は、赤目低減システム10の
ユーザが、赤目の影響を低減させるため赤目低減システ
ムで処理されるべき領域に印をつけ、すなわち領域を定
めることを可能にする。領域は、赤い瞳孔を含む。さら
に、赤目低減システム10はマスキング・モジュール1
6を含む。マスキング・モジュール16は、赤い瞳孔を
含む印がついた領域を、第1の状態領域(例えば、白)
および第2の状態領域(例えば、黒)のバイナリマスク
に変換する。バイナリマスクの「白」領域は、画像の印
がついた領域の赤色のピクセルを表す。「黒」領域は、
画像の印がついた領域の他の色のピクセルを表す。
【0016】また赤目低減システム10は探知モジュー
ル17を含み、瞳孔に似たバイナリマスクの実質的な
「白」領域を探知する。さらに赤目低減システム10は
カラー置換モジュール18を含み、領域の赤色のピクセ
ルを、モノクロ(グレー)または他の予め定められた色
に変更する。これは、通常は明るい赤くないスポットで
ある瞳孔のきらめきを維持する。さらにまた、カラー置
換モジュール18は、領域の近傍のそれらのピクセルの
色が十分赤に近いと判断する場合には、それらのピクセ
ルの色をモノクロ(グレー)または他の予め定められた
色に変更することにより、領域の境界を調整する。赤目
低減システム10については、図1から図10と共に、
以下に詳細に説明する。
ル17を含み、瞳孔に似たバイナリマスクの実質的な
「白」領域を探知する。さらに赤目低減システム10は
カラー置換モジュール18を含み、領域の赤色のピクセ
ルを、モノクロ(グレー)または他の予め定められた色
に変更する。これは、通常は明るい赤くないスポットで
ある瞳孔のきらめきを維持する。さらにまた、カラー置
換モジュール18は、領域の近傍のそれらのピクセルの
色が十分赤に近いと判断する場合には、それらのピクセ
ルの色をモノクロ(グレー)または他の予め定められた
色に変更することにより、領域の境界を調整する。赤目
低減システム10については、図1から図10と共に、
以下に詳細に説明する。
【0017】赤目低減システム10は、ソフトウェア、
ハードウェアまたはファームウェアで実現することがで
きる。これは、モジュール15から18のそれぞれがソ
フトウェア、ハードウェアまたはファームウェアで実現
することができることを意味する。ある実施形態では、
赤目低減システム10は、コンピュータシステム(示さ
れていない)上で走るソフトウェア・アプリケーション
プログラムである。赤目低減システム10を実行するコ
ンピュータシステムは、パーソナルコンピュータ、ミニ
コンピュータ、ワークステーション・コンピュータ、ノ
ート・パソコン、ネットワーク・コンピュータ、サーバ
・コンピュータまたは任意の他のデータ処理システムで
あることもできる。代わりに、赤目低減システム10の
1または複数のモジュールをハードウェアまたはファー
ムウェアで実現することができ、他のモジュールはなお
ソフトウェアモジュールであることができる。
ハードウェアまたはファームウェアで実現することがで
きる。これは、モジュール15から18のそれぞれがソ
フトウェア、ハードウェアまたはファームウェアで実現
することができることを意味する。ある実施形態では、
赤目低減システム10は、コンピュータシステム(示さ
れていない)上で走るソフトウェア・アプリケーション
プログラムである。赤目低減システム10を実行するコ
ンピュータシステムは、パーソナルコンピュータ、ミニ
コンピュータ、ワークステーション・コンピュータ、ノ
ート・パソコン、ネットワーク・コンピュータ、サーバ
・コンピュータまたは任意の他のデータ処理システムで
あることもできる。代わりに、赤目低減システム10の
1または複数のモジュールをハードウェアまたはファー
ムウェアで実現することができ、他のモジュールはなお
ソフトウェアモジュールであることができる。
【0018】さらに赤目低減システム10を、画像シス
テム(示されていない)で実現することができる。画像
システムは、画像表示システム、走査対印刷システム、
または単にディスプレイを持つコンピュータシステムで
あることができる。また、画像システムは、他の種類の
画像システムであることもできる。
テム(示されていない)で実現することができる。画像
システムは、画像表示システム、走査対印刷システム、
または単にディスプレイを持つコンピュータシステムで
あることができる。また、画像システムは、他の種類の
画像システムであることもできる。
【0019】図1に示すように、赤目低減システム10
のユーザ・インターフェース15が、オリジナル画像1
1を表示するのに使用される。オリジナル画像11は、
赤目すなわち赤い瞳孔を持つ。図3は、例としてそのよ
うな画像を示す。図3からわかるように、眼35および
36のそれぞれは、赤い瞳孔(すなわち、瞳孔38また
は39)を持つ。また図3は、2つの印がついた、すな
わち定められた領域31および32を示す。
のユーザ・インターフェース15が、オリジナル画像1
1を表示するのに使用される。オリジナル画像11は、
赤目すなわち赤い瞳孔を持つ。図3は、例としてそのよ
うな画像を示す。図3からわかるように、眼35および
36のそれぞれは、赤い瞳孔(すなわち、瞳孔38また
は39)を持つ。また図3は、2つの印がついた、すな
わち定められた領域31および32を示す。
【0020】ある実施形態では、印がついた領域31お
よび32は、ユーザによりユーザ・インターフェース1
5を介して印がつけられる。印がついた領域31および
32は、以下に詳細に記述する。
よび32は、ユーザによりユーザ・インターフェース1
5を介して印がつけられる。印がついた領域31および
32は、以下に詳細に記述する。
【0021】図3からわかるように、印がついた領域3
1および32のそれぞれは長方形であり、この長方形は
くすんだ暗い色に再度色づけされるべき赤い瞳孔(例え
ば、瞳孔38または39)を囲んでいる。しかし、印が
ついた領域(31または32)は長方形である必要はな
く、一般に多角形または曲線の形を持つことができるこ
とに注意すべきである。長方形の形は、単に例として示
されている。印がついた領域(例えば、印がついた領域
31または32)の画像は、A={aij}として表さ
れ、ここでaijは画像A内のピクセルを表す。
1および32のそれぞれは長方形であり、この長方形は
くすんだ暗い色に再度色づけされるべき赤い瞳孔(例え
ば、瞳孔38または39)を囲んでいる。しかし、印が
ついた領域(31または32)は長方形である必要はな
く、一般に多角形または曲線の形を持つことができるこ
とに注意すべきである。長方形の形は、単に例として示
されている。印がついた領域(例えば、印がついた領域
31または32)の画像は、A={aij}として表さ
れ、ここでaijは画像A内のピクセルを表す。
【0022】図1を再び参照すると、オリジナル画像1
1はデジタル画像であり、このデジタル画像は画像取り
込み装置から得られることができる。既知の技術が、オ
リジナル画像11を得るのに使用される。例えば、オリ
ジナル画像11は、スキャナまたはデジタルカメラで生
成されることができ、ディスプレイ(例えば、CRT、
LCDまたはフラットパネル・ディスプレイ)で表示す
るよう指示される。代わりに、オリジナル画像11は、
プリンタで印刷するよう指示されることもできる。
1はデジタル画像であり、このデジタル画像は画像取り
込み装置から得られることができる。既知の技術が、オ
リジナル画像11を得るのに使用される。例えば、オリ
ジナル画像11は、スキャナまたはデジタルカメラで生
成されることができ、ディスプレイ(例えば、CRT、
LCDまたはフラットパネル・ディスプレイ)で表示す
るよう指示される。代わりに、オリジナル画像11は、
プリンタで印刷するよう指示されることもできる。
【0023】図1のユーザ・インターフェース15は、
ディスプレイ(示されていない)上に表示される。ユー
ザ・インターフェース15を表示するディスプレイは、
コンピュータ・ディスプレイであることができる。ユー
ザ・インターフェース15は対話型インターフェースで
あり、ユーザが、赤目すなわち赤い瞳孔を含んで表示さ
れるオリジナル画像11内の領域に印をつけ、すなわち
領域を定めることを可能にする(例えば、図3の印がつ
いた領域31および32)。またユーザ・インターフェ
ース15は、ユーザが、マウスまたは他のカーソル制御
装置を使用してユーザ・インターフェース上に表示され
るアイコンにカーソルを位置づけ、赤目低減システム1
0を活動化させるマウスまたはカーソル制御装置の1つ
のボタンをクリックすることにより、赤目低減システム
を活動化させることを可能にする。図2は、ユーザ・イ
ンターフェース15の構造を示し、以下に詳細に記述す
る。
ディスプレイ(示されていない)上に表示される。ユー
ザ・インターフェース15を表示するディスプレイは、
コンピュータ・ディスプレイであることができる。ユー
ザ・インターフェース15は対話型インターフェースで
あり、ユーザが、赤目すなわち赤い瞳孔を含んで表示さ
れるオリジナル画像11内の領域に印をつけ、すなわち
領域を定めることを可能にする(例えば、図3の印がつ
いた領域31および32)。またユーザ・インターフェ
ース15は、ユーザが、マウスまたは他のカーソル制御
装置を使用してユーザ・インターフェース上に表示され
るアイコンにカーソルを位置づけ、赤目低減システム1
0を活動化させるマウスまたはカーソル制御装置の1つ
のボタンをクリックすることにより、赤目低減システム
を活動化させることを可能にする。図2は、ユーザ・イ
ンターフェース15の構造を示し、以下に詳細に記述す
る。
【0024】図2から明らかなように、ユーザ・インタ
ーフェース15はツールバーまたはメニューバーの領域
21を含み、この領域は図1の赤目低減システム10を
活動化させるためのアイコン23を含む。またユーザ・
インターフェース15は、オリジナル画像11が表示さ
れる表示領域22を含む。さらにユーザ・インターフェ
ース15はカーソル24を含み、ユーザが、マウスまた
は他のカーソル制御装置(示されていない)を介して、
ユーザ・インターフェース15と対話することを可能に
する。またカーソル24は、ユーザが、表示される画像
11の印がついた領域(例えば、印がついた領域31ま
たは32)を定めることを可能にする。赤目低減システ
ム10がアイコン23を介して起動されると、赤目低減
システム10は、印がついた領域に含まれる赤目を低減
または最小にする。ユーザ・インターフェース15は、
任意の既知のユーザ対話型インターフェース技術を使用
して実現することができる。
ーフェース15はツールバーまたはメニューバーの領域
21を含み、この領域は図1の赤目低減システム10を
活動化させるためのアイコン23を含む。またユーザ・
インターフェース15は、オリジナル画像11が表示さ
れる表示領域22を含む。さらにユーザ・インターフェ
ース15はカーソル24を含み、ユーザが、マウスまた
は他のカーソル制御装置(示されていない)を介して、
ユーザ・インターフェース15と対話することを可能に
する。またカーソル24は、ユーザが、表示される画像
11の印がついた領域(例えば、印がついた領域31ま
たは32)を定めることを可能にする。赤目低減システ
ム10がアイコン23を介して起動されると、赤目低減
システム10は、印がついた領域に含まれる赤目を低減
または最小にする。ユーザ・インターフェース15は、
任意の既知のユーザ対話型インターフェース技術を使用
して実現することができる。
【0025】図1を参照すると、オリジナル画像11の
印がついた領域(たとえば印がついた領域31または3
2)のカラー画像Aは、その後赤目低減システム10の
マスキング・モジュール16に適用される。マスキング
・モジュール16は、印がついた領域のカラー画像Aを
読むのに使用され、その後そのカラー画像のピクセルデ
ータをバイナリマスクに変換する。このバイナリマスク
をB={bij}で表す。ここでbijは、バイナリマスク
Bのピクセル(i、j)のマスク値bijを表す。マスクB
がバイナリマスクなので、ピクセル{bij}のそれぞれ
は「白」ピクセルまたは「黒」ピクセルである。これ
は、バイナリマスクBが、オリジナル画像11の印がつ
いた領域Aと同じサイズであることができることを示
す。または、バイナリマスクBのサイズは、印がついた
領域Aよりも小さい。バイナリマスクBは、印がついた
領域Aのすべての赤ピクセルを識別するのに使用され、
よって印がついた領域Aの赤い瞳孔のサイズおよび位置
を識別するのに瞳孔探知モジュール17に使用される。
印がついた領域(たとえば印がついた領域31または3
2)のカラー画像Aは、その後赤目低減システム10の
マスキング・モジュール16に適用される。マスキング
・モジュール16は、印がついた領域のカラー画像Aを
読むのに使用され、その後そのカラー画像のピクセルデ
ータをバイナリマスクに変換する。このバイナリマスク
をB={bij}で表す。ここでbijは、バイナリマスク
Bのピクセル(i、j)のマスク値bijを表す。マスクB
がバイナリマスクなので、ピクセル{bij}のそれぞれ
は「白」ピクセルまたは「黒」ピクセルである。これ
は、バイナリマスクBが、オリジナル画像11の印がつ
いた領域Aと同じサイズであることができることを示
す。または、バイナリマスクBのサイズは、印がついた
領域Aよりも小さい。バイナリマスクBは、印がついた
領域Aのすべての赤ピクセルを識別するのに使用され、
よって印がついた領域Aの赤い瞳孔のサイズおよび位置
を識別するのに瞳孔探知モジュール17に使用される。
【0026】バイナリマスクBは、画像11の印がつい
た領域の赤色のピクセルを示す第1の状態領域または範
囲、および赤とは異なる色を持つピクセルを示す第2の
状態領域または範囲を含む。第1の状態領域は、例えば
「白」(すなわち、最も高いグレースケール値)のピク
セルで表すことができ、第2の状態領域は「黒」(すな
わち、最も低いグレースケール値)のピクセルで表すこ
とができる。グレースケール値が8ビットのデータで表
されるとき、最も高いグレースケール値は255であ
り、最も低いグレースケール値はゼロである。図4は、
マスキング・モジュール16によるバイナリマスク44
を作る処理(以下に詳細に記述する)に加え、オリジナ
ル画像11の領域31と同様の印がついた領域のマスク
キング・モジュール16から変換されたバイナリマスク
44を示す。
た領域の赤色のピクセルを示す第1の状態領域または範
囲、および赤とは異なる色を持つピクセルを示す第2の
状態領域または範囲を含む。第1の状態領域は、例えば
「白」(すなわち、最も高いグレースケール値)のピク
セルで表すことができ、第2の状態領域は「黒」(すな
わち、最も低いグレースケール値)のピクセルで表すこ
とができる。グレースケール値が8ビットのデータで表
されるとき、最も高いグレースケール値は255であ
り、最も低いグレースケール値はゼロである。図4は、
マスキング・モジュール16によるバイナリマスク44
を作る処理(以下に詳細に記述する)に加え、オリジナ
ル画像11の領域31と同様の印がついた領域のマスク
キング・モジュール16から変換されたバイナリマスク
44を示す。
【0027】図4からわかるように、図3の印がついた
領域31のカラー画像Aは、赤の画像41a、緑の画像
41bおよび青の画像41cから形成される。マスキン
グ・モジュール16の変換処理は、一般に3つのステッ
プを含む。最初に、マスキング・モジュール16は、画
像41a〜4lcを、輝度−クロミナンス表現(すなわ
ち、画像42a〜42c)に変換する。これは、既知の
技術を使用して行われる。その後、クロミナンス情報4
2bおよび42cは、第1の状態および第2の状態の間
の閾値Tを計算するのに使用される。任意の既知の閾値
決定技術を、閾値Tを計算するのに使用することができ
る。既知なように、背景の画像から前景の画像を見分
け、または画像の対象物を特定するのに、様々な種類の
閾値決定技術が画像セグメンテーションについて考え出
されてきた。
領域31のカラー画像Aは、赤の画像41a、緑の画像
41bおよび青の画像41cから形成される。マスキン
グ・モジュール16の変換処理は、一般に3つのステッ
プを含む。最初に、マスキング・モジュール16は、画
像41a〜4lcを、輝度−クロミナンス表現(すなわ
ち、画像42a〜42c)に変換する。これは、既知の
技術を使用して行われる。その後、クロミナンス情報4
2bおよび42cは、第1の状態および第2の状態の間
の閾値Tを計算するのに使用される。任意の既知の閾値
決定技術を、閾値Tを計算するのに使用することができ
る。既知なように、背景の画像から前景の画像を見分
け、または画像の対象物を特定するのに、様々な種類の
閾値決定技術が画像セグメンテーションについて考え出
されてきた。
【0028】その後、閾値Tは、印がついた領域31の
カラー画像Aのそれぞれの画像ピクセルに適用され、バ
イナリマスク44を作る。マスキング・モジュール16
は、バイナリマスク44内の赤目低減に不必要な領域お
よび余分な領域を取り除き、バイナリマスクのサイズを
低減させことができる。これが、赤い瞳孔および赤い瞳
孔の予め定められた周辺のみを含むよバイナリマスク4
4を作る。代わりに、マスキング・モジュール16が印
がついた領域31の画像をバイナリマスク44に変換す
る前に、このステップを実行することができる。
カラー画像Aのそれぞれの画像ピクセルに適用され、バ
イナリマスク44を作る。マスキング・モジュール16
は、バイナリマスク44内の赤目低減に不必要な領域お
よび余分な領域を取り除き、バイナリマスクのサイズを
低減させことができる。これが、赤い瞳孔および赤い瞳
孔の予め定められた周辺のみを含むよバイナリマスク4
4を作る。代わりに、マスキング・モジュール16が印
がついた領域31の画像をバイナリマスク44に変換す
る前に、このステップを実行することができる。
【0029】ある実施形態では、標準でない輝度−クロ
ミナンス表現が、輝度−クロミナンス表現のため使用さ
れる。この場合では、クロミナンス情報は、赤−緑クロ
ミナンスCr、および青−黄クロミナンスCbを含む。代
わりに、輝度−クロミナンス表現の他の種類を使用する
ことができる。たとえば、輝度−クロミナンス表現は、
標準の輝度−クロミナンス表現であることができる。
ミナンス表現が、輝度−クロミナンス表現のため使用さ
れる。この場合では、クロミナンス情報は、赤−緑クロ
ミナンスCr、および青−黄クロミナンスCbを含む。代
わりに、輝度−クロミナンス表現の他の種類を使用する
ことができる。たとえば、輝度−クロミナンス表現は、
標準の輝度−クロミナンス表現であることができる。
【0030】図4から明らかなように、画像42aは輝
度の表現を示し、画像42bはクロミナンスCr表現を
示し、画像は42cはクロミナンスCb表現を示す。マ
スキング・モジュール16は、非線形の累乗関数を使用
し、続けてRGB対YCrCb変換マトリクスを使用し
て、画像41a〜41cを画像42a〜42cに変換す
る。変換は、既知の技術を使用して実現される。
度の表現を示し、画像42bはクロミナンスCr表現を
示し、画像は42cはクロミナンスCb表現を示す。マ
スキング・モジュール16は、非線形の累乗関数を使用
し、続けてRGB対YCrCb変換マトリクスを使用し
て、画像41a〜41cを画像42a〜42cに変換す
る。変換は、既知の技術を使用して実現される。
【0031】RGBは、赤、青および緑の色情報を表
す。Yは輝度情報を表し、CrおよびCbはクロミナンス
情報を表す。マトリクスを行う操作の前に、マスキング
・モジュール16は、印がついた領域31の画像データ
AのRGB値のそれぞれを、1/3乗する。オリジナル
のRGBデータがすでにガンマ補正されたと仮定する
と、これは画像データに約6.6の有効なガンマを与え
る。l/3乗のマッピングの目的は、赤と赤でないピクセ
ル間の隔たりを増やすことである。
す。Yは輝度情報を表し、CrおよびCbはクロミナンス
情報を表す。マトリクスを行う操作の前に、マスキング
・モジュール16は、印がついた領域31の画像データ
AのRGB値のそれぞれを、1/3乗する。オリジナル
のRGBデータがすでにガンマ補正されたと仮定する
と、これは画像データに約6.6の有効なガンマを与え
る。l/3乗のマッピングの目的は、赤と赤でないピクセ
ル間の隔たりを増やすことである。
【0032】ある実施形態では、閾値Tは以下の式によ
り計算される。
り計算される。
【0033】
【数1】 T = Cravg + 0.2 * (Crmax − Crmin)
【0034】ここで、Cravgは平均のクロミナンスCr
値を表し、CrmaxおよびCrminは最大および最小のクロ
ミナンスCr値をそれぞれ表す。平均値、最大値および
最小値はすべて、印がついた領域31の画像データAか
ら計算される。ここで、変数CrおよびCbは、非標準の
輝度−クロミナンス空間における2つのクロミナンス構
成要素を示す。印がついた領域31のピクセル(i、j)
のCrijは、閾値Tと比較される。合計が閾値Tより大
きい場合には、そのピクセル(i、j)のマスク値bijは
「1」(すなわち、白)である。これは、ピクセル
(i、j)の色が赤であることを意味する。そうでなけれ
ば、ピクセル(i、j)のマスク値はゼロ(すなわち、
黒)である。図4に示されるように、これが結果として
バイナリマスク44になる。
値を表し、CrmaxおよびCrminは最大および最小のクロ
ミナンスCr値をそれぞれ表す。平均値、最大値および
最小値はすべて、印がついた領域31の画像データAか
ら計算される。ここで、変数CrおよびCbは、非標準の
輝度−クロミナンス空間における2つのクロミナンス構
成要素を示す。印がついた領域31のピクセル(i、j)
のCrijは、閾値Tと比較される。合計が閾値Tより大
きい場合には、そのピクセル(i、j)のマスク値bijは
「1」(すなわち、白)である。これは、ピクセル
(i、j)の色が赤であることを意味する。そうでなけれ
ば、ピクセル(i、j)のマスク値はゼロ(すなわち、
黒)である。図4に示されるように、これが結果として
バイナリマスク44になる。
【0035】バイナリマスク44が作られると、マスキ
ング・モジュール16は近傍計算を使用して、マスク4
4において分離した赤ピクセルを除去し、分離した赤で
ないピクセルを埋めることができる。代わりに、マスキ
ング・モジュール16はこのステップを行わず、瞳孔探
知モジュール17がこのステップを行うこともできる。
近傍計算は、以下(数2)のように表現することができ
る。
ング・モジュール16は近傍計算を使用して、マスク4
4において分離した赤ピクセルを除去し、分離した赤で
ないピクセルを埋めることができる。代わりに、マスキ
ング・モジュール16はこのステップを行わず、瞳孔探
知モジュール17がこのステップを行うこともできる。
近傍計算は、以下(数2)のように表現することができ
る。
【0036】
【数2】
【0037】図5は、オリジナル画像11の印がついた
領域の画像Aを、図1のマスキング・モジュール16に
よりバイナリマスクBに変換する処理を示す。図5から
明らかなように、処理はステップ50で開始する。ステ
ップ51で、マスキング・モジュール16は、ユーザ・
インターフェース15からカラー画像データAを受け取
る。ステップ52で、マスキング・モジュール16はR
GB対YCrCb変換を使用し、印がついた領域Aのカラ
ー画像を、輝度−クロミナンス表現(例えば、画像42
a〜42c)に変換する。その後、マスキング・モジュ
ール16は、輝度−クロミナンス表現からのクロミナン
ス情報を使用し、ステップ53で閾値を計算する。ステ
ップ54で、マスキング・モジュール16は、印がつい
た領域Aのそれぞれの画像ピクセルを閾値と比較するこ
とにより、バイナリマスクB(例えば、バイナリマスク
44)を構成する。その後、処理はステップ55で終わ
る。
領域の画像Aを、図1のマスキング・モジュール16に
よりバイナリマスクBに変換する処理を示す。図5から
明らかなように、処理はステップ50で開始する。ステ
ップ51で、マスキング・モジュール16は、ユーザ・
インターフェース15からカラー画像データAを受け取
る。ステップ52で、マスキング・モジュール16はR
GB対YCrCb変換を使用し、印がついた領域Aのカラ
ー画像を、輝度−クロミナンス表現(例えば、画像42
a〜42c)に変換する。その後、マスキング・モジュ
ール16は、輝度−クロミナンス表現からのクロミナン
ス情報を使用し、ステップ53で閾値を計算する。ステ
ップ54で、マスキング・モジュール16は、印がつい
た領域Aのそれぞれの画像ピクセルを閾値と比較するこ
とにより、バイナリマスクB(例えば、バイナリマスク
44)を構成する。その後、処理はステップ55で終わ
る。
【0038】戻って図1を参照すると、マスキング・モ
ジュール16からのバイナリマスクBは、その後瞳孔探
知モジュール17に適用される。瞳孔探知モジュール1
7は、バイナリマスクBを処理し、画像Aの赤い瞳孔の
位置を特定する。瞳孔探知モジュール17は、バイナリ
マスクBの最も大きい「白」領域を探知することにより
これを行う。これは、我々がバイナリマスクBの最大の
白領域が赤い瞳孔であると仮定していることを意味す
る。その後、瞳孔探知モジュール17は、バイナリマス
クBから修正されたバイナリマスクP={pij}を生成
する。修正されたバイナリマスクPは、マスク内の赤い
瞳孔の位置を示す。修正されたバイナリマスクPは、カ
ラー置換モジュール18に送られる。修正されたバイナ
リマスクPは、バイナリマスクBの「きれいにした(ク
リーンアップされた)」バージョンであることができ
る。これは、バイナリマスクBのすべての他の白領域が
赤い瞳孔とは何の関係もないとき、これらすべての他の
白領域が黒領域に変換されることを意味する。代わり
に、瞳孔探知モジュール17は、バイナリマスクBの赤
い瞳孔のサイズと位置を判断しさえすればよく、バイナ
リマスクBを修正しないこともできる。この場合、修正
されたバイナリマスクPは、マスクの赤い瞳孔の位置お
よびサイズの情報をもつバイナリマスクBであるにすぎ
ない。
ジュール16からのバイナリマスクBは、その後瞳孔探
知モジュール17に適用される。瞳孔探知モジュール1
7は、バイナリマスクBを処理し、画像Aの赤い瞳孔の
位置を特定する。瞳孔探知モジュール17は、バイナリ
マスクBの最も大きい「白」領域を探知することにより
これを行う。これは、我々がバイナリマスクBの最大の
白領域が赤い瞳孔であると仮定していることを意味す
る。その後、瞳孔探知モジュール17は、バイナリマス
クBから修正されたバイナリマスクP={pij}を生成
する。修正されたバイナリマスクPは、マスク内の赤い
瞳孔の位置を示す。修正されたバイナリマスクPは、カ
ラー置換モジュール18に送られる。修正されたバイナ
リマスクPは、バイナリマスクBの「きれいにした(ク
リーンアップされた)」バージョンであることができ
る。これは、バイナリマスクBのすべての他の白領域が
赤い瞳孔とは何の関係もないとき、これらすべての他の
白領域が黒領域に変換されることを意味する。代わり
に、瞳孔探知モジュール17は、バイナリマスクBの赤
い瞳孔のサイズと位置を判断しさえすればよく、バイナ
リマスクBを修正しないこともできる。この場合、修正
されたバイナリマスクPは、マスクの赤い瞳孔の位置お
よびサイズの情報をもつバイナリマスクBであるにすぎ
ない。
【0039】ある実施形態では、瞳孔探知モジュール1
7は、全数探索およびブロック-マッチング推定方式を
使用し、白い円領域と最も一致するバイナリマスクBの
最大の領域を探知する。この全数探索方式は、最大の実
質的な白領域について、バイナリマスクB全体を探索す
る。全数探索方式については、図6および7に関連して
詳細に以下で記述する。代替的に、別の方式を瞳孔探知
モジュール17で使用し、バイナリマスクBの赤い瞳孔
を探知することもできる。例えば、瞳孔探知モジュール
17は、木探索または対数関数的な検索方式を使用し、
赤い瞳孔を探知することができる。さらに、瞳孔探知モ
ジュール17は、ハフ変換方式を適用し、バイナリマス
クBの赤い瞳孔を探知することができる。この方式を使
用すると、瞳孔探知モジュール17は、バイナリマスク
Bの白領域のアウトラインすなわち境界を最初に検出す
る。その後、瞳孔探知モジュール17はハフ変換を用
い、白領域の中の円の存在を検出する。上記の記述した
方式はすべて既知の方式であり、ソフトウェアプログラ
ムにより容易に実現することができる。
7は、全数探索およびブロック-マッチング推定方式を
使用し、白い円領域と最も一致するバイナリマスクBの
最大の領域を探知する。この全数探索方式は、最大の実
質的な白領域について、バイナリマスクB全体を探索す
る。全数探索方式については、図6および7に関連して
詳細に以下で記述する。代替的に、別の方式を瞳孔探知
モジュール17で使用し、バイナリマスクBの赤い瞳孔
を探知することもできる。例えば、瞳孔探知モジュール
17は、木探索または対数関数的な検索方式を使用し、
赤い瞳孔を探知することができる。さらに、瞳孔探知モ
ジュール17は、ハフ変換方式を適用し、バイナリマス
クBの赤い瞳孔を探知することができる。この方式を使
用すると、瞳孔探知モジュール17は、バイナリマスク
Bの白領域のアウトラインすなわち境界を最初に検出す
る。その後、瞳孔探知モジュール17はハフ変換を用
い、白領域の中の円の存在を検出する。上記の記述した
方式はすべて既知の方式であり、ソフトウェアプログラ
ムにより容易に実現することができる。
【0040】瞳孔探知モジュール17の操作を、より詳
細に図6から9に関連して記述する。瞳孔探知モジュー
ル17で受け取られるバイナリマスクBが、w * hの
バイナリマスク60(図6で示すように)とする。この
マスク60では、左上角のピクセルがピクセル(0、
0)として印がつけられ、右下角のピクセルが(w-1、h
-1)として印がつけられる。マスク60は、いくつかの
白領域(すなわち、61a〜61g)を含む。瞳孔に似
たバイナリマスク60の最大の白領域(すなわち、領域
61a)を探知するため、瞳孔探知モジュール17はブ
ロック−マッチング推定方式を用い、バイナリマスク6
0の最大の白領域が所与の基準下で瞳孔モデルの特性と
より良く合うかどうか判断する。既知なように、瞳孔は
通常円形を持つ。このように、可能な瞳孔モデルpm
は、{r、x、y}として表されることができ、ここでr
は円の半径であり、(x、y)は、円の中央の位置を示
す。計算を単純化するため、正方形の瞳孔モデルを使用
することができる。正方形の瞳孔モデルは、パラメータ
{s、x、y}を持ち、sは正方形の幅を示し、(x、y)
は左上角の位置を示す。ブロック-マッチング推定方式
は既知の方式であり、したがってこれ以上詳細には記述
しない。
細に図6から9に関連して記述する。瞳孔探知モジュー
ル17で受け取られるバイナリマスクBが、w * hの
バイナリマスク60(図6で示すように)とする。この
マスク60では、左上角のピクセルがピクセル(0、
0)として印がつけられ、右下角のピクセルが(w-1、h
-1)として印がつけられる。マスク60は、いくつかの
白領域(すなわち、61a〜61g)を含む。瞳孔に似
たバイナリマスク60の最大の白領域(すなわち、領域
61a)を探知するため、瞳孔探知モジュール17はブ
ロック−マッチング推定方式を用い、バイナリマスク6
0の最大の白領域が所与の基準下で瞳孔モデルの特性と
より良く合うかどうか判断する。既知なように、瞳孔は
通常円形を持つ。このように、可能な瞳孔モデルpm
は、{r、x、y}として表されることができ、ここでr
は円の半径であり、(x、y)は、円の中央の位置を示
す。計算を単純化するため、正方形の瞳孔モデルを使用
することができる。正方形の瞳孔モデルは、パラメータ
{s、x、y}を持ち、sは正方形の幅を示し、(x、y)
は左上角の位置を示す。ブロック-マッチング推定方式
は既知の方式であり、したがってこれ以上詳細には記述
しない。
【0041】全数探索方式を使用して、瞳孔探知モジュ
ール17は、以下のルーチンに従って瞳孔モデルに似た
マスク60の最大の白領域を探知する。
ール17は、以下のルーチンに従って瞳孔モデルに似た
マスク60の最大の白領域を探知する。
【0042】s = min(w、h)、M = −(s2)であり、
xおよびyは正方形の白領域の左上角を示す。そして、
以下を実行する。
xおよびyは正方形の白領域の左上角を示す。そして、
以下を実行する。
【0043】
【表1】 do { Mold = M for y=0 to y=h-s x=0 to x=w-s 白ピクセルの最大数nを持つs * sの白領域を見つける。 M = 2 * n - s2 if M > Mold その白領域を、最良の瞳孔モデルとする s = s - 1 } while M > Mold
【0044】これにより、最も可能性のある意味で、最
良の一致を生じさせることを示すことができる。
良の一致を生じさせることを示すことができる。
【0045】瞳孔探知モジュール17が最大の白領域の
正方形のパラメータ{s、x、y}を求めると、その後、
その領域の円パラメータ{r、x、y}を決めることがで
きる。これは図7から明らかであり、図7は、マスク6
0の白領域61a内に、瞳孔探知モジュール17で探知
された正方形62を示す。図7から明らかなように、正
方形62のパラメータ{s1、x1、y1}が決まると、白領
域61の円のパラメータが、{r、x0、y0}として与え
られ、ここでrは半径を表し、x0およびy0は円の中央
を示す。この場合には、rは s1/√2 に等しく、x0
は x1+s1/2に等しく、y0はy1+s1/2 に等し
い。代わりに、rはs1/2に等しくなるようにすること
もできる。図8は、図4のバイナリマスク44から、瞳
孔探知モジュール17で生成された、修正されたバイナ
リマスク80を示す。
正方形のパラメータ{s、x、y}を求めると、その後、
その領域の円パラメータ{r、x、y}を決めることがで
きる。これは図7から明らかであり、図7は、マスク6
0の白領域61a内に、瞳孔探知モジュール17で探知
された正方形62を示す。図7から明らかなように、正
方形62のパラメータ{s1、x1、y1}が決まると、白領
域61の円のパラメータが、{r、x0、y0}として与え
られ、ここでrは半径を表し、x0およびy0は円の中央
を示す。この場合には、rは s1/√2 に等しく、x0
は x1+s1/2に等しく、y0はy1+s1/2 に等し
い。代わりに、rはs1/2に等しくなるようにすること
もできる。図8は、図4のバイナリマスク44から、瞳
孔探知モジュール17で生成された、修正されたバイナ
リマスク80を示す。
【0046】図9は、瞳孔探知モジュール17の主なス
テップを示し、バイナリマスクBの赤い瞳孔の位置およ
びサイズを探知する。図9から明らかなように、処理は
ステップ90で開始する。ステップ91では、瞳孔探知
モジュール17は、マスキング・モジュール16からバ
イナリマスクBを受け取る。ステップ92で、瞳孔探知
モジュール17は、マスクBの最大の「白」領域を探知
することにより、マスクの赤い瞳孔の位置を特定する。
ステップ93で、瞳孔探知モジュール17は、ステップ
92で見つけられた領域の白ピクセルだけが白のままで
ある、修正されたバイナリマスクPを出力する。バイナ
リマスクPの残りのピクセルは、黒に変更される。処理
は、ステップ94で終わる。
テップを示し、バイナリマスクBの赤い瞳孔の位置およ
びサイズを探知する。図9から明らかなように、処理は
ステップ90で開始する。ステップ91では、瞳孔探知
モジュール17は、マスキング・モジュール16からバ
イナリマスクBを受け取る。ステップ92で、瞳孔探知
モジュール17は、マスクBの最大の「白」領域を探知
することにより、マスクの赤い瞳孔の位置を特定する。
ステップ93で、瞳孔探知モジュール17は、ステップ
92で見つけられた領域の白ピクセルだけが白のままで
ある、修正されたバイナリマスクPを出力する。バイナ
リマスクPの残りのピクセルは、黒に変更される。処理
は、ステップ94で終わる。
【0047】戻って図1を参照すると、カラー置換モジ
ュール18が、修正されたバイナリマスクPの瞳孔に似
た白領域の赤色のピクセルを、モノクロの(グレーの)
または他の予め定められた色に置き換えるのに使用され
る。バイナリマスクPは、赤い瞳孔として瞳孔探知モジ
ュール17により決められた実質的な白領域を持つ。こ
の領域は、眼のきらめきを示す黒い島(図8)を含むこ
とがある。カラー置換モジュール18は、マスク値pij
=1のピクセルの色を置き換えるだけである。このよう
にして、瞳孔のきらめきが維持される(きらめきは、瞳
孔の中の輝点である)。きらめきは、白ピクセルにより
囲まれる「黒い」島としてバイナリマスクBまたはPに
示される。ある実施形態では、カラーデータが変更され
て、すべての「白」ピクセルのクロミナンス値がゼロに
なる。さらに、またカラー置換モジュール18は、予め
定められた因子(ファクタ)値で白領域のすべてのピク
セルの輝度値を変更する。ある実施形態では、この因子
の値は、およそ0.8である。
ュール18が、修正されたバイナリマスクPの瞳孔に似
た白領域の赤色のピクセルを、モノクロの(グレーの)
または他の予め定められた色に置き換えるのに使用され
る。バイナリマスクPは、赤い瞳孔として瞳孔探知モジ
ュール17により決められた実質的な白領域を持つ。こ
の領域は、眼のきらめきを示す黒い島(図8)を含むこ
とがある。カラー置換モジュール18は、マスク値pij
=1のピクセルの色を置き換えるだけである。このよう
にして、瞳孔のきらめきが維持される(きらめきは、瞳
孔の中の輝点である)。きらめきは、白ピクセルにより
囲まれる「黒い」島としてバイナリマスクBまたはPに
示される。ある実施形態では、カラーデータが変更され
て、すべての「白」ピクセルのクロミナンス値がゼロに
なる。さらに、またカラー置換モジュール18は、予め
定められた因子(ファクタ)値で白領域のすべてのピク
セルの輝度値を変更する。ある実施形態では、この因子
の値は、およそ0.8である。
【0048】さらに、通常赤い瞳孔は、赤い瞳孔の外側
にピンクの色がついた領域すなわち輪を持つので、これ
らの赤い瞳孔のピクセルの色が変更された後、眼の自然
な外観を維持するため、それらのピンクのピクセルの色
を変更することが望ましい。しかし、これらのピンク色
のピクセルの色が十分には赤くないので、それらはバイ
ナリマスクBのマスキング・モジュール16により
「白」ピクセルに変換されない。したがって、カラー置
換モジュール18は、これらのピンクのピクセルを覆う
ため、修正されたバイナリマスクPの白領域を「増や
す」必要がある。これをまた、境界調整と呼ぶ。
にピンクの色がついた領域すなわち輪を持つので、これ
らの赤い瞳孔のピクセルの色が変更された後、眼の自然
な外観を維持するため、それらのピンクのピクセルの色
を変更することが望ましい。しかし、これらのピンク色
のピクセルの色が十分には赤くないので、それらはバイ
ナリマスクBのマスキング・モジュール16により
「白」ピクセルに変換されない。したがって、カラー置
換モジュール18は、これらのピンクのピクセルを覆う
ため、修正されたバイナリマスクPの白領域を「増や
す」必要がある。これをまた、境界調整と呼ぶ。
【0049】境界調整を達成するため、カラー置換モジ
ュール18は、修正されたバイナリマスクPの白領域の
外側にある画像Aのすべての隣接するピクセルの色を分
析するが、隣接するピクセルのそれぞれは、白領域内に
少なくとも1つの近傍ピクセルを持つ。カラー置換モジ
ュール18は隣接するピクセルの色を分析し、それらの
色が十分赤に近いかどうかを見極める。この「近さ」
は、知覚される「赤さ」における偏りを示す。カラー置
換モジュール18は、隣接するピクセルの色値を、バイ
ナリマスクPの白領域内のすべてのピクセルの赤の中央
値rmedと比較することにより、これを行う。また、隣
接するピクセルの色は、白領域内のすべてのピクセルの
赤の中央値rmedおよび緑の中央値gmedの差と比較され
る。中央値rmedおよびgmedを使用することにより、き
らめきのピクセルが白領域を支配しない限り、白領域内
のきらめきの情報が効果的に避けられる。代わりに、赤
および緑の平均値を、中央値の代わりに使用することが
できる。
ュール18は、修正されたバイナリマスクPの白領域の
外側にある画像Aのすべての隣接するピクセルの色を分
析するが、隣接するピクセルのそれぞれは、白領域内に
少なくとも1つの近傍ピクセルを持つ。カラー置換モジ
ュール18は隣接するピクセルの色を分析し、それらの
色が十分赤に近いかどうかを見極める。この「近さ」
は、知覚される「赤さ」における偏りを示す。カラー置
換モジュール18は、隣接するピクセルの色値を、バイ
ナリマスクPの白領域内のすべてのピクセルの赤の中央
値rmedと比較することにより、これを行う。また、隣
接するピクセルの色は、白領域内のすべてのピクセルの
赤の中央値rmedおよび緑の中央値gmedの差と比較され
る。中央値rmedおよびgmedを使用することにより、き
らめきのピクセルが白領域を支配しない限り、白領域内
のきらめきの情報が効果的に避けられる。代わりに、赤
および緑の平均値を、中央値の代わりに使用することが
できる。
【0050】ある実施形態では、赤さにおいて知覚され
る変化の測定として、2つの量が比較のため使用され
る。一方は、赤の中央値rmedに対する隣接するピクセ
ルaijの赤の値の偏りの割合であり、これをηr ijで示
す。よって、ηr ij = |raij- rmed|/rmed * 100
% となる。raijは、隣接するピクセルの赤の値を示
す。他方の量は、赤−緑の差における偏りの割合であ
り、これをηr-g ijで示す。よって、△rg ij = |raij
- gaij|、および、△rgm = |rmed - gmed|である
場合には、ηr-g ijは、|△rg ij − △rgm|/△rgm * 1
00% に等しい。ηr ijおよびηr-g ijノ両方が、ある予め
定められた閾値以下であるとき、隣接するピクセルaij
の色は赤に十分近いと判断され、そのピクセルは白領域
に含まれると判断される。
る変化の測定として、2つの量が比較のため使用され
る。一方は、赤の中央値rmedに対する隣接するピクセ
ルaijの赤の値の偏りの割合であり、これをηr ijで示
す。よって、ηr ij = |raij- rmed|/rmed * 100
% となる。raijは、隣接するピクセルの赤の値を示
す。他方の量は、赤−緑の差における偏りの割合であ
り、これをηr-g ijで示す。よって、△rg ij = |raij
- gaij|、および、△rgm = |rmed - gmed|である
場合には、ηr-g ijは、|△rg ij − △rgm|/△rgm * 1
00% に等しい。ηr ijおよびηr-g ijノ両方が、ある予め
定められた閾値以下であるとき、隣接するピクセルaij
の色は赤に十分近いと判断され、そのピクセルは白領域
に含まれると判断される。
【0051】ある実施形態では、ηr ijについての閾値
THrは、およそ30であり、ηr-g ijについての閾値T
Hr-gは、およそ40である。代替的に、異なる閾値
を、2つの測定値について使用することができる。
THrは、およそ30であり、ηr-g ijについての閾値T
Hr-gは、およそ40である。代替的に、異なる閾値
を、2つの測定値について使用することができる。
【0052】白領域に隣接するすべてのピクセルが分析
されると、結果は第2のマスクP'に格納される。値p'
ij = 1は、ピクセルaijがPの白領域に含まれるべき
ことを示し、値ゼロは含まれるべきでないことを示す。
マスクP'が作られた後、2つのバイナリマスクの領域
PおよびP'は併合され、新しいバージョンのPを形成
する。この処理はN回繰り返されることができ、Nは予
め定められた数(例えば、5)である。Nの値は、赤い
瞳孔内の赤ピクセルの実際の形に一致させようとするの
に、Pの白領域がどれくらいかかって増えるかを示す。
カラー置換モジュール18の領域増大処理は、次のよう
な擬似コードで表現される。
されると、結果は第2のマスクP'に格納される。値p'
ij = 1は、ピクセルaijがPの白領域に含まれるべき
ことを示し、値ゼロは含まれるべきでないことを示す。
マスクP'が作られた後、2つのバイナリマスクの領域
PおよびP'は併合され、新しいバージョンのPを形成
する。この処理はN回繰り返されることができ、Nは予
め定められた数(例えば、5)である。Nの値は、赤い
瞳孔内の赤ピクセルの実際の形に一致させようとするの
に、Pの白領域がどれくらいかかって増えるかを示す。
カラー置換モジュール18の領域増大処理は、次のよう
な擬似コードで表現される。
【0053】
【表2】
【0054】図10は、カラー置換モジュール18の処
理を示す。図10から明らかなように、処理はステップ
100で開始する。ステップ101は初期化ステップで
あり、変数nが1に、マスクP'がゼロに設定される。
ステップ102では、nは予め定められた数Nと比較さ
れる。nがNより大きい場合には、ステップ111が実
行される。そうでなければ、ステップ103が実行さ
れ、nがインクリメントされる。ステップ104では、
カラー置換モジュール18が、マスクPから1つのピク
セルpijを受け取る。その後ステップ105が実行さ
れ、ピクセルが「黒」ピクセル(すなわちpij = 0)
かどうか判断される。「黒」ピクセルでない場合には、
ステップ109が実行される。答えが「はい」である場
合には、カラー置換モジュール18は、ステップ106
でピクセルの任意の近傍ピクセルがマスクPの「白」ピ
クセルであるかどうかチェックする。もし「白」ピクセ
ルでない場合には、ステップ109が次のステップであ
る。そうでなければ、ステップ107が実行され、ピク
セルaijの色が十分に赤いかどうか判断する。十分赤く
ない場合には、ステップ109が次のステップである。
そうでなければ、カラー置換モジュールは、ステップ1
08で、ピクセルp'ijを「白」ピクセルにすることに
より、修正されたマスクPの白領域を増やす。
理を示す。図10から明らかなように、処理はステップ
100で開始する。ステップ101は初期化ステップで
あり、変数nが1に、マスクP'がゼロに設定される。
ステップ102では、nは予め定められた数Nと比較さ
れる。nがNより大きい場合には、ステップ111が実
行される。そうでなければ、ステップ103が実行さ
れ、nがインクリメントされる。ステップ104では、
カラー置換モジュール18が、マスクPから1つのピク
セルpijを受け取る。その後ステップ105が実行さ
れ、ピクセルが「黒」ピクセル(すなわちpij = 0)
かどうか判断される。「黒」ピクセルでない場合には、
ステップ109が実行される。答えが「はい」である場
合には、カラー置換モジュール18は、ステップ106
でピクセルの任意の近傍ピクセルがマスクPの「白」ピ
クセルであるかどうかチェックする。もし「白」ピクセ
ルでない場合には、ステップ109が次のステップであ
る。そうでなければ、ステップ107が実行され、ピク
セルaijの色が十分に赤いかどうか判断する。十分赤く
ない場合には、ステップ109が次のステップである。
そうでなければ、カラー置換モジュールは、ステップ1
08で、ピクセルp'ijを「白」ピクセルにすることに
より、修正されたマスクPの白領域を増やす。
【0055】ステップ109で、カラー置換モジュール
18は、マスクP内のすべてのピクセルがチェックされ
たかどうか判断する。もしすべてのピクセルがチェック
されていない場合には、ステップ104が繰り返され
る。もしすべてのピクセルがチェックされている場合に
は、ステップ110が次のステップであり、マスクPお
よびP'が、2進OR演算によりPの新しいバージョン
に併合される。その後処理はステップ102に戻る。
18は、マスクP内のすべてのピクセルがチェックされ
たかどうか判断する。もしすべてのピクセルがチェック
されていない場合には、ステップ104が繰り返され
る。もしすべてのピクセルがチェックされている場合に
は、ステップ110が次のステップであり、マスクPお
よびP'が、2進OR演算によりPの新しいバージョン
に併合される。その後処理はステップ102に戻る。
【0056】ステップ102で、nがNより大きいと判
断される場合には、ステップ111が実行され、カラー
置換モジュール18は、Pの新しいバージョンから1つ
のピクセルpijを受け取る。その後ステップ112が実
行され、ピクセルが「白」ピクセル(すなわち、pij=
1)かどうか判断する。「白」ピクセルでない場合に
は、ステップ114のが実行される。答えが「はい」で
あるならば、カラー置換モジュール18は、ステップ1
13で、ピクセルの色をモノクロ(グレー)または他の
予め定められた色に変更する。ある実施形態では、これ
は、ピクセルの輝度およびクロミナンス値を変更するこ
とにより行われる。例えば、輝度値を、0.8の因子で
変更することができ、クロミナンス値をゼロに設定する
ことができる。その後ステップ114が実行され、カラ
ー置換モジュール18が、Pの新しいバージョン内のす
べてのピクセルがチェックされたかどうか判断する。も
しすべてのピクセルがチェックされている場合には、処
理はステップ115で終わる。まだすべてのピクセルが
チェックされていない場合には、ステップ111が繰り
返される。
断される場合には、ステップ111が実行され、カラー
置換モジュール18は、Pの新しいバージョンから1つ
のピクセルpijを受け取る。その後ステップ112が実
行され、ピクセルが「白」ピクセル(すなわち、pij=
1)かどうか判断する。「白」ピクセルでない場合に
は、ステップ114のが実行される。答えが「はい」で
あるならば、カラー置換モジュール18は、ステップ1
13で、ピクセルの色をモノクロ(グレー)または他の
予め定められた色に変更する。ある実施形態では、これ
は、ピクセルの輝度およびクロミナンス値を変更するこ
とにより行われる。例えば、輝度値を、0.8の因子で
変更することができ、クロミナンス値をゼロに設定する
ことができる。その後ステップ114が実行され、カラ
ー置換モジュール18が、Pの新しいバージョン内のす
べてのピクセルがチェックされたかどうか判断する。も
しすべてのピクセルがチェックされている場合には、処
理はステップ115で終わる。まだすべてのピクセルが
チェックされていない場合には、ステップ111が繰り
返される。
【0057】前述の明細書において、それらの固有の実
施形態について本発明を記述した。しかし、当該技術分
野の当業者には、多様な改良および変更を、本発明の原
理からはずれることなく行うことができるのは明らかで
ある。したがって明細書および図面が、制限されるとい
う意味でなく例示として示される。
施形態について本発明を記述した。しかし、当該技術分
野の当業者には、多様な改良および変更を、本発明の原
理からはずれることなく行うことができるのは明らかで
ある。したがって明細書および図面が、制限されるとい
う意味でなく例示として示される。
【0058】本発明は例として次の実施態様を含む。 (1)(A)画像が赤い瞳孔の眼を含む場合に、赤色の
ピクセルを表す第1の状態領域および他の色のピクセル
を表す第2の状態領域を持つマスクに、画像を変換する
マスキング・モジュールと、(B)上記マスキング・モ
ジュールに連結され、瞳孔に似たマスクの実質的な第1
の状態領域を探知する瞳孔探知モジュールと、(C)上
記瞳孔探知モジュールに連結され、予め定められた色に
上記領域の赤色のピクセルを変更するカラー置換モジュ
ールであって、上記領域の近傍のピクセルの色が十分赤
に近いと判断される場合に、該領域の近傍のピクセルの
色も上記予め定められた色に変更することにより、上記
領域の境界を調整するカラー置換モジュールと、を備え
る赤目低減システム。
ピクセルを表す第1の状態領域および他の色のピクセル
を表す第2の状態領域を持つマスクに、画像を変換する
マスキング・モジュールと、(B)上記マスキング・モ
ジュールに連結され、瞳孔に似たマスクの実質的な第1
の状態領域を探知する瞳孔探知モジュールと、(C)上
記瞳孔探知モジュールに連結され、予め定められた色に
上記領域の赤色のピクセルを変更するカラー置換モジュ
ールであって、上記領域の近傍のピクセルの色が十分赤
に近いと判断される場合に、該領域の近傍のピクセルの
色も上記予め定められた色に変更することにより、上記
領域の境界を調整するカラー置換モジュールと、を備え
る赤目低減システム。
【0059】(2)上記瞳孔探知モジュールが、上記実
質的な第1の状態領域がマスク内の実質的な最大の第1
の状態領域であるかどうか判断することにより、上記実
質的な第1の状態領域が瞳孔に似ているかどうかを検出
する上記(1)に記載の赤目低減システム。 (3)上記実質的な第1の状態領域が瞳孔に似ていると
判断した後に、上記瞳孔探知モジュールが、マスクのす
べての他の第1の状態領域を第2の状態領域に変更する
ことによりマスクを修正し、修正されたマスクのみが実
質的な第1の状態領域を持つようにする上記(2)に記
載の赤目低減システム。
質的な第1の状態領域がマスク内の実質的な最大の第1
の状態領域であるかどうか判断することにより、上記実
質的な第1の状態領域が瞳孔に似ているかどうかを検出
する上記(1)に記載の赤目低減システム。 (3)上記実質的な第1の状態領域が瞳孔に似ていると
判断した後に、上記瞳孔探知モジュールが、マスクのす
べての他の第1の状態領域を第2の状態領域に変更する
ことによりマスクを修正し、修正されたマスクのみが実
質的な第1の状態領域を持つようにする上記(2)に記
載の赤目低減システム。
【0060】(4)上記実質的な第1の状態領域が、該
第1の状態領域内に第2の状態領域を含む場合に、該第
2の状態領域が瞳孔のきらめきを表す上記(1)に記載
の赤目低減システム。 (5)上記予め定められた色がゼロのクロミナンスであ
る場合に、上記カラー置換モジュールが、予め定められ
た因子により上記実質的な第1の領域内のすべてのピク
セルの輝度値も変更する上記(4)に記載の赤目低減シ
ステム。
第1の状態領域内に第2の状態領域を含む場合に、該第
2の状態領域が瞳孔のきらめきを表す上記(1)に記載
の赤目低減システム。 (5)上記予め定められた色がゼロのクロミナンスであ
る場合に、上記カラー置換モジュールが、予め定められ
た因子により上記実質的な第1の領域内のすべてのピク
セルの輝度値も変更する上記(4)に記載の赤目低減シ
ステム。
【0061】(6)上記マスキング・モジュールが、画
像の赤-緑-青の値に対して、予め定められた累乗を最初
に行い、その後に標準の輝度−クロミナンス変換を行う
ことにより、画像をマスクに変換する上記(1)に記載
の赤目低減システム。 (7)上記カラー置換モジュールが、隣接するピクセル
の色値を、上記実質的な第1の状態領域内のすべての赤
色のピクセルの赤の中央値(i)および緑の中央値(ii)と
比較することにより、隣接するピクセルの色が十分赤に
近いかどうかを判断する上記(1)に記載の赤目低減シ
ステム。 (8)隣接するピクセルが、上記実質的な第1の状態領
域に少なくとも1つの近傍ピクセルを持つピクセルであ
る上記(1)に記載の赤目低減システム。
像の赤-緑-青の値に対して、予め定められた累乗を最初
に行い、その後に標準の輝度−クロミナンス変換を行う
ことにより、画像をマスクに変換する上記(1)に記載
の赤目低減システム。 (7)上記カラー置換モジュールが、隣接するピクセル
の色値を、上記実質的な第1の状態領域内のすべての赤
色のピクセルの赤の中央値(i)および緑の中央値(ii)と
比較することにより、隣接するピクセルの色が十分赤に
近いかどうかを判断する上記(1)に記載の赤目低減シ
ステム。 (8)隣接するピクセルが、上記実質的な第1の状態領
域に少なくとも1つの近傍ピクセルを持つピクセルであ
る上記(1)に記載の赤目低減システム。
【0062】(9)(A)赤い瞳孔の眼を持つ画像を、
画像の赤色のピクセルを表す第1の状態領域および画像
の他の色のピクセルを表す第2の状態領域を持つマスク
に変換するステップと、(B)上記マスクを処理し、瞳
孔に似たマスクの実質的な第1の状態領域を探知する処
理するステップと、(C)上記領域の赤色のピクセルを
境界調整により予め定められた色に変更するステップで
あって、該領域の近傍のピクセルの色が十分赤に近いと
判断される場合には、領域の近傍のピクセルの色を上記
予め定められた色に変更するステップと、を含むデジタ
ル画像において赤目の影響を低減させる方法。
画像の赤色のピクセルを表す第1の状態領域および画像
の他の色のピクセルを表す第2の状態領域を持つマスク
に変換するステップと、(B)上記マスクを処理し、瞳
孔に似たマスクの実質的な第1の状態領域を探知する処
理するステップと、(C)上記領域の赤色のピクセルを
境界調整により予め定められた色に変更するステップで
あって、該領域の近傍のピクセルの色が十分赤に近いと
判断される場合には、領域の近傍のピクセルの色を上記
予め定められた色に変更するステップと、を含むデジタ
ル画像において赤目の影響を低減させる方法。
【0063】(10)上記ステップ(B)が、(D)上
記実質的な第1の状態領域が、マスクの最大の実質的な
第1の状態領域であるかを判断するステップと、(E)
上記実質的な第1の状態領域が、実質的に円であるかど
うかを判断するステップと、(F)マスクのすべての他
の第1の状態領域を第2の状態領域に変更することによ
りマスクを修正し、修正されたマスクのみが実質的な第
1の状態領域を持つようにするステップと、を含む上記
(9)に記載のデジタル画像において赤目の影響を低減
させる方法。 (11)上記実質的な第1の状態領域が、該第1の状態
領域内に第2の状態領域を含む場合に、該第2の状態領
域が瞳孔のきらめきを表す上記(9)に記載のデジタル
画像において赤目の影響を低減させる方法。
記実質的な第1の状態領域が、マスクの最大の実質的な
第1の状態領域であるかを判断するステップと、(E)
上記実質的な第1の状態領域が、実質的に円であるかど
うかを判断するステップと、(F)マスクのすべての他
の第1の状態領域を第2の状態領域に変更することによ
りマスクを修正し、修正されたマスクのみが実質的な第
1の状態領域を持つようにするステップと、を含む上記
(9)に記載のデジタル画像において赤目の影響を低減
させる方法。 (11)上記実質的な第1の状態領域が、該第1の状態
領域内に第2の状態領域を含む場合に、該第2の状態領
域が瞳孔のきらめきを表す上記(9)に記載のデジタル
画像において赤目の影響を低減させる方法。
【0064】(12)上記ステップ(C)が、(a)上
記実質的な第1の状態領域内の赤色のピクセルの色を、
赤色のピクセルのクロミナンスをゼロに設定することに
より、予め定められた色に変更するステップと、(b)
予め定められた因子により、上記実質的な第1の状態領
域内のすべてのピクセルの輝度の値を変更するステップ
と、を含む上記(9)に記載のデジタル画像において赤
目の影響を低減させる方法。 (13)上記ステップ(A)が、(a)画像の赤-緑-青
の値に対して予め定められた累乗を行うステップと、
(b)標準の輝度−クロミナンス変換を実行するステッ
プと、(c)マスクを作成するステップと、を含む上記
(9)に記載のデジタル画像において赤目の影響を低減
させる方法。
記実質的な第1の状態領域内の赤色のピクセルの色を、
赤色のピクセルのクロミナンスをゼロに設定することに
より、予め定められた色に変更するステップと、(b)
予め定められた因子により、上記実質的な第1の状態領
域内のすべてのピクセルの輝度の値を変更するステップ
と、を含む上記(9)に記載のデジタル画像において赤
目の影響を低減させる方法。 (13)上記ステップ(A)が、(a)画像の赤-緑-青
の値に対して予め定められた累乗を行うステップと、
(b)標準の輝度−クロミナンス変換を実行するステッ
プと、(c)マスクを作成するステップと、を含む上記
(9)に記載のデジタル画像において赤目の影響を低減
させる方法。
【0065】(14)上記ステップ(C)が、(a)上
記実質的な第1の状態領域の外側の隣接するピクセル
が、実質的な第1の状態領域内に少なくとも1つの近傍
ピクセルを持つかどうかを判断するステップと、(b)
(a)において少なくとも1つの近傍ピクセルを持つ場合
には、隣接するピクセルの色値と、上記実質的な第1の
状態領域内のすべての赤色のピクセルの赤の中央値(i)
および緑の中央値(ii)を比較し、隣接するピクセルが十
分赤に近いかどうか判断するステップと、(c)(a)に
おいて少なくとも1つの近傍ピクセルを持つ場合には、
隣接するピクセルの色を予め定められた色に変更するス
テップと、を含むデジタル画像において赤目の影響を低
減させる方法。
記実質的な第1の状態領域の外側の隣接するピクセル
が、実質的な第1の状態領域内に少なくとも1つの近傍
ピクセルを持つかどうかを判断するステップと、(b)
(a)において少なくとも1つの近傍ピクセルを持つ場合
には、隣接するピクセルの色値と、上記実質的な第1の
状態領域内のすべての赤色のピクセルの赤の中央値(i)
および緑の中央値(ii)を比較し、隣接するピクセルが十
分赤に近いかどうか判断するステップと、(c)(a)に
おいて少なくとも1つの近傍ピクセルを持つ場合には、
隣接するピクセルの色を予め定められた色に変更するス
テップと、を含むデジタル画像において赤目の影響を低
減させる方法。
【0066】(15)隣接するピクセルの色値が、第1
の予め定められた値より小さい値だけ赤の中央値と異な
り、隣接するピクセルの赤-緑の色の差が、第2の予め
定められた値より小さい値だけ赤の中央値および緑の中
央値の差と異なる場合に、上記ステップ(b)で隣接す
るピクセルの色が十分赤に近いと判断する上記(14)
に記載のデジタル画像において赤目の影響を低減させる
方法。
の予め定められた値より小さい値だけ赤の中央値と異な
り、隣接するピクセルの赤-緑の色の差が、第2の予め
定められた値より小さい値だけ赤の中央値および緑の中
央値の差と異なる場合に、上記ステップ(b)で隣接す
るピクセルの色が十分赤に近いと判断する上記(14)
に記載のデジタル画像において赤目の影響を低減させる
方法。
【0067】(16)(A)記憶媒体と、(B)上記記
憶媒体に格納されるプログラムを実行するコンピュータ
であって、(a)赤い瞳孔の眼をもつ画像を、画像の赤
色のピクセルを表す第1の状態領域および画像の他の色
のピクセルを表す第2の状態領域を持つマスクに、眼を
変換する第1の一組の命令と、(b)上記マスクを処理
し、瞳孔に似たマスクの実質的な第1の状態領域を探知
する第2の一組の命令と、(c)上記領域の赤色のピク
セルを境界調整により予め定められた色に変更する第3
の一組の命令であって、該領域の近傍のピクセルの色が
十分赤に近いと判断される場合には、領域の近傍のピク
セルの色を上記予め定められた色に変更する第3の一組
の命令と、を備える装置。
憶媒体に格納されるプログラムを実行するコンピュータ
であって、(a)赤い瞳孔の眼をもつ画像を、画像の赤
色のピクセルを表す第1の状態領域および画像の他の色
のピクセルを表す第2の状態領域を持つマスクに、眼を
変換する第1の一組の命令と、(b)上記マスクを処理
し、瞳孔に似たマスクの実質的な第1の状態領域を探知
する第2の一組の命令と、(c)上記領域の赤色のピク
セルを境界調整により予め定められた色に変更する第3
の一組の命令であって、該領域の近傍のピクセルの色が
十分赤に近いと判断される場合には、領域の近傍のピク
セルの色を上記予め定められた色に変更する第3の一組
の命令と、を備える装置。
【0068】(17)上記第2の一組の命令が、(a)
上記実質的な第1の状態領域がマスクの最大の実質的な
第1の状態領域であるかを判断するステップと、(b)
上記実質的な第1の状態領域が実質的に円に似ているか
を判断するステップと、(c)マスクのすべての他の第
1の状態領域を第2の状態領域に変更することによりマ
スクを修正し、修正されたマスクのみが実質的な第1の
状態領域を持つようにするステップと、により、上記マ
スクの実質的な第1の状態領域を探知する上記(16)
に記載の装置。
上記実質的な第1の状態領域がマスクの最大の実質的な
第1の状態領域であるかを判断するステップと、(b)
上記実質的な第1の状態領域が実質的に円に似ているか
を判断するステップと、(c)マスクのすべての他の第
1の状態領域を第2の状態領域に変更することによりマ
スクを修正し、修正されたマスクのみが実質的な第1の
状態領域を持つようにするステップと、により、上記マ
スクの実質的な第1の状態領域を探知する上記(16)
に記載の装置。
【0069】(18)上記第3の一組の命令が、ピクセ
ルのクロミナンス値をゼロに設定することにより赤色の
ピクセルの色を変更し、予め定められた因子により上記
実質的な第1の状態領域内のすべてのピクセルの輝度値
を変更する上記(16)に記載の装置。
ルのクロミナンス値をゼロに設定することにより赤色の
ピクセルの色を変更し、予め定められた因子により上記
実質的な第1の状態領域内のすべてのピクセルの輝度値
を変更する上記(16)に記載の装置。
【0070】(19)上記第1の一組の命令が、(a)
画像の赤-緑-青の値に対して予め定められた累乗を行う
ステップと、(b)標準の輝度−クロミナンス変換を実
行するステップと、(c)マスクを作成するステップ
と、により画像をマスクに変換する上記(16)に記載
の装置。 (20)上記第3の一組の命令が、(i)上記実質的な
第1の状態領域の外側の隣接するピクセルが、実質的な
第1の状態領域内に少なくとも1つの近傍ピクセルを持
つピクセルであるかどうかを判断するステップと、(ii)
上記(i)において近傍ピクセルを持つ場合には、上記実
質的な第1の状態領域内のすべての赤色のピクセルの赤
の中央値(i)および緑の中央値(ii)と、隣接するピクセ
ルの色値とを比較し、隣接するピクセルの色が十分赤に
近いかどうかを判断するステップと、(iii)上記(i)にお
いて近傍ピクセルを持つ場合には、予め定められた色に
隣接するピクセルの色を変更するステップと、により上
記実質的な第1の状態領域の境界を調整する上記(1
6)に記載の装置。
画像の赤-緑-青の値に対して予め定められた累乗を行う
ステップと、(b)標準の輝度−クロミナンス変換を実
行するステップと、(c)マスクを作成するステップ
と、により画像をマスクに変換する上記(16)に記載
の装置。 (20)上記第3の一組の命令が、(i)上記実質的な
第1の状態領域の外側の隣接するピクセルが、実質的な
第1の状態領域内に少なくとも1つの近傍ピクセルを持
つピクセルであるかどうかを判断するステップと、(ii)
上記(i)において近傍ピクセルを持つ場合には、上記実
質的な第1の状態領域内のすべての赤色のピクセルの赤
の中央値(i)および緑の中央値(ii)と、隣接するピクセ
ルの色値とを比較し、隣接するピクセルの色が十分赤に
近いかどうかを判断するステップと、(iii)上記(i)にお
いて近傍ピクセルを持つ場合には、予め定められた色に
隣接するピクセルの色を変更するステップと、により上
記実質的な第1の状態領域の境界を調整する上記(1
6)に記載の装置。
【0071】
【発明の効果】目の自然な外観を維持しつつ、最小限の
ユーザの介入で、画像の赤目を自動的に低減させること
ができる。
ユーザの介入で、画像の赤目を自動的に低減させること
ができる。
【図1】本発明のある実施形態による赤目低減システム
を示し、赤目低減システムが、ユーザ・インターフェー
ス、マスキング・モジュール、瞳孔探知モジュールおよ
びカラー置換モジュールを備えることを示す図。
を示し、赤目低減システムが、ユーザ・インターフェー
ス、マスキング・モジュール、瞳孔探知モジュールおよ
びカラー置換モジュールを備えることを示す図。
【図2】ユーザ・インターフェースの構造を示す図。
【図3】赤目を含むユーザが定義した領域をもつユーザ
・インターフェースにより表示される画像を示す図。
・インターフェースにより表示される画像を示す図。
【図4】ある定められた領域を、赤い瞳孔の可能な位置
を示すバイナリマスクに変換する際のマスキング・モジ
ュールの処理を示す図。
を示すバイナリマスクに変換する際のマスキング・モジ
ュールの処理を示す図。
【図5】マスキング・モジュールの操作を示すフローチ
ャート。
ャート。
【図6】瞳孔探知モジュールがバイナリマスクの瞳孔領
域を探知する方法を示す図。
域を探知する方法を示す図。
【図7】瞳孔探知モジュールがバイナリマスクの瞳孔領
域を探知する方法を示す図。
域を探知する方法を示す図。
【図8】瞳孔探知モジュールにより処理された後の図4
のバイナリマスクを示す図。
のバイナリマスクを示す図。
【図9】瞳孔探知モジュールの操作を示すフローチャー
ト。
ト。
【図10】カラー置換モジュールの操作を示すフローチ
ャート。
ャート。
10 赤目低減システム 11 オリジナル画像 15 ユーザ・インターフェース 16 マスキング・モジュール 17 瞳孔探知モジュール 18 カラー置換モジュール
───────────────────────────────────────────────────── フロントページの続き (72)発明者 ダニエル・アール・トゥリッター アメリカ合衆国94040カリフォルニア州マ ウンテン・ビュー、ラサン・ストリート 1990、ナンバー 18 (72)発明者 コンスタンチノス・コンスタンチニデス アメリカ合衆国95118カリフォルニア州サ ン・ノゼ、ヤコブ・アベニュー 1508 (72)発明者 アンドリュー・パティ アメリカ合衆国94304カリフォルニア州サ ニーベイル、ホルブルック・プレイス 788
Claims (1)
- 【請求項1】画像が赤い瞳孔の眼を含む場合に、赤色の
ピクセルを表す第1の状態領域および他の色のピクセル
を表す第2の状態領域を持つマスクに、画像を変換する
マスキング・モジュールと、 前記マスキング・モジュールに連結され、瞳孔に似たマ
スクの実質的な第1の状態領域を探知する瞳孔探知モジ
ュールと、 前記瞳孔探知モジュールに連結され、予め定められた色
に前記領域の赤色のピクセルを変更するカラー置換モジ
ュールであって、前記領域の近傍のピクセルの色が十分
赤に近いと判断される場合には、該領域の近傍のピクセ
ルの色も前記予め定められた色に変更することにより、
前記領域の境界を調整するカラー置換モジュールと、 を備える赤目低減システム。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US956,380 | 1997-10-23 | ||
US08/956,380 US6016354A (en) | 1997-10-23 | 1997-10-23 | Apparatus and a method for reducing red-eye in a digital image |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11232442A true JPH11232442A (ja) | 1999-08-27 |
Family
ID=25498163
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10304736A Withdrawn JPH11232442A (ja) | 1997-10-23 | 1998-10-13 | 赤目低減システム |
Country Status (3)
Country | Link |
---|---|
US (1) | US6016354A (ja) |
EP (1) | EP0911759A3 (ja) |
JP (1) | JPH11232442A (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005108206A (ja) * | 2003-09-09 | 2005-04-21 | Fuji Photo Film Co Ltd | 円中心位置検出方法および装置並びにプログラム |
KR100727935B1 (ko) | 2005-05-24 | 2007-06-14 | 삼성전자주식회사 | 이미지 보정 방법 및 장치 |
Families Citing this family (136)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6292574B1 (en) | 1997-08-29 | 2001-09-18 | Eastman Kodak Company | Computer program product for redeye detection |
US7352394B1 (en) | 1997-10-09 | 2008-04-01 | Fotonation Vision Limited | Image modification based on red-eye filter analysis |
US7738015B2 (en) | 1997-10-09 | 2010-06-15 | Fotonation Vision Limited | Red-eye filter method and apparatus |
US7630006B2 (en) * | 1997-10-09 | 2009-12-08 | Fotonation Ireland Limited | Detecting red eye filter and apparatus using meta-data |
US7042505B1 (en) | 1997-10-09 | 2006-05-09 | Fotonation Ireland Ltd. | Red-eye filter method and apparatus |
JPH11175699A (ja) * | 1997-12-12 | 1999-07-02 | Fuji Photo Film Co Ltd | 画像処理装置 |
US6285410B1 (en) * | 1998-09-11 | 2001-09-04 | Mgi Software Corporation | Method and system for removal of flash artifacts from digital images |
US6134339A (en) * | 1998-09-17 | 2000-10-17 | Eastman Kodak Company | Method and apparatus for determining the position of eyes and for correcting eye-defects in a captured frame |
JP3501031B2 (ja) * | 1999-08-24 | 2004-02-23 | 日本電気株式会社 | 画像領域判定装置、画像領域判定方法及びそのプログラムを記憶した記憶媒体 |
TW591549B (en) * | 2000-01-28 | 2004-06-11 | Benq Corp | Image processing method to perform smoothing processing onto the boundary area surrounding the image area |
JP4290303B2 (ja) * | 2000-01-31 | 2009-07-01 | セイコーエプソン株式会社 | 画像特徴量取得装置、画像特徴量取得方法、画像特徴量取得プログラムを記録したコンピュータ読み取り可能な記録媒体、画像修整装置、画像修整方法、画像修整プログラムを記録したコンピュータ読み取り可能な記録媒体、画像印刷装置、画像印刷方法、画像印刷プログラムを記録したコンピュータ読み取り可能な記録媒体 |
US6757027B1 (en) | 2000-02-11 | 2004-06-29 | Sony Corporation | Automatic video editing |
US7136528B2 (en) * | 2000-02-11 | 2006-11-14 | Sony Corporation | System and method for editing digital images |
US6993719B1 (en) | 2000-02-11 | 2006-01-31 | Sony Corporation | System and method for animated character photo-editing interface and cross-platform education icon |
US7262778B1 (en) | 2000-02-11 | 2007-08-28 | Sony Corporation | Automatic color adjustment of a template design |
JP2004502212A (ja) * | 2000-03-23 | 2004-01-22 | インスティチュート・フォー・インフォコム・リサーチ | 画像処理による赤目修正 |
US6628828B1 (en) * | 2000-04-24 | 2003-09-30 | Microsoft Corporation | System and method for performing a recoloring operation sequence on color objects |
US6728401B1 (en) | 2000-08-17 | 2004-04-27 | Viewahead Technology | Red-eye removal using color image processing |
US6718051B1 (en) | 2000-10-16 | 2004-04-06 | Xerox Corporation | Red-eye detection method |
US6792134B2 (en) * | 2000-12-19 | 2004-09-14 | Eastman Kodak Company | Multi-mode digital image processing method for detecting eyes |
US6920237B2 (en) * | 2000-12-19 | 2005-07-19 | Eastman Kodak Company | Digital image processing method and computer program product for detecting human irises in an image |
US20020081003A1 (en) * | 2000-12-27 | 2002-06-27 | Sobol Robert E. | System and method for automatically enhancing graphical images |
US7088855B1 (en) * | 2001-01-22 | 2006-08-08 | Adolfo Pinheiro Vide | Method and system for removal of red eye effects |
EP1229734A1 (en) * | 2001-01-31 | 2002-08-07 | GRETAG IMAGING Trading AG | Automatic colour defect correction |
US6895112B2 (en) * | 2001-02-13 | 2005-05-17 | Microsoft Corporation | Red-eye detection based on red region detection with eye confirmation |
US6873743B2 (en) * | 2001-03-29 | 2005-03-29 | Fotonation Holdings, Llc | Method and apparatus for the automatic real-time detection and correction of red-eye defects in batches of digital images or in handheld appliances |
US6859565B2 (en) * | 2001-04-11 | 2005-02-22 | Hewlett-Packard Development Company, L.P. | Method and apparatus for the removal of flash artifacts |
US7174034B2 (en) * | 2001-04-13 | 2007-02-06 | Seiko Epson Corporation | Redeye reduction of digital images |
US20020172419A1 (en) * | 2001-05-15 | 2002-11-21 | Qian Lin | Image enhancement using face detection |
US7269303B2 (en) * | 2001-06-04 | 2007-09-11 | Hewlett-Packard Development Company, L.P. | Remote digital image enhancement system and method |
US7110026B2 (en) * | 2001-07-03 | 2006-09-19 | Logitech Europe S.A. | Image tagging for post processing |
US6980691B2 (en) * | 2001-07-05 | 2005-12-27 | Corel Corporation | Correction of “red-eye” effects in images |
EP1288860A1 (de) * | 2001-09-03 | 2003-03-05 | Agfa-Gevaert AG | Verfahren zur Verarbeitung digitaler fotografischer Bilddaten, welches ein Verfahren zum automatischen Erkennen von rote-Augen-Defekten umfasst |
GB2379819B (en) * | 2001-09-14 | 2005-09-07 | Pixology Ltd | Image processing to remove red-eye features |
GB2384639B (en) * | 2002-01-24 | 2005-04-13 | Pixology Ltd | Image processing to remove red-eye features |
US6978052B2 (en) * | 2002-01-28 | 2005-12-20 | Hewlett-Packard Development Company, L.P. | Alignment of images for stitching |
US7362354B2 (en) * | 2002-02-12 | 2008-04-22 | Hewlett-Packard Development Company, L.P. | Method and system for assessing the photo quality of a captured image in a digital still camera |
GB2385736B (en) * | 2002-02-22 | 2005-08-24 | Pixology Ltd | Detection and correction of red-eye features in digital images |
WO2003071781A1 (en) * | 2002-02-22 | 2003-08-28 | Pixology Software Limited | Detection and correction of red-eye features in digital images |
US7155058B2 (en) * | 2002-04-24 | 2006-12-26 | Hewlett-Packard Development Company, L.P. | System and method for automatically detecting and correcting red eye |
US6944356B2 (en) * | 2002-05-13 | 2005-09-13 | Tektronix, Inc. | Locating point of interest in an impaired image |
US7146026B2 (en) | 2002-06-04 | 2006-12-05 | Hewlett-Packard Development Company, L.P. | Image correction system and method |
US7177449B2 (en) | 2002-06-26 | 2007-02-13 | Hewlett-Packard Development Company, L.P. | Image correction system and method |
US7148990B2 (en) * | 2002-08-15 | 2006-12-12 | Hewlett-Packard Development Company, L.P. | System and method for producing a photobook |
US7035462B2 (en) * | 2002-08-29 | 2006-04-25 | Eastman Kodak Company | Apparatus and method for processing digital images having eye color defects |
CN100465985C (zh) * | 2002-12-31 | 2009-03-04 | 佳能株式会社 | 人眼探测方法及设备 |
US7116820B2 (en) * | 2003-04-28 | 2006-10-03 | Hewlett-Packard Development Company, Lp. | Detecting and correcting red-eye in a digital image |
US9692964B2 (en) | 2003-06-26 | 2017-06-27 | Fotonation Limited | Modification of post-viewing parameters for digital images using image region or feature information |
US7620218B2 (en) | 2006-08-11 | 2009-11-17 | Fotonation Ireland Limited | Real-time face tracking with reference images |
US7536036B2 (en) * | 2004-10-28 | 2009-05-19 | Fotonation Vision Limited | Method and apparatus for red-eye detection in an acquired digital image |
US8498452B2 (en) * | 2003-06-26 | 2013-07-30 | DigitalOptics Corporation Europe Limited | Digital image processing using face detection information |
US8254674B2 (en) | 2004-10-28 | 2012-08-28 | DigitalOptics Corporation Europe Limited | Analyzing partial face regions for red-eye detection in acquired digital images |
US8989453B2 (en) * | 2003-06-26 | 2015-03-24 | Fotonation Limited | Digital image processing using face detection information |
US8036458B2 (en) * | 2007-11-08 | 2011-10-11 | DigitalOptics Corporation Europe Limited | Detecting redeye defects in digital images |
US8330831B2 (en) * | 2003-08-05 | 2012-12-11 | DigitalOptics Corporation Europe Limited | Method of gathering visual meta data using a reference image |
US7269292B2 (en) * | 2003-06-26 | 2007-09-11 | Fotonation Vision Limited | Digital image adjustable compression and resolution using face detection information |
US7565030B2 (en) | 2003-06-26 | 2009-07-21 | Fotonation Vision Limited | Detecting orientation of digital images using face detection information |
US8948468B2 (en) | 2003-06-26 | 2015-02-03 | Fotonation Limited | Modification of viewing parameters for digital images using face detection information |
US8682097B2 (en) * | 2006-02-14 | 2014-03-25 | DigitalOptics Corporation Europe Limited | Digital image enhancement with reference images |
US7920723B2 (en) * | 2005-11-18 | 2011-04-05 | Tessera Technologies Ireland Limited | Two stage detection for photographic eye artifacts |
US7792970B2 (en) * | 2005-06-17 | 2010-09-07 | Fotonation Vision Limited | Method for establishing a paired connection between media devices |
US9129381B2 (en) * | 2003-06-26 | 2015-09-08 | Fotonation Limited | Modification of post-viewing parameters for digital images using image region or feature information |
US7471846B2 (en) * | 2003-06-26 | 2008-12-30 | Fotonation Vision Limited | Perfecting the effect of flash within an image acquisition devices using face detection |
US7689009B2 (en) * | 2005-11-18 | 2010-03-30 | Fotonation Vision Ltd. | Two stage detection for photographic eye artifacts |
US8593542B2 (en) | 2005-12-27 | 2013-11-26 | DigitalOptics Corporation Europe Limited | Foreground/background separation using reference images |
US7440593B1 (en) | 2003-06-26 | 2008-10-21 | Fotonation Vision Limited | Method of improving orientation and color balance of digital images using face detection information |
US7616233B2 (en) | 2003-06-26 | 2009-11-10 | Fotonation Vision Limited | Perfecting of digital image capture parameters within acquisition devices using face detection |
US8170294B2 (en) * | 2006-11-10 | 2012-05-01 | DigitalOptics Corporation Europe Limited | Method of detecting redeye in a digital image |
US7362368B2 (en) * | 2003-06-26 | 2008-04-22 | Fotonation Vision Limited | Perfecting the optics within a digital image acquisition device using face detection |
US7844076B2 (en) * | 2003-06-26 | 2010-11-30 | Fotonation Vision Limited | Digital image processing using face detection and skin tone information |
US8896725B2 (en) * | 2007-06-21 | 2014-11-25 | Fotonation Limited | Image capture device with contemporaneous reference image capture mechanism |
US7587085B2 (en) * | 2004-10-28 | 2009-09-08 | Fotonation Vision Limited | Method and apparatus for red-eye detection in an acquired digital image |
US7574016B2 (en) | 2003-06-26 | 2009-08-11 | Fotonation Vision Limited | Digital image processing using face detection information |
US7970182B2 (en) | 2005-11-18 | 2011-06-28 | Tessera Technologies Ireland Limited | Two stage detection for photographic eye artifacts |
US8155397B2 (en) * | 2007-09-26 | 2012-04-10 | DigitalOptics Corporation Europe Limited | Face tracking in a camera processor |
EP1499111B1 (en) | 2003-07-15 | 2015-01-07 | Canon Kabushiki Kaisha | Image sensiting apparatus, image processing apparatus, and control method thereof |
US8520093B2 (en) * | 2003-08-05 | 2013-08-27 | DigitalOptics Corporation Europe Limited | Face tracker and partial face tracker for red-eye filter method and apparatus |
US20050031224A1 (en) * | 2003-08-05 | 2005-02-10 | Yury Prilutsky | Detecting red eye filter and apparatus using meta-data |
US9412007B2 (en) * | 2003-08-05 | 2016-08-09 | Fotonation Limited | Partial face detector red-eye filter method and apparatus |
US7333653B2 (en) | 2003-08-29 | 2008-02-19 | Hewlett-Packard Development Company, L.P. | Detecting and correcting redeye in an image |
US7454040B2 (en) | 2003-08-29 | 2008-11-18 | Hewlett-Packard Development Company, L.P. | Systems and methods of detecting and correcting redeye in an image suitable for embedded applications |
US7680357B2 (en) * | 2003-09-09 | 2010-03-16 | Fujifilm Corporation | Method and apparatus for detecting positions of center points of circular patterns |
US7835572B2 (en) * | 2003-09-30 | 2010-11-16 | Sharp Laboratories Of America, Inc. | Red eye reduction technique |
US20110102643A1 (en) * | 2004-02-04 | 2011-05-05 | Tessera Technologies Ireland Limited | Partial Face Detector Red-Eye Filter Method and Apparatus |
JP4496465B2 (ja) * | 2004-04-23 | 2010-07-07 | ノーリツ鋼機株式会社 | 赤目補正方法、プログラム、及びこの方法を実施する装置 |
US20050248664A1 (en) * | 2004-05-07 | 2005-11-10 | Eastman Kodak Company | Identifying red eye in digital camera images |
US20060008169A1 (en) * | 2004-06-30 | 2006-01-12 | Deer Anna Y | Red eye reduction apparatus and method |
US7627146B2 (en) * | 2004-06-30 | 2009-12-01 | Lexmark International, Inc. | Method and apparatus for effecting automatic red eye reduction |
WO2006041426A2 (en) | 2004-09-15 | 2006-04-20 | Adobe Systems Incorporated | Locating a feature in a digital image |
US8320641B2 (en) | 2004-10-28 | 2012-11-27 | DigitalOptics Corporation Europe Limited | Method and apparatus for red-eye detection using preview or other reference images |
JP4188900B2 (ja) * | 2004-11-15 | 2008-12-03 | ザイオソフト株式会社 | 医療画像処理プログラム |
US7315631B1 (en) * | 2006-08-11 | 2008-01-01 | Fotonation Vision Limited | Real-time face tracking in a digital image acquisition device |
US7907786B2 (en) * | 2005-06-06 | 2011-03-15 | Xerox Corporation | Red-eye detection and correction |
JP4405942B2 (ja) * | 2005-06-14 | 2010-01-27 | キヤノン株式会社 | 画像処理装置およびその方法 |
US8115977B2 (en) * | 2005-09-08 | 2012-02-14 | Go Daddy Operating Company, LLC | Document color and shades of gray optimization using monochrome patterns |
US7502135B2 (en) * | 2005-09-08 | 2009-03-10 | The Go Daddy Group, Inc. | Document color and shades of gray optimization using dithered monochrome surfaces |
US7777917B2 (en) * | 2005-09-08 | 2010-08-17 | The Go Daddy Group, Inc. | Document color and shades of gray optimization using solid monochrome colors |
US8179565B2 (en) * | 2005-09-08 | 2012-05-15 | Go Daddy Operating Company, LLC | Document color and shades of gray optimization using outlining |
KR100791372B1 (ko) | 2005-10-14 | 2008-01-07 | 삼성전자주식회사 | 인물 이미지 보정 장치 및 방법 |
US7747071B2 (en) * | 2005-10-27 | 2010-06-29 | Hewlett-Packard Development Company, L.P. | Detecting and correcting peteye |
US7599577B2 (en) * | 2005-11-18 | 2009-10-06 | Fotonation Vision Limited | Method and apparatus of correcting hybrid flash artifacts in digital images |
US7567707B2 (en) * | 2005-12-20 | 2009-07-28 | Xerox Corporation | Red eye detection and correction |
US7675652B2 (en) * | 2006-02-06 | 2010-03-09 | Microsoft Corporation | Correcting eye color in a digital image |
EP1987475A4 (en) | 2006-02-14 | 2009-04-22 | Fotonation Vision Ltd | AUTOMATIC DETECTION AND CORRECTION OF RED EYE FLASH DEFECTS |
DE602007012246D1 (de) * | 2006-06-12 | 2011-03-10 | Tessera Tech Ireland Ltd | Fortschritte bei der erweiterung der aam-techniken aus grauskalen- zu farbbildern |
US8064694B2 (en) * | 2006-06-21 | 2011-11-22 | Hewlett-Packard Development Company, L.P. | Nonhuman animal integument pixel classification |
US7916897B2 (en) | 2006-08-11 | 2011-03-29 | Tessera Technologies Ireland Limited | Face tracking for controlling imaging parameters |
US7403643B2 (en) * | 2006-08-11 | 2008-07-22 | Fotonation Vision Limited | Real-time face tracking in a digital image acquisition device |
US7764846B2 (en) * | 2006-12-12 | 2010-07-27 | Xerox Corporation | Adaptive red eye correction |
US8055067B2 (en) * | 2007-01-18 | 2011-11-08 | DigitalOptics Corporation Europe Limited | Color segmentation |
WO2008105767A1 (en) * | 2007-02-28 | 2008-09-04 | Hewlett-Packard Development Company, L.P. | Restoring and synthesizing glint within digital image eye features |
WO2008109708A1 (en) * | 2007-03-05 | 2008-09-12 | Fotonation Vision Limited | Red eye false positive filtering using face location and orientation |
WO2008119368A1 (en) * | 2007-04-03 | 2008-10-09 | Telecom Italia S.P.A. | Method for red eye detection in a digital image |
US8503818B2 (en) | 2007-09-25 | 2013-08-06 | DigitalOptics Corporation Europe Limited | Eye defect detection in international standards organization images |
US8391596B2 (en) * | 2007-10-17 | 2013-03-05 | Qualcomm Incorporated | Effective red eye removal in digital images without face detection |
US8212864B2 (en) * | 2008-01-30 | 2012-07-03 | DigitalOptics Corporation Europe Limited | Methods and apparatuses for using image acquisition data to detect and correct image defects |
US8446494B2 (en) * | 2008-02-01 | 2013-05-21 | Hewlett-Packard Development Company, L.P. | Automatic redeye detection based on redeye and facial metric values |
JP5158100B2 (ja) * | 2008-02-22 | 2013-03-06 | 日本電気株式会社 | カラー画像処理方法、装置およびプログラム |
EP2277141A2 (en) * | 2008-07-30 | 2011-01-26 | Tessera Technologies Ireland Limited | Automatic face and skin beautification using face detection |
US8081254B2 (en) * | 2008-08-14 | 2011-12-20 | DigitalOptics Corporation Europe Limited | In-camera based method of detecting defect eye with high accuracy |
WO2010087124A1 (ja) * | 2009-01-29 | 2010-08-05 | 日本電気株式会社 | 特徴量選択装置 |
US8379917B2 (en) * | 2009-10-02 | 2013-02-19 | DigitalOptics Corporation Europe Limited | Face recognition performance using additional image features |
KR101454988B1 (ko) * | 2010-06-28 | 2014-10-27 | 노키아 코포레이션 | 아이 컬러 결함을 보상하기 위한 방법, 장치 및 컴퓨터 프로그램 제품 |
US8837827B2 (en) | 2011-03-21 | 2014-09-16 | Apple Inc. | Red-eye removal using multiple recognition channels |
US8818091B2 (en) | 2011-03-21 | 2014-08-26 | Apple Inc. | Red-eye removal using multiple recognition channels |
US8837822B2 (en) | 2011-03-21 | 2014-09-16 | Apple Inc. | Red-eye removal using multiple recognition channels |
US8837785B2 (en) | 2011-03-21 | 2014-09-16 | Apple Inc. | Red-eye removal using multiple recognition channels |
US8786735B2 (en) * | 2011-03-21 | 2014-07-22 | Apple Inc. | Red-eye removal using multiple recognition channels |
US9721160B2 (en) * | 2011-04-18 | 2017-08-01 | Hewlett-Packard Development Company, L.P. | Manually-assisted detection of redeye artifacts |
US8571271B2 (en) | 2011-05-26 | 2013-10-29 | Microsoft Corporation | Dual-phase red eye correction |
US8811683B2 (en) | 2011-06-02 | 2014-08-19 | Apple Inc. | Automatic red-eye repair using multiple recognition channels |
US9041954B2 (en) | 2011-06-07 | 2015-05-26 | Hewlett-Packard Development Company, L.P. | Implementing consistent behavior across different resolutions of images |
US8970902B2 (en) | 2011-09-19 | 2015-03-03 | Hewlett-Packard Development Company, L.P. | Red-eye removal systems and method for variable data printing (VDP) workflows |
CN103226691B (zh) * | 2012-01-30 | 2016-01-27 | 展讯通信(上海)有限公司 | 去除红眼的方法及装置 |
CN105247570A (zh) * | 2013-05-28 | 2016-01-13 | 马维尔国际贸易有限公司 | 用于红眼修正的系统和方法 |
BR112017015941A2 (pt) * | 2015-03-31 | 2018-07-10 | Hewlett Packard Development Co | correção de diferenças de cores entre módulos de scanner |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5231674A (en) * | 1989-06-09 | 1993-07-27 | Lc Technologies, Inc. | Eye tracking method and apparatus |
US5130789A (en) * | 1989-12-13 | 1992-07-14 | Eastman Kodak Company | Localized image recoloring using ellipsoid boundary function |
US5324940A (en) * | 1992-07-01 | 1994-06-28 | Northwest Marine Technology, Inc. | Color-encoded fluorescent visible implant tags and method for identification of a macro-organism therewith |
US5448381A (en) * | 1993-06-30 | 1995-09-05 | Eastman Kodak Company | Method and associated apparatus for producing a color-balanced output image in a color-balancing system |
US5432863A (en) * | 1993-07-19 | 1995-07-11 | Eastman Kodak Company | Automated detection and correction of eye color defects due to flash illumination |
HU215614B (hu) * | 1994-04-15 | 1999-09-28 | Coloryte Hungary Optikai Kutató, Fejlesztő és Gyártó RT. | Eljárás és berendezés szemben lévő színérzékelő receptorok spektrális érzékenységi paramétereinek meghatározására |
EP0693738A3 (en) * | 1994-06-23 | 1996-11-06 | Dainippon Screen Mfg | Device and method for producing colored masks |
-
1997
- 1997-10-23 US US08/956,380 patent/US6016354A/en not_active Expired - Lifetime
-
1998
- 1998-10-13 JP JP10304736A patent/JPH11232442A/ja not_active Withdrawn
- 1998-10-16 EP EP98308506A patent/EP0911759A3/en not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005108206A (ja) * | 2003-09-09 | 2005-04-21 | Fuji Photo Film Co Ltd | 円中心位置検出方法および装置並びにプログラム |
KR100727935B1 (ko) | 2005-05-24 | 2007-06-14 | 삼성전자주식회사 | 이미지 보정 방법 및 장치 |
Also Published As
Publication number | Publication date |
---|---|
EP0911759A2 (en) | 1999-04-28 |
US6016354A (en) | 2000-01-18 |
EP0911759A3 (en) | 2000-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH11232442A (ja) | 赤目低減システム | |
US6873743B2 (en) | Method and apparatus for the automatic real-time detection and correction of red-eye defects in batches of digital images or in handheld appliances | |
US6728401B1 (en) | Red-eye removal using color image processing | |
US6980691B2 (en) | Correction of “red-eye” effects in images | |
US6278491B1 (en) | Apparatus and a method for automatically detecting and reducing red-eye in a digital image | |
US7358994B2 (en) | Image processing apparatus, image processing method, recording medium thereof, and program thereof | |
JP3436473B2 (ja) | 画像処理装置 | |
US7224850B2 (en) | Modification of red-eye-effect in digital image | |
US7747071B2 (en) | Detecting and correcting peteye | |
US7830418B2 (en) | Perceptually-derived red-eye correction | |
JP2002150284A (ja) | 画像内の主対象を強調するためのディジタル画像処理システム及び方法 | |
JPH09322192A (ja) | 赤目検出補正装置 | |
JP2004326805A (ja) | ディジタル画像中の赤目を検出し補正する方法 | |
JP2002245471A (ja) | 被写体内容に基づく修正を有する第2プリントを伴うダブルプリントの写真仕上げサービス | |
WO1999017254A1 (en) | Digital redeye removal | |
JP2005128942A (ja) | 赤目補正方法及びこの方法を実施する装置 | |
JP2005310068A (ja) | 白目補正方法及びこの方法を実施する装置 | |
JP2001209802A (ja) | 顔抽出方法および装置並びに記録媒体 | |
JP2004240622A (ja) | 画像処理方法、画像処理装置及び画像処理プログラム | |
JP2007087123A (ja) | 画像補正方法および装置並びにプログラム | |
US20050248664A1 (en) | Identifying red eye in digital camera images | |
JP3510040B2 (ja) | 画像処理方法 | |
JP3709656B2 (ja) | 画像処理装置 | |
JP3473832B2 (ja) | ディジタル画像の自動補正方法及びそのシステム | |
Hardeberg | Red eye removal using digital color image processing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050513 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050513 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20060214 |