JPH11221440A - Method and apparatus for decomposition treatment of hardly decomposable substance - Google Patents

Method and apparatus for decomposition treatment of hardly decomposable substance

Info

Publication number
JPH11221440A
JPH11221440A JP4463598A JP4463598A JPH11221440A JP H11221440 A JPH11221440 A JP H11221440A JP 4463598 A JP4463598 A JP 4463598A JP 4463598 A JP4463598 A JP 4463598A JP H11221440 A JPH11221440 A JP H11221440A
Authority
JP
Japan
Prior art keywords
heating
induction heating
reactor
decomposed
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4463598A
Other languages
Japanese (ja)
Other versions
JP3894649B2 (en
Inventor
Masazumi Kanazawa
正澄 金沢
Masahiko Ueda
正彦 植田
Taishin Kashiwagi
大心 柏木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OEI KAIHATSU KOGYO KK
Tadano Ltd
Original Assignee
OEI KAIHATSU KOGYO KK
Tadano Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OEI KAIHATSU KOGYO KK, Tadano Ltd filed Critical OEI KAIHATSU KOGYO KK
Priority to JP04463598A priority Critical patent/JP3894649B2/en
Publication of JPH11221440A publication Critical patent/JPH11221440A/en
Application granted granted Critical
Publication of JP3894649B2 publication Critical patent/JP3894649B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/78Recycling of wood or furniture waste

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Fire-Extinguishing Compositions (AREA)
  • General Induction Heating (AREA)
  • Treating Waste Gases (AREA)

Abstract

PROBLEM TO BE SOLVED: To decompose an environmental pollutant such as a fluorocarbon gas, polyethylene, plastic, wood or the like and, further, an org. compd., other industrial waste or the like by reacting the same by induction heating and electromagnetic heating due to electromagnetic Raves generated by induction heating and to further decompose the pollutant by the combination reaction of hydrolysis, reducing reaction and oxidation reaction. SOLUTION: A substance to be subjected to decomposition treatment and a solvent are mixed to be introduced into a hollow cylindrical reactor 29 subjected to induction heating and reacted by the heating due to the induction heating of the reactor and electromagnetic heating due to electromagnetic waves generated by induction heating to be decomposed. Concretely, the substance to be subjected to decomposition treatment and the solvent are introduced into a heater 25 to be mixed under heating and the resulting mixture is introduced into the hollow cylindrical reactor 29 having an induction heating coil 10 wound around the outer peripheral part thereof and subjected to induction heating and reacted by the heating due to the induction heating of the reactor 29 and electromagnetic heating due to electromagnetic waves generated by induction heating during the circulating flow within the reactor 29 to be decomposed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は環境汚染物質等の難
分解物質の分解処理方法及びその装置に関し、特にはフ
ロンガスとかポリエチレン,プラスチック,木材,更に
はベンゼン核を持つ有機化合物及びその他の産業廃棄物
等の環境汚染物質を、誘導加熱と誘導加熱に起因して発
生する電磁波による電磁波加熱によって反応させること
により分解し、更に加水分解,還元反応,酸化反応との
組合せ反応によって分解するようにした処理方法とその
装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for decomposing hardly decomposable substances such as environmental pollutants, and more particularly to fluorocarbon, polyethylene, plastic, wood, organic compounds having a benzene nucleus, and other industrial waste. Decomposes environmental pollutants such as substances by reacting them by induction heating and electromagnetic wave heating by electromagnetic waves generated by induction heating, and further decomposes by a combination reaction of hydrolysis, reduction reaction and oxidation reaction. The present invention relates to a processing method and an apparatus therefor.

【0002】[0002]

【従来の技術】従来から冷媒とかスプレー剤として使用
されているフロンガス及び消化剤として使用されている
ハロンガスは環境汚染物質であることが指摘されてお
り、これら物質の無害化処理が地球環境を守る観点から
全世界的な関心事となって各種の対処手段が提案されて
いる。例えばフロンガス処理方法に関しては、水熱反応
法,焼却法,爆発反応分解法,微生物分解法,超音波分
解法及びプラズマ反応法等が提案されている。
2. Description of the Related Art It has been pointed out that chlorofluorocarbon and halon gas used as a refrigerant and a spray agent are environmental pollutants, and the detoxification of these substances protects the global environment. From the viewpoint, various countermeasures have been proposed as global concerns. For example, as a method for treating CFCs, a hydrothermal reaction method, an incineration method, an explosion reaction decomposition method, a microbial decomposition method, an ultrasonic decomposition method, a plasma reaction method, and the like have been proposed.

【0003】これらの処理方法の中で、水熱反応法はフ
ロンガス等に限定することなく、トリクレン等有機溶
剤、廃油、ダイオキシン、PCB、糞尿等の産業廃棄物
を主体とする被分解物質全般に対し汎用性のある処理方
法として利用されている。この水熱反応法では、例えば
フロンガスを塩化ナトリウム、二酸化炭素等の安全な物
質に分解することができる。
[0003] Among these treatment methods, the hydrothermal reaction method is not limited to chlorofluorocarbon gas and the like, but is applicable to all decomposed substances mainly composed of industrial solvents such as organic solvents such as trichlene, waste oil, dioxin, PCB, and manure. On the other hand, it is used as a versatile processing method. In this hydrothermal reaction method, for example, fluorocarbon gas can be decomposed into a safe substance such as sodium chloride and carbon dioxide.

【0004】水熱反応法を具体化するための装置に関し
ては、実験室においてオートクレーブを用いた処理実
験、例えば苛性ソーダ液,エタノール,フロン液の混合
比率、温度の設定値、圧力の設定値及び反応時間の設定
値についての実験が行われているが、通常水熱反応は3
00〜450℃で100〜250(kg/cm2)という
高温高圧条件を維持して行われている。
[0004] Regarding the apparatus for realizing the hydrothermal reaction method, a processing experiment using an autoclave in a laboratory, for example, a mixing ratio of caustic soda solution, ethanol and fluorocarbon solution, a set value of temperature, a set value of pressure and a reaction value Experiments have been conducted on the set time, but usually the hydrothermal reaction is 3
It is performed while maintaining the high temperature and high pressure conditions of 100 to 250 (kg / cm 2 ) at 00 to 450 ° C.

【0005】本願出願人は先に特願平8−155993
号により、被分解処理物と溶媒を混合したものを所定の
温度に加熱して過熱蒸気とし、過熱蒸気を所定の温度に
加熱された常圧の反応装置内を所定の時間をかけて経過
させて通過させることにより、被分解処理物を分解処理
する難分解物質の分解処理方法を提案した。更に特願平
8−340560号により、溶媒として水もしくは過酸
化水素を使用して、被分解処理物と溶媒を混合したもの
を、過熱蒸気と反応して水素を生成する物質を配置した
加熱器と反応装置を用いて所定の温度に加熱して過熱蒸
気とし、反応装置内で所定の時間をかけて通過させるこ
とによって被分解処理物を加熱器もしくは反応装置内で
生成した水素による還元反応と、過熱蒸気による加水分
解反応により分解する方法を提案した。
[0005] The applicant of the present application has previously filed Japanese Patent Application No. 8-155599.
By heating the mixture of the substance to be decomposed and the solvent to a predetermined temperature to form superheated steam, the superheated steam is allowed to elapse in a normal pressure reactor heated to a predetermined temperature over a predetermined time. A method for decomposing hardly decomposable substances, which decomposes a substance to be decomposed by passing through it, is proposed. Further, according to Japanese Patent Application No. 8-340560, a heater in which water or hydrogen peroxide is used as a solvent, and a mixture of a substance to be decomposed and a solvent is reacted with superheated steam to generate hydrogen is arranged. And the reaction device is heated to a predetermined temperature to produce superheated steam, which is passed through the reaction device over a predetermined period of time, thereby reducing the decomposition target material with hydrogen generated in the heater or the reaction device. A method of decomposing by hydrolysis reaction with superheated steam was proposed.

【0006】図9により従来の反応装置の一例を説明す
ると、1は装置本体であり、装置本体1内に配置された
隔壁2,2によってガスが流通する迂回路が形成されて
いる。3は被分解処理物と溶媒の混合ガス入口、4は同
ガス出口である。更に装置本体1の側部から複数個のヒ
ータ5,5が挿入配置されていて、矢印aに示すように
迂回して流れる混合ガスをヒータ5,5により加熱して
過熱蒸気を生成し、前記したように水素による還元反応
と過熱蒸気による加水分解反応によって難分解物質の分
解処理が行われる。
An example of a conventional reaction apparatus will be described with reference to FIG. 9. Reference numeral 1 denotes an apparatus main body, and a bypass for gas flow is formed by partition walls 2 and 2 arranged in the apparatus main body 1. Reference numeral 3 denotes an inlet for a mixed gas of the substance to be decomposed and the solvent, and reference numeral 4 denotes an outlet for the gas. Further, a plurality of heaters 5, 5 are inserted and arranged from the side of the apparatus main body 1, and the mixed gas flowing in a bypass manner as shown by the arrow a is heated by the heaters 5, 5 to generate superheated steam. As described above, the decomposition treatment of the hardly decomposable substance is performed by the reduction reaction with hydrogen and the hydrolysis reaction with superheated steam.

【0007】図10は従来の反応装置の他の例を示した
ものであって、装置本体1の外周部を覆って複数個のヒ
ータ6,6が配置されており、各ヒータ6,6の電極端
子6a,6aがコントローラ7を介して電源8に接続さ
れている。そして混合ガス入口3から流入した被分解処
理物と溶媒の混合ガスが装置本体1内でヒータ6,6に
よりコントローラ7で設定された温度で加熱され、前記
した作用により難分解物質の分解処理が行われ、ガス出
口4から流出する。
FIG. 10 shows another example of the conventional reaction apparatus, in which a plurality of heaters 6 and 6 are arranged so as to cover the outer peripheral portion of the apparatus main body 1. The electrode terminals 6a, 6a are connected to a power supply 8 via a controller 7. The mixed gas of the substance to be decomposed and the solvent flowing from the mixed gas inlet 3 is heated in the apparatus main body 1 by the heaters 6 and 6 at the temperature set by the controller 7, and the decomposition of the hardly decomposable substance is performed by the above-described action. And exits from the gas outlet 4.

【0008】[0008]

【発明が解決しようとする課題】前記したように従来の
反応装置は、側部から挿入配置された複数個のヒータ
5,5を用いた加熱方法(図9の例)とか、装置本体の
外周部を覆って配置された複数個のヒータ6,6を用い
た加熱方法(図10の例)が用いられているが、このよ
うなヒータによる混合ガスの加熱手段では、必ずしも効
率的に難分解物質の分解処理を行うことができず、分解
終了までに高い反応温度と長い反応時間を要してしまう
という難点がある。更に、ヒータによる加熱手段では昇
温可能な温度が700℃程度であって、これ以上は昇温
できないため、結果として反応時間が長く必要となった
り、分解効率が低下したり、あるいは全く分解すること
ができなくなったりしてしまう。
As described above, the conventional reaction apparatus employs a heating method using a plurality of heaters 5 and 5 inserted from the side (an example shown in FIG. 9) or the outer periphery of the apparatus main body. A heating method using a plurality of heaters 6 and 6 arranged so as to cover the portion (the example in FIG. 10) is used, but the heating means for the mixed gas by such a heater is not always efficiently resolvable. There is a drawback that the decomposition treatment of the substance cannot be performed, and a high reaction temperature and a long reaction time are required until the decomposition is completed. Further, the temperature at which the temperature can be raised by the heating means using a heater is about 700 ° C., and the temperature cannot be raised any more. As a result, a long reaction time is required, the decomposition efficiency is reduced, or the decomposition is performed at all. You can't do anything.

【0009】そこで本発明は環境汚染物質であるフロン
ガスとかポリエチレン,プラスチック,木材,更にはベ
ンゼン核を持つ有機化合物及びその他の産業廃棄物等の
難分解物質の分解を行うシステムにおける上記問題点を
解消して、分解速度が促進されて効率良く分解を行うこ
とができる難分解物質の分解処理方法及びその装置を提
供することを目的とするものである。
Therefore, the present invention solves the above-mentioned problems in a system for decomposing environmentally polluting substances such as chlorofluorocarbon, polyethylene, plastic, wood, organic compounds having a benzene nucleus, and other hardly decomposable substances such as industrial waste. It is another object of the present invention to provide a method and an apparatus for decomposing a hardly decomposable substance that can be decomposed efficiently by accelerating the decomposition rate.

【0010】[0010]

【課題を解決するための手段】本発明は上記目的を達成
するため、難分解物質の分解処理方法として、被分解処
理物を誘導加熱された反応装置内に導入し、反応装置の
誘導加熱による加熱と、誘導加熱に起因して発生する電
磁波による電磁波加熱によって反応させて分解する方
法、及び被分解処理物と溶媒を混合して誘導加熱された
反応装置内に導入し、反応装置の誘導加熱による加熱
と、誘導加熱に起因して発生する電磁波による電磁波加
熱によって反応させて分解する方法を基本として提供す
る。
In order to achieve the above object, the present invention provides a method for decomposing a hardly decomposable substance by introducing a substance to be decomposed into an induction-heated reactor, and heating the reactor by induction heating. A method of reacting and decomposing by heating and an electromagnetic wave generated by the electromagnetic wave generated due to the induction heating, and a method of mixing a substance to be decomposed and a solvent, introducing the mixture into the induction-heated reaction apparatus, and induction heating the reaction apparatus. The present invention basically provides a method of reacting and decomposing by heating by electromagnetic wave and electromagnetic wave heating by electromagnetic wave generated by induction heating.

【0011】具体的な処理方法として被分解処理物を外
周部に誘導加熱コイルが巻着されて誘導加熱された中空
円筒状の反応装置内に導入し、反応装置内で迂回流通し
ている間に反応装置の誘導加熱による加熱と、誘導加熱
に起因して発生する電磁波による電磁波加熱によって反
応させて分解する方法、被分解処理物と溶媒を加熱器に
導入して加熱混合した後、外周部に誘導加熱コイルが巻
着されて誘導加熱された中空円筒状の反応装置内に導入
し、反応装置内で迂回流通している間に反応装置の誘導
加熱による加熱と、誘導加熱に起因して発生する電磁波
による電磁波加熱によって反応させて分解する方法を提
供する。
As a specific treatment method, the object to be decomposed is introduced into a hollow cylindrical reactor in which an induction heating coil is wound around the outer periphery and is induction-heated, and is circulated around the reactor. A method of reacting and decomposing by heating by induction heating of a reaction apparatus and electromagnetic wave heating by electromagnetic waves generated due to induction heating, introducing an object to be decomposed and a solvent into a heater, heating and mixing, and then mixing with an outer peripheral portion The induction heating coil is wound around and introduced into a hollow cylindrical reactor heated by induction heating. Provided is a method of decomposing by reacting by electromagnetic wave heating by generated electromagnetic waves.

【0012】また、被分解処理物と溶媒を加熱器に導入
して加熱混合することにより過熱蒸気とし、過熱蒸気を
外周部に誘導加熱コイルが巻着されて誘導加熱された中
空円筒状の反応装置内に導入し、反応装置内で迂回流通
している間に反応装置の誘導加熱による加熱と、誘導加
熱に起因して発生する電磁波による電磁波加熱によって
反応させて分解する方法を提供する。
[0012] The object to be decomposed and the solvent are introduced into a heater and mixed by heating to produce superheated steam. The superheated steam is wound around an outer periphery of the induction heating coil to form a hollow cylindrical reaction tube. Provided is a method of decomposing by introducing into an apparatus and reacting by heating by induction heating of the reaction apparatus and electromagnetic heating by electromagnetic waves generated by the induction heating while bypassing the reaction apparatus.

【0013】更に、加熱器及び反応装置の何れか一方も
しくは双方に、混合ガスと反応して水素を生成する物質
を配置して、加熱器もしくは反応装置内で生成した水素
による還元反応と、過熱蒸気による加水分解反応と、誘
導加熱による加熱及び誘導加熱に起因して発生する電磁
波による電磁波加熱による分解反応の組合わせにより被
分解処理物と溶媒を反応させて分解する方法、過熱蒸気
と反応して水素を生成する物質として、鉄,炭素,炭素
鋼から選択された1種又は複数のものを使用する方法、
溶媒として水もしくは過酸化水素水を用いる方法を提供
する。
Furthermore, a substance which reacts with the mixed gas to generate hydrogen is disposed in one or both of the heater and the reactor, and a reduction reaction by hydrogen generated in the heater or the reactor, and a superheating A method in which a decomposition target is reacted with a solvent by a combination of a hydrolysis reaction by steam, a heating by induction heating, and a decomposition reaction by electromagnetic wave heating by electromagnetic waves generated due to the induction heating. Using one or more substances selected from iron, carbon, and carbon steel as a substance that generates hydrogen by
Provided is a method using water or hydrogen peroxide as a solvent.

【0014】分解処理装置として、外周部に誘導加熱コ
イルが巻着され、内方に被分解処理物の迂回路が形成さ
れた反応装置からなり、導入された被分解処理物を反応
装置内で迂回流通している間に反応装置の誘導加熱によ
る加熱と、誘導加熱に起因して発生する電磁波による電
磁波加熱によって反応させて分解する難分解物質の分解
処理装置、及び外周部に誘導加熱コイルが巻着され、内
方に被分解処理物と溶媒の混合ガスの迂回路が形成され
た反応装置からなり、導入された混合ガスを反応装置内
で迂回流通している間に反応装置の誘導加熱による加熱
と、誘導加熱に起因して発生する電磁波による電磁波加
熱によって反応させて分解する難分解物質の分解処理装
置を提供する。
The decomposition processing apparatus comprises a reaction apparatus in which an induction heating coil is wound around the outer periphery and a detour of the decomposition target substance is formed inward, and the introduced decomposition target substance is placed in the reaction apparatus. Heating by induction heating of the reactor while circulating around, and a decomposition treatment device for hardly decomposable substances that react and decompose by electromagnetic wave heating by electromagnetic waves generated due to induction heating, and an induction heating coil on the outer periphery A reactor that is wound and has a detour of a mixed gas of the substance to be decomposed and the solvent formed inside, and the induction heating of the reactor is performed while the introduced mixed gas is bypassed in the reactor. The present invention provides an apparatus for decomposing a hardly decomposable substance, which is decomposed and decomposed by heating by electromagnetic wave heating and electromagnetic wave generated by induction heating.

【0015】具体的構成として被分解処理物と溶媒を加
熱混合する加熱器と、外周部に誘導加熱コイルが巻着さ
れ、内方に被分解処理物と溶媒の混合ガスの迂回路が形
成された反応装置と、反応装置から導出された配管と連
通する冷却器と、冷却器から導出された配管と連通する
気液分離器と、気液分離器から導出された配管が挿入さ
れた中和装置とから構成した構成、反応装置の周囲を被
覆する位置に断熱材を配置し、この断熱材の外側に外郭
部材を配備して、装置自体を密閉構造として構成を提供
する。
As a specific configuration, a heater for heating and mixing the object to be decomposed and the solvent, an induction heating coil wound around the outer periphery, and a detour of a mixed gas of the object to be decomposed and the solvent are formed inside. Reactor, a cooler communicating with the piping led out of the reactor, a gas-liquid separator communicating with the piping led out of the cooler, and a neutralization in which the piping led out of the gas-liquid separator is inserted. A heat insulating material is arranged at a position covering the periphery of the reaction device, and an outer member is provided outside the heat insulating material to provide a structure in which the device itself is a hermetically sealed structure.

【0016】かかる分解処理方法と装置によれば、フロ
ンガスとかベンゼン核を持つ有機化合物及びその他の産
業廃棄物等の難分解物質は単独で、あるいは溶媒ととも
に混合ガスとして反応装置に供給され、反応装置で迂回
流通している間に反応装置の誘導加熱による加熱と、誘
導加熱に起因して発生する電磁波による電磁波加熱によ
って反応して常圧で分解作用が進行する。加熱器及び反
応装置の何れか一方もしくは双方に混合ガスと反応して
水素を生成する物質を配置した場合には、加熱器もしく
は反応装置内で生成した水素による還元反応と、反応装
置の誘導加熱による加熱と、誘導加熱に起因して発生す
る電磁波による電磁波加熱による分解反応の組合わせに
より反応が進行する。
According to the method and the apparatus for decomposition, the hardly decomposable substances such as CFCs, organic compounds having a benzene nucleus and other industrial wastes are supplied to the reactor alone or as a mixed gas together with a solvent. During the bypass flow, the reaction is caused by the heating by the induction heating of the reactor and the electromagnetic wave heating by the electromagnetic wave generated by the induction heating, and the decomposition action proceeds at normal pressure. If a substance that reacts with the mixed gas to generate hydrogen is placed in one or both of the heater and the reactor, the reduction reaction by the hydrogen generated in the heater or the reactor, and the induction heating of the reactor, The reaction proceeds by a combination of the heating by the electromagnetic wave and the decomposition reaction by the electromagnetic wave generated by the electromagnetic wave generated by the induction heating.

【0017】被分解処理物と溶媒を加熱して過熱蒸気と
した場合には、過熱蒸気による加水分解反応及び反応装
置の誘導加熱による加熱と、誘導加熱に起因して発生す
る電磁波による電磁波加熱による分解反応の組合わせに
より被分解処理物と溶媒が反応し熱分解が進行する。そ
の後分解の終了したガスは冷却液化して排出される。
When the material to be decomposed and the solvent are heated to form superheated steam, the hydrolysis reaction by the superheated steam and the heating by induction heating of the reactor, and the heating by electromagnetic waves by electromagnetic waves generated by induction heating. Due to the combination of the decomposition reactions, the substance to be decomposed and the solvent react, and thermal decomposition proceeds. Thereafter, the decomposed gas is cooled and liquefied and discharged.

【0018】[0018]

【発明の実施の形態】以下図面に基づいて本発明にかか
る難分解物質の分解処理方法及びその装置の具体的な実
施形態を説明する。本願発明者らは前記従来の技術手段
に種々の改良実験を試みた結果、反応装置を加熱する手
段として誘導加熱を採用することにより、誘導加熱の誘
導電流によって反応装置が発熱して加熱されると共に、
誘導加熱に起因して発生する電磁波によって電磁波加熱
が生じるとの知見を得た。即ち、電磁波加熱を行なうた
めに誘導加熱コイルに電流を流すと、この時に発生する
磁束により、反応装置に渦電流が発生し、ジュール熱に
より発熱して反応装置を加熱する。同時にこの誘導加熱
コイルに電流を流すことによって発生するのは磁束だけ
でなく電界も発生する。即ち、電磁波が発生することと
なり(このときの周波数は誘導加熱に用いた周波数の電
磁波となる)、この電磁波によって分子の摩擦、衝突の
増大が2次的に起こって電磁波加熱によって被分解処理
物が加熱されることとなる。本発明はこの誘導加熱によ
る反応装置の加熱と共に、誘導加熱に起因して発生する
電磁波による電磁波加熱を積極的に利用して加熱効率を
高め、更に分子運動を活発化させることにより分子同士
の衝突の回数及び衝突力を増大して分解効率を高めるこ
とを特徴とする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Specific embodiments of a method and apparatus for decomposing hardly decomposable substances according to the present invention will be described below with reference to the drawings. The inventors of the present application have conducted various improved experiments on the conventional technical means, and as a result, by employing induction heating as a means for heating the reactor, the reactor is heated and heated by the induction current of the induction heating. Along with
It has been found that electromagnetic waves generated by induction heating cause electromagnetic heating. That is, when an electric current is supplied to the induction heating coil to perform electromagnetic wave heating, an eddy current is generated in the reactor by the magnetic flux generated at this time, and heat is generated by Joule heat to heat the reactor. At the same time, passing an electric current through the induction heating coil generates not only a magnetic flux but also an electric field. That is, an electromagnetic wave is generated (the frequency at this time is the electromagnetic wave of the frequency used for the induction heating), and this electromagnetic wave causes a secondary increase in friction and collision of molecules, and the object to be decomposed by the electromagnetic wave heating. Will be heated. In the present invention, together with the heating of the reaction apparatus by the induction heating, the heating efficiency is enhanced by positively utilizing the electromagnetic wave heating by the electromagnetic waves generated by the induction heating, and the collision of molecules is further promoted by activating the molecular motion. The number of times and the collision force are increased to enhance the decomposition efficiency.

【0019】先ずフロン等の被分解処理物を溶媒として
の水,過酸化水素水を用いて加熱器により加熱してガス
化し、被分解処理物と溶媒の混合ガスを反応装置の誘導
加熱による加熱と、誘導加熱に起因して発生する電磁波
による電磁波加熱の雰囲気中で反応させることにより、
反応装置内を高圧状態とすることなく、常圧としたまま
の状態で効率的に難分解物質の分解を進行させることが
できた。更に被分解処理物と溶媒の過熱蒸気を生成した
り、混合ガスと略同温度に加熱した鉄,炭素,炭素鋼或
は混合ガスと反応して水素を生成する他の物質と接触さ
せることにより、反応装置内に生成した水素による還元
反応でフロン等の被分解処理物を分解し、同時に加水分
解によっても被分解処理物を分解することができた。以
下に具体的な実施形態を説明する。
First, an object to be decomposed such as chlorofluorocarbon is gasified by heating with a heater using water or hydrogen peroxide as a solvent, and a mixed gas of the object to be decomposed and the solvent is heated by induction heating in a reactor. By reacting in the atmosphere of electromagnetic wave heating by electromagnetic waves generated due to induction heating,
The decomposition of the hardly decomposable substance was able to proceed efficiently while keeping the inside of the reactor at a normal pressure without keeping the inside of the reactor at a high pressure. In addition, it generates superheated steam of the substance to be decomposed and the solvent, or is brought into contact with iron, carbon, carbon steel, or another substance that reacts with the mixed gas to generate hydrogen by heating to about the same temperature as the mixed gas. In addition, the decomposition target material such as chlorofluorocarbon was decomposed by the reduction reaction with the hydrogen generated in the reactor, and at the same time, the decomposition target material could be decomposed by hydrolysis. Hereinafter, specific embodiments will be described.

【0020】本発明はフロンガス等の環境汚染物質を始
めとする難分解物質を常圧の状態で分解処理するもので
あり、対象とする難分解物質は有機、無機化合物で安定
なものや有害なものをいうが、特に限定はなく、フロン
ガス、トリクレン等有機溶剤、廃油、ダイオキシン、P
CB、糞尿等の産業廃棄物、木材、紙、ゴム等あらゆる
ものを対象とし、その状態は固体、液体、気体を問わず
特に限定がない。なお、主には有機化合物で有用では
あるが使用後の処理が困難なものや有害なもの、例えば
トリクロロエタン、PCB、フロン(ハロゲン炭素化合
物)等であり、又有機化合物で有用であるが極めて安
定なものであって有害ではないが処理の困難なもの、例
えばポリエチレン、プラスチック、ゴム等である。
The present invention decomposes hard-to-decompose substances such as environmental pollutants such as chlorofluorocarbon gas under normal pressure, and the target hard-to-decompose substances are organic and inorganic compounds that are stable or harmful. Although there is no particular limitation, organic solvents such as Freon gas and trichlene, waste oil, dioxin, P
It covers all kinds of industrial waste such as CB and manure, wood, paper, rubber and the like, and its state is not particularly limited, regardless of whether it is solid, liquid or gas. It is mainly useful as an organic compound, but is difficult to treat after use or harmful, such as trichloroethane, PCB, and chlorofluorocarbon (halogen carbon compound). And non-harmful but difficult to process, for example, polyethylene, plastic, rubber and the like.

【0021】これらは石油を原料とする場合が多く、分
解するとほとんど油化できるから燃料として用いるか、
リサイクルできるように分解処理することを目的とす
る。また、ゴムの場合は有機化合物を無害化処理する
か、リサイクルできるように分解処理をすることを目的
とする。更に紙や木材等の分解はセルロースを分解して
グルコースに変えるものであり、利用価値が少ないもの
を有用なものに変換することを目的とする。
These are often made from petroleum and can be converted to oil when cracked.
The purpose is to disassemble so that it can be recycled. Further, in the case of rubber, it is another object of the present invention to detoxify the organic compound or to decompose the organic compound so that it can be recycled. Further, the decomposition of paper, wood, and the like is for decomposing cellulose to glucose, and aims to convert those having little utility value to useful ones.

【0022】本発明で使用する溶媒は加熱によってガス
化もしくは水素を生成するものであればどのようなもの
であってもよいが、最も適当なものは水であり、過酸化
水素水も使用できる。過酸化水素水を溶媒とすれば酸素
量が多くなり湿式酸化が効果的にできるようになる。な
お、本発明では溶媒を使用することなく被分解処理物の
みを反応装置に供給するようにしてもよい。
The solvent used in the present invention may be any solvent as long as it gasifies or generates hydrogen by heating, but the most suitable solvent is water, and hydrogen peroxide can also be used. . If hydrogen peroxide solution is used as a solvent, the amount of oxygen increases, and wet oxidation can be effectively performed. In the present invention, only the substance to be decomposed may be supplied to the reactor without using a solvent.

【0023】また、本発明によればベンゼン環を開環す
ることが可能であり、本発明が分解対象としているベン
ゼンは芳香族炭化水素の基本的化合物であり、C66
表わされ、モノクロロベンゼンはC65Clで表わされ
る。ベンゼン核を持つ有機化合物としてはフェノール類
が挙げられる。このフェノール類はベンゼン核にOH基
が結合した有機化合物の総称であり、C65OHで表わ
される。また、本発明によればベンゼン環を骨格構造と
するダイオキシン、PCBなども分解して無害化するこ
とが可能である。
Further, according to the present invention, it is possible to open the benzene ring, and the benzene to be decomposed in the present invention is a basic compound of an aromatic hydrocarbon, and is represented by C 6 H 6. And monochlorobenzene is represented by C 6 H 5 Cl. Examples of the organic compound having a benzene nucleus include phenols. These phenols are a general term for organic compounds in which an OH group is bonded to a benzene nucleus, and are represented by C 6 H 5 OH. Further, according to the present invention, dioxins and PCBs having a benzene ring as a skeleton structure can be decomposed and made harmless.

【0024】図1は本発明の一実施形態を概略的に示す
システム図であり、図中の21はフロン等被分解物タン
ク、22は被分解物ポンプ、23は溶媒としての水タン
ク、24は水ポンプ、25は加熱器であり、この加熱器
25には内部ヒータ26と外部ヒータ27が配置され、
更に加熱器25内には混合ガスと反応して水素を生成す
る物質として複数枚の鉄板28,28が配置されてい
る。被分解物ポンプ22としては被分解処理物に応じて
被分解処理物を圧送可能なポンプが選択され、高濃度ス
ラリー、粉体混合スラリー等を圧送できる圧送力が高
く、容積効率がよいスラリーポンプを用いるのが適当で
ある。尚、混合ガスと反応して水素を生成する物質は使
用しなくてもよいケースもあり、更に物質として前記鉄
板28以外に炭素,炭素鋼等を用いることもできる。
FIG. 1 is a system diagram schematically showing an embodiment of the present invention. In the figure, reference numeral 21 denotes a tank for decomposed substances such as chlorofluorocarbon, 22 denotes a pump for decomposed substances, 23 denotes a water tank as a solvent, and 24 denotes a water tank as a solvent. Is a water pump, 25 is a heater, and an internal heater 26 and an external heater 27 are arranged in the heater 25,
Further, a plurality of iron plates 28, 28 are disposed in the heater 25 as a substance that reacts with the mixed gas to generate hydrogen. A pump capable of pumping an object to be decomposed according to the object to be decomposed is selected as the object to be decomposed pump 22. A slurry pump having a high pumping force capable of pumping a high-concentration slurry, a powder mixed slurry, etc., and having a good volumetric efficiency. It is appropriate to use In some cases, it is not necessary to use a substance that generates hydrogen by reacting with the mixed gas. In addition to the iron plate 28, carbon, carbon steel, or the like may be used as the substance.

【0025】29は誘導加熱による加熱と、誘導加熱に
起因して発生する電磁波による電磁波加熱を利用した中
空円筒状の反応装置であり、この反応装置29は導入さ
れた前記被分解処理物と溶媒の混合ガス及び水素を所定
の温度を保って所定時間反応させて分解する機能を有し
ている。反応装置29には電源30とマッチング用トラ
ンス31が配備されていて、マッチング用トランス31
から取り出された誘導加熱コイル10が反応装置29の
外周部に巻着されている。この誘導加熱コイル10の内
部は図3に示すように中空としてあり、この中空部に冷
却水を流通させている。尚、反応装置29内に前記鉄板
等の混合ガスと反応して水素を生成する物質を配置する
ことも可能である。
Numeral 29 denotes a hollow cylindrical reactor utilizing heating by induction heating and electromagnetic wave heating by electromagnetic waves generated by the induction heating. The reactor 29 is provided with the introduced substance to be decomposed and a solvent. Has a function of decomposing by reacting the mixed gas and hydrogen at a predetermined temperature for a predetermined time. The reactor 29 is provided with a power supply 30 and a matching transformer 31.
The induction heating coil 10 taken out of the reactor is wound around the outer periphery of the reactor 29. The inside of the induction heating coil 10 is hollow as shown in FIG. 3, and cooling water is circulated through the hollow portion. In addition, it is also possible to arrange a substance that reacts with the mixed gas such as the iron plate to generate hydrogen in the reaction device 29.

【0026】上記反応装置29内は加圧されておらず、
排出口側を開放した常圧としている。つまり混合ガス注
入口側の配管の圧力は管路による圧損のみの圧力勾配と
なっている。反応装置29内は混合ガスによって僅かな
圧力が自然に発生し、圧力勾配となって被分解物を移送
する。本発明で常圧とはこのように強制的に高圧に加圧
することなく、排出口を開放した状態であることを示し
ている。
The inside of the reactor 29 is not pressurized,
The outlet is open to normal pressure. That is, the pressure of the pipe on the mixed gas inlet side has a pressure gradient of only pressure loss due to the pipe. A slight pressure is spontaneously generated in the reaction device 29 by the mixed gas, and a pressure gradient is formed to transfer the decomposition products. The normal pressure in the present invention indicates a state in which the discharge port is opened without forcibly increasing the pressure to a high pressure.

【0027】32は冷却器であり、冷却器32内には反
応装置29から導出された配管と連通する配管33が配
置されている。34は冷却水の入口、35は冷却水の出
口である。36は気液分離器、37は中和装置であっ
て、冷却器32から導出された配管38の他端部が気液
分離器36に挿入されており、気液分離器36から導出
された配管39の他端部が中和装置37に挿入されてい
る。40は処理液の排出口である。
Reference numeral 32 denotes a cooler, in which a pipe 33 communicating with a pipe led out of the reactor 29 is disposed. 34 is an inlet of cooling water, and 35 is an outlet of cooling water. 36 is a gas-liquid separator, 37 is a neutralization device, and the other end of a pipe 38 led out of the cooler 32 is inserted into the gas-liquid separator 36 and is led out of the gas-liquid separator 36. The other end of the pipe 39 is inserted into the neutralization device 37. Reference numeral 40 denotes a processing liquid discharge port.

【0028】図2は反応装置29の具体的な取付例を示
す側面図、図3は同反応装置29の縦断面図である。図
2に示したように、中空円筒状の反応装置29は支持台
41,41上に搭載されており、この反応装置29の外
周部に前記誘導加熱コイル10が巻着され、電源ターミ
ナル10a,10aに接続されている。更に反応装置2
9の周囲を被覆する位置に断熱材42が配置されてい
て、この断熱材42の外側に外郭部材47が配備され
て、反応装置29自体が全体的に密閉された構造となっ
ている。
FIG. 2 is a side view showing a specific example of mounting the reactor 29, and FIG. 3 is a longitudinal sectional view of the reactor 29. As shown in FIG. 2, a hollow cylindrical reactor 29 is mounted on support bases 41, 41. The induction heating coil 10 is wound around the outer periphery of the reactor 29, and the power terminals 10 a, 10a. Further reaction device 2
A heat insulating material 42 is disposed at a position covering the periphery of the heat insulating member 9, and an outer member 47 is provided outside the heat insulating material 42, so that the reaction device 29 itself is entirely sealed.

【0029】図3に示したように、反応装置29は内部
に配置された隔壁43,44によって混合ガスが流通す
る迂回路が形成されていて、配管45から導入された被
分解処理物と溶媒の混合ガスが、図中の矢印aに示した
ように反応装置29内を迂回しながら誘導加熱コイル1
0の作用により加熱されて被分解処理物の分解が進行す
る。
As shown in FIG. 3, the reactor 29 has a detour through which the mixed gas flows formed by the partition walls 43 and 44 disposed therein. Of the induction heating coil 1 while bypassing the inside of the reactor 29 as shown by the arrow a in the figure.
The material to be decomposed is decomposed by being heated by the action of 0.

【0030】かかる本実施形態の動作態様を説明する。
環境汚染物質であるフロンガスを分解処理する場合を例
に取ると、被分解物タンク21内にフロンを投入し、被
分解物ポンプ22と水ポンプ24を起動することによっ
てフロンと溶媒としての水が配管を通して加熱器25に
送り込まれ、適当な比率で混合される。
The operation of this embodiment will be described.
Taking the case of decomposing fluorocarbon gas, which is an environmental pollutant, as an example, chlorofluorocarbon is charged into the decomposed substance tank 21 and the decomposed substance pump 22 and the water pump 24 are activated, so that the fluorocarbon and water as a solvent are removed. It is sent to the heater 25 through the pipe and mixed at an appropriate ratio.

【0031】予め加熱器25に配置された内部ヒータ2
6と外部ヒータ27を働かせて、加熱器25の内部を5
00℃〜750℃に加熱しておくことによってフロンガ
スと溶媒の混合ガスが所定温度に加熱されて次段の反応
装置29内に送りこまれる。分解処理するために必要な
温度は被分解処理物によって異なるため、それぞれ被分
解処理物に応じて設定する。例えばフロンガスの場合は
500℃〜750℃、ポリエチレンで400℃前後に設
定するのが適当であるが、上記以上の加熱であってもよ
い。又、被分解物の種類によっては被分解物と溶媒の過
熱蒸気を生成することが有効である。
The internal heater 2 previously arranged in the heater 25
6 and the external heater 27 are operated to make the inside of the heater 25 5
By heating the mixture to 00 ° C. to 750 ° C., the mixed gas of the CFC gas and the solvent is heated to a predetermined temperature and sent into the next reactor 29. Since the temperature required for the decomposition treatment varies depending on the decomposition target, each temperature is set according to the decomposition target. For example, in the case of chlorofluorocarbon gas, it is appropriate to set the temperature to 500 ° C. to 750 ° C., and to set the temperature to about 400 ° C. for polyethylene. Further, depending on the type of the decomposition target, it is effective to generate a superheated vapor of the decomposition target and the solvent.

【0032】加熱器25内において鉄板28,28がほ
ぼ同温度に加熱されると、混合ガスが鉄板28と接触し
て以下の反応式によりマグネタイトと水素を生成する。 3Fe+4H2O → Fe34+4H2………(1) ここで生成した水素は非常に還元力が強く、多くの物質
と結合して被分解処理物を分解する作用がある。
When the iron plates 28 are heated to substantially the same temperature in the heater 25, the mixed gas contacts the iron plate 28 to generate magnetite and hydrogen by the following reaction formula. 3Fe + 4H 2 O → Fe 3 O 4 + 4H 2 ......... (1) where generated hydrogen is extremely reducing power is strong, has an action of decomposing the object to be decomposition products bound to many substances.

【0033】フロンガスと溶媒の混合ガスは次段の反応
装置29内に送りこまれて、隔壁43,44によって形
成された迂回路を流通するが、予め電源30からマッチ
ング用トランス31を介して反応装置29の外周部に巻
着されている誘導加熱コイル10に通電することで発生
する磁束によって誘起される渦電流によるジュール熱に
より発熱して反応装置29が加熱されることにより混合
ガスが加熱されてフロンガスの熱分解作用が進行する。
同時にこの誘導加熱コイル10に電流を流すことによっ
て発生するのは磁束だけでなく電界も同時に発生する。
即ち、電磁波が発生することとなり(このときの周波数
は誘導加熱に用いた周波数の電磁波となる)、この電磁
波によって分子の摩擦、衝突の増大が2次的に起こって
電磁波加熱によっても混合ガスが加熱されてフロンガス
の熱分解作用が進行する。本発明はこの誘導加熱による
反応装置の加熱と共に、誘導加熱に起因して発生する電
磁波による電磁波加熱を積極的に利用して加熱効率を高
め、更に分子運動を活発化させることにより分子同士の
衝突の回数及び衝突力を増大して分解効率を高めること
に特徴を有するものである。なお、誘導加熱に使用する
周波数は数kHzから数百kHzが使用可能であり、実
施例では80kHzのものを使用した。
The mixed gas of the chlorofluorocarbon gas and the solvent is sent into the reactor 29 at the next stage, and flows through the bypass formed by the partition walls 43 and 44. Heat is generated by Joule heat due to eddy current induced by magnetic flux generated by energizing the induction heating coil 10 wound around the outer peripheral portion of the reactor 29, and the reactor 29 is heated to heat the mixed gas. The thermal decomposition of the chlorofluorocarbon gas proceeds.
Simultaneously, when an electric current is applied to the induction heating coil 10, not only a magnetic flux but also an electric field are generated at the same time.
That is, an electromagnetic wave is generated (the frequency at this time is the electromagnetic wave of the frequency used for induction heating), and this electromagnetic wave causes a secondary increase in molecular friction and collision, and the mixed gas is also generated by the electromagnetic wave heating. Heating causes the thermal decomposition of the chlorofluorocarbon gas to proceed. In the present invention, together with the heating of the reaction apparatus by the induction heating, the heating efficiency is enhanced by positively utilizing the electromagnetic wave heating by the electromagnetic waves generated by the induction heating, and the collision of molecules is further promoted by activating the molecular motion. It is characterized in that the number of times and the collision force are increased to increase the decomposition efficiency. Note that the frequency used for induction heating can be from several kHz to several hundred kHz, and in the example, a frequency of 80 kHz was used.

【0034】反応装置29内に混合ガスと反応して水素
を生成する物質を配置した場合には上記(1)式の反応
が促進され、水素の還元力を利用した複合的な分解反応
が進行する。これに伴って被分解処理物の分解速度が高
くなるとともに分解率も向上し、圧力勾配によって次段
の冷却器32に移送される。
When a substance that reacts with the mixed gas to generate hydrogen is disposed in the reactor 29, the reaction of the above formula (1) is promoted, and a complex decomposition reaction utilizing the reducing power of hydrogen proceeds. I do. Along with this, the decomposition rate of the object to be decomposed is increased and the decomposition rate is also improved, and the object is transferred to the next cooler 32 by a pressure gradient.

【0035】冷却装置32では冷却水の入口34から冷
却水を供給して同出口35から流出させることにより、
反応装置29と連通する配管33内で分解処理された分
解物のガスが冷却されて液化する。冷却器32内の温度
は分解物のガスを液化できる温度であればよく、フロン
ガスの場合は略18℃とする。このように液化すること
により副生成物の発生が防止されるとともに、ガス状の
まま放出して大気中に飛散することによる2次汚染の心
配もない。
In the cooling device 32, cooling water is supplied from an inlet 34 of the cooling water and discharged from the outlet 35,
The gas of the decomposition product decomposed in the pipe 33 communicating with the reactor 29 is cooled and liquefied. The temperature in the cooler 32 may be any temperature at which the gas of the decomposed product can be liquefied. By liquefying in this way, the generation of by-products is prevented, and there is no fear of secondary pollution due to release in the gaseous state and scattering into the atmosphere.

【0036】排液は配管38を通って気液分離器36に
入り、気液が分離されて液状物が中和装置37に流入
し、所定の中和処理が行われて排出口40から排出さ
れ、図外の排液タンク内に貯留される。上記冷却器32
に熱交換器を組み込んで、熱交換器により冷却する熱を
回収して再利用することも可能である。
The discharged liquid enters a gas-liquid separator 36 through a pipe 38, where the gas-liquid is separated, and the liquid material flows into a neutralization device 37. And stored in a drain tank (not shown). The cooler 32
It is also possible to incorporate a heat exchanger into the heat exchanger and recover and reuse the heat cooled by the heat exchanger.

【0037】上記の説明において、溶媒としての水のみ
を加熱器25により加熱して反応装置29に連続して供
給し、この溶媒雰囲気中の反応装置29内に被分解処理
物を供給して所定の反応時間を経過させて分解処理する
こともできる。この構成は被分解処理物として流体状又
は気体状以外の固形状の被分解処理物、例えばPE、プ
ラスチック、ゴム、木材、紙等を分解処理する場合に適
しており、固形状の被分解処理物を反応装置29に供給
すると共に、反応装置29内にフィーダ等の被分解処理
物の移送手段を設けておくとよい。
In the above description, only water as a solvent is heated by the heater 25 and continuously supplied to the reactor 29, and the substance to be decomposed is supplied to the reactor 29 in the solvent atmosphere and the predetermined amount is supplied. The decomposition treatment can be performed after the reaction time of the above has elapsed. This configuration is suitable for decomposing solid substances to be decomposed other than fluid or gaseous substances, for example, PE, plastic, rubber, wood, paper, etc. It is preferable to supply the substance to the reaction apparatus 29 and to provide a means for transferring the substance to be decomposed such as a feeder in the reaction apparatus 29.

【0038】図4に示す(イ)は、フロンR12とR2
2の各70(g/min)について水70(g/mi
n)を溶媒として加えて過熱蒸気を生成させ、本実施例
を適用した誘導加熱法による反応装置で反応させた場合
の温度と分解率の関係を示すグラフである。(ロ)と
(ハ)は同じ試料を従来のヒータ加熱手段による反応装
置で反応させた場合の同様なグラフである。
FIG. 4 shows (a) the CFCs R12 and R2
Water 70 (g / mi) for each 70 (g / min) of 2
4 is a graph showing the relationship between the temperature and the decomposition rate when superheated steam is generated by adding n) as a solvent and reacted by an induction heating method reactor to which this example is applied. (B) and (c) are similar graphs when the same sample is reacted by a conventional reaction device using heater heating means.

【0039】グラフ(イ)では温度が500℃で分解率
が既に99.76%,99.73%に達しており、温度が
1000℃になるまでに99.99%に微増しているの
に対して、グラフ(ロ)と(ハ)では温度が550℃前
後では95.36%及び93.12%と低く、800℃で
99.14%及び99.74%に達している。図4から理
解されるように、誘導加熱法による反応とヒータによる
反応とは、同じ温度条件であってもフロンR12とR2
2の分解率に大きな相違が生じている。
In the graph (a), the decomposition rate has already reached 99.76% and 99.73% at the temperature of 500 ° C., and it has slightly increased to 99.99% before the temperature reaches 1000 ° C. On the other hand, in the graphs (b) and (c), the temperature is as low as 95.36% and 93.12% at around 550 ° C, and reaches 99.14% and 99.74% at 800 ° C. As can be understood from FIG. 4, the reaction by the induction heating method and the reaction by the heater were performed under the same temperature conditions even under the same temperature condition.
There is a great difference in the decomposition rate of No. 2.

【0040】図5に示す(イ)は、ベンゼン核を持つ有
機物であるクロロベンゼン(C65Cl)の20(g/
min)について水60(g/min)を溶媒として加
えて過熱蒸気を生成させ、本実施例を適用した誘導加熱
法による反応装置で反応させた場合の温度と分解率の関
係を示すグラフ、(ロ)は同じ試料を従来のヒータ加熱
手段による反応装置で反応させた場合の同様なグラフで
ある。
FIG. 5A shows 20 g / chlorobenzene (C 6 H 5 Cl), which is an organic substance having a benzene nucleus.
a graph showing the relationship between the temperature and the decomposition rate when superheated steam is generated by adding water (g / min) as a solvent with respect to min. (B) is a similar graph in the case where the same sample is reacted by a conventional reaction device using heater heating means.

【0041】グラフ(イ)では温度が500℃で分解率
が99.16%、温度が750℃前後で99.99%に達
しているのに対して、グラフ(ロ)では温度が600℃
で分解率が92.98%と低く、800℃で96.24%
に達している。図5からも誘導加熱法による反応とヒー
タによる反応とは、同じ温度条件であってもクロロベン
ゼンの分解率に大きな相違が生じていることがわかる。
Graph (a) has a decomposition rate of 99.16% at a temperature of 500 ° C. and 99.99% at a temperature of about 750 ° C., whereas graph (b) has a temperature of 600 ° C.
At 92.98% and 96.24% at 800 ° C
Has been reached. FIG. 5 also shows that the reaction by the induction heating method and the reaction by the heater have a large difference in the decomposition rate of chlorobenzene even under the same temperature conditions.

【0042】図6はフロンR113と溶媒としての水
を、重量比1:1で容積が1000(cm3)の反応装
置に投入し、650℃の反応条件で本実施例を適用した
誘導加熱法と従来のヒータ加熱手段を用いた場合の反応
時間(秒)と分解率の関係を示すグラフである。
FIG. 6 shows an induction heating method in which Freon R113 and water as a solvent are put into a reactor having a weight ratio of 1: 1 and a volume of 1000 (cm 3 ), and the present embodiment is applied under the reaction conditions of 650 ° C. 7 is a graph showing the relationship between the reaction time (second) and the decomposition rate when using a conventional heater heating means.

【0043】誘導加熱法によれば、反応時間が1秒で分
解率が既に99.96%に達しており、以下10秒〜4
5秒の間は99.99%に保たれているのに対して、ヒ
ータ加熱の場合には反応時間が2秒前後で分解率が4
0.08%、反応時間30秒で99.99%に達してい
る。従って誘導加熱法による反応とヒータによる反応と
は、同じ温度条件であっても分解に要する反応時間にも
大きな相違があることがわかる。
According to the induction heating method, the reaction time was 1 second and the decomposition rate had already reached 99.96%.
In the case of heater heating, the reaction time is about 2 seconds and the decomposition rate is 4
0.08%, reaching 99.99% with a reaction time of 30 seconds. Therefore, it can be seen that the reaction by the induction heating method and the reaction by the heater have a large difference in the reaction time required for decomposition even under the same temperature conditions.

【0044】図7は溶媒を用いずにフロンR12のみを
容積が1000(cm3)の反応装置に投入し、650
℃,750℃,850℃の各反応温度条件で本実施例を
適用した誘導加熱法と従来のヒータ加熱手段を用いた場
合の反応時間(秒)と分解率の関係を示すグラフであ
る。
FIG. 7 shows that chlorofluorocarbon R12 alone was introduced into a reactor having a volume of 1000 (cm 3 ) without using a solvent,
6 is a graph showing the relationship between the reaction time (second) and the decomposition rate when using an induction heating method to which the present embodiment is applied and a conventional heater heating means under respective reaction temperature conditions of ℃, 750 ° C. and 850 ° C.

【0045】ヒータ加熱の場合には反応温度650℃と
750℃の何れの場合もフロンの分解がほとんど進行し
ておらず、反応温度が850℃で始めて分解作用が生
じ、60秒の反応時間で79.1%の分解率に達したの
に対して、誘導加熱法によれば、650℃,750℃,
850℃の各反応温度条件で1秒からフロンの分解が進
行しており、特に850℃の場合には60秒の反応時間
で分解率が既に99.9%に達している。従って誘導加
熱法を用いることによって溶媒を使用しなくても反応が
速やかに生じることがわかる。
In the case of heating with a heater, the decomposition of chlorofluorocarbon hardly progressed at any of the reaction temperatures of 650 ° C. and 750 ° C., and the decomposition effect occurred only at the reaction temperature of 850 ° C., and the reaction time was 60 seconds. While the decomposition rate reached 79.1%, according to the induction heating method, 650 ° C., 750 ° C.,
Decomposition of chlorofluorocarbon has progressed from 1 second at each reaction temperature condition of 850 ° C., and particularly at 850 ° C., the decomposition rate has already reached 99.9% in a reaction time of 60 seconds. Therefore, it can be seen that the reaction occurs promptly without using a solvent by using the induction heating method.

【0046】図8は溶媒を用いずにクロロベンゼン(C
65Cl)のみを容積が1000(cm3)の反応装置
に投入し、850℃,950℃の各反応温度条件で本実
施例を適用した誘導加熱法で反応させた場合と、従来の
ヒータ加熱手段を用いて850℃で反応させた場合の反
応時間(秒)と分解率の関係を示すグラフである。
FIG. 8 shows that chlorobenzene (C
6 H 5 Cl) alone into a reactor having a volume of 1000 (cm 3 ), and reacted by the induction heating method to which the present embodiment was applied under the respective reaction temperature conditions of 850 ° C. and 950 ° C. It is a graph which shows the relationship between the reaction time (second) at the time of making it react at 850 degreeC using a heater heating means, and a decomposition rate.

【0047】ヒータ加熱の場合には反応温度850℃で
もクロロベンゼンの分解がほとんど進行していないのに
対して、誘導加熱法によれば、850℃の反応温度条件
で5秒後の分解率が22.1%、70秒後には44.3%
に達している。更に950℃の反応温度条件では、5秒
後の分解率が63.0%、75秒後には92.5%に達し
ている。従って誘導加熱法を用いることによって溶媒を
使用しなくてもクロロベンゼンの分解が可能であること
がわかる。
In the case of heating with a heater, the decomposition of chlorobenzene hardly progresses even at a reaction temperature of 850 ° C., whereas according to the induction heating method, the decomposition rate after 5 seconds at a reaction temperature of 850 ° C. is 22. .1%, 44.3% after 70 seconds
Has been reached. Further, under the reaction temperature condition of 950 ° C., the decomposition rate after 5 seconds reaches 63.0%, and after 75 seconds reaches 92.5%. Therefore, it is understood that chlorobenzene can be decomposed without using a solvent by using the induction heating method.

【0048】ここで本発明における誘導加熱による加熱
と、誘導加熱に起因して発生する電磁波による電磁波加
熱を利用した反応装置29の発熱の原理を簡単に説明す
る。一般に誘導加熱は非接触の電磁誘導作用によって導
電性抵抗体を加熱する方法である。例えば一般の変圧器
の場合は、一次側と二次側にそれぞれコイルがあり、一
次側のコイルで作る交流磁界が二次側コイルと結合した
分だけ二次側に誘導電圧を発生し、二次側に接続した負
荷回路に電流を供給する。
Here, the principle of heat generation of the reactor 29 utilizing heating by induction heating and electromagnetic wave heating by electromagnetic waves generated due to induction heating in the present invention will be briefly described. Generally, induction heating is a method of heating a conductive resistor by a non-contact electromagnetic induction action. For example, in the case of a general transformer, there are coils on the primary side and the secondary side, respectively.The induced magnetic field generated by the primary side coil generates an induced voltage on the secondary side by an amount corresponding to the coupling with the secondary side coil. Supply current to the load circuit connected to the secondary side.

【0049】本願発明のように高周波交流を通じた誘導
加熱コイル10の中に置かれた金属体には起電力が発生
し、誘導電流としての渦電流(eddy current)が流れ
る。この渦電流は金属体の表面に集中し、内部にいくに
従って指数関数的に減少し、位相が遅れて高周波誘導加
熱の特色である一定の浸透深さを持つ「表皮効果」が生
じる。また、発熱現象をもたらす渦電流損は、渦電流に
よって生じる抵抗損失(joule's loss)であり、円筒状
の導電性金属に発熱効果を発生する電力は、周波数が高
くなると誘導加熱コイル10に流れる電流の2乗に比
例し、コイルの巻数の2乗に比例し、周波数の平方
根に比例し、円筒の半径の4乗に比例し、材料の比
透磁率の平方根に比例し、材料の抵抗率の平方根に比
例する。
An electromotive force is generated in a metal body placed in the induction heating coil 10 through high-frequency alternating current as in the present invention, and an eddy current as an induced current flows. This eddy current concentrates on the surface of the metal body, and decreases exponentially as it goes inside, causing a "skin effect" having a constant penetration depth, which is a characteristic of high-frequency induction heating, with a phase delay. The eddy current loss that causes the heat generation phenomenon is a resistance loss (joule's loss) caused by the eddy current, and the electric power that generates the heat generation effect on the cylindrical conductive metal is the electric current flowing through the induction heating coil 10 when the frequency increases. Proportional to the square of the number of turns of the coil, proportional to the square root of the frequency, proportional to the square of the radius of the cylinder, proportional to the square root of the relative permeability of the material, and proportional to the resistivity of the material. It is proportional to the square root.

【0050】従って交流周波数が高くなるほど発熱は大
きくなるが、発熱と発生電力の分岐点が誘導加熱の臨界
周波数と呼ばれ、どの周波数を選ぶかが問題の1つであ
って、用途に応じて最適な周波数を選択しなければなら
ない。一方、反応装置29の中空部には渦電流(2次電
流)によって電界も同時に発生する。この電界は1次電
流によって生じる磁束の変化を妨げる方向に発生するた
め、反応装置29内には電磁波が発生することとなる。
この電磁波によって分子の摩擦、衝突の増大が2次的に
起こって電磁波加熱によって被分解処理物が加熱され
る。
Therefore, the heat generation increases as the AC frequency increases, but the branch point between the heat generation and the generated power is called a critical frequency of induction heating, and one of the problems is to select which frequency. The optimal frequency must be selected. On the other hand, an electric field is simultaneously generated in the hollow portion of the reaction device 29 by the eddy current (secondary current). Since this electric field is generated in a direction that prevents a change in magnetic flux generated by the primary current, an electromagnetic wave is generated in the reaction device 29.
This electromagnetic wave causes a secondary increase in molecular friction and collision, and the object to be decomposed is heated by electromagnetic wave heating.

【0051】誘導加熱の特徴は、熱伝導に要する時間が
短縮されるとともに高い熱効率と高速応答性が得られ、
しかも被加熱物自体が発熱体として同時に発熱するの
で、被加熱物の形状に関係なく均一加熱が可能になる点
にある。本実施形態例では反応装置29の全長をLと
し、コイルの巻数をNとしてコイル電流Iが流れると磁
界Hが発生する。この磁界Hの強さは〔NI/L〕であ
る。
The features of induction heating are that the time required for heat conduction is shortened, and high thermal efficiency and high-speed response are obtained.
Moreover, since the object to be heated itself generates heat simultaneously as a heating element, uniform heating is possible regardless of the shape of the object to be heated. In this embodiment, a magnetic field H is generated when the coil current I flows with the total length of the reactor 29 being L and the number of turns of the coil being N. The intensity of the magnetic field H is [NI / L].

【0052】円筒状に構成された反応装置29の透磁率
をμとすると磁束密度Bは、 磁束密度B=μNI/L となり、磁束Aは 磁束A=μSNI/L となって磁束密度Bは透磁率μが大きいほど大きくな
る。従って反応装置29の円筒部分を多くの磁束が通る
ことになる。
Assuming that the magnetic permeability of the cylindrical reactor 29 is μ, the magnetic flux density B becomes: magnetic flux density B = μNI / L, the magnetic flux A becomes: magnetic flux A = μSNI / L, and the magnetic flux density B becomes The larger the magnetic susceptibility μ, the larger. Therefore, a large amount of magnetic flux passes through the cylindrical portion of the reactor 29.

【0053】次に被分解処理物の分解原理と、結果の測
定原理について説明する。被分解処理物としてフロンガ
スを用いた場合、下記の生成物が確認された。先ず気体
はCO2,H2,HCl,HF,CO(微量)であり、液
体はHCl,HF,Fe3+である。固体はFe24,C
(グラファイト),FeF2,FeF2・4H2O,FeC
2,FeCl2・4H2Oである。尚、測定方法として、
ガスはGC−MC法,H2とCOはGC−TCD法,H
ClとHFはイオンクロマトグラフ法,CO2は検知管
法,金属はICP発光法,固体はX線回折法を用いた。
Next, the principle of decomposition of the object to be decomposed and the principle of measurement of the result will be described. When chlorofluorocarbon gas was used as the substance to be decomposed, the following products were confirmed. First, the gas is CO 2 , H 2 , HCl, HF, CO (a trace amount), and the liquid is HCl, HF, Fe 3 +. Solid is Fe 2 O 4 , C
(Graphite), FeF 2 , FeF 2 .4H 2 O, FeC
l 2 , FeCl 2 .4H 2 O. In addition, as a measuring method,
Gas is GC-MC method, H 2 and CO are GC-TCD method, H
Cl and HF were measured by ion chromatography, CO 2 was measured by a detector tube, metals were measured by ICP emission, and solids were measured by X-ray diffraction.

【0054】フロンCFC−12の分解反応は以下の通
りである。 [溶媒として水を使用した場合] CCl22+2H2 → +2HCl+2HF+C…………(2) CCl22+2H2O → 2HCl+2HF+CO2………(3) 2CCl22+3H2O → 2HCl+2HF+CO2+CO+H2…(4)
The decomposition reaction of CFC-12 is as follows. [When water is used as a solvent] CCl 2 F 2 + 2H 2 → + 2HCl + 2HF + C (2) CCl 2 F 2 + 2H 2 O → 2HCl + 2HF + CO 2 (3) 2CCl 2 F 2 + 3H 2 O → 2HCl + 2HF + CO 2 + CO + H 2 (4)

【0055】(2)式は水素による還元反応の分解、
(3)(4)式は水による加水分解であり、COの量か
らみて(3)式の反応が主体となっており、全体的には
(2)(3)式の反応が95%以上、(4)式の反応は
5%程度である。
The equation (2) represents the decomposition of the reduction reaction by hydrogen,
The equations (3) and (4) are hydrolysis by water, and the reaction of the equation (3) is mainly performed in view of the amount of CO. As a whole, the reactions of the equations (2) and (3) are 95% or more. , (4) is about 5%.

【0056】更に生成物の塩酸ガスとフッ酸ガスが鉄に
作用して以下の反応が生起する。 Fe+2HCl → FeCl2+H2………(5) Fe+2HF → FeF2+H2…………(6)
Further, the hydrochloric acid gas and the hydrofluoric acid gas of the products act on iron, and the following reaction occurs. Fe + 2HCl → FeCl 2 + H 2 (5) Fe + 2HF → FeF 2 + H 2 (6)

【0057】これを冷却器32で冷却すると、空気中の
水分を吸収してそれぞれFeCl2・4H2O,FeF2
4H2Oに変化する。
When this is cooled by the cooler 32, it absorbs the moisture in the air and receives FeCl 2 .4H 2 O and FeF 2.
Changes to 4H 2 O.

【0058】次に鉄板28に代えて炭素もしくは炭素鋼
を用いた場合の反応式を述べる。即ち、炭素に溶媒とし
ての水の過熱蒸気を作用させると、 C+H2O → CO+H2………(7) となり、COとH2の混合ガスである水性ガスが発生す
る。得られた水素によって前記(1)式〜(6)式の反
応が生じてフロンガスが分解される。但し炭素を用いた
場合には、鉄もしくは炭素鋼を用いた場合よりも水素発
生量が若干少なく、99.99の分解率を達成するのに
10秒程度多くの時間がかかるため、分解効率はやや低
下する。
Next, a reaction formula when carbon or carbon steel is used in place of the iron plate 28 will be described. That is, when superheated steam of water as a solvent acts on carbon, C + H 2 O → CO + H 2 (7) is obtained, and a water gas as a mixed gas of CO and H 2 is generated. The obtained hydrogen causes the reactions of the above formulas (1) to (6) to decompose the fluorocarbon gas. However, when carbon is used, the amount of generated hydrogen is slightly lower than when iron or carbon steel is used, and it takes about 10 seconds to achieve a decomposition rate of 99.99. Slightly lower.

【0059】前記(1)式におけるマグネタイト(Fe
34)は酸に対する耐蝕性が高い不動態であり、容器等
の表面に付着して保護膜を形成する。また、鉄板28上
に付着したマグネタイトは炭素と反応して Fe34+2C → 3Fe+2CO2………(8) 更にCOとも反応して Fe34+4CO → 3Fe+4CO2………(9) となり、前記(1)式の反応に必要な鉄がリサイクルさ
れる。しかし、多くは熱による膨張と収縮が進行してマ
グネタイトが剥離して新しい鉄表面が露出し、反応が継
続する。
In the above formula (1), the magnetite (Fe
3 O 4 ) is a passivation having high corrosion resistance to acid, and adheres to the surface of a container or the like to form a protective film. The magnetite adhering to the iron plate 28 reacts with the carbon to become Fe 3 O 4 + 2C → 3Fe + 2CO 2 (8) and also reacts with CO to become Fe 3 O 4 + 4CO → 3Fe + 4CO 2 (9) The iron required for the reaction of the formula (1) is recycled. However, in many cases, expansion and contraction due to heat progress, magnetite peels off, a new iron surface is exposed, and the reaction continues.

【0060】尚、フロンの溶媒として水を用いた場合に
上記(2)式の反応によって生じた塩酸及びフッ酸の作
用で混合液が強酸性となり、パイプ及びチューブ類の腐
食が激しくなって装置の寿命が低下する虞れがある。従
って通常は下記の(10)式に示したようにフロンの濃
度に応じて苛性ソーダNaOHを加えて炭酸ガスを重炭
酸ソーダNaHCO3とし、(11)式のように苛性ソ
ーダと塩酸の反応で食塩NaClを生成して、更に(1
2)式のように苛性ソーダとフッ酸の反応でフッ化ナト
リウムNaFを生成して対処する場合もある。 NaOH+CO2 → NaHCO3………(10) NaOH+HCl → NaCl+H2O………(11) NaOH+HF → NaF+H2O………(12)
When water is used as the solvent for the chlorofluorocarbon, the mixture becomes strongly acidic due to the action of hydrochloric acid and hydrofluoric acid generated by the reaction of the above formula (2), and the corrosion of pipes and tubes becomes severe. May be shortened. Therefore, as shown in the following equation (10), caustic soda NaOH is added according to the concentration of chlorofluorocarbon to convert carbon dioxide into sodium bicarbonate NaHCO 3. And then (1
In some cases, sodium fluoride NaF is generated by the reaction of caustic soda and hydrofluoric acid as shown in equation 2). NaOH + CO 2 → NaHCO 3 (10) NaOH + HCl → NaCl + H 2 O (11) NaOH + HF → NaF + H 2 O (12)

【0061】[溶媒として過酸化水素水を使用した場
合]過酸化水素水が熱分解して、水と酸素が生成され
る。 2H22 → 2H2O+O2………(13) そのため、H2O,O2によって加水分解のほかに酸素に
よる次の反応が同時におきる。 CCl22+O2→CO2+Cl2+F2………(14) (14)式は酸化反応である。酸化反応によって得られ
たCl2,F2は、 Cl2+H2 → 2HCl………(15) F2+H2 → 2HF………(16) となってHCl,HFに変わる。
[When Hydrogen Peroxide Solution is Used as Solvent] Hydrogen peroxide solution is thermally decomposed to produce water and oxygen. 2H 2 O 2 → 2H 2 O + O 2 (13) Therefore, in addition to hydrolysis by H 2 O and O 2 , the next reaction by oxygen occurs simultaneously. CCl 2 F 2 + O 2 → CO 2 + Cl 2 + F 2 (14) Equation (14) is an oxidation reaction. Cl 2 and F 2 obtained by the oxidation reaction are changed to HCl and HF as Cl 2 + H 2 → 2HCl (15) F 2 + H 2 → 2HF (16)

【0062】以上のように溶媒として過酸化水素水を使
用した場合は、前記した加水分解、還元反応に加えて、
上記した酸化反応が同時に進行するため分解速度は早
く、被分解処理物は早くから安定な物質と変わるため、
余分な副生成物は生成されない。
When hydrogen peroxide solution is used as a solvent as described above, in addition to the above-described hydrolysis and reduction reactions,
Since the above-mentioned oxidation reaction proceeds simultaneously, the decomposition rate is fast, and the decomposition target material changes from early to a stable substance,
No extra by-products are produced.

【0063】この実施形態は流体状或は気体状の被分解
処理物を分解処理するためのものであり、環境汚染物質
としてフロンガスの外にクロロベンゼン,トリクロロエ
タン等のハロゲン炭化化合物の液状物の分解が可能であ
るが、フロンガスの場合の実験条件として加熱器25及
び反応装置29内の温度を650℃、冷却器32内の配
管33の温度を18℃とした。また、モル比で溶媒であ
る水(又は過酸化水素水)の方が過剰になるように選択
した。即ち、フロンガス:水(又は過酸化水素水)=
1:3とした。この時の分解率はガスクロマトグラフィ
ーでフロンが検出されない程度まで、換言すれば99.
99%以上の分解率が得られた。
This embodiment is for decomposing a fluid or gaseous substance to be decomposed. In addition to an environmental pollutant, it decomposes a liquid substance of a halogenated carbon compound such as chlorobenzene and trichloroethane as an environmental pollutant. Although it is possible, the temperature in the heater 25 and the reactor 29 was set to 650 ° C., and the temperature of the pipe 33 in the cooler 32 was set to 18 ° C. as the experimental conditions in the case of CFC gas. In addition, the solvent (water or hydrogen peroxide solution) was selected to be in excess in molar ratio. That is, Freon gas: water (or hydrogen peroxide solution) =
1: 3. The decomposition rate at this time is to the extent that CFCs are not detected by gas chromatography, in other words, 99.
A decomposition rate of 99% or more was obtained.

【0064】次に本実施形態によるトリクロロエタン
(CH3・CCl3)及びベンゼン核を持つ有機物である
クロロベンゼン(C65Cl)の分解反応を説明する。
反応温度は650℃とした。
Next, the decomposition reaction of trichloroethane (CH 3 · CCl 3 ) and chlorobenzene (C 6 H 5 Cl) which is an organic substance having a benzene nucleus according to the present embodiment will be described.
The reaction temperature was 650 ° C.

【0065】先ずトリクロロエタン(CH3・CCl3
を分解する場合は以下のように反応が進行する。
First, trichloroethane (CH 3 .CCl 3 )
Is decomposed, the reaction proceeds as follows.

【0066】[溶媒として水を使用した場合]溶媒とし
て水を使用すると加水分解は、 CH3・CCl3+H2O → 3HCl+CO+C+H2………(17) CH3・CCl3+2H2O → 3HCl+CO2+C+2H2……(18) となる。一方、前記(1)式に示すように過熱蒸気が鉄
板28と接触して生成された水素による分解は、分解途
中のガスを定性分析し、その生成物から分解反応は先
ず、 CH3・CCl3+3H2 → CH3・CH3+3HCl………(19) となる水素による置換反応が認められ、更に CH3・CH3+H2 → 2CH4………(20) なる分解が進行し、次いで CH4 → C+2H2………(21) となる。従って、この分解反応では最終的にCO2,C
O,H2,C,HClに分解される。
[When water is used as a solvent] When water is used as a solvent, the hydrolysis proceeds as follows: CH 3 · CCl 3 + H 2 O → 3HCl + CO + C + H 2 (17) CH 3 · CCl 3 + 2H 2 O → 3HCl + CO 2 + C + 2H 2 (18) Meanwhile, the (1) decomposition by hydrogen superheated steam is generated in contact with the iron plate 28 as shown in expression decomposition during the gas qualitative analysis, first, the decomposition reaction of the product, CH 3 · CCl 3 + 3H 2 → CH 3 .CH 3 + 3HCl (19) A substitution reaction with hydrogen was observed, and further, CH 3 .CH 3 + H 2 → 2CH 4 (20) decomposition proceeded, CH 4 → C + 2H 2 (21) Therefore, in this decomposition reaction, CO 2 , C
Decomposed into O, H 2 , C, HCl.

【0067】[溶媒として過酸化水素水を使用した場
合]溶媒に過酸化水素水を用いると前記した加水分解と
水素による分解の他に CH3・CCl3+2O2 → 2CO2+3HCl………(22) となる酸化による分解反応が起き(20)式で生成され
たCH4も一部酸化されて、 CH4+2O2 → CO2+2H2O………(23) となり、加水分解、水素による還元反応の分解、酸化分
解が並行して起きて、分解効率が更に改善される。
[When hydrogen peroxide solution is used as a solvent] When hydrogen peroxide solution is used as a solvent, CH 3 · CCl 3 + 2O 2 → 2CO 2 + 3HCl is used in addition to the above-mentioned hydrolysis and decomposition by hydrogen. 22) A decomposition reaction by oxidation takes place, and the CH 4 generated in the equation (20) is also partially oxidized to be CH 4 + 2O 2 → CO 2 + 2H 2 O (23), which is hydrolyzed and produced by hydrogen. The decomposition and oxidative decomposition of the reduction reaction occur in parallel, and the decomposition efficiency is further improved.

【0068】次にクロロベンゼン(C65Cl)を分解
する場合は以下のように反応が進行する。
Next, when chlorobenzene (C 6 H 5 Cl) is decomposed, the reaction proceeds as follows.

【0069】[溶媒として水を使用した場合]溶媒とし
て水を使用すると加水分解は、 C65Cl+H2O → C65OH+HCl………(24) などとなるが、一方、前記(1)式に示すように過熱蒸
気が鉄板28と接触して生成された水素による分解は、
分解途中のガスを定性分析し、その生成物から分解反応
は先ず、ClがHに置換されて、 C65Cl+H2 → C66+HCl………(25) となって、ベンゼンと塩酸が生成されるが、更にHが付
加されて、 C66+3H2 → C612………(26) となり、シクロヘキサン(C612)が生成され、更に
開環されてメタン、エタン等に分解される。 C612+6H2 → 6CH4………(27) このメタンは CH4 → C+2H2………(28) となってC(グラファイト)と塩酸と水素に分解され
る。
[When water is used as a solvent] When water is used as a solvent, the hydrolysis is performed as follows: C 6 H 5 Cl + H 2 O → C 6 H 5 OH + HCl (24) As shown in the equation (1), the decomposition by hydrogen generated by the contact of the superheated steam with the iron plate 28 is as follows.
The gas in the middle of decomposition is qualitatively analyzed, and the decomposition reaction of the product is first replaced with H, resulting in C 6 H 5 Cl + H 2 → C 6 H 6 + HCl (25). Hydrochloric acid is generated, and H is further added to form C 6 H 6 + 3H 2 → C 6 H 12 (26), cyclohexane (C 6 H 12 ) is generated, and the ring is further opened to form methane. Is decomposed into ethane and the like. C 6 H 12 + 6H 2 → 6CH 4 (27) This methane becomes CH 4 → C + 2H 2 (28) and is decomposed into C (graphite), hydrochloric acid and hydrogen.

【0070】[溶媒として過酸化水素水を使用した場
合]溶媒に過酸化水素水を用いると前記した加水分解と
水素による分解の他に C65Cl+6O2 → 6CO2+HCl+2H2………(29) となる酸化反応が同時に起る。
[0070] [If using hydrogen peroxide as a solvent] C 6 H 5 Cl + 6O 2 → 6CO 2 + HCl + 2H 2 ......... other degradation by hydrolysis and hydrogen described above and using aqueous hydrogen peroxide in a solvent ( 29) occurs simultaneously.

【0071】[0071]

【発明の効果】以上詳細に説明したように、本発明によ
ればフロンガスとかベンゼン核を持つ有機化合物及びそ
の他の産業廃棄物等の難分解物質が溶媒とともに混合ガ
スとして反応装置に供給され、反応装置で迂回流通して
いる間に反応装置の誘導加熱による加熱と、誘導加熱に
起因して発生する電磁波による電磁波加熱によって被分
解処理物と溶媒とを反応させて、常圧で熱分解作用を効
率よく行わせることができる。特に常圧下での加熱が主
工程となっているため、高圧ポンプは不要であり、弁と
か配管が破損する懸念はない。更に反応は全て反応装置
の中で起こるクローズドシステムであるので二次汚染が
ないという効果が得られる。
As described above in detail, according to the present invention, a non-decomposable substance such as a fluorocarbon gas, an organic compound having a benzene nucleus, and other industrial waste is supplied to a reactor as a mixed gas together with a solvent, and the reaction is carried out. Heating by induction heating of the reaction device and electromagnetic wave heating by electromagnetic waves generated by induction heating while reacting with the object to be decomposed and the solvent during the bypass circulation in the device to cause thermal decomposition at normal pressure It can be performed efficiently. In particular, since heating at normal pressure is the main process, a high-pressure pump is not required, and there is no concern that valves and piping may be damaged. Furthermore, since the reaction is a closed system in which all reactions take place in the reactor, there is obtained an effect that there is no secondary contamination.

【0072】加熱器及び反応装置の何れか一方もしくは
双方に混合ガスと反応して水素を生成する物質を配置し
た場合には、加熱器もしくは反応装置内で生成した水素
による還元反応と、反応装置の誘導加熱による加熱と、
誘導加熱に起因して発生する電磁波による電磁波加熱に
よる分解反応の組合わせにより反応が進行し、被分解処
理物と溶媒を加熱して過熱蒸気とした場合には、過熱蒸
気による加水分解反応及び反応装置の誘導加熱による加
熱と、誘導加熱に起因して発生する電磁波による電磁波
加熱による分解反応の組合わせにより被分解処理物と溶
媒の反応が進行する。その後分解の終了したガスは冷却
液化して排出することができる。
When a substance that reacts with the mixed gas to generate hydrogen is disposed in one or both of the heater and the reactor, a reduction reaction using hydrogen generated in the heater or the reactor, a reaction in the reactor, Heating by induction heating of
The reaction proceeds by the combination of the decomposition reaction by electromagnetic wave heating due to the electromagnetic wave generated by induction heating, and when the material to be decomposed and the solvent are heated to superheated steam, the hydrolysis reaction and reaction by superheated steam The reaction between the object to be decomposed and the solvent proceeds by a combination of heating by induction heating of the apparatus and a decomposition reaction by electromagnetic wave heating by electromagnetic waves generated due to the induction heating. Thereafter, the decomposed gas can be cooled and liquefied and discharged.

【0073】加熱器と反応装置の反応時間と温度を任意
に設定することにより、分解の程度をコントロールする
ことができ、ポリエチレンは油化の程度を変えて、又ゴ
ムは再度ゴムとして、更に廃木材中のセルロースは有用
なグルコースとしてリサイクル可能な条件で処理するこ
とができる。
The degree of decomposition can be controlled by arbitrarily setting the reaction time and temperature of the heater and the reactor. The degree of decomposition of polyethylene can be changed, and the rubber can be used again as rubber. Cellulose in wood can be processed under conditions that can be recycled as useful glucose.

【0074】特に従来から知られている触媒法の場合に
は、触媒の酸化等による劣化が生じる難点があるのに対
して、本発明の場合には触媒を使用していないために上
記の問題点はなく、しかもフロンのみならず他の産業廃
棄物とかベンゼン核を持つ有機物にも適用可能である。
Particularly, in the case of the conventionally known catalyst method, there is a problem that the catalyst is deteriorated by oxidation or the like, whereas in the case of the present invention, the above-mentioned problem is caused because the catalyst is not used. There is no point, and it can be applied not only to CFCs but also to other industrial wastes and organic substances having a benzene nucleus.

【0075】更に本発明によれば、低圧で工程が進行す
るため所定の高温に耐えられる材質であれば材質は任意
に選択することが出来る上、機械的な強度及び引張応力
とか熱応力に耐えるための設計は要求されないという利
点があり、各種機器の破損に対する対策は容易であると
ともに装置自体の自動化も容易である。
Further, according to the present invention, since the process proceeds at a low pressure, the material can be arbitrarily selected as long as it can withstand a predetermined high temperature, and can withstand mechanical strength and tensile stress or thermal stress. Therefore, there is an advantage that no design is required, and measures against breakage of various devices are easy and automation of the device itself is also easy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の基本的実施形態を示すシステム図。FIG. 1 is a system diagram showing a basic embodiment of the present invention.

【図2】本実施形態で用いた反応装置の側面図。FIG. 2 is a side view of the reaction apparatus used in the present embodiment.

【図3】反応装置の構造例を示す縦断面図。FIG. 3 is a longitudinal sectional view showing a structural example of a reaction apparatus.

【図4】フロンR12とR22について水を溶媒として
誘導加熱法により反応させた場合の温度と分解率の関係
を示すグラフ。
FIG. 4 is a graph showing the relationship between the temperature and the decomposition rate when Freon R12 and R22 are reacted by induction heating using water as a solvent.

【図5】クロロベンゼンについて水を溶媒として誘導加
熱法により反応させた場合の温度と分解率の関係を示す
グラフ。
FIG. 5 is a graph showing the relationship between temperature and decomposition rate when chlorobenzene is reacted by induction heating using water as a solvent.

【図6】フロンR113について水を溶媒として本実施
例と従来のヒータ加熱手段を用いて反応させた場合の反
応時間と分解率の関係を示すグラフ。
FIG. 6 is a graph showing the relationship between the reaction time and the decomposition rate when Flon R113 is reacted using water as a solvent in this example and a conventional heater heating means.

【図7】フロンR12のみを各反応温度条件で本実施例
と従来の加熱手段を用いた場合の反応時間と分解率の関
係を示すグラフ。
FIG. 7 is a graph showing the relationship between the reaction time and the decomposition rate when only Example 1 and conventional heating means are used under the respective reaction temperature conditions for only Freon R12.

【図8】クロロベンゼンのみを各反応温度条件で本実施
例と従来の加熱手段を用いた場合の反応時間と分解率の
関係を示すグラフ。
FIG. 8 is a graph showing the relationship between the reaction time and the decomposition rate when only chlorobenzene is used at each reaction temperature condition and the present example and a conventional heating means are used.

【図9】従来の反応装置の一例を説明するための要部縦
断面図。
FIG. 9 is a longitudinal sectional view of a main part for explaining an example of a conventional reaction apparatus.

【図10】従来の他の反応装置の例を説明するための概
要図。
FIG. 10 is a schematic diagram for explaining an example of another conventional reaction apparatus.

【符号の説明】 21…被分解物タンク 22…被分解物ポンプ 23…水タンク 24…水ポンプ 25…加熱器 26…内部ヒータ 27…外部ヒータ 28…鉄板 29…(誘導加熱)反応装置 30…電源 31…マッチング用トランス 32…冷却器 36…気液分離器 37…中和装置 41…支持台 42…断熱材 43,44…隔壁[Description of Signs] 21: Decomposed substance tank 22 ... Decomposed substance pump 23 ... Water tank 24 ... Water pump 25 ... Heater 26 ... Internal heater 27 ... External heater 28 ... Iron plate 29 ... (Induction heating) reactor 30 ... Power supply 31 ... Matching transformer 32 ... Cooler 36 ... Gas-liquid separator 37 ... Neutralization device 41 ... Support table 42 ... Insulation material 43,44 ... Partition

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B01D 53/74 B01D 53/34 117G B09B 3/00 B09B 3/00 302A H05B 6/10 302Z ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI B01D 53/74 B01D 53/34 117G B09B 3/00 B09B 3/00 302A H05B 6/10 302Z

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 被分解処理物を誘導加熱された反応装置
内に導入し、反応装置の誘導加熱による加熱と、誘導加
熱に起因して発生する電磁波による電磁波加熱によって
反応させて分解することを特徴とする難分解物質の分解
処理方法。
1. A method in which an object to be decomposed is introduced into a reactor heated by induction heating, and is decomposed by being heated by induction heating of the reactor and heated by electromagnetic waves generated by electromagnetic waves caused by the induction heating. A method for decomposing difficult-to-decompose substances.
【請求項2】 被分解処理物を外周部に誘導加熱コイル
が巻着されて誘導加熱された中空円筒状の反応装置内に
導入し、反応装置内で迂回流通している間に反応装置の
誘導加熱による加熱と、誘導加熱に起因して発生する電
磁波による電磁波加熱によって反応させて分解すること
を特徴とする難分解物質の分解処理方法。
2. An object to be decomposed is introduced into a hollow cylindrical reaction device in which an induction heating coil is wound around an outer periphery thereof and is induction-heated. A method for decomposing a hardly decomposable substance, characterized by reacting and decomposing by heating by induction heating and electromagnetic wave heating by electromagnetic waves generated by induction heating.
【請求項3】 被分解処理物と溶媒を混合して誘導加熱
された反応装置内に導入し、反応装置の誘導加熱による
加熱と、誘導加熱に起因して発生する電磁波による電磁
波加熱によって反応させて分解することを特徴とする難
分解物質の分解処理方法。
3. An object to be decomposed and a solvent are mixed, introduced into a reactor heated by induction heating, and reacted by heating by induction heating of the reactor and electromagnetic wave heating by electromagnetic waves generated by the induction heating. A decomposition treatment method for a hardly decomposable substance, characterized in that it is decomposed by decomposition.
【請求項4】 被分解処理物と溶媒を加熱器に導入して
加熱混合した後、外周部に誘導加熱コイルが巻着されて
誘導加熱された中空円筒状の反応装置内に導入し、反応
装置内で迂回流通している間に反応装置の誘導加熱によ
る加熱と、誘導加熱に起因して発生する電磁波による電
磁波加熱によって反応させて分解することを特徴とする
難分解物質の分解処理方法。
4. An object to be decomposed and a solvent are introduced into a heater and mixed by heating. Then, an induction heating coil is wound around an outer peripheral portion and introduced into a hollow cylindrical reaction apparatus heated by induction to perform a reaction. A method for decomposing a hardly decomposable substance, characterized by reacting and decomposing by heating by induction heating of a reactor and electromagnetic heating by electromagnetic waves generated due to induction heating while being bypassed in the apparatus.
【請求項5】 被分解処理物と溶媒を加熱器に導入して
加熱混合することにより過熱蒸気とし、過熱蒸気を外周
部に誘導加熱コイルが巻着されて誘導加熱された中空円
筒状の反応装置内に導入し、反応装置内で迂回流通して
いる間に反応装置の誘導加熱による加熱と、誘導加熱に
起因して発生する電磁波による電磁波加熱によって反応
させて分解することを特徴とする難分解物質の分解処理
方法。
5. A hollow cylindrical reaction in which an object to be decomposed and a solvent are introduced into a heater and mixed by heating to form superheated steam, and the superheated steam is induction-heated by winding an induction heating coil around an outer peripheral portion thereof. The method is characterized in that it is introduced into the apparatus and is decomposed by reacting by heating by induction heating of the reaction apparatus and electromagnetic heating by electromagnetic waves generated due to the induction heating while being bypassed in the reaction apparatus. Decomposition method of decomposed substances.
【請求項6】 加熱器及び反応装置の何れか一方もしく
は双方に、混合ガスと反応して水素を生成する物質を配
置して、加熱器もしくは反応装置内で生成した水素によ
る還元反応と、過熱蒸気による加水分解反応と、誘導加
熱による加熱及び誘導加熱に起因して発生する電磁波に
よる電磁波加熱による分解反応の組合わせにより被分解
処理物と溶媒を反応させて分解する請求項4又は5記載
の難分解物質の分解処理方法。
6. A substance which reacts with a mixed gas to generate hydrogen in one or both of a heater and a reactor, and a reduction reaction by hydrogen generated in the heater or the reactor, and superheating The decomposition treatment is performed by reacting a substance to be decomposed with a solvent by a combination of a hydrolysis reaction by steam, a heating by induction heating, and a decomposition reaction by electromagnetic wave heating by electromagnetic waves generated due to the induction heating. Decomposition method for hardly decomposable substances.
【請求項7】 過熱蒸気と反応して水素を生成する物質
として、鉄,炭素,炭素鋼から選択された1種又は複数
のものを使用する請求項6記載の難分解物質の分解処理
方法。
7. The method according to claim 6, wherein one or more substances selected from iron, carbon, and carbon steel are used as the substance that generates hydrogen by reacting with the superheated steam.
【請求項8】 溶媒として水もしくは過酸化水素水を用
いた請求項3,4,5,6又は7記載の難分解物質の分
解処理方法。
8. The method according to claim 3, wherein water or hydrogen peroxide solution is used as the solvent.
【請求項9】 分解処理の終了したガスを冷却器により
冷却することにより液化して排出することを特徴とする
請求項1,2,3,4,5,6,7又は8記載の難分解
物質の分解処理方法。
9. The hardly decomposable gas according to claim 1, wherein the gas after the decomposition treatment is cooled by a cooler to be liquefied and discharged. Decomposition method of the substance.
【請求項10】 外周部に誘導加熱コイルが巻着され、
内方に被分解処理物の迂回路が形成された反応装置から
なり、導入された被分解処理物を反応装置内で迂回流通
している間に反応装置の誘導加熱による加熱と、誘導加
熱に起因して発生する電磁波による電磁波加熱によって
反応させて分解することを特徴とする難分解物質の分解
処理装置。
10. An induction heating coil is wound around an outer peripheral portion,
It consists of a reactor in which a detour of the substance to be decomposed is formed inside, and is used for heating by induction heating and induction heating of the reactor while the introduced substance to be decomposed is bypassed in the reactor. An apparatus for decomposing hardly decomposable substances, characterized by reacting and decomposing by electromagnetic wave heating by electromagnetic waves generated due to the electromagnetic waves.
【請求項11】 外周部に誘導加熱コイルが巻着され、
内方に被分解処理物と溶媒の混合ガスの迂回路が形成さ
れた反応装置からなり、導入された混合ガスを反応装置
内で迂回流通している間に反応装置の誘導加熱による加
熱と、誘導加熱に起因して発生する電磁波による電磁波
加熱によって反応させて分解することを特徴とする難分
解物質の分解処理装置。
11. An induction heating coil is wound around an outer peripheral portion,
A reaction device in which a detour of a mixed gas of the substance to be decomposed and the solvent is formed inward, and heating by induction heating of the reaction device while the introduced mixed gas is bypassed in the reaction device, An apparatus for decomposing hardly decomposable substances, characterized by reacting and decomposing by electromagnetic wave heating by electromagnetic waves generated due to induction heating.
【請求項12】 被分解処理物と溶媒を加熱混合する加
熱器と、外周部に誘導加熱コイルが巻着され、内方に被
分解処理物と溶媒の混合ガスの迂回路が形成された反応
装置と、反応装置から導出された配管と連通する冷却器
と、冷却器から導出された配管と連通する気液分離器
と、気液分離器から導出された配管が挿入された中和装
置とから構成され、導入された混合ガスを反応装置内で
迂回流通している間に反応装置の誘導加熱による加熱
と、誘導加熱に起因して発生する電磁波による電磁波加
熱によって反応させて分解することを特徴とする難分解
物質の分解処理装置。
12. A reaction in which a heater for heating and mixing an object to be decomposed and a solvent and an induction heating coil wound around an outer peripheral portion and a detour of a mixed gas of the object to be decomposed and the solvent are formed inward. The apparatus, a cooler communicating with the piping derived from the reactor, a gas-liquid separator communicating with the piping derived from the cooler, and a neutralization device into which the piping derived from the gas-liquid separator is inserted. And reacting and decomposing by heating by induction heating of the reactor and electromagnetic heating by electromagnetic waves generated due to the induction heating while the introduced mixed gas is bypassed in the reactor. Characteristic decomposition equipment for hardly decomposable substances.
【請求項13】 反応装置の周囲を被覆する位置に断熱
材を配置し、この断熱材の外側に外郭部材を配備して、
装置自体を密閉構造として構成したことを特徴とする請
求項10,11又は12項に記載の難分解物質の分解処
理装置。
13. A heat insulating material is arranged at a position covering the periphery of the reactor, and an outer shell member is provided outside the heat insulating material.
13. The decomposition processing apparatus for hardly decomposable substances according to claim 10, wherein the apparatus itself is configured as a closed structure.
JP04463598A 1998-02-09 1998-02-09 Degradation treatment method for persistent substances Expired - Lifetime JP3894649B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04463598A JP3894649B2 (en) 1998-02-09 1998-02-09 Degradation treatment method for persistent substances

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04463598A JP3894649B2 (en) 1998-02-09 1998-02-09 Degradation treatment method for persistent substances

Publications (2)

Publication Number Publication Date
JPH11221440A true JPH11221440A (en) 1999-08-17
JP3894649B2 JP3894649B2 (en) 2007-03-22

Family

ID=12696898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04463598A Expired - Lifetime JP3894649B2 (en) 1998-02-09 1998-02-09 Degradation treatment method for persistent substances

Country Status (1)

Country Link
JP (1) JP3894649B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000074822A1 (en) * 1999-06-07 2000-12-14 Nkk Corporation Method and apparatus for decomposing halogenated hydrocarbon gas
JP2001054723A (en) * 1999-06-07 2001-02-27 Nkk Corp Method and device for decomposing gaseous halogenated hydrocarbon
WO2001023073A1 (en) * 1999-09-30 2001-04-05 L'air Liquide, Societe Anonyme À Directoire Et Conseil De Surveillance Pour L´Etude Et L´Exploitation Des Procedes Georges Claude Exhaust gas treating device
JP2001191050A (en) * 2000-01-06 2001-07-17 Kogi Corp Treating method of dioxins
WO2002038252A1 (en) * 2000-11-10 2002-05-16 Hoei Shokai Co., Ltd Treatment apparatus and treatment process
JP2003071423A (en) * 2001-06-19 2003-03-11 Tsunehisa Matsuoka Decomposing method and decomposing device for dioxins
JP2003326132A (en) * 2002-05-10 2003-11-18 Takeshi Kamisa Thermal decomposition processing device for organohalogen compound
WO2004029241A1 (en) * 2002-09-24 2004-04-08 Matsushita Electric Industrial Co., Ltd. Method of amplifying nucleic acid by electromagnetic induction heating and reaction container and reaction device to be used therein
WO2004068033A1 (en) * 2003-01-28 2004-08-12 Izumi Information Co., Ltd. Superheated steam producing device
JP2006026614A (en) * 2004-07-21 2006-02-02 Akiji Nishiwaki Waste gas treating method and waste gas treating apparatus
JP2009142766A (en) * 2007-12-14 2009-07-02 Chubu Electric Power Co Inc Delivery method of gas to be treated to decomposition treatment device and decomposition treatment device
JP2009273996A (en) * 2008-05-13 2009-11-26 Aoki Asunaro Kensetsu Kk Method of detoxifying substance difficult to decompose such as pcbs, and dioxins
JP2010269293A (en) * 2009-05-25 2010-12-02 Shoji Iwahara Method for manufacturing paper sludge ash, cement composition containing paper sludge ash prepared by the method and cement solid matter constituted by solidifying the cement composition
JP2018001061A (en) * 2016-06-28 2018-01-11 合同会社トレスバイオ技研 Method for decomposing or carbonizing organic material and device used in the method
CN107695080A (en) * 2017-10-16 2018-02-16 广州宝狮无线供电技术有限公司 It is a kind of to handle useless circuit board or the method and device of carbon fibre composite
KR20220010103A (en) * 2020-07-17 2022-01-25 맹창용 Contaminant gas purification device equipped with induction heating type high-temperature oxidation and pyrolysis heat exchanger

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6815573B2 (en) 1999-06-07 2004-11-09 Nkk Corporation Method of decomposing halogenated hydrocarbon gas
JP2001054723A (en) * 1999-06-07 2001-02-27 Nkk Corp Method and device for decomposing gaseous halogenated hydrocarbon
WO2000074822A1 (en) * 1999-06-07 2000-12-14 Nkk Corporation Method and apparatus for decomposing halogenated hydrocarbon gas
WO2001023073A1 (en) * 1999-09-30 2001-04-05 L'air Liquide, Societe Anonyme À Directoire Et Conseil De Surveillance Pour L´Etude Et L´Exploitation Des Procedes Georges Claude Exhaust gas treating device
JP2001096135A (en) * 1999-09-30 2001-04-10 Air Liquide Japan Ltd Waste gas treatment apparatus
JP4545852B2 (en) * 1999-09-30 2010-09-15 日本エア・リキード株式会社 Exhaust gas treatment equipment
JP2001191050A (en) * 2000-01-06 2001-07-17 Kogi Corp Treating method of dioxins
WO2002038252A1 (en) * 2000-11-10 2002-05-16 Hoei Shokai Co., Ltd Treatment apparatus and treatment process
JP2003071423A (en) * 2001-06-19 2003-03-11 Tsunehisa Matsuoka Decomposing method and decomposing device for dioxins
JP2003326132A (en) * 2002-05-10 2003-11-18 Takeshi Kamisa Thermal decomposition processing device for organohalogen compound
WO2004029241A1 (en) * 2002-09-24 2004-04-08 Matsushita Electric Industrial Co., Ltd. Method of amplifying nucleic acid by electromagnetic induction heating and reaction container and reaction device to be used therein
WO2004068033A1 (en) * 2003-01-28 2004-08-12 Izumi Information Co., Ltd. Superheated steam producing device
JP2006026614A (en) * 2004-07-21 2006-02-02 Akiji Nishiwaki Waste gas treating method and waste gas treating apparatus
JP2009142766A (en) * 2007-12-14 2009-07-02 Chubu Electric Power Co Inc Delivery method of gas to be treated to decomposition treatment device and decomposition treatment device
JP2009273996A (en) * 2008-05-13 2009-11-26 Aoki Asunaro Kensetsu Kk Method of detoxifying substance difficult to decompose such as pcbs, and dioxins
JP2010269293A (en) * 2009-05-25 2010-12-02 Shoji Iwahara Method for manufacturing paper sludge ash, cement composition containing paper sludge ash prepared by the method and cement solid matter constituted by solidifying the cement composition
JP2018001061A (en) * 2016-06-28 2018-01-11 合同会社トレスバイオ技研 Method for decomposing or carbonizing organic material and device used in the method
CN107695080A (en) * 2017-10-16 2018-02-16 广州宝狮无线供电技术有限公司 It is a kind of to handle useless circuit board or the method and device of carbon fibre composite
KR20220010103A (en) * 2020-07-17 2022-01-25 맹창용 Contaminant gas purification device equipped with induction heating type high-temperature oxidation and pyrolysis heat exchanger

Also Published As

Publication number Publication date
JP3894649B2 (en) 2007-03-22

Similar Documents

Publication Publication Date Title
JP3894649B2 (en) Degradation treatment method for persistent substances
JP2006507108A (en) In-drum pyrolysis system
US7703285B2 (en) System and method for generating electricity from super critical water oxidation process
CA2249404A1 (en) Method for hot and supercritical water oxidation of material using specific reactants
JP3219689B2 (en) Method and apparatus for decomposing hardly decomposable substances
JP3249986B2 (en) CFC decomposition treatment method and equipment
JP3219706B2 (en) Method and apparatus for decomposing hardly decomposable substances
US4980039A (en) Microwave-mediated degradation of PCB wastes
JP3607624B2 (en) Method and apparatus for decomposing organic compounds
Kamgang-Youbi et al. Inductively coupled plasma torch efficiency at atmospheric pressure for organo-chlorine liquid waste removal: Chloroform destruction in oxidative conditions
JP3669881B2 (en) Method and apparatus for decomposing a hardly decomposable substance
JPH06293501A (en) Decomposition method for fluorocarbon
JP3730794B2 (en) Method and apparatus for decomposing a hardly decomposable substance
JP3472873B2 (en) Device for decomposing gaseous organic halogen compounds and device for decomposing liquid organic halogen compounds using the same
Lee et al. Total organic carbon disappearance kinetics for supercritical water oxidation of dimethyl methylphospate used as a chemical agent simulant
JPH09253478A (en) Method for decomposing pcb
JP3816218B2 (en) Method and apparatus for decomposing organic compounds containing halogen atoms and / or sulfur atoms
Hong et al. De-Chlorination Effectiveness and Efficiency of Poly (Vinyl) Chloride (Pvc) Co-Pyrolyzing with Iron Oxide
RU2014346C1 (en) Method of processing wastes
Trifan et al. Microwave assisted catalytic dechlorination of PCB
JP2002355532A (en) Decomposition method of organic halogen compound and its equipment
JP2005040674A (en) Apparatus and method for treating soil
KISHIMA et al. Detoxification of chlorinated aromatics adsorbed on fly ash under microwave irradiation
Zhao et al. Supercritical Water Oxidation of Synthetic Wastewater.
JP2000336378A (en) Method for treating waste and pyrolizer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040827

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040827

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061212

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term