JP3894649B2 - Degradation treatment method for persistent substances - Google Patents

Degradation treatment method for persistent substances Download PDF

Info

Publication number
JP3894649B2
JP3894649B2 JP04463598A JP4463598A JP3894649B2 JP 3894649 B2 JP3894649 B2 JP 3894649B2 JP 04463598 A JP04463598 A JP 04463598A JP 4463598 A JP4463598 A JP 4463598A JP 3894649 B2 JP3894649 B2 JP 3894649B2
Authority
JP
Japan
Prior art keywords
reaction
solvent
decomposition
induction heating
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04463598A
Other languages
Japanese (ja)
Other versions
JPH11221440A (en
Inventor
正澄 金沢
正彦 植田
大心 柏木
Original Assignee
大旺建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大旺建設株式会社 filed Critical 大旺建設株式会社
Priority to JP04463598A priority Critical patent/JP3894649B2/en
Publication of JPH11221440A publication Critical patent/JPH11221440A/en
Application granted granted Critical
Publication of JP3894649B2 publication Critical patent/JP3894649B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/78Recycling of wood or furniture waste

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Fire-Extinguishing Compositions (AREA)
  • General Induction Heating (AREA)
  • Treating Waste Gases (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は環境汚染物質等の難分解物質の分解処理方法に関し、特にはフロンガスとかポリエチレン,プラスチック,木材,更にはベンゼン核を持つ有機化合物及びその他の産業廃棄物等の環境汚染物質を、誘導加熱と誘導加熱に起因して発生する電磁波による電磁波加熱によって反応させることにより分解し、更に加水分解,還元反応,酸化反応との組合せ反応によって分解するようにした処理方法に関するものである。
【0002】
【従来の技術】
従来から冷媒とかスプレー剤として使用されているフロンガス及び消剤として使用されているハロンガスは環境汚染物質であることが指摘されており、これら物質の無害化処理が地球環境を守る観点から全世界的な関心事となって各種の対処手段が提案されている。例えばフロンガス処理方法に関しては、水熱反応法,焼却法,爆発反応分解法,微生物分解法,超音波分解法及びプラズマ反応法等が提案されている。
【0003】
これらの処理方法の中で、水熱反応法はフロンガス等に限定することなく、トリクレン等有機溶剤、廃油、ダイオキシン、PCB、糞尿等の産業廃棄物を主体とする被分解物質全般に対し汎用性のある処理方法として利用されている。この水熱反応法では、例えばフロンガスを塩化ナトリウム、二酸化炭素等の安全な物質に分解することができる。
【0004】
水熱反応法を具体化するための装置に関しては、実験室においてオートクレーブを用いた処理実験、例えば苛性ソーダ液,エタノール,フロン液の混合比率、温度の設定値、圧力の設定値及び反応時間の設定値についての実験が行われているが、通常水熱反応は300〜450℃で100〜250(kg/cm2)という高温高圧条件を維持して行われている。
【0005】
本願出願人は先に特願平8−155993号により、被分解処理物と溶媒を混合したものを所定の温度に加熱して過熱蒸気とし、過熱蒸気を所定の温度に加熱された常圧の反応装置内を所定の時間をかけて経過させて通過させることにより、被分解処理物を分解処理する難分解物質の分解処理方法を提案した。更に特願平8−340560号により、溶媒として水もしくは過酸化水素を使用して、被分解処理物と溶媒を混合したものを、過熱蒸気と反応して水素を生成する物質を配置した加熱器と反応装置を用いて所定の温度に加熱して過熱蒸気とし、反応装置内で所定の時間をかけて通過させることによって被分解処理物を加熱器もしくは反応装置内で生成した水素による還元反応と、過熱蒸気による加水分解反応により分解する方法を提案した。
【0006】
図9により従来の反応装置の一例を説明すると、1は装置本体であり、装置本体1内に配置された隔壁2,2によってガスが流通する迂回路が形成されている。3は被分解処理物と溶媒の混合ガス入口、4は同ガス出口である。更に装置本体1の側部から複数個のヒータ5,5が挿入配置されていて、矢印aに示すように迂回して流れる混合ガスをヒータ5,5により加熱して過熱蒸気を生成し、前記したように水素による還元反応と過熱蒸気による加水分解反応によって難分解物質の分解処理が行われる。
【0007】
図10は従来の反応装置の他の例を示したものであって、装置本体1の外周部を覆って複数個のヒータ6,6が配置されており、各ヒータ6,6の電極端子6a,6aがコントローラ7を介して電源8に接続されている。そして混合ガス入口3から流入した被分解処理物と溶媒の混合ガスが装置本体1内でヒータ6,6によりコントローラ7で設定された温度で加熱され、前記した作用により難分解物質の分解処理が行われ、ガス出口4から流出する。
【0008】
【発明が解決しようとする課題】
前記したように従来の反応装置は、側部から挿入配置された複数個のヒータ5,5を用いた加熱方法(図9の例)とか、装置本体の外周部を覆って配置された複数個のヒータ6,6を用いた加熱方法(図10の例)が用いられているが、このようなヒータによる混合ガスの加熱手段では、必ずしも効率的に難分解物質の分解処理を行うことができず、分解終了までに高い反応温度と長い反応時間を要してしまうという難点がある。更に、ヒータによる加熱手段では昇温可能な温度が700℃程度であって、これ以上は昇温できないため、結果として反応時間が長く必要となったり、分解効率が低下したり、あるいは全く分解することができなくなったりしてしまう。
【0009】
そこで本発明は環境汚染物質であるフロンガスとかポリエチレン,プラスチック,木材,更にはベンゼン核を持つ有機化合物及びその他の産業廃棄物等の難分解物質の分解を行うシステムにおける上記問題点を解消して、分解速度が促進されて効率良く分解を行うことができる難分解物質の分解処理方法を提供することを目的とするものである。
【0010】
【課題を解決するための手段】
本発明は上記目的を達成するために、難分解物質の処理方法として、被分解処理物と溶媒を加熱器に導入して加熱混合することにより、被分解処理物と溶媒の混合ガスを過熱蒸気とし、該混合ガスの過熱蒸気を外周部に誘導加熱コイルが巻着されて誘導加熱された中空円筒状の反応装置内に導入し、常圧下の反応装置内で迂回流通している間に反応装置の誘導加熱による加熱と、誘導加熱に起因して発生する電磁波による電磁波加熱によって反応させて分解することを基本として提供する。
【0011】
具体的な処理方法として、加熱器及び反応装置の何れか一方もしくは双方に、被分解処理物と溶媒の混合ガスと反応して水素を生成する物質を配置して、加熱器もしくは反応装置内で生成した水素による還元反応と、過熱蒸気による加水分解反応と、誘導加熱による加熱及び誘導加熱に起因して発生する電磁波による電磁波加熱による分解反応の組合わせにより常圧下で被分解処理物と溶媒を反応させて分解する方法を提供する。過熱蒸気と反応して水素を生成する物質として、鉄,炭素,炭素鋼から選択された1種又は複数のものを使用する方法、溶媒として水もしくは過酸化水素水を用いる方法を提供する。
【0016】
かかる分解処理方法によれば、フロンガスとかベンゼン核を持つ有機化合物及びその他の産業廃棄物等の難分解物質は被分解処理物と溶媒との混合ガスとして反応装置に供給され、反応装置で迂回流通している間に反応装置の誘導加熱による加熱と、誘導加熱に起因して発生する電磁波による電磁波加熱によって反応して常圧で分解作用が進行する。加熱器及び反応装置の何れか一方もしくは双方に被分解処理物と溶媒の混合ガスと反応して水素を生成する物質を配置した場合には、加熱器もしくは反応装置内で生成した水素による還元反応と、反応装置の誘導加熱による加熱と、誘導加熱に起因して発生する電磁波による電磁波加熱による分解反応の組合わせにより反応が進行する。
【0017】
被分解処理物と溶媒を加熱して過熱蒸気とした場合には、過熱蒸気による加水分解反応及び反応装置の誘導加熱による加熱と、誘導加熱に起因して発生する電磁波による電磁波加熱による分解反応の組合わせにより被分解処理物と溶媒が反応し熱分解が進行する。その後分解の終了したガスは冷却液化して排出される。
【0018】
【発明の実施の形態】
以下図面に基づいて本発明にかかる難分解物質の分解処理方法の具体的な実施形態を説明する。本願発明者らは前記従来の技術手段に種々の改良実験を試みた結果、反応装置を加熱する手段として誘導加熱を採用することにより、誘導加熱の誘導電流によって反応装置が発熱して加熱されると共に、誘導加熱に起因して発生する電磁波によって電磁波加熱が生じるとの知見を得た。即ち、電磁波加熱を行なうために誘導加熱コイルに電流を流すと、この時に発生する磁束により、反応装置に渦電流が発生し、ジュール熱により発熱して反応装置を加熱する。同時にこの誘導加熱コイルに電流を流すことによって発生するのは磁束だけでなく電界も発生する。即ち、電磁波が発生することとなり(このときの周波数は誘導加熱に用いた周波数の電磁波となる)、この電磁波によって分子の摩擦、衝突の増大が2次的に起こって電磁波加熱によって被分解処理物が加熱されることとなる。本発明はこの誘導加熱による反応装置の加熱と共に、誘導加熱に起因して発生する電磁波による電磁波加熱を積極的に利用して加熱効率を高め、更に分子運動を活発化させることにより分子同士の衝突の回数及び衝突力を増大して分解効率を高めることを特徴とする。
【0019】
先ずフロン等の被分解処理物を溶媒としての水,過酸化水素水を用いて加熱器により加熱してガス化し、被分解処理物と溶媒の混合ガスを反応装置の誘導加熱による加熱と、誘導加熱に起因して発生する電磁波による電磁波加熱の雰囲気中で反応させることにより、反応装置内を高圧状態とすることなく、常圧としたままの状態で効率的に難分解物質の分解を進行させることができた。更に被分解処理物と溶媒の過熱蒸気を生成したり、混合ガスと略同温度に加熱した鉄,炭素,炭素鋼或は混合ガスと反応して水素を生成する他の物質と接触させることにより、反応装置内に生成した水素による還元反応でフロン等の被分解処理物を分解し、同時に加水分解によっても被分解処理物を分解することができた。以下に具体的な実施形態を説明する。
【0020】
本発明はフロンガス等の環境汚染物質を始めとする難分解物質を常圧の状態で分解処理するものであり、対象とする難分解物質は有機、無機化合物で安定なものや有害なものをいうが、特に限定はなく、フロンガス、トリクレン等有機溶剤、廃油、ダイオキシン、PCB、糞尿等の産業廃棄物、木材、紙、ゴム等あらゆるものを対象とし、その状態は固体、液体、気体を問わず特に限定がない。なお、主には▲1▼有機化合物で有用ではあるが使用後の処理が困難なものや有害なもの、例えばトリクロロエタン、PCB、フロン(ハロゲン炭素化合物)等であり、又▲2▼有機化合物で有用であるが極めて安定なものであって有害ではないが処理の困難なもの、例えばポリエチレン、プラスチック、ゴム等である。
【0021】
これらは石油を原料とする場合が多く、分解するとほとんど油化できるから燃料として用いるか、リサイクルできるように分解処理することを目的とする。また、ゴムの場合は有機化合物を無害化処理するか、リサイクルできるように分解処理をすることを目的とする。更に紙や木材等の分解はセルロースを分解してグルコースに変えるものであり、利用価値が少ないものを有用なものに変換することを目的とする。
【0022】
本発明で使用する溶媒は加熱によってガス化もしくは水素を生成するものであればどのようなものであってもよいが、最も適当なものは水であり、過酸化水素水も使用できる。過酸化水素水を溶媒とすれば酸素量が多くなり湿式酸化が効果的にできるようになる。なお、本発明では溶媒を使用することなく被分解処理物のみを反応装置に供給するようにしてもよい。
【0023】
また、本発明によればベンゼン環を開環することが可能であり、本発明が分解対象としているベンゼンは芳香族炭化水素の基本的化合物であり、C66で表わされ、モノクロロベンゼンはC65Clで表わされる。ベンゼン核を持つ有機化合物としてはフェノール類が挙げられる。このフェノール類はベンゼン核にOH基が結合した有機化合物の総称であり、C65OHで表わされる。また、本発明によればベンゼン環を骨格構造とするダイオキシン、PCBなども分解して無害化することが可能である。
【0024】
図1は本発明の一実施形態を概略的に示すシステム図であり、図中の21はフロン等被分解物タンク、22は被分解物ポンプ、23は溶媒としての水タンク、24は水ポンプ、25は加熱器であり、この加熱器25には内部ヒータ26と外部ヒータ27が配置され、更に加熱器25内には混合ガスと反応して水素を生成する物質として複数枚の鉄板28,28が配置されている。被分解物ポンプ22としては被分解処理物に応じて被分解処理物を圧送可能なポンプが選択され、高濃度スラリー、粉体混合スラリー等を圧送できる圧送力が高く、容積効率がよいスラリーポンプを用いるのが適当である。尚、混合ガスと反応して水素を生成する物質は使用しなくてもよいケースもあり、更に物質として前記鉄板28以外に炭素,炭素鋼等を用いることもできる。
【0025】
29は誘導加熱による加熱と、誘導加熱に起因して発生する電磁波による電磁波加熱を利用した中空円筒状の反応装置であり、この反応装置29は導入された前記被分解処理物と溶媒の混合ガス及び水素を所定の温度を保って所定時間反応させて分解する機能を有している。反応装置29には電源30とマッチング用トランス31が配備されていて、マッチング用トランス31から取り出された誘導加熱コイル10が反応装置29の外周部に巻着されている。この誘導加熱コイル10の内部は図3に示すように中空としてあり、この中空部に冷却水を流通させている。尚、反応装置29内に前記鉄板等の混合ガスと反応して水素を生成する物質を配置することも可能である。
【0026】
上記反応装置29内は加圧されておらず、排出口側を開放した常圧としている。つまり混合ガス注入口側の配管の圧力は管路による圧損のみの圧力勾配となっている。反応装置29内は混合ガスによって僅かな圧力が自然に発生し、圧力勾配となって被分解物を移送する。本発明で常圧とはこのように強制的に高圧に加圧することなく、排出口を開放した状態であることを示している。
【0027】
32は冷却器であり、冷却器32内には反応装置29から導出された配管と連通する配管33が配置されている。34は冷却水の入口、35は冷却水の出口である。36は気液分離器、37は中和装置であって、冷却器32から導出された配管38の他端部が気液分離器36に挿入されており、気液分離器36から導出された配管39の他端部が中和装置37に挿入されている。40は処理液の排出口である。
【0028】
図2は反応装置29の具体的な取付例を示す側面図、図3は同反応装置29の縦断面図である。図2に示したように、中空円筒状の反応装置29は支持台41,41上に搭載されており、この反応装置29の外周部に前記誘導加熱コイル10が巻着され、電源ターミナル10a,10aに接続されている。更に反応装置29の周囲を被覆する位置に断熱材42が配置されていて、この断熱材42の外側に外郭部材47が配備されて、反応装置29自体が全体的に密閉された構造となっている。
【0029】
図3に示したように、反応装置29は内部に配置された隔壁43,44によって混合ガスが流通する迂回路が形成されていて、配管45から導入された被分解処理物と溶媒の混合ガスが、図中の矢印aに示したように反応装置29内を迂回しながら誘導加熱コイル10の作用により加熱されて被分解処理物の分解が進行する。
【0030】
かかる本実施形態の動作態様を説明する。環境汚染物質であるフロンガスを分解処理する場合を例に取ると、被分解物タンク21内にフロンを投入し、被分解物ポンプ22と水ポンプ24を起動することによってフロンと溶媒としての水が配管を通して加熱器25に送り込まれ、適当な比率で混合される。
【0031】
予め加熱器25に配置された内部ヒータ26と外部ヒータ27を働かせて、加熱器25の内部を500℃〜750℃に加熱しておくことによってフロンガスと溶媒の混合ガスが所定温度に加熱されて次段の反応装置29内に送りこまれる。分解処理するために必要な温度は被分解処理物によって異なるため、それぞれ被分解処理物に応じて設定する。例えばフロンガスの場合は500℃〜750℃、ポリエチレンで400℃前後に設定するのが適当であるが、上記以上の加熱であってもよい。又、被分解物の種類によっては被分解物と溶媒の過熱蒸気を生成することが有効である。
【0032】
加熱器25内において鉄板28,28がほぼ同温度に加熱されると、混合ガスが鉄板28と接触して以下の反応式によりマグネタイトと水素を生成する。
3Fe+4H2O → Fe34+4H2………(1)
ここで生成した水素は非常に還元力が強く、多くの物質と結合して被分解処理物を分解する作用がある。
【0033】
フロンガスと溶媒の混合ガスは次段の反応装置29内に送りこまれて、隔壁43,44によって形成された迂回路を流通するが、予め電源30からマッチング用トランス31を介して反応装置29の外周部に巻着されている誘導加熱コイル10に通電することで発生する磁束によって誘起される渦電流によるジュール熱により発熱して反応装置29が加熱されることにより混合ガスが加熱されてフロンガスの熱分解作用が進行する。同時にこの誘導加熱コイル10に電流を流すことによって発生するのは磁束だけでなく電界も同時に発生する。即ち、電磁波が発生することとなり(このときの周波数は誘導加熱に用いた周波数の電磁波となる)、この電磁波によって分子の摩擦、衝突の増大が2次的に起こって電磁波加熱によっても混合ガスが加熱されてフロンガスの熱分解作用が進行する。本発明はこの誘導加熱による反応装置の加熱と共に、誘導加熱に起因して発生する電磁波による電磁波加熱を積極的に利用して加熱効率を高め、更に分子運動を活発化させることにより分子同士の衝突の回数及び衝突力を増大して分解効率を高めることに特徴を有するものである。なお、誘導加熱に使用する周波数は数kHzから数百kHzが使用可能であり、実施例では80kHzのものを使用した。
【0034】
反応装置29内に混合ガスと反応して水素を生成する物質を配置した場合には上記(1)式の反応が促進され、水素の還元力を利用した複合的な分解反応が進行する。これに伴って被分解処理物の分解速度が高くなるとともに分解率も向上し、圧力勾配によって次段の冷却器32に移送される。
【0035】
冷却装置32では冷却水の入口34から冷却水を供給して同出口35から流出させることにより、反応装置29と連通する配管33内で分解処理された分解物のガスが冷却されて液化する。冷却器32内の温度は分解物のガスを液化できる温度であればよく、フロンガスの場合は略18℃とする。このように液化することにより副生成物の発生が防止されるとともに、ガス状のまま放出して大気中に飛散することによる2次汚染の心配もない。
【0036】
排液は配管38を通って気液分離器36に入り、気液が分離されて液状物が中和装置37に流入し、所定の中和処理が行われて排出口40から排出され、図外の排液タンク内に貯留される。気液分離器36内に残る無害化されたガスは大気中に放散される。上記冷却器32に熱交換器を組み込んで、熱交換器により冷却する熱を回収して再利用することも可能である。
【0037】
上記の説明において、溶媒としての水のみを加熱器25により加熱して反応装置29に連続して供給し、この溶媒雰囲気中の反応装置29内に被分解処理物を供給して所定の反応時間を経過させて分解処理することもできる。この構成は被分解処理物として流体状又は気体状以外の固形状の被分解処理物、例えばPE、プラスチック、ゴム、木材、紙等を分解処理する場合に適しており、固形状の被分解処理物を反応装置29に供給すると共に、反応装置29内にフィーダ等の被分解処理物の移送手段を設けておくとよい。
【0038】
図4に示す(イ)は、フロンR12とR22の各70(g/min)について水70(g/min)を溶媒として加えて過熱蒸気を生成させ、本実施例を適用した誘導加熱法による反応装置で反応させた場合の温度と分解率の関係を示すグラフである。(ロ)と(ハ)は同じ試料を従来のヒータ加熱手段による反応装置で反応させた場合の同様なグラフである。
【0039】
グラフ(イ)では温度が500℃で分解率が既に99.76%,99.73%に達しており、温度が1000℃になるまでに99.99%に微増しているのに対して、グラフ(ロ)と(ハ)では温度が550℃前後では95.36%及び93.12%と低く、800℃で99.14%及び99.74%に達している。図4から理解されるように、誘導加熱法による反応とヒータによる反応とは、同じ温度条件であってもフロンR12とR22の分解率に大きな相違が生じている。
【0040】
図5に示す(イ)は、ベンゼン核を持つ有機物であるクロロベンゼン(C65Cl)の20(g/min)について水60(g/min)を溶媒として加えて過熱蒸気を生成させ、本実施例を適用した誘導加熱法による反応装置で反応させた場合の温度と分解率の関係を示すグラフ、(ロ)は同じ試料を従来のヒータ加熱手段による反応装置で反応させた場合の同様なグラフである。
【0041】
グラフ(イ)では温度が500℃で分解率が99.16%、温度が750℃前後で99.99%に達しているのに対して、グラフ(ロ)では温度が600℃で分解率が92.98%と低く、800℃で96.24%に達している。図5からも誘導加熱法による反応とヒータによる反応とは、同じ温度条件であってもクロロベンゼンの分解率に大きな相違が生じていることがわかる。
【0042】
図6はフロンR113と溶媒としての水を、重量比1:1で容積が1000(cm3)の反応装置に投入し、650℃の反応条件で本実施例を適用した誘導加熱法と従来のヒータ加熱手段を用いた場合の反応時間(秒)と分解率の関係を示すグラフである。
【0043】
誘導加熱法によれば、反応時間が1秒で分解率が既に99.96%に達しており、以下10秒〜45秒の間は99.99%に保たれているのに対して、ヒータ加熱の場合には反応時間が2秒前後で分解率が40.08%、反応時間30秒で99.99%に達している。従って誘導加熱法による反応とヒータによる反応とは、同じ温度条件であっても分解に要する反応時間にも大きな相違があることがわかる。
【0044】
図7は溶媒を用いずにフロンR12のみを容積が1000(cm3)の反応装置に投入し、650℃,750℃,850℃の各反応温度条件で本実施例を適用した誘導加熱法と従来のヒータ加熱手段を用いた場合の反応時間(秒)と分解率の関係を示すグラフである。
【0045】
ヒータ加熱の場合には反応温度650℃と750℃の何れの場合もフロンの分解がほとんど進行しておらず、反応温度が850℃で始めて分解作用が生じ、60秒の反応時間で79.1%の分解率に達したのに対して、誘導加熱法によれば、650℃,750℃,850℃の各反応温度条件で1秒からフロンの分解が進行しており、特に850℃の場合には60秒の反応時間で分解率が既に99.9%に達している。従って誘導加熱法を用いることによって溶媒を使用しなくても反応が速やかに生じることがわかる。
【0046】
図8は溶媒を用いずにクロロベンゼン(C65Cl)のみを容積が1000(cm3)の反応装置に投入し、850℃,950℃の各反応温度条件で本実施例を適用した誘導加熱法で反応させた場合と、従来のヒータ加熱手段を用いて850℃で反応させた場合の反応時間(秒)と分解率の関係を示すグラフである。
【0047】
ヒータ加熱の場合には反応温度850℃でもクロロベンゼンの分解がほとんど進行していないのに対して、誘導加熱法によれば、850℃の反応温度条件で5秒後の分解率が22.1%、70秒後には44.3%に達している。更に950℃の反応温度条件では、5秒後の分解率が63.0%、75秒後には92.5%に達している。従って誘導加熱法を用いることによって溶媒を使用しなくてもクロロベンゼンの分解が可能であることがわかる。
【0048】
ここで本発明における誘導加熱による加熱と、誘導加熱に起因して発生する電磁波による電磁波加熱を利用した反応装置29の発熱の原理を簡単に説明する。一般に誘導加熱は非接触の電磁誘導作用によって導電性抵抗体を加熱する方法である。例えば一般の変圧器の場合は、一次側と二次側にそれぞれコイルがあり、一次側のコイルで作る交流磁界が二次側コイルと結合した分だけ二次側に誘導電圧を発生し、二次側に接続した負荷回路に電流を供給する。
【0049】
本願発明のように高周波交流を通じた誘導加熱コイル10の中に置かれた金属体には起電力が発生し、誘導電流としての渦電流(eddy current)が流れる。この渦電流は金属体の表面に集中し、内部にいくに従って指数関数的に減少し、位相が遅れて高周波誘導加熱の特色である一定の浸透深さを持つ「表皮効果」が生じる。また、発熱現象をもたらす渦電流損は、渦電流によって生じる抵抗損失(joule's loss)であり、円筒状の導電性金属に発熱効果を発生する電力は、周波数が高くなると▲1▼誘導加熱コイル10に流れる電流の2乗に比例し、▲2▼コイルの巻数の2乗に比例し、▲3▼周波数の平方根に比例し、▲4▼円筒の半径の4乗に比例し、▲5▼材料の比透磁率の平方根に比例し、▲6▼材料の抵抗率の平方根に比例する。
【0050】
従って交流周波数が高くなるほど発熱は大きくなるが、発熱と発生電力の分岐点が誘導加熱の臨界周波数と呼ばれ、どの周波数を選ぶかが問題の1つであって、用途に応じて最適な周波数を選択しなければならない。一方、反応装置29の中空部には渦電流(2次電流)によって電界も同時に発生する。この電界は1次電流によって生じる磁束の変化を妨げる方向に発生するため、反応装置29内には電磁波が発生することとなる。この電磁波によって分子の摩擦、衝突の増大が2次的に起こって電磁波加熱によって被分解処理物が加熱される。
【0051】
誘導加熱の特徴は、熱伝導に要する時間が短縮されるとともに高い熱効率と高速応答性が得られ、しかも被加熱物自体が発熱体として同時に発熱するので、被加熱物の形状に関係なく均一加熱が可能になる点にある。本実施形態例では反応装置29の全長をLとし、コイルの巻数をNとしてコイル電流Iが流れると磁界Hが発生する。この磁界Hの強さは〔NI/L〕である。
【0052】
円筒状に構成された反応装置29の透磁率をμとすると磁束密度Bは、
磁束密度B=μNI/L
となり、磁束Aは
磁束A=μSNI/L
となって磁束密度Bは透磁率μが大きいほど大きくなる。従って反応装置29の円筒部分を多くの磁束が通ることになる。
【0053】
次に被分解処理物の分解原理と、結果の測定原理について説明する。被分解処理物としてフロンガスを用いた場合、下記の生成物が確認された。先ず気体はCO2,H2,HCl,HF,CO(微量)であり、液体はHCl,HF,Fe3+である。固体はFe24,C(グラファイト),FeF2,FeF2・4H2O,FeCl2,FeCl2・4H2Oである。尚、測定方法として、ガスはGC−MC法,H2とCOはGC−TCD法,HClとHFはイオンクロマトグラフ法,CO2は検知管法,金属はICP発光法,固体はX線回折法を用いた。
【0054】
フロンCFC−12の分解反応は以下の通りである。
[溶媒として水を使用した場合]
CCl22+2H2 → +2HCl+2HF+C…………(2)
CCl22+2H2O → 2HCl+2HF+CO2………(3)
2CCl22+3H2O → 2HCl+2HF+CO2+CO+H2…(4)
【0055】
(2)式は水素による還元反応の分解、(3)(4)式は水による加水分解であり、COの量からみて(3)式の反応が主体となっており、全体的には(2)(3)式の反応が95%以上、(4)式の反応は5%程度である。
【0056】
更に生成物の塩酸ガスとフッ酸ガスが鉄に作用して以下の反応が生起する。
Fe+2HCl → FeCl2+H2………(5)
Fe+2HF → FeF2+H2…………(6)
【0057】
これを冷却器32で冷却すると、空気中の水分を吸収してそれぞれFeCl2・4H2O,FeF2・4H2Oに変化する。
【0058】
次に鉄板28に代えて炭素もしくは炭素鋼を用いた場合の反応式を述べる。即ち、炭素に溶媒としての水の過熱蒸気を作用させると、
C+H2O → CO+H2………(7)
となり、COとH2の混合ガスである水性ガスが発生する。得られた水素によって前記(1)式〜(6)式の反応が生じてフロンガスが分解される。但し炭素を用いた場合には、鉄もしくは炭素鋼を用いた場合よりも水素発生量が若干少なく、99.99の分解率を達成するのに10秒程度多くの時間がかかるため、分解効率はやや低下する。
【0059】
前記(1)式におけるマグネタイト(Fe34)は酸に対する耐蝕性が高い不動態であり、容器等の表面に付着して保護膜を形成する。また、鉄板28上に付着したマグネタイトは炭素と反応して
Fe34+2C → 3Fe+2CO2………(8)
更にCOとも反応して
Fe34+4CO → 3Fe+4CO2………(9)
となり、前記(1)式の反応に必要な鉄がリサイクルされる。しかし、多くは熱による膨張と収縮が進行してマグネタイトが剥離して新しい鉄表面が露出し、反応が継続する。
【0060】
尚、フロンの溶媒として水を用いた場合に上記(2)式の反応によって生じた塩酸及びフッ酸の作用で混合液が強酸性となり、パイプ及びチューブ類の腐食が激しくなって装置の寿命が低下する虞れがある。従って通常は下記の(10)式に示したようにフロンの濃度に応じて苛性ソーダNaOHを加えて炭酸ガスを重炭酸ソーダNaHCO3とし、(11)式のように苛性ソーダと塩酸の反応で食塩NaClを生成して、更に(12)式のように苛性ソーダとフッ酸の反応でフッ化ナトリウムNaFを生成して対処する場合もある。
NaOH+CO2 → NaHCO3………(10)
NaOH+HCl → NaCl+H2O………(11)
NaOH+HF → NaF+H2O………(12)
【0061】
[溶媒として過酸化水素水を使用した場合]
過酸化水素水が熱分解して、水と酸素が生成される。
2H22 → 2H2O+O2………(13)
そのため、H2O,O2によって加水分解のほかに酸素による次の反応が同時におきる。
CCl22+O2→CO2+Cl2+F2………(14)
(14)式は酸化反応である。酸化反応によって得られたCl2,F2は、
Cl2+H2 → 2HCl………(15)
2+H2 → 2HF………(16)
となってHCl,HFに変わる。
【0062】
以上のように溶媒として過酸化水素水を使用した場合は、前記した加水分解、還元反応に加えて、上記した酸化反応が同時に進行するため分解速度は早く、被分解処理物は早くから安定な物質と変わるため、余分な副生成物は生成されない。
【0063】
この実施形態は流体状或は気体状の被分解処理物を分解処理するためのものであり、環境汚染物質としてフロンガスの外にクロロベンゼン,トリクロロエタン等のハロゲン炭化化合物の液状物の分解が可能であるが、フロンガスの場合の実験条件として加熱器25及び反応装置29内の温度を650℃、冷却器32内の配管33の温度を18℃とした。また、モル比で溶媒である水(又は過酸化水素水)の方が過剰になるように選択した。即ち、フロンガス:水(又は過酸化水素水)=1:3とした。この時の分解率はガスクロマトグラフィーでフロンが検出されない程度まで、換言すれば99.99%以上の分解率が得られた。
【0064】
次に本実施形態によるトリクロロエタン(CH3・CCl3)及びベンゼン核を持つ有機物であるクロロベンゼン(C65Cl)の分解反応を説明する。反応温度は650℃とした。
【0065】
先ずトリクロロエタン(CH3・CCl3)を分解する場合は以下のように反応が進行する。
【0066】
[溶媒として水を使用した場合]
溶媒として水を使用すると加水分解は、
CH3・CCl3+H2O → 3HCl+CO+C+H2………(17)
CH3・CCl3+2H2O → 3HCl+CO2+C+2H2……(18)
となる。一方、前記(1)式に示すように過熱蒸気が鉄板28と接触して生成された水素による分解は、分解途中のガスを定性分析し、その生成物から分解反応は先ず、
CH3・CCl3+3H2 → CH3・CH3+3HCl………(19)
となる水素による置換反応が認められ、更に
CH3・CH3+H2 → 2CH4………(20)
なる分解が進行し、次いで
CH4 → C+2H2………(21)
となる。
従って、この分解反応では最終的にCO2,CO,H2,C,HClに分解される。
【0067】
[溶媒として過酸化水素水を使用した場合]
溶媒に過酸化水素水を用いると前記した加水分解と水素による分解の他に
CH3・CCl3+2O2 → 2CO2+3HCl………(22)
となる酸化による分解反応が起き(20)式で生成されたCH4も一部酸化されて、
CH4+2O2 → CO2+2H2O………(23)
となり、加水分解、水素による還元反応の分解、酸化分解が並行して起きて、分解効率が更に改善される。
【0068】
次にクロロベンゼン(C65Cl)を分解する場合は以下のように反応が進行する。
【0069】
[溶媒として水を使用した場合]
溶媒として水を使用すると加水分解は、
65Cl+H2O → C65OH+HCl………(24)
などとなるが、一方、前記(1)式に示すように過熱蒸気が鉄板28と接触して生成された水素による分解は、分解途中のガスを定性分析し、その生成物から分解反応は先ず、ClがHに置換されて、
65Cl+H2 → C66+HCl………(25)
となって、ベンゼンと塩酸が生成されるが、更にHが付加されて、
66+3H2 → C612………(26)
となり、シクロヘキサン(C612)が生成され、更に開環されてメタン、エタン等に分解される。
612+6H2 → 6CH4………(27)
このメタンは
CH4 → C+2H2………(28)
となってC(グラファイト)と塩酸と水素に分解される。
【0070】
[溶媒として過酸化水素水を使用した場合]
溶媒に過酸化水素水を用いると前記した加水分解と水素による分解の他に
65Cl+6O2 → 6CO2+HCl+2H2………(29)
となる酸化反応が同時に起る。
【0071】
【発明の効果】
以上詳細に説明したように、本発明によればフロンガスとかベンゼン核を持つ有機化合物及びその他の産業廃棄物等の難分解物質が溶媒とともに混合ガスとして反応装置に供給され、反応装置で迂回流通している間に反応装置の誘導加熱による加熱と、誘導加熱に起因して発生する電磁波による電磁波加熱によって被分解処理物と溶媒とを反応させて、常圧で熱分解作用を効率よく行わせることができる。特に常圧下での加熱が主工程となっているため、高圧ポンプは不要であり、弁とか配管が破損する懸念はない。更に反応は全て反応装置の中で起こるクローズドシステムであるので二次汚染がないという効果が得られる。
【0072】
加熱器及び反応装置の何れか一方もしくは双方に混合ガスと反応して水素を生成する物質を配置した場合には、加熱器もしくは反応装置内で生成した水素による還元反応と、反応装置の誘導加熱による加熱と、誘導加熱に起因して発生する電磁波による電磁波加熱による分解反応の組合わせにより反応が進行し、被分解処理物と溶媒を加熱して過熱蒸気とした場合には、過熱蒸気による加水分解反応及び反応装置の誘導加熱による加熱と、誘導加熱に起因して発生する電磁波による電磁波加熱による分解反応の組合わせにより被分解処理物と溶媒の反応が進行する。その後分解の終了したガスは冷却液化して排出することができる。
【0073】
加熱器と反応装置の反応時間と温度を任意に設定することにより、分解の程度をコントロールすることができ、ポリエチレンは油化の程度を変えて、又ゴムは再度ゴムとして、更に廃木材中のセルロースは有用なグルコースとしてリサイクル可能な条件で処理することができる。
【0074】
特に従来から知られている触媒法の場合には、触媒の酸化等による劣化が生じる難点があるのに対して、本発明の場合には触媒を使用していないために上記の問題点はなく、しかもフロンのみならず他の産業廃棄物とかベンゼン核を持つ有機物にも適用可能である。
【0075】
更に本発明によれば、低圧で工程が進行するため所定の高温に耐えられる材質であれば材質は任意に選択することが出来る上、機械的な強度及び引張応力とか熱応力に耐えるための設計は要求されないという利点があり、各種機器の破損に対する対策は容易であるとともに装置自体の自動化も容易である。
【図面の簡単な説明】
【図1】本発明の基本的実施形態を示すシステム図。
【図2】本実施形態で用いた反応装置の側面図。
【図3】反応装置の構造例を示す縦断面図。
【図4】フロンR12とR22について水を溶媒として誘導加熱法により反応させた場合の温度と分解率の関係を示すグラフ。
【図5】クロロベンゼンについて水を溶媒として誘導加熱法により反応させた場合の温度と分解率の関係を示すグラフ。
【図6】フロンR113について水を溶媒として本実施例と従来のヒータ加熱手段を用いて反応させた場合の反応時間と分解率の関係を示すグラフ。
【図7】フロンR12のみを各反応温度条件で本実施例と従来の加熱手段を用いた場合の反応時間と分解率の関係を示すグラフ。
【図8】クロロベンゼンのみを各反応温度条件で本実施例と従来の加熱手段を用いた場合の反応時間と分解率の関係を示すグラフ。
【図9】従来の反応装置の一例を説明するための要部縦断面図。
【図10】従来の他の反応装置の例を説明するための概要図。
【符号の説明】
21…被分解物タンク
22…被分解物ポンプ
23…水タンク
24…水ポンプ
25…加熱器
26…内部ヒータ
27…外部ヒータ
28…鉄板
29…(誘導加熱)反応装置
30…電源
31…マッチング用トランス
32…冷却器
36…気液分離器
37…中和装置
41…支持台
42…断熱材
43,44…隔壁
[0001]
BACKGROUND OF THE INVENTION
  The present invention is a method for decomposing difficult-to-decompose substances such as environmental pollutantsTo the lawIn particular, environmental pollutants such as CFCs, polyethylene, plastics, wood, organic compounds with benzene nuclei, and other industrial wastes react by electromagnetic heating using electromagnetic waves generated by induction heating and induction heating. Treatment method that is decomposed by combination with hydrolysis, reduction reaction, oxidation reactionTo the lawIt is related.
[0002]
[Prior art]
  Fluorocarbons and refrigeration, which are conventionally used as refrigerants and spraysfireIt has been pointed out that halon gas used as a chemical is an environmental pollutant, and detoxification treatment of these substances has become a global concern from the viewpoint of protecting the global environment, and various countermeasures have been proposed. Yes. For example, hydrothermal reaction methods, incineration methods, explosion reaction decomposition methods, microbial decomposition methods, ultrasonic decomposition methods, plasma reaction methods, and the like have been proposed for chlorofluorocarbon gas treatment methods.
[0003]
Among these treatment methods, the hydrothermal reaction method is not limited to chlorofluorocarbons, etc., but is versatile for all degradable substances mainly composed of organic solvents such as trichlene, waste oil, dioxin, PCB, manure, etc. It is used as a certain processing method. In this hydrothermal reaction method, for example, Freon gas can be decomposed into safe substances such as sodium chloride and carbon dioxide.
[0004]
Regarding equipment for realizing the hydrothermal reaction method, processing experiments using an autoclave in the laboratory, for example, the mixing ratio of caustic soda solution, ethanol, chlorofluorocarbon solution, temperature setting value, pressure setting value and reaction time setting Experiments on values have been conducted, but the normal hydrothermal reaction is 100 to 250 kg / cm at 300 to 450 ° C.2) Under the high temperature and high pressure conditions.
[0005]
According to Japanese Patent Application No. 8-155993, the applicant of the present application previously heated a mixture of a material to be decomposed and a solvent to a predetermined temperature to form superheated steam, and the normal pressure of the superheated steam heated to the predetermined temperature. We proposed a method for decomposing a hardly decomposable substance by decomposing the material to be decomposed by passing it through the reactor over a predetermined time. Furthermore, according to Japanese Patent Application No. 8-340560, a heater in which water or hydrogen peroxide is used as a solvent and a substance to be decomposed is mixed with a solvent to react with superheated steam to generate hydrogen. And a reductive reaction with hydrogen generated in the heater or the reaction device by heating it to a predetermined temperature using a reaction device to form superheated steam and passing it through the reaction device over a predetermined time. A method of decomposing by a hydrolysis reaction with superheated steam was proposed.
[0006]
An example of a conventional reaction apparatus will be described with reference to FIG. 9. Reference numeral 1 denotes an apparatus main body, and a detour for gas to flow is formed by partition walls 2 and 2 arranged in the apparatus main body 1. Reference numeral 3 denotes a mixed gas inlet of the object to be decomposed and the solvent, and 4 denotes the same gas outlet. Further, a plurality of heaters 5 and 5 are inserted and arranged from the side of the apparatus main body 1, and the mixed gas flowing detoured as indicated by an arrow a is heated by the heaters 5 and 5 to generate superheated steam, As described above, the decomposition process of the hardly decomposed substance is performed by the reduction reaction with hydrogen and the hydrolysis reaction with superheated steam.
[0007]
FIG. 10 shows another example of a conventional reaction apparatus, in which a plurality of heaters 6 and 6 are arranged so as to cover the outer peripheral portion of the apparatus main body 1, and the electrode terminals 6a of the heaters 6 and 6 are arranged. , 6a are connected to the power source 8 via the controller 7. The mixed gas of the substance to be decomposed and the solvent flowing in from the mixed gas inlet 3 is heated in the apparatus main body 1 at the temperature set by the controller 7 by the heaters 6 and 6, and the decomposition process of the hardly decomposed substance is performed by the above-described action. Is carried out and flows out from the gas outlet 4.
[0008]
[Problems to be solved by the invention]
As described above, the conventional reaction apparatus has a heating method using a plurality of heaters 5 and 5 inserted from the side (example of FIG. 9), or a plurality of apparatuses disposed so as to cover the outer periphery of the apparatus main body. The heating method using the heaters 6 and 6 (example in FIG. 10) is used. However, the mixed gas heating means using such a heater cannot always efficiently decompose the hardly decomposed material. However, there is a drawback that a high reaction temperature and a long reaction time are required until the decomposition is completed. Furthermore, since the temperature that can be raised by the heating means using the heater is about 700 ° C. and cannot be raised any further, as a result, a longer reaction time is required, the decomposition efficiency is lowered, or the decomposition is completely performed. It becomes impossible to do.
[0009]
  Therefore, the present invention solves the above-mentioned problems in a system that decomposes environmentally hazardous substances such as Freon gas, polyethylene, plastic, wood, organic compounds having a benzene nucleus and other industrially degradable substances such as industrial waste, Decomposition method for difficult-to-decompose substances that can be decomposed efficiently with accelerated decomposition rateThe lawIt is intended to provide.
[0010]
[Means for Solving the Problems]
  In order to achieve the above object, the present invention provides a method for treating a hardly decomposable substance as a method for treating a substance to be decomposed andMediumIntroducing into the heater and heatingmixtureBy, The mixed gas of the material to be decomposed and the solventAs superheated steam, the superheated steam of the mixed gas is introduced into a hollow cylindrical reactor that is induction-heated with an induction heating coil wound around the outer periphery, and is bypassed in the reactor under normal pressure It is basically provided that the reaction apparatus is decomposed by heating by induction heating of the reaction apparatus and electromagnetic wave heating by electromagnetic waves generated due to induction heating.
[0011]
  As a specific treatment method, either or both of the heater and the reaction apparatus,Of decomposed material and solventA substance that generates hydrogen by reacting with the mixed gas is arranged, resulting from the reduction reaction by hydrogen generated in the heater or reactor, the hydrolysis reaction by superheated steam, the heating by induction heating, and induction heating. Provided is a method of decomposing by reacting an object to be decomposed with a solvent under normal pressure by a combination of decomposition reactions by electromagnetic wave heating by generated electromagnetic waves. Provided are a method of using one or more selected from iron, carbon, and carbon steel as a substance that reacts with superheated steam to generate hydrogen, and a method of using water or hydrogen peroxide as a solvent.
[0016]
  Such decomposition methodTo the lawAccording to the report, refractory substances such as CFCs and organic compounds with benzene nuclei and other industrial wasteBetween the material to be decomposed and the solventIt is supplied to the reactor as a mixed gas and reacts by heating by induction heating of the reactor and electromagnetic wave heating by electromagnetic waves generated due to induction heating while detouring in the reactor, and decomposes at normal pressure. proceed. Either one or both of the heater and reactorOf decomposed material and solventWhen a substance that generates hydrogen by reacting with the mixed gas is placed, it is generated due to reduction reaction by hydrogen generated in the heater or reactor, heating by induction heating of the reactor, and induction heating. The reaction proceeds by a combination of decomposition reactions by electromagnetic wave heating by electromagnetic waves.
[0017]
When the material to be decomposed and the solvent are heated to form superheated steam, the hydrolysis reaction by superheated steam and the heating by induction heating of the reactor and the decomposition reaction by electromagnetic wave heating by electromagnetic waves generated due to induction heating By the combination, the material to be decomposed reacts with the solvent, and thermal decomposition proceeds. Thereafter, the decomposed gas is cooled and liquefied and discharged.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
  The method of decomposing a hardly decomposable substance according to the present invention based on the drawings belowLegalA specific embodiment will be described. As a result of trying various improvement experiments on the conventional technical means, the inventors of the present application adopt induction heating as a means for heating the reaction apparatus, so that the reaction apparatus generates heat by the induction current of induction heating and is heated. In addition, the inventors have obtained knowledge that electromagnetic wave heating is caused by electromagnetic waves generated due to induction heating. That is, when an electric current is passed through the induction heating coil to perform electromagnetic wave heating, an eddy current is generated in the reaction device due to the magnetic flux generated at this time, and heat is generated by Joule heat to heat the reaction device. At the same time, not only a magnetic flux but also an electric field is generated by passing a current through the induction heating coil. That is, an electromagnetic wave is generated (the frequency at this time is an electromagnetic wave of the frequency used for induction heating), and the friction and collision of molecules occur secondarily by this electromagnetic wave, and the object to be decomposed by the electromagnetic wave heating. Will be heated. In the present invention, in addition to the heating of the reactor by the induction heating, the electromagnetic wave heating by the electromagnetic waves generated due to the induction heating is positively used to increase the heating efficiency, and the molecular motion is further activated to collide the molecules. The decomposition efficiency is increased by increasing the number of times and the collision force.
[0019]
First, to-be-decomposed material such as chlorofluorocarbon is heated and gasified with a heater using water as a solvent and hydrogen peroxide, and the mixed gas of the to-be-decomposed material and the solvent is heated by induction heating of the reactor, induction By reacting in the atmosphere of electromagnetic wave heating due to electromagnetic waves generated by heating, the decomposition of the hardly decomposed substance is efficiently advanced in a state of being kept at normal pressure without bringing the inside of the reaction apparatus into a high pressure state. I was able to. Further, by generating superheated steam of the object to be decomposed and the solvent, or by contacting with iron, carbon, carbon steel heated to about the same temperature as the mixed gas, or other substances that generate hydrogen by reacting with the mixed gas It was possible to decompose the products to be decomposed such as chlorofluorocarbon by the reduction reaction with hydrogen generated in the reactor, and at the same time to decompose the products to be decomposed by hydrolysis. Specific embodiments will be described below.
[0020]
The present invention decomposes a hardly decomposable substance such as an environmental pollutant such as chlorofluorocarbon at normal pressure, and the target hardly decomposed substance is an organic or inorganic compound that is stable or harmful. However, there is no particular limitation, and it covers all kinds of organic solvents such as chlorofluorocarbon and trichrene, waste oil, dioxin, PCB, manure and other industrial waste, wood, paper, rubber, etc., regardless of whether it is solid, liquid or gas There is no particular limitation. Mainly (1) organic compounds that are useful but difficult to treat after use and harmful ones such as trichloroethane, PCB, chlorofluorocarbon (halogen carbon compounds), and (2) organic compounds. Useful but extremely stable and not harmful but difficult to process, such as polyethylene, plastic, rubber and the like.
[0021]
These are often made from petroleum, and can be used as fuel because they can be almost oiled when decomposed, or they can be decomposed so that they can be recycled. In the case of rubber, the purpose is to detoxify the organic compound or to decompose it so that it can be recycled. Furthermore, the decomposition of paper, wood and the like is to decompose cellulose into glucose, and the purpose is to convert one having little utility value into a useful one.
[0022]
The solvent used in the present invention may be any solvent as long as it can be gasified or generate hydrogen by heating, but the most suitable is water, and hydrogen peroxide water can also be used. If hydrogen peroxide water is used as a solvent, the amount of oxygen increases and wet oxidation can be effectively performed. In the present invention, only the decomposition target product may be supplied to the reaction apparatus without using a solvent.
[0023]
In addition, according to the present invention, it is possible to open a benzene ring, and benzene to be decomposed by the present invention is a basic compound of an aromatic hydrocarbon, and C6H6Monochlorobenzene is C6HFiveIt is represented by Cl. Examples of organic compounds having a benzene nucleus include phenols. These phenols are a general term for organic compounds in which an OH group is bonded to a benzene nucleus.6HFiveExpressed as OH. In addition, according to the present invention, dioxins having a benzene ring as a skeleton structure, PCB, and the like can be decomposed and rendered harmless.
[0024]
FIG. 1 is a system diagram schematically showing an embodiment of the present invention. In the figure, reference numeral 21 denotes a tank to be decomposed such as Freon, 22 a pump to be decomposed, 23 a water tank as a solvent, and 24 a water pump. , 25 is a heater, and an internal heater 26 and an external heater 27 are arranged in the heater 25. Further, in the heater 25, a plurality of iron plates 28, as a substance that reacts with a mixed gas to generate hydrogen. 28 is arranged. A pump capable of pumping the material to be decomposed according to the material to be decomposed is selected as the material to be decomposed pump 22, and a slurry pump having high volumetric efficiency and high pumping force capable of pumping high concentration slurry, powder mixed slurry and the like. It is appropriate to use In some cases, it is not necessary to use a substance that reacts with the mixed gas to generate hydrogen. In addition to the iron plate 28, carbon, carbon steel, or the like may be used as the substance.
[0025]
Reference numeral 29 denotes a hollow cylindrical reactor utilizing heating by induction heating and electromagnetic heating by electromagnetic waves generated due to induction heating. This reactor 29 is a mixed gas of the introduced material to be decomposed and a solvent. And a function of decomposing hydrogen by reacting for a predetermined time while maintaining a predetermined temperature. The reaction device 29 is provided with a power source 30 and a matching transformer 31, and the induction heating coil 10 taken out from the matching transformer 31 is wound around the outer periphery of the reaction device 29. The inside of the induction heating coil 10 is hollow as shown in FIG. 3, and cooling water is circulated through the hollow portion. It is also possible to dispose a substance that generates hydrogen by reacting with a mixed gas such as the iron plate in the reaction device 29.
[0026]
The inside of the reactor 29 is not pressurized and is at a normal pressure with the discharge port side opened. That is, the pressure of the piping on the mixed gas inlet side has a pressure gradient only of pressure loss due to the pipe. A slight pressure is naturally generated in the reaction device 29 by the mixed gas, and a to-be-decomposed material is transferred as a pressure gradient. In the present invention, the normal pressure means that the discharge port is opened without forcibly increasing the pressure in this way.
[0027]
Reference numeral 32 denotes a cooler. In the cooler 32, a pipe 33 communicating with the pipe led out from the reaction device 29 is arranged. 34 is an inlet for cooling water, and 35 is an outlet for cooling water. 36 is a gas-liquid separator, and 37 is a neutralization device. The other end of the pipe 38 led out from the cooler 32 is inserted into the gas-liquid separator 36 and led out from the gas-liquid separator 36. The other end of the pipe 39 is inserted into the neutralizer 37. Reference numeral 40 denotes a processing liquid discharge port.
[0028]
FIG. 2 is a side view showing a specific example of attachment of the reaction device 29, and FIG. 3 is a longitudinal sectional view of the reaction device 29. As shown in FIG. 2, the hollow cylindrical reactor 29 is mounted on the support bases 41, 41. The induction heating coil 10 is wound around the outer periphery of the reactor 29, and the power terminal 10a, 10a. Further, a heat insulating material 42 is disposed at a position covering the periphery of the reaction device 29, and an outer member 47 is provided outside the heat insulating material 42, so that the reaction device 29 itself is hermetically sealed. Yes.
[0029]
As shown in FIG. 3, the reactor 29 has a bypass route through which the mixed gas flows by the partition walls 43 and 44 disposed therein, and the mixed gas of the substance to be decomposed and the solvent introduced from the pipe 45. However, as shown by an arrow a in the figure, the reactor 29 is heated by the action of the induction heating coil 10 while detouring inside the reaction device 29, and decomposition of the decomposition target material proceeds.
[0030]
The operation mode of this embodiment will be described. Taking the case of decomposing chlorofluorocarbon gas, which is an environmental pollutant, as an example, chlorofluorocarbon is introduced into the decomposable substance tank 21 and the decomposable substance pump 22 and the water pump 24 are activated so that chlorofluorocarbon and water as a solvent are obtained. It is sent to the heater 25 through piping and mixed at an appropriate ratio.
[0031]
By operating the internal heater 26 and the external heater 27 previously disposed in the heater 25 and heating the inside of the heater 25 to 500 ° C. to 750 ° C., the mixed gas of the Freon gas and the solvent is heated to a predetermined temperature. It is fed into the next-stage reactor 29. Since the temperature required for the decomposition process varies depending on the decomposition target, it is set according to the decomposition target. For example, in the case of Freon gas, it is appropriate to set the temperature to 500 ° C. to 750 ° C. and about 400 ° C. with polyethylene, but the above heating may be used. Moreover, it is effective to generate superheated steam of the decomposition target and the solvent depending on the type of the decomposition target.
[0032]
When the iron plates 28 and 28 are heated to substantially the same temperature in the heater 25, the mixed gas comes into contact with the iron plate 28 to generate magnetite and hydrogen according to the following reaction formula.
3Fe + 4H2O → FeThreeOFour+ 4H2……… (1)
The hydrogen produced here has a very strong reducing power, and has the effect of decomposing the material to be decomposed by combining with many substances.
[0033]
The mixed gas of the chlorofluorocarbon gas and the solvent is sent into the reactor 29 in the next stage and flows through the detour formed by the partition walls 43 and 44, but the outer periphery of the reactor 29 is preliminarily supplied from the power supply 30 through the matching transformer 31. When the reactor 29 is heated by heating due to Joule heat caused by eddy currents induced by the magnetic flux generated by energizing the induction heating coil 10 wound around the part, the mixed gas is heated and the heat of the Freon gas Decomposition proceeds. At the same time, not only the magnetic flux but also the electric field is generated simultaneously by passing a current through the induction heating coil 10. That is, an electromagnetic wave is generated (the frequency at this time is the electromagnetic wave of the frequency used for induction heating), and this electromagnetic wave causes secondary increase in friction and collision of molecules. When heated, the pyrolysis action of the chlorofluorocarbon gas proceeds. In the present invention, in addition to the heating of the reactor by the induction heating, the electromagnetic wave heating by the electromagnetic waves generated due to the induction heating is positively used to increase the heating efficiency, and the molecular motion is further activated to collide the molecules. The number of times and the impact force are increased to improve the decomposition efficiency. The frequency used for induction heating can be from several kHz to several hundred kHz, and in the examples, a frequency of 80 kHz was used.
[0034]
When a substance that generates hydrogen by reacting with the mixed gas is disposed in the reaction device 29, the reaction of the above formula (1) is promoted, and a complex decomposition reaction using the reducing power of hydrogen proceeds. Along with this, the decomposition rate of the object to be decomposed is increased and the decomposition rate is also improved, and it is transferred to the cooler 32 of the next stage by the pressure gradient.
[0035]
In the cooling device 32, the cooling water is supplied from the inlet 34 of the cooling water and flows out from the outlet 35, whereby the gas of the decomposition product decomposed in the pipe 33 communicating with the reaction device 29 is cooled and liquefied. The temperature in the cooler 32 may be a temperature at which the decomposition product gas can be liquefied. By liquefying in this way, generation of by-products is prevented, and there is no fear of secondary contamination due to release in the gaseous state and scattering into the atmosphere.
[0036]
  The discharged liquid enters the gas-liquid separator 36 through the pipe 38, the gas-liquid is separated and the liquid material flows into the neutralizing device 37, is subjected to a predetermined neutralization process, and is discharged from the discharge port 40. It is stored in an external drainage tank.The detoxified gas remaining in the gas-liquid separator 36 is released into the atmosphere.It is also possible to incorporate a heat exchanger in the cooler 32 and recover and reuse the heat cooled by the heat exchanger.
[0037]
In the above description, only water as a solvent is heated by the heater 25 and continuously supplied to the reaction device 29, and the material to be decomposed is supplied into the reaction device 29 in the solvent atmosphere to obtain a predetermined reaction time. It is also possible to disassemble the material over time. This configuration is suitable for the case of decomposing a solid decomposition target other than fluid or gas, such as PE, plastic, rubber, wood, paper, etc. In addition to supplying the product to the reaction device 29, it is preferable to provide means for transferring the material to be decomposed such as a feeder in the reaction device 29.
[0038]
(A) shown in FIG. 4 is based on the induction heating method to which this embodiment is applied by adding water 70 (g / min) as a solvent to each of Freon R12 and R22 70 (g / min) as a solvent. It is a graph which shows the relationship between the temperature at the time of making it react with a reactor, and a decomposition rate. (B) and (C) are similar graphs in the case where the same sample is reacted in a reaction apparatus using conventional heater heating means.
[0039]
In graph (a), the decomposition rate has already reached 99.76% and 99.73% at a temperature of 500 ° C., and it slightly increases to 99.99% by the time the temperature reaches 1000 ° C. In the graphs (b) and (c), the temperature is as low as 95.36% and 93.12% when the temperature is around 550 ° C., and reaches 99.14% and 99.74% at 800 ° C. As can be understood from FIG. 4, the reaction by the induction heating method and the reaction by the heater have a great difference in the decomposition rates of Freon R12 and R22 even under the same temperature condition.
[0040]
(A) shown in FIG. 5 is an organic substance having a benzene nucleus, chlorobenzene (C6HFiveCl) and 20 (g / min), water (60 g / min) was added as a solvent to generate superheated steam, and the temperature and decomposition rate when reacted in a reactor using the induction heating method to which this example was applied. (B) is a similar graph in the case where the same sample is reacted in a reaction apparatus using conventional heater heating means.
[0041]
In graph (a), the decomposition rate is 99.16% at a temperature of 500 ° C. and reaches 99.99% at a temperature of around 750 ° C., whereas in graph (b), the decomposition rate is at 600 ° C. It is as low as 92.98% and reaches 96.24% at 800 ° C. FIG. 5 also shows that there is a great difference in the decomposition rate of chlorobenzene between the reaction by the induction heating method and the reaction by the heater even under the same temperature condition.
[0042]
FIG. 6 shows that Freon R113 and water as a solvent have a weight ratio of 1: 1 and a volume of 1000 (cmThreeIs a graph showing the relationship between the reaction time (seconds) and the decomposition rate when the induction heating method in which this embodiment is applied under the reaction condition of 650 ° C. and the conventional heater heating means are used.
[0043]
According to the induction heating method, the reaction time is 1 second and the decomposition rate has already reached 99.96%, and is kept at 99.99% for 10 seconds to 45 seconds, whereas the heater In the case of heating, the decomposition rate reaches 40.08% when the reaction time is around 2 seconds, and reaches 99.99% when the reaction time is 30 seconds. Therefore, it can be seen that the reaction by the induction heating method and the reaction by the heater are greatly different in the reaction time required for decomposition even under the same temperature condition.
[0044]
FIG. 7 shows that only a Freon R12 without a solvent has a volume of 1000 (cmThree), And the reaction time (seconds) and decomposition rate when using the induction heating method and the conventional heater heating method in which the present embodiment was applied under the reaction temperature conditions of 650 ° C., 750 ° C., and 850 ° C. It is a graph which shows the relationship.
[0045]
In the case of heating with a heater, the decomposition of CFC hardly progresses at both reaction temperatures of 650 ° C. and 750 ° C., and the decomposition occurs only when the reaction temperature is 850 ° C., and the reaction time of 60 seconds is 79.1. %, While the induction heating method, the decomposition of CFCs has progressed from 1 second under the reaction temperature conditions of 650 ° C., 750 ° C., and 850 ° C., particularly at 850 ° C. Has already reached 99.9% in a reaction time of 60 seconds. Therefore, it can be seen that the reaction occurs rapidly without using a solvent by using the induction heating method.
[0046]
FIG. 8 shows that chlorobenzene (C6HFiveCl) alone with a volume of 1000 (cmThree) And the reaction at 850 ° C. and 950 ° C. under the reaction temperature conditions of the induction heating method applied in this example, and the reaction at 850 ° C. using the conventional heater heating means It is a graph which shows the relationship between reaction time (second) of, and a decomposition rate.
[0047]
In the case of heating with a heater, the decomposition of chlorobenzene has hardly progressed even at a reaction temperature of 850 ° C., whereas according to the induction heating method, the decomposition rate after 5 seconds at a reaction temperature of 850 ° C. is 22.1%. It reached 44.3% after 70 seconds. Furthermore, under the reaction temperature condition of 950 ° C., the decomposition rate after 5 seconds reaches 63.0%, and after 75 seconds reaches 92.5%. Therefore, it can be seen that by using the induction heating method, chlorobenzene can be decomposed without using a solvent.
[0048]
Here, the principle of heat generation of the reaction device 29 using heating by induction heating and electromagnetic wave heating by electromagnetic waves generated due to induction heating in the present invention will be briefly described. In general, induction heating is a method of heating a conductive resistor by non-contact electromagnetic induction. For example, in the case of a general transformer, there are coils on the primary side and the secondary side, respectively, and an alternating voltage generated by the primary side coil generates an induced voltage on the secondary side by the amount coupled with the secondary side coil. Supply current to the load circuit connected to the secondary side.
[0049]
As in the present invention, an electromotive force is generated in the metal body placed in the induction heating coil 10 through high-frequency alternating current, and an eddy current as an induction current flows. This eddy current concentrates on the surface of the metal body and decreases exponentially as it goes inside, resulting in a “skin effect” with a constant penetration depth that is characteristic of high-frequency induction heating with a phase delay. Further, the eddy current loss that causes the heat generation phenomenon is a resistance loss (joule's loss) caused by the eddy current, and the electric power that generates the heat generation effect on the cylindrical conductive metal is as follows. (2) proportional to the square of the number of turns of the coil, (3) proportional to the square root of the frequency, (4) proportional to the fourth power of the radius of the cylinder, (5) material Is proportional to the square root of the relative permeability of (6), and is proportional to the square root of the resistivity of the material.
[0050]
Therefore, the higher the AC frequency, the greater the heat generation, but the branching point between the heat generation and the generated power is called the critical frequency of induction heating, and one of the problems is which frequency to choose. Must be selected. On the other hand, an electric field is simultaneously generated in the hollow portion of the reaction device 29 by an eddy current (secondary current). Since this electric field is generated in a direction that prevents a change in magnetic flux generated by the primary current, an electromagnetic wave is generated in the reaction device 29. This electromagnetic wave causes secondary increase in molecular friction and collision, and the object to be decomposed is heated by electromagnetic wave heating.
[0051]
The characteristics of induction heating are that the time required for heat conduction is shortened, high thermal efficiency and high-speed response are obtained, and the heated object itself generates heat simultaneously as a heating element, so uniform heating regardless of the shape of the heated object Is in the point where it becomes possible. In this embodiment, the magnetic field H is generated when the coil current I flows with the total length of the reactor 29 being L and the number of turns of the coil being N. The strength of the magnetic field H is [NI / L].
[0052]
When the magnetic permeability of the reactor 29 configured in a cylindrical shape is μ, the magnetic flux density B is
Magnetic flux density B = μNI / L
And magnetic flux A is
Magnetic flux A = μSNI / L
Thus, the magnetic flux density B increases as the magnetic permeability μ increases. Accordingly, a large amount of magnetic flux passes through the cylindrical portion of the reaction device 29.
[0053]
Next, the decomposition principle of the object to be decomposed and the measurement principle of the result will be described. When chlorofluorocarbon was used as the material to be decomposed, the following products were confirmed. First, the gas is CO2, H2, HCl, HF, CO (a trace amount), and liquids are HCl, HF, FeThree+. Solid is Fe2OFour, C (graphite), FeF2, FeF2・ 4H2O, FeCl2, FeCl2・ 4H2O. As a measuring method, gas is GC-MC method, H2And CO for the GC-TCD method, HCl and HF for the ion chromatographic method, CO2Was the detector tube method, the metal was the ICP emission method, and the solid was the X-ray diffraction method.
[0054]
The decomposition reaction of CFC-12 is as follows.
[When water is used as a solvent]
CCl2F2+ 2H2→ + 2HCl + 2HF + C (2)
CCl2F2+ 2H2O → 2HCl + 2HF + CO2……… (3)
2CCl2F2+ 3H2O → 2HCl + 2HF + CO2+ CO + H2(4)
[0055]
Equation (2) is the decomposition of the reduction reaction with hydrogen, and Equations (3) and (4) are the hydrolysis with water. From the viewpoint of the amount of CO, the reaction of Equation (3) is mainly used. 2) The reaction of the formula (3) is 95% or more, and the reaction of the formula (4) is about 5%.
[0056]
Further, the product hydrochloric acid gas and hydrofluoric acid gas act on iron to cause the following reaction.
Fe + 2HCl → FeCl2+ H2......... (5)
Fe + 2HF → FeF2+ H2………… (6)
[0057]
When this is cooled by the cooler 32, it absorbs moisture in the air and each of them is FeCl.2・ 4H2O, FeF2・ 4H2Change to O.
[0058]
Next, the reaction formula when carbon or carbon steel is used in place of the iron plate 28 will be described. That is, when superheated steam of water as a solvent is allowed to act on carbon,
C + H2O → CO + H2......... (7)
And CO and H2Water gas which is a mixed gas of The obtained hydrogen causes the reactions of the above formulas (1) to (6) to decompose the chlorofluorocarbon gas. However, when carbon is used, the amount of hydrogen generated is slightly less than when iron or carbon steel is used, and it takes about 10 seconds to achieve the decomposition rate of 99.99. Slightly lower.
[0059]
Magnetite (Fe) in the formula (1)ThreeOFour) Is a passivity having high corrosion resistance to acid, and adheres to the surface of a container or the like to form a protective film. Magnetite adhering to the iron plate 28 reacts with carbon.
FeThreeOFour+ 2C → 3Fe + 2CO2......... (8)
It also reacts with CO
FeThreeOFour+ 4CO → 3Fe + 4CO2......... (9)
Thus, the iron necessary for the reaction of the formula (1) is recycled. However, in many cases, the expansion and contraction due to heat proceeds, the magnetite peels off, the new iron surface is exposed, and the reaction continues.
[0060]
When water is used as the chlorofluorocarbon solvent, the mixture becomes strongly acidic due to the action of hydrochloric acid and hydrofluoric acid generated by the reaction of the above formula (2), and the corrosion of pipes and tubes becomes severe and the life of the apparatus is prolonged. There is a risk of lowering. Therefore, normally, as shown in the following formula (10), caustic soda NaOH is added according to the concentration of chlorofluorocarbon and the carbon dioxide gas is converted to sodium bicarbonate NaHCO 3.ThreeIn some cases, sodium chloride is generated by the reaction of caustic soda and hydrochloric acid as in the formula (11), and sodium fluoride NaF is generated in the reaction of caustic soda and hydrofluoric acid as in the formula (12). .
NaOH + CO2 → NaHCOThree……… (10)
NaOH + HCl → NaCl + H2O ......... (11)
NaOH + HF → NaF + H2O ......... (12)
[0061]
[When hydrogen peroxide solution is used as a solvent]
Hydrogen peroxide water is thermally decomposed to produce water and oxygen.
2H2O2→ 2H2O + O2……… (13)
Therefore, H2O, O2In addition to hydrolysis, the following reaction with oxygen occurs simultaneously.
CCl2F2+ O2→ CO2+ Cl2+ F2……… (14)
Equation (14) is an oxidation reaction. Cl obtained by oxidation reaction2, F2Is
Cl2+ H2→ 2HCl ……… (15)
F2+ H2→ 2HF ……… (16)
To change to HCl and HF.
[0062]
As described above, when hydrogen peroxide is used as the solvent, in addition to the hydrolysis and reduction reactions described above, the above-described oxidation reaction proceeds simultaneously, so the decomposition rate is fast, and the material to be decomposed is a stable substance from an early stage. Therefore, no extra by-product is generated.
[0063]
This embodiment is for decomposing a fluid or gaseous object to be decomposed, and is capable of decomposing liquid liquids of halogenated carbon compounds such as chlorobenzene and trichloroethane in addition to Freon gas as environmental pollutants. However, as experimental conditions in the case of chlorofluorocarbon gas, the temperature in the heater 25 and the reactor 29 was 650 ° C., and the temperature of the pipe 33 in the cooler 32 was 18 ° C. In addition, water (or hydrogen peroxide solution) as a solvent was selected so as to be excessive in molar ratio. That is, chlorofluorocarbon: water (or hydrogen peroxide solution) = 1: 3. The decomposition rate at this time was such that CFC was not detected by gas chromatography, in other words, a decomposition rate of 99.99% or more was obtained.
[0064]
Next, trichloroethane (CHThree・ CClThree) And chlorobenzene (C6HFiveThe decomposition reaction of Cl) will be described. The reaction temperature was 650 ° C.
[0065]
First, trichloroethane (CHThree・ CClThree), The reaction proceeds as follows.
[0066]
[When water is used as a solvent]
When water is used as the solvent, hydrolysis
CHThree・ CClThree+ H2O → 3HCl + CO + C + H2……… (17)
CHThree・ CClThree+ 2H2O → 3HCl + CO2+ C + 2H2...... (18)
It becomes. On the other hand, as shown in the above formula (1), the decomposition by hydrogen generated when the superheated steam contacts the iron plate 28 is performed by qualitatively analyzing the gas in the middle of decomposition, and the decomposition reaction is first performed from the product.
CHThree・ CClThree+ 3H2→ CHThree・ CHThree+ 3HCl ......... (19)
A substitution reaction with hydrogen is observed, and
CHThree・ CHThree+ H2→ 2CHFour……… (20)
Decomposition proceeds, then
CHFour→ C + 2H2......... (21)
It becomes.
Therefore, in this decomposition reaction, CO2, CO, H2, C, HCl.
[0067]
[When hydrogen peroxide solution is used as a solvent]
When hydrogen peroxide is used as the solvent, in addition to the hydrolysis and hydrogen decomposition described above
CHThree・ CClThree+ 2O2→ 2CO2+ 3HCl ......... (22)
The decomposition reaction caused by oxidation takes place, and CH produced by the formula (20)FourIs also partially oxidized,
CHFour+ 2O2→ CO2+ 2H2O ......... (23)
Thus, hydrolysis, decomposition of the reduction reaction with hydrogen, and oxidative decomposition occur in parallel, and the decomposition efficiency is further improved.
[0068]
Next, chlorobenzene (C6HFiveWhen decomposing Cl), the reaction proceeds as follows.
[0069]
[When water is used as a solvent]
When water is used as the solvent, hydrolysis
C6HFiveCl + H2O → C6HFiveOH + HCl (24)
On the other hand, as shown in the above formula (1), the decomposition by hydrogen generated by contact of superheated steam with the iron plate 28 is performed by qualitatively analyzing the gas in the middle of decomposition, and the decomposition reaction is first performed from the product. , Cl is replaced by H,
C6HFiveCl + H2→ C6H6+ HCl ......... (25)
Benzene and hydrochloric acid are produced, and further H is added,
C6H6+ 3H2→ C6H12……… (26)
And cyclohexane (C6H12) Is generated, and the ring is further opened and decomposed into methane, ethane and the like.
C6H12+ 6H2→ 6CHFour......... (27)
This methane is
CHFour→ C + 2H2......... (28)
It is decomposed into C (graphite), hydrochloric acid and hydrogen.
[0070]
[When hydrogen peroxide solution is used as a solvent]
When hydrogen peroxide is used as the solvent, in addition to the hydrolysis and hydrogen decomposition described above
C6HFiveCl + 6O2→ 6CO2+ HCl + 2H2……… (29)
Oxidation reactions that occur simultaneously.
[0071]
【The invention's effect】
As described above in detail, according to the present invention, organic compounds having chlorofluorocarbon or benzene nuclei and other indestructible substances such as industrial waste are supplied to the reactor as a mixed gas together with a solvent, and are bypassed in the reactor. While being heated, heat treatment by induction heating of the reactor and electromagnetic wave heating by electromagnetic waves generated due to induction heating cause the material to be decomposed to react with the solvent so that the thermal decomposition can be performed efficiently at normal pressure. Can do. In particular, since heating under normal pressure is the main process, a high-pressure pump is not necessary, and there is no concern of damage to valves or piping. Furthermore, since all the reactions are closed systems that occur in the reaction apparatus, there is an effect that there is no secondary contamination.
[0072]
When a substance that generates hydrogen by reacting with the mixed gas is placed in one or both of the heater and the reactor, the reduction reaction by the hydrogen generated in the heater or the reactor and induction heating of the reactor When the reaction proceeds by a combination of heating due to induction heating and decomposition reaction due to electromagnetic wave heating due to electromagnetic waves generated due to induction heating, and when the object to be decomposed and the solvent are heated to superheated steam, The reaction between the decomposition target product and the solvent proceeds by a combination of the decomposition reaction and the heating by the induction heating of the reaction apparatus and the decomposition reaction by the electromagnetic wave heating by the electromagnetic wave generated due to the induction heating. Thereafter, the decomposed gas can be cooled and liquefied and discharged.
[0073]
By arbitrarily setting the reaction time and temperature of the heater and the reactor, it is possible to control the degree of decomposition, polyethylene changes the degree of oiling, rubber becomes rubber again, and further in the waste wood. Cellulose can be processed under recyclable conditions as useful glucose.
[0074]
In particular, in the case of a conventionally known catalyst method, there is a problem that the catalyst is deteriorated due to oxidation or the like, whereas in the case of the present invention, there is no problem because the catalyst is not used. Moreover, it can be applied not only to CFCs but also to other industrial wastes and organic substances having a benzene nucleus.
[0075]
Furthermore, according to the present invention, since the process proceeds at a low pressure, the material can be arbitrarily selected as long as it can withstand a predetermined high temperature, and it is designed to withstand mechanical strength and tensile stress or thermal stress. Is not required, and it is easy to take measures against breakage of various devices and to automate the device itself.
[Brief description of the drawings]
FIG. 1 is a system diagram showing a basic embodiment of the present invention.
FIG. 2 is a side view of a reaction apparatus used in the present embodiment.
FIG. 3 is a longitudinal sectional view showing a structural example of a reaction apparatus.
FIG. 4 is a graph showing the relationship between the temperature and the decomposition rate when chlorofluorocarbons R12 and R22 are reacted with water as a solvent by an induction heating method.
FIG. 5 is a graph showing the relationship between the temperature and the decomposition rate when chlorobenzene is reacted by induction heating using water as a solvent.
FIG. 6 is a graph showing the relationship between the reaction time and the decomposition rate when Freon R113 is reacted with water as a solvent using the present embodiment and a conventional heater heating means.
FIG. 7 is a graph showing the relationship between the reaction time and the decomposition rate when only the Freon R12 is used in each reaction temperature condition and this example and the conventional heating means.
FIG. 8 is a graph showing the relationship between the reaction time and the decomposition rate when only chlorobenzene is used in each reaction temperature condition and this example and the conventional heating means are used.
FIG. 9 is a longitudinal sectional view of an essential part for explaining an example of a conventional reaction apparatus.
FIG. 10 is a schematic diagram for explaining an example of another conventional reaction apparatus.
[Explanation of symbols]
21 ... Decomposed substance tank
22 ... Decomposed material pump
23 ... Water tank
24 ... Water pump
25 ... Heater
26. Internal heater
27 ... External heater
28 ... Iron plate
29 ... (Induction heating) reactor
30 ... Power supply
31 ... Matching transformer
32 ... Cooler
36 ... Gas-liquid separator
37 ... Neutralizer
41 ... support stand
42. Insulation
43, 44 ... Bulkhead

Claims (4)

被分解処理物と溶媒を加熱器に導入して加熱混合することにより、被分解処理物と溶媒の混合ガスを過熱蒸気とし、該混合ガスの過熱蒸気を外周部に誘導加熱コイルが巻着されて誘導加熱された中空円筒状の反応装置内に導入し、常圧下の反応装置内で迂回流通している間に反応装置の誘導加熱による加熱と、誘導加熱に起因して発生する電磁波による電磁波加熱によって反応させて分解することを特徴とする難分解物質の分解処理方法。By mixing heated and introduced into a heater to be decomposition products and Solvent, and superheated steam to be decomposition products and a mixed gas of the solvent, the induction heating coil to the outer peripheral portion of the superheated steam of the gas mixture is wrapped Introduced into a hollow cylindrical reactor heated by induction, and heated by induction heating of the reactor while detouring in the reactor under normal pressure, and by electromagnetic waves generated due to induction heating A method for decomposing a hardly decomposable substance, characterized by reacting by electromagnetic heating and decomposing. 加熱器及び反応装置の何れか一方もしくは双方に、被分解処理物と溶媒の混合ガスと反応して水素を生成する物質を配置して、加熱器もしくは反応装置内で生成した水素による還元反応と、過熱蒸気による加水分解反応と、誘導加熱による加熱及び誘導加熱に起因して発生する電磁波による電磁波加熱による分解反応の組合わせにより常圧下で被分解処理物と溶媒を反応させて分解する請求項1記載の難分解物質の分解処理方法。  A substance that generates hydrogen by reacting with the mixed gas of the object to be decomposed and the solvent is disposed in one or both of the heater and the reaction device, and a reduction reaction with hydrogen generated in the heater or the reaction device. The decomposition reaction is performed by reacting the substance to be decomposed with the solvent under normal pressure by a combination of hydrolysis reaction with superheated steam and heating by induction heating and decomposition reaction by electromagnetic wave heating caused by induction heating. The method for decomposing a hardly decomposable substance according to 1. 過熱蒸気と反応して水素を生成する物質として、鉄,炭素,炭素鋼から選択された1種又は複数のものを使用する請求項2記載の難分解物質の分解処理方法。  3. The method for decomposing a hardly decomposable substance according to claim 2, wherein one or more selected from iron, carbon, and carbon steel are used as a substance that reacts with superheated steam to generate hydrogen. 溶媒として水もしくは過酸化水素水を用いた請求項1,2又は3記載の難分解物質の分解処理方法。  4. The method for decomposing a hardly decomposable substance according to claim 1, wherein water or hydrogen peroxide water is used as a solvent.
JP04463598A 1998-02-09 1998-02-09 Degradation treatment method for persistent substances Expired - Lifetime JP3894649B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04463598A JP3894649B2 (en) 1998-02-09 1998-02-09 Degradation treatment method for persistent substances

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04463598A JP3894649B2 (en) 1998-02-09 1998-02-09 Degradation treatment method for persistent substances

Publications (2)

Publication Number Publication Date
JPH11221440A JPH11221440A (en) 1999-08-17
JP3894649B2 true JP3894649B2 (en) 2007-03-22

Family

ID=12696898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04463598A Expired - Lifetime JP3894649B2 (en) 1998-02-09 1998-02-09 Degradation treatment method for persistent substances

Country Status (1)

Country Link
JP (1) JP3894649B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001054723A (en) * 1999-06-07 2001-02-27 Nkk Corp Method and device for decomposing gaseous halogenated hydrocarbon
EP1201292A4 (en) * 1999-06-07 2004-07-28 Jfe Steel Corp Method and apparatus for decomposing halogenated hydrocarbon gas
JP4545852B2 (en) * 1999-09-30 2010-09-15 日本エア・リキード株式会社 Exhaust gas treatment equipment
JP2001191050A (en) * 2000-01-06 2001-07-17 Kogi Corp Treating method of dioxins
AU2002212756A1 (en) * 2000-11-10 2002-05-21 Hoei Shokai Co., Ltd Treatment apparatus and treatment process
JP3659901B2 (en) * 2001-06-19 2005-06-15 経久 松岡 Method and apparatus for decomposing dioxins
JP3582066B2 (en) * 2002-05-10 2004-10-27 健 神佐 Thermal decomposition equipment for organic halogen compounds
AU2003268654A1 (en) * 2002-09-24 2004-04-19 Matsushita Electric Industrial Co., Ltd. Method of amplifying nucleic acid by electromagnetic induction heating and reaction container and reaction device to be used therein
JPWO2004068033A1 (en) * 2003-01-28 2006-05-18 和泉情報有限会社 Superheated steam generator
JP2006026614A (en) * 2004-07-21 2006-02-02 Akiji Nishiwaki Waste gas treating method and waste gas treating apparatus
JP5438271B2 (en) * 2007-12-14 2014-03-12 中部電力株式会社 Method for delivering gas to be processed to decomposition processing apparatus and decomposition processing apparatus
JP4996537B2 (en) * 2008-05-13 2012-08-08 青木あすなろ建設株式会社 Methods for detoxifying pollutants with difficult-to-decompose substances such as PCBs and dioxins
JP4901911B2 (en) * 2009-05-25 2012-03-21 昭次 岩原 Method for producing paper sludge ash, cement composition containing paper sludge ash produced by the production method, and cement solid obtained by solidifying the cement composition
JP2018001061A (en) * 2016-06-28 2018-01-11 合同会社トレスバイオ技研 Method for decomposing or carbonizing organic material and device used in the method
CN107695080A (en) * 2017-10-16 2018-02-16 广州宝狮无线供电技术有限公司 It is a kind of to handle useless circuit board or the method and device of carbon fibre composite
KR102410117B1 (en) * 2020-07-17 2022-06-20 맹창용 Contaminant gas purification device equipped with induction heating type high-temperature oxidation and pyrolysis heat exchanger

Also Published As

Publication number Publication date
JPH11221440A (en) 1999-08-17

Similar Documents

Publication Publication Date Title
JP3894649B2 (en) Degradation treatment method for persistent substances
US7703285B2 (en) System and method for generating electricity from super critical water oxidation process
CA2249404A1 (en) Method for hot and supercritical water oxidation of material using specific reactants
US5837149A (en) Method for hot and supercritical water oxidation of material with addition of specific reactants
Jasiński et al. Destruction of Freon HFC-134a using a nozzleless microwave plasma source
JP3249986B2 (en) CFC decomposition treatment method and equipment
JP3219689B2 (en) Method and apparatus for decomposing hardly decomposable substances
JP3219706B2 (en) Method and apparatus for decomposing hardly decomposable substances
JP3607624B2 (en) Method and apparatus for decomposing organic compounds
Kamgang-Youbi et al. Inductively coupled plasma torch efficiency at atmospheric pressure for organo-chlorine liquid waste removal: Chloroform destruction in oxidative conditions
JP3669881B2 (en) Method and apparatus for decomposing a hardly decomposable substance
JPH02131116A (en) Decomposition of organohalogen-compound
JPH06293501A (en) Decomposition method for fluorocarbon
JP4267791B2 (en) Supercritical water treatment equipment
JP3730794B2 (en) Method and apparatus for decomposing a hardly decomposable substance
JP7137597B2 (en) Decomposition method of environmental pollutant gas
JP3472873B2 (en) Device for decomposing gaseous organic halogen compounds and device for decomposing liquid organic halogen compounds using the same
Lee et al. Total organic carbon disappearance kinetics for supercritical water oxidation of dimethyl methylphospate used as a chemical agent simulant
JPH10314769A (en) Supercritical water oxidizing method and device
Sugeta 6.3 DESTRUCTION TECHNOLOGY OF CFCs
JP3816218B2 (en) Method and apparatus for decomposing organic compounds containing halogen atoms and / or sulfur atoms
JP2000336378A (en) Method for treating waste and pyrolizer
Trifan et al. Microwave assisted catalytic dechlorination of PCB
RU2014346C1 (en) Method of processing wastes
JP2002355532A (en) Decomposition method of organic halogen compound and its equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040827

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040827

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061212

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term