JPH11220172A - Gallium nitride compound semiconductor light-emitting element - Google Patents

Gallium nitride compound semiconductor light-emitting element

Info

Publication number
JPH11220172A
JPH11220172A JP10326404A JP32640498A JPH11220172A JP H11220172 A JPH11220172 A JP H11220172A JP 10326404 A JP10326404 A JP 10326404A JP 32640498 A JP32640498 A JP 32640498A JP H11220172 A JPH11220172 A JP H11220172A
Authority
JP
Japan
Prior art keywords
layer
type
type layer
compound semiconductor
gallium nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10326404A
Other languages
Japanese (ja)
Other versions
JP3484997B2 (en
Inventor
Shuji Nakamura
修二 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP15470894A external-priority patent/JP2890390B2/en
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP32640498A priority Critical patent/JP3484997B2/en
Publication of JPH11220172A publication Critical patent/JPH11220172A/en
Application granted granted Critical
Publication of JP3484997B2 publication Critical patent/JP3484997B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve luminous power conversion efficiency by obtaining light emission which is more uniform than an active layer, to improve the luminous intensity and output of an element and to further lower Vf of the light-emitting element. SOLUTION: In a gallium nitride compound semiconductor light-emitting element having a structure, in which at least an n-type layer is formed between an active layer and a substrate, the n-type layer contains a first n-type layer 3 formed on the substrate side 1 and a second n-type layer 33 shaped on the active layer 5 side, while being brought into contact with the first n-type layer 3 and having electron carrier concentration which is larger than that of the first n-type layer 3, and the second n-type layer 33 is composed of a gallium nitride compound semiconductor (INx Aly Ga1-x-y N, 0<X, 0<=Y, X+Y<=1 so as to contain at least indium.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はレーザダイオード(L
D)、発光ダイオード(LED)等の発光素子に使用さ
れる窒化ガリウム系化合物半導体(InaAlbGa
1-a-bN、0≦a、0≦b、a+b≦1)よりなる発光素子
に関する。
The present invention relates to a laser diode (L)
D), a light emitting diode (LED) gallium nitride is used in the light-emitting element such as a compound semiconductor (In a Al b Ga
1-ab N, 0 ≦ a, 0 ≦ b, a + b ≦ 1).

【0002】[0002]

【従来の技術】現在、実用化されている光度1cdの青
色LEDは窒化ガリウム系化合物半導体(InaAlb
1-a-bN、0≦a、0≦b、a+b≦1)よりなり、図1
に示す構造を有している。それは、サファイアよりなる
基板1の表面に、GaNよりなるバッファ層2と、Ga
Nよりなるn型層3と、AlGaNよりなるn型クラッ
ド層4と、InGaNよりなる活性層5と、AlGaN
よりなるp型クラッド層6と、GaNよりなるp型コン
タクト層7とが順に積層されたダブルへテロ構造であ
る。この青色LEDは順方向電流(If)20mAにお
いて、順方向電圧(Vf)3.6V、ピーク発光波長4
50nm、光度1cd、発光出力1.2mWと、青色L
EDでは過去最高の性能を示している。
2. Description of the Related Art At present, a blue LED having a luminous intensity of 1 cd is a gallium nitride-based compound semiconductor (In a AlbG ).
a 1-ab N, 0 ≦ a, 0 ≦ b, a + b ≦ 1), and FIG.
Has the structure shown in FIG. It consists of a buffer layer 2 made of GaN and a Ga layer on a surface of a substrate 1 made of sapphire.
An n-type layer 3 of N, an n-type cladding layer 4 of AlGaN, an active layer 5 of InGaN,
It has a double hetero structure in which a p-type cladding layer 6 made of GaN and a p-type contact layer 7 made of GaN are sequentially stacked. This blue LED has a forward voltage (Vf) of 3.6 V and a peak emission wavelength of 4 at a forward current (If) of 20 mA.
50 nm, luminous intensity 1 cd, emission power 1.2 mW, blue L
The ED shows the highest performance ever.

【0003】前記構造のLEDにおいて、基板1はサフ
ァイアの他にZnO、SiC、GaAs、Si等の材料
が使用可能であるが、一般的にはサファイアが用いられ
る。バッファ層2はGaNの他、GaAlN、AlN等
が形成される。n型コンタクト層3、n型クラッド層4
は窒化ガリウム系化合物半導体にSi、Ge、Sn、C
等のn型ドーパントをドープした窒化ガリウム系化合物
半導体で形成される。また、n型コンタクト層3、n型
クラッド層4は、このように二層に分けなくても単一の
n型層として、クラッド層およびコンタクト層として作
用させてもよい(つまり、いずれかの層を省略でき
る)。活性層5は少なくともインジウムを含む窒化ガリ
ウム系化合物半導体よりなり、ノンドープ、Zn、M
g、Cd、Be等のp型ドーパント及び/またはn型ド
ーパントがドープされている。p型クラッド層6、p型
コンタクト層7は窒化ガリウム系化合物半導体にp型ド
ーパントをドープした後、400℃以上でアニーリング
することにより、p型とされている。また、p型クラッ
ド層6、p型コンタクト層7は、単一のp型層として、
クラッド層およびコンタクト層として作用させてもよい
(n層と同様にいずれかの層を省略可能)。
In the LED having the above-mentioned structure, the substrate 1 can be made of a material such as ZnO, SiC, GaAs, or Si, in addition to sapphire. Generally, sapphire is used. The buffer layer 2 is formed of GaAlN, AlN, or the like in addition to GaN. n-type contact layer 3, n-type cladding layer 4
Is a gallium nitride based compound semiconductor with Si, Ge, Sn, C
GaN-based compound semiconductor doped with an n-type dopant such as Further, the n-type contact layer 3 and the n-type cladding layer 4 may function as a cladding layer and a contact layer as a single n-type layer without being divided into two layers as described above (that is, any one of them). Layers can be omitted). The active layer 5 is made of a gallium nitride based compound semiconductor containing at least indium, and is non-doped, Zn, M
A p-type dopant and / or an n-type dopant such as g, Cd, and Be are doped. The p-type cladding layer 6 and the p-type contact layer 7 are made to be p-type by doping a gallium nitride-based compound semiconductor with a p-type dopant and annealing at 400 ° C. or higher. The p-type cladding layer 6 and the p-type contact layer 7 are formed as a single p-type layer.
It may function as a cladding layer and a contact layer (any of the layers can be omitted as in the case of the n-layer).

【0004】[0004]

【発明が解決しようとする課題】窒化ガリウム系化合物
半導体の場合、他のGaAs、GaP、AlInGaP
等のIII−V族化合物半導体に比べて、一般に電流が均
一に広がりにくいという性質を有している。そこで図1
のような構造のLED素子を実現した場合、n層から活
性層に供給される電子の流れが、抵抗の低い箇所に集中
してしまうという問題がある。図2は電流の集中による
活性層の発光を模式的に示している。これは、n型コン
タクト層3の負電極8より供給された電子が、図2の矢
印に示すように、p型コンタクト層7の正電極9と、n
型コンタクト層3の負電極8との間の抵抗が低くなるよ
うに、いちばん近い距離を流れることにより、活性層5
が網掛け部で示すように部分的に強く発光していること
を表している。このように、電子がn型コンタクト層3
に均一に広がらないと、活性層5から均一な発光が得ら
れないという欠点がある。
In the case of a gallium nitride based compound semiconductor, other GaAs, GaP, AlInGaP
In general, compared to the group III-V compound semiconductors described above, it has a property that the current is hardly spread uniformly. So Figure 1
When the LED element having such a structure is realized, there is a problem that the flow of electrons supplied from the n-layer to the active layer concentrates on a portion having a low resistance. FIG. 2 schematically shows light emission of the active layer due to current concentration. This is because the electrons supplied from the negative electrode 8 of the n-type contact layer 3 are, as shown by arrows in FIG.
The active layer 5 flows through the closest distance so that the resistance between the negative electrode 8 of the contact layer 3 and the negative electrode 8 decreases.
Indicates that the light is partially intensely emitted as shown by the shaded portion. Thus, the electrons are transferred to the n-type contact layer 3.
If it does not spread uniformly, there is a disadvantage that uniform light emission cannot be obtained from the active layer 5.

【0005】また、上記構造のLEDはVf3.6V
と、従来のMIS構造の窒化ガリウム系化合物半導体よ
りなる青色LEDに比べて、5V以上Vfを低下させ
た。これはp−n接合による発光を示すものであるが、
Vfについてもまだ改良する余地があり、さらなるVf
の低下が望まれている。
The LED having the above structure has a Vf of 3.6 V
Vf is reduced by 5 V or more as compared with a conventional blue LED made of a gallium nitride-based compound semiconductor having a MIS structure. This shows light emission by the pn junction,
There is still room for improvement in Vf, and further Vf
Is desired.

【0006】従って本発明はこのような事情を鑑みてな
されてものであり、その目的とするところは、ダブルへ
テロ、シングルへテロ等、少なくともn型層が活性層と
基板との間に形成された構造を備える窒化ガリウム系化
合物半導体発光素子において、まず第一に活性層より均
一な発光を得て、素子の光度、出力を向上させることに
あり、第二にVfをさらに低下させて、発光効率を向上
させることにある。
Accordingly, the present invention has been made in view of such circumstances, and an object of the present invention is to form at least an n-type layer between an active layer and a substrate, such as a double hetero or single hetero. In the gallium nitride-based compound semiconductor light-emitting device having the structure described above, firstly, to obtain uniform light emission from the active layer, to improve the luminous intensity and output of the device, and secondly to further reduce Vf, It is to improve luminous efficiency.

【0007】[0007]

【課題を解決するための手段】我々はn型層にさらにキ
ャリア濃度の高い層を介在させることにより、上記問題
が解決できることを見いだした。即ち、本発明の窒化ガ
リウム系化合物半導体発光素子は、少なくともn型層が
活性層と基板との間に形成された構造を備える窒化ガリ
ウム系化合物半導体発光素子において、前記n型層は基
板側に形成された第一のn型層と、その第一のn型層に
接して活性層側に形成されて、第一のn型層よりも電子
キャリア濃度が大きい第二のn型層とを含み、その第二
のn型層が少なくともインジウムを含む窒化ガリウム系
化合物半導体(InXAlYGa1- X-YN、0<X、0≦
Y、X+Y≦1)よりなることを特徴とする。
Means for Solving the Problems We have found that the above problem can be solved by interposing a layer having a higher carrier concentration in the n-type layer. That is, the gallium nitride-based compound semiconductor light-emitting device of the present invention is a gallium nitride-based compound semiconductor light-emitting device having a structure in which at least an n-type layer is formed between an active layer and a substrate. The formed first n-type layer and a second n-type layer formed on the active layer side in contact with the first n-type layer and having a higher electron carrier concentration than the first n-type layer Gallium nitride based compound semiconductor containing at least indium (In x Al Y Ga 1 -XYN , 0 <X, 0 ≦
Y, X + Y ≦ 1).

【0008】本発明の一実施例の発光素子の構造を図3
に示す。基本的な構造は図1に示す発光素子とほぼ同じ
であるが、第一のn型層であるn型コンタクト層3に接
して、活性層5側にその第一のn型層3よりも電子キャ
リア濃度が大きい新たな第二のn型層33を形成してい
る。基板1、バッファ層2、n型コンタクト層3、n型
クラッド層4、活性層5、p型クラッド層6、p型コン
タクト層7等は窒化ガリウム系化合物半導体で形成さ
れ、n型コンタクト層3とn型クラッド層4とを単一の
n型層とすることもでき、またp型クラッド層6とp型
コンタクト層7とを単一のp型層とすることもできる。
FIG. 3 shows the structure of a light emitting device according to one embodiment of the present invention.
Shown in The basic structure is almost the same as that of the light-emitting element shown in FIG. 1, but is in contact with the n-type contact layer 3 which is the first n-type layer, and is closer to the active layer 5 than the first n-type layer 3 is. A new second n-type layer 33 having a high electron carrier concentration is formed. The substrate 1, the buffer layer 2, the n-type contact layer 3, the n-type cladding layer 4, the active layer 5, the p-type cladding layer 6, the p-type contact layer 7 and the like are formed of a gallium nitride-based compound semiconductor. And the n-type cladding layer 4 may be a single n-type layer, and the p-type cladding layer 6 and the p-type contact layer 7 may be a single p-type layer.

【0009】本発明の発光素子において、結晶性に優れ
た窒化ガリウム系化合物半導体層を成長させるには、基
板1にサファイアを好ましく用い、バッファ層2にGa
N、またはAlNを成長させ、10オングストローム〜
0.5μmの膜厚で形成することが好ましい。
In the light emitting device of the present invention, in order to grow a gallium nitride compound semiconductor layer having excellent crystallinity, sapphire is preferably used for the substrate 1 and Ga is used for the buffer layer 2.
N or AlN is grown and 10 Å to
It is preferable to form it with a thickness of 0.5 μm.

【0010】活性層5と基板1との間に形成する第一の
n型層は、n型コンタクト層3としては通常1μm〜5
μmの膜厚で形成し、その表面にn型クラッド層4を形
成する場合には50オングストローム〜1μmの膜厚で
成長する。但し、前記のように、このn型クラッド層4
は特に形成しなくてもよい。窒化ガリウム系化合物半導
体としてはGaN、AlGaNが好ましく、最も好まし
くはGaNとする。なぜならGaN、AlGaNはノン
ドープあるいはn型ドーパントをドープして容易にn型
となり、ドーパントにより電子キャリア濃度を制御する
ことが容易である。さらにAlGaNよりも単一層で結
晶性のよい厚膜を形成するにはGaNが成長しやすい。
例えば、サファイアを基板としてn型層とp型層とを順
に積層した素子を実現した場合、n型コンタクト層3の
電極8を設けるため、p型層をエッチングにより取り除
き、n型コンタクト層3を露出させる必要があるが、単
一層で厚膜が形成できると、エッチング深さの遊度があ
るので、実際の素子を実現する際に非常に好都合であ
る。
The first n-type layer formed between the active layer 5 and the substrate 1 has an n-type contact layer 3 of usually 1 μm to 5 μm.
When the n-type cladding layer 4 is formed on the surface thereof, it is grown to a thickness of 50 Å to 1 μm. However, as described above, the n-type cladding layer 4
Need not be particularly formed. As the gallium nitride-based compound semiconductor, GaN and AlGaN are preferable, and GaN is most preferable. This is because GaN and AlGaN easily become n-type by doping with a non-doped or n-type dopant, and it is easy to control the electron carrier concentration by the dopant. Further, GaN is easily grown to form a single-layer thicker film having better crystallinity than AlGaN.
For example, when an element in which an n-type layer and a p-type layer are sequentially laminated using sapphire as a substrate is realized, in order to provide the electrode 8 of the n-type contact layer 3, the p-type layer is removed by etching, and the n-type contact layer 3 is removed. Although it is necessary to expose it, if a thick film can be formed with a single layer, there is a degree of freedom of the etching depth, which is very convenient in realizing an actual device.

【0011】次に、活性層5は、通常50オングストロ
ーム〜0.5μmの膜厚で成長し、InGaNとするこ
とが好ましい。InGaNはインジウムの混晶比により
バンド間発光を利用して発光素子の発光波長を紫〜緑色
まで容易に変化させることができ、さらにn型、p型の
ドーパントをドープして発光中心とすることも容易であ
る。さらにInのGaに対する混晶比(In/Ga)は
0.5以下であることが好ましい。0.5より多いIn
GaNは結晶性がよくないので実用的な発光素子を得る
ことが困難となる傾向にある。最も優れた活性層として
はn型ドーパントと、p型ドーパントとがドープされて
n型とされ、Gaに対するIn混晶比が0.5以下のI
nGaNを活性層とすることが好ましい。
Next, the active layer 5 is preferably grown to a thickness of usually 50 Å to 0.5 μm, and is preferably made of InGaN. InGaN can easily change the emission wavelength of the light emitting element from purple to green by utilizing interband emission depending on the mixed crystal ratio of indium, and furthermore, doping n-type and p-type dopants to make the emission center. Is also easy. Further, the mixed crystal ratio of In to Ga (In / Ga) is preferably 0.5 or less. In more than 0.5
Since GaN has poor crystallinity, it tends to be difficult to obtain a practical light emitting device. The most excellent active layer is an n-type dopant which is doped with an n-type dopant and a p-type dopant and has an In mixed crystal ratio of 0.5 or less.
Preferably, nGaN is used as the active layer.

【0012】活性層5の上に成長するp型層もGaN、
AlGaNが好ましく、p型クラッド層6は50オング
ストローム〜1μmの膜厚で形成し、pコンタクト層7
は50オングストローム〜5μmの膜厚で成長する。但
し、このp型クラッド層6は特に形成させなくてもよ
い。窒化ガリウム系化合物半導体としてはGaN、Al
GaNを好ましく形成する、これらは単一層で結晶性の
よい厚膜が成長しやすく、またp型ドーパントをドープ
して400℃以上でアニールすると容易にp型となる傾
向にある。
The p-type layer grown on the active layer 5 is also GaN,
AlGaN is preferable, and the p-type cladding layer 6 is formed with a thickness of 50 Å to 1 μm.
Grows with a thickness of 50 Å to 5 μm. However, the p-type cladding layer 6 need not be formed. GaN, Al as the gallium nitride based compound semiconductor
Preferably, GaN is formed. In these, a single-layered film having good crystallinity easily grows easily, and tends to easily become p-type when doped with a p-type dopant and annealed at 400 ° C. or more.

【0013】[0013]

【作用】図4に、図3の発光素子における第一のn型層
であるn型コンタクト層3から、活性層5に供給される
電子の流れを模式的に示す。これは、n型コンタクト層
3から供給される電子が、矢印に示すように電子キャリ
ア濃度の大きい第二のn型層33中を通って均一に広が
ることにより活性層5を均一に発光させることを示して
いる。このように第一のn型層に接して、その第一のn
型層よりも電子キャリア濃度の大きい第二のn型層33
を活性層側に形成すると、電子が第二のn型層33中に
均一に広がるので、活性層5から均一な面発光が得られ
る。
FIG. 4 schematically shows a flow of electrons supplied to the active layer 5 from the n-type contact layer 3 which is the first n-type layer in the light emitting device of FIG. This is because the electrons supplied from the n-type contact layer 3 uniformly spread through the second n-type layer 33 having a high electron carrier concentration as shown by the arrows, so that the active layer 5 emits light uniformly. Is shown. Thus, the first n-type layer is in contact with the first n-type layer.
Second n-type layer 33 having a higher electron carrier concentration than the type layer
Is formed on the active layer side, electrons spread uniformly in the second n-type layer 33, so that uniform surface light emission can be obtained from the active layer 5.

【0014】第二のn型層33はインジウムを含むIn
XAlYGa1-X-YN(0<X、Y≦0)とすることが好ま
しく、特に好ましくはInのGaに対する混晶比(In
/Ga)が0.5以下のInGaNとするのがよい。な
ぜなら、Inを含む窒化ガリウム系化合物半導体の方
が、含まないものよりも電子キャリア濃度の大きい層を
形成しやすく、またInを含む結晶は、含まない結晶に
比べて結晶が柔らかく、転位などの結晶欠陥を吸収しや
すい。そのため基板上にAlGaN、GaN等の格子整
合していない第一のn型層3を成長させた場合、その第
一のn型層3の結晶欠陥を第二のn型層33で緩和する
ことが可能であるからである。
The second n-type layer 33 is made of In containing Indium.
X Al Y Ga 1 -XYN (0 <X, Y ≦ 0) is preferred, and the mixed crystal ratio of In to Ga (In
/ Ga) is preferably 0.5 or less InGaN. The reason is that a gallium nitride-based compound semiconductor containing In is easier to form a layer having a higher electron carrier concentration than a gallium nitride-based compound semiconductor not containing In. Easy to absorb crystal defects. Therefore, when the first n-type layer 3 such as AlGaN or GaN, which is not lattice-matched, is grown on the substrate, crystal defects of the first n-type layer 3 are alleviated by the second n-type layer 33. Is possible.

【0015】第二のn型層33の電子キャリア濃度は1
×1018/cm3〜1×1022/cm3の範囲に調整すること
が好ましく、また第二のn型層33よりも電子キャリア
濃度の小さい第一のn型層は1×1016/cm3〜1×1
19/cm3の範囲に調整することが好ましい。これらの
電子キャリア濃度は、前記のように第二のn型層にS
i、Ge、Sn、C等のn型ドーパントをドープするこ
とにより調整可能である。第二のn型層33の電子キャ
リア濃度が1×1018/cm3よりも小さいと、電子を広
げる作用が得られにくくなり均一な活性層の発光が得ら
れにくく、1×10 22/cm3よりも大きいと結晶性が悪
くなり、発光素子の性能に悪影響を及ぼす恐れがある。
また第一のn型層についても電子キャリア濃度が1×1
16/cm3よりも小さいと活性層自体の発光が得られに
くく、また1×1019/cm3よりも大きいと1μm以上
の厚膜を形成した際に結晶性が悪くなる傾向にあり、素
子の出力を低下させる恐れがあるからである。
The electron carrier concentration of the second n-type layer 33 is 1
× 1018/cmThree~ 1 × 10twenty two/cmThreeAdjust to the range of
, And more electron carriers than the second n-type layer 33.
The low concentration first n-type layer is 1 × 1016/cmThree~ 1 × 1
019/cmThreeIt is preferable to adjust the range. these
As described above, the electron carrier concentration in the second n-type layer
Doping with n-type dopants such as i, Ge, Sn, C, etc.
And can be adjusted. The electron cap of the second n-type layer 33
Rear concentration is 1 × 1018/cmThreeIf it is smaller than
And it is difficult to obtain a uniform light emission from the active layer.
1 × 10 twenty two/cmThreeIf it is larger than this, the crystallinity is poor.
And the performance of the light emitting element may be adversely affected.
The electron carrier concentration of the first n-type layer is also 1 × 1.
016/cmThreeIf it is smaller than this, light emission from the active layer itself will be obtained.
Kuku, again 1 × 1019/cmThreeLarger than 1μm
When a thick film is formed, the crystallinity tends to worsen.
This is because the output of the child may be reduced.

【0016】第二のn型層33の膜厚は通常10オング
ストローム〜1μmの膜厚で、さらに好ましくは50オ
ングストローム〜0.3μmの膜厚で形成することが好
ましい。10オングストロームよりも薄いと結晶性が不
十分となるので、電子を広げる作用が得られにくくなり
均一な活性層の発光が得られにくく、また1μmよりも
厚いと結晶欠陥が第二のn型層中に発生しやすくなり結
晶性が悪くなるので、発光素子の性能を悪化させる恐れ
がある。
The thickness of the second n-type layer 33 is usually 10 angstrom to 1 μm, and more preferably 50 angstrom to 0.3 μm. If the thickness is less than 10 angstroms, the crystallinity becomes insufficient, so that it is difficult to obtain an effect of spreading electrons, and it is difficult to obtain uniform light emission from the active layer. If the thickness is more than 1 μm, crystal defects are caused by the second n-type layer. Since it is likely to be generated inside and the crystallinity is deteriorated, the performance of the light emitting element may be deteriorated.

【0017】さらに、第二のn型層33はIn、Ga、
Alの組成比が異なる窒化ガリウム系化合物半導体を2
層以上積層した多層膜としてもよい。多層膜とする際の
各層の膜厚も10オングストローム〜1μm、さらに好
ましくは50オングストローム〜0.3μmの多層膜と
することが好ましい。この第二のn型層33を多層膜と
することにより、第一のn型層の結晶欠陥を多層膜層で
止めると共に、格子整合していない窒化ガリウム系化合
物半導体を積層した際の結晶中の歪を緩和して、結晶性
に優れた半導体層を成長できるので発光素子の出力を向
上させることができる。
Further, the second n-type layer 33 includes In, Ga,
Gallium nitride-based compound semiconductors having different Al composition ratios
It may be a multilayer film in which a plurality of layers are stacked. When forming a multilayer film, the thickness of each layer is also preferably 10 Å to 1 μm, more preferably 50 Å to 0.3 μm. By using the second n-type layer 33 as a multilayer film, crystal defects of the first n-type layer are stopped by the multilayer film layer, and the crystal in the case where a lattice-matched gallium nitride-based compound semiconductor is laminated. Can be relaxed and a semiconductor layer having excellent crystallinity can be grown, so that the output of the light emitting element can be improved.

【0018】次に、図5は本発明の他の実施例の発光素
子の構造を示す模式断面図である。これは第一のn型層
3に形成された負電極8と基板1との間に、第二のn型
層33が形成され、第二のn型層33と負電極8との距
離が接近していることを示している。本来であれば、電
極8をキャリア濃度の大きい第二のn型層33の表面に
形成できれば、例えば図4と比較して、電子がキャリア
濃度の大きい第二のn型層33を通って流れるので、発
光素子のVfを低下させることができる。しかしなが
ら、サファイアのような絶縁性基板を用いた場合、エッ
チングを第二のn型層33で止めることが生産技術上困
難であるため、図5のように第二のn型層33と負電極
8との距離を短くして、電極8から注入された電子がキ
ャリア濃度の大きい第二のn型層33を通ることによ
り、Vfを低下させることが可能となる。
FIG. 5 is a schematic sectional view showing the structure of a light emitting device according to another embodiment of the present invention. This is because a second n-type layer 33 is formed between the negative electrode 8 formed on the first n-type layer 3 and the substrate 1, and the distance between the second n-type layer 33 and the negative electrode 8 is reduced. Indicates approaching. Originally, if the electrode 8 can be formed on the surface of the second n-type layer 33 having a high carrier concentration, electrons flow through the second n-type layer 33 having a high carrier concentration as compared with, for example, FIG. Therefore, Vf of the light emitting element can be reduced. However, when an insulating substrate such as sapphire is used, it is difficult in terms of production technology to stop etching at the second n-type layer 33, and therefore, as shown in FIG. 8, the electron injected from the electrode 8 passes through the second n-type layer 33 having a high carrier concentration, so that Vf can be reduced.

【0019】さらに、サファイアを基板とし、そのサフ
ァイア基板の表面に少なくともn型層と、活性層と、p
型層とが順に積層されて、そのp型層と活性層とがエッ
チングされて露出されたn型層の表面に電極が形成され
る構造の発光素子においては、第二のn型層33を、n
型層の電極形成面と基板との間に形成することにより効
果的にVfを低下させることができる。なぜなら、Si
C、ZnO、Si等の導電性基板の表面に窒化ガリウム
系化合物半導体を成長した構造の発光素子であれば、n
型層の電極は基板側に形成でき、n層側の電子は活性層
に対し垂直に供給される。それに対し前記のようにサフ
ァイア基板を有する素子は、活性層に対し平行に供給さ
れる。垂直に供給される電子がn型層を移動する距離は
せいぜい数μmであるのに対し、平行に供給される電子
の移動距離は数十μm〜数百μmもある。従って電子が
平行に供給される素子において、電子が平行に供給され
る第二のn型層のキャリア濃度を大きくすることによ
り、電子が移動しやすくなるのでVfを低下させること
ができる。
Further, sapphire is used as a substrate, and at least an n-type layer, an active layer,
In a light emitting device having a structure in which a p-type layer and an active layer are sequentially stacked and an electrode is formed on a surface of an n-type layer exposed by etching the p-type layer and the active layer, a second n-type layer 33 is formed. , N
Vf can be effectively reduced by forming between the substrate and the electrode forming surface of the mold layer. Because Si
If the light emitting element has a structure in which a gallium nitride-based compound semiconductor is grown on the surface of a conductive substrate such as C, ZnO, or Si, n
The electrodes of the mold layer can be formed on the substrate side, and the electrons on the n-layer side are supplied perpendicular to the active layer. On the other hand, the device having the sapphire substrate as described above is supplied in parallel with the active layer. The distance that vertically supplied electrons travel through the n-type layer is at most a few μm, whereas the distance that parallel supplied electrons travel is several tens of μm to several hundred μm. Therefore, in an element to which electrons are supplied in parallel, by increasing the carrier concentration of the second n-type layer to which electrons are supplied in parallel, electrons can easily move, so that Vf can be reduced.

【0020】[0020]

【実施例】[実施例1]MOVPE法により、2インチ
φのサファイアよりなる基板1の表面に、GaNよりな
るバッファ層2を0.02μmの膜厚で成長させる。こ
のバッファ層2の表面に第一のn型層として、Siをド
ープした電子キャリア濃度5×10/18cm3のn型Ga
Nよりなるn型コンタクト層3を1μmの膜厚で成長さ
せる。
EXAMPLE 1 A buffer layer 2 of GaN is grown to a thickness of 0.02 μm on the surface of a substrate 1 of sapphire having a diameter of 2 inches by MOVPE. As the first n-type layer on the surface of the buffer layer 2, the electron carrier concentration is doped with Si 5 × 10/18 cm 3 of n-type Ga
An n-type contact layer 3 of N is grown to a thickness of 1 μm.

【0021】次にn型コンタクト層3の表面に第二のn
型層として、Siをドープした電子キャリア濃度1×1
20/cm3のn型In0.1Ga0.9N層を0.05μmの
膜厚で成長させる。
Next, a second n-type contact layer is formed on the surface of the n-type contact layer 3.
As the mold layer, an electron carrier concentration of 1 × 1 doped with Si
An n-type In0.1Ga0.9N layer of 0 20 / cm 3 is grown to a thickness of 0.05 μm.

【0022】次に同じくSiをドープした電子キャリア
濃度5×1018/cm3のGaNよりなるn型コンタクト
層3’を3μmの膜厚で成長させる。
Next, an n-type contact layer 3 'made of GaN doped with Si and having an electron carrier concentration of 5 × 10 18 / cm 3 is grown to a thickness of 3 μm.

【0023】n型コンタクト層3’の表面に、Siをド
ープした電子キャリア濃度1×10 18/cm3のn型Al
0.2Ga0.8Nよりなるn型クラッド層を0.1μmの膜
厚で成長させ、その上にSiとZnドープn型In0.1
Ga0.9Nよりなる活性層5を0.1μmと、Mgドー
プAl0.2Ga0.8Nよりなるp型クラッド層6と、Mg
ドープGaNよりなるp型コンタクト層7を順に成長さ
せて積層する。
Si is doped on the surface of the n-type contact layer 3 '.
Electron carrier concentration 1 × 10 18/cmThreeN-type Al
An n-type cladding layer of 0.2Ga0.8N is a 0.1 μm film
And grown on top of it with Si and Zn-doped n-type In0.1
The active layer 5 made of Ga0.9N has a thickness of 0.1 μm,
A p-type cladding layer 6 made of Al0.2Ga0.8N;
A p-type contact layer 7 made of doped GaN is sequentially grown.
And stack.

【0024】以上のようにして得たウェーハをアニーリ
ング装置に入れ、700℃でアニーリングして、p型ク
ラッド層6およびp型コンタクト層7をさらに低抵抗な
p型とした後、p型コンタクト層7の表面に所定の形状
のマスクを形成し、p型コンタクト層側からエッチング
を行い、n型コンタクト層3’を露出させる。
The wafer obtained as described above is placed in an annealing apparatus and annealed at 700 ° C. to make the p-type cladding layer 6 and the p-type contact layer 7 more low-resistance p-type. A mask having a predetermined shape is formed on the surface of the substrate 7, and etching is performed from the p-type contact layer side to expose the n-type contact layer 3 '.

【0025】後は常法に従い、p型コンタクト層7に正
電極9と、露出したn型コンタクト層3’に負電極8を
形成した後、チップ状に分離して、図5に示すような構
造の青色発光素子とした。この発光素子発光させたとこ
ろ、活性層5から主発光波長450nmの均一な面発光
が観測され、順方向電流(If)20mAにおいて、V
fは3.3Vであり、発光出力は1.8mWであった。
Thereafter, according to a conventional method, a positive electrode 9 is formed on the p-type contact layer 7 and a negative electrode 8 is formed on the exposed n-type contact layer 3 ', and then separated into chips, as shown in FIG. This was a blue light emitting device having a structure. When this light-emitting element was caused to emit light, uniform surface light emission with a main emission wavelength of 450 nm was observed from the active layer 5, and the V.V.
f was 3.3 V and the light emission output was 1.8 mW.

【0026】[実施例2]バッファ層2の表面に、第一
のn型層として電子キャリア濃度1×1018/cm 3のG
eドープGaNよりなるn型コンタクト層3を1μmの
膜厚で成長し、その表面に電子キャリア濃度5×1020
/cm3のGeドープIn0.2Ga0.8Nよりなる第二のn
型層を0.01μmの膜圧で成長させる。次に第二のn
型層33の表面に同じく電子キャリア濃度1×1018
cm3のGeドープn型GaNよりなるn型コンタクト層
3’を2μmと、電子キャリア濃度5×1020/cm3
Geドープn型In0.2Ga0.8Nよりなる第二のn型層
33’を0.01μmと、電子キャリア濃度1×1018
/cm3のGeドープn型GaN層とを1μmの膜厚で順
に成長させる。
Example 2 First surface of the buffer layer 2
Electron carrier concentration of 1 × 1018/cm ThreeG
The n-type contact layer 3 made of e-doped GaN is
It grows with a film thickness and the electron carrier concentration is 5 × 1020
/cmThreeSecond n made of Ge-doped In0.2Ga0.8N
The mold layer is grown at a film pressure of 0.01 μm. Then the second n
An electron carrier concentration of 1 × 1018/
cmThreeN-type contact layer made of Ge-doped n-type GaN
3 ′ is 2 μm and the electron carrier concentration is 5 × 1020/cmThreeof
Second n-type layer made of Ge-doped n-type In0.2Ga0.8N
33 ′ is 0.01 μm and the electron carrier concentration is 1 × 1018
/cmThreeGe-doped n-type GaN layer in order of 1 μm thickness.
To grow.

【0027】後は実施例1と同様にしてn型クラッド層
4、活性層5、p型クラッド層6、p型コンタクト層7
を積層して、図6に示すような構造の青色発光素子とし
た。但し、図6に示すように、p型コンタクト層7から
のエッチング深さはn型コンタクト層3’までとし、負
電極8はn型コンタクト層3’の表面に形成した。そし
て、この発光素子を発光させたところ、実施例1と同様
に活性層5からは均一な面発光が観測され、If20m
AにおいてVf3.2V、発光出力は2.0mWであっ
た。
Thereafter, the n-type cladding layer 4, the active layer 5, the p-type cladding layer 6, and the p-type contact layer 7 are formed in the same manner as in the first embodiment.
Were laminated to obtain a blue light emitting device having a structure as shown in FIG. However, as shown in FIG. 6, the etching depth from the p-type contact layer 7 was up to the n-type contact layer 3 ', and the negative electrode 8 was formed on the surface of the n-type contact layer 3'. Then, when this light emitting device was caused to emit light, uniform surface light emission was observed from the active layer 5 as in Example 1, and If20m
In A, the Vf was 3.2 V and the light emission output was 2.0 mW.

【0028】[実施例3]バッファ層2の表面に、第一
のn型層として電子キャリア濃度1×1018/cm 3のS
iドープAl0.1Ga0.9Nよりなるn型コンタクト層3
を3μmの膜厚で成長させる。次にその表面に、電子キ
ャリア濃度1×1020/cm3のSiドープIn0.2Ga0.
8Nを0.01μmと、電子キャリア濃度1×1020/c
m3のSiドープAl0.05Ga0.95Nを0.01μmと
を、それぞれ交互に5層づつ積層した第二のn型層33
を成長させる。
Example 3 First surface of the buffer layer 2
Electron carrier concentration of 1 × 1018/cm ThreeS
n-type contact layer 3 made of i-doped Al0.1Ga0.9N
Is grown to a thickness of 3 μm. Next, an electronic key is placed on the surface.
Carrier concentration 1 × 1020/cmThreeSi-doped In0.2Ga0.
8N to 0.01 μm, electron carrier concentration 1 × 1020/ C
mThreeOf Si-doped Al0.05Ga0.95N to 0.01 μm
N-type layers 33 in which five layers are alternately laminated, respectively.
Grow.

【0029】次に第二のn型層33の表面に、SiとZ
nドープn型In0.1Ga0.9Nよりなる活性層5を0.
1μmと、MgドープAl0.2Ga0.8Nよりなるp型ク
ラッド層6と、MgドープGaNよりなるp型コンタク
ト層7を順に成長させて積層する。つまり、実施例1の
n型クラッド層4を成長させない他は同様にして活性層
5、p型クラッド層6、p型コンタクト層7を成長させ
る。後は実施例1と同様にしてエッチングを行い、図3
に示すような構造の発光素子とした。この発光素子を発
光させたところ同様に活性層5からは均一な面発光が得
られ、If20mAにおいて、Vf3.5Vであり、発
光出力は2.2mWであった。
Next, on the surface of the second n-type layer 33, Si and Z
The active layer 5 made of n-doped n-type In0.1Ga0.9N has a thickness of 0.1 mm.
1 μm, a p-type cladding layer 6 made of Mg-doped Al0.2Ga0.8N, and a p-type contact layer 7 made of Mg-doped GaN are sequentially grown and laminated. That is, the active layer 5, the p-type cladding layer 6, and the p-type contact layer 7 are grown in the same manner except that the n-type cladding layer 4 of the first embodiment is not grown. Thereafter, etching is performed in the same manner as in Example 1, and FIG.
A light emitting device having the structure shown in FIG. When this light emitting device was caused to emit light, uniform surface light emission was similarly obtained from the active layer 5, and at If mA of 20 mA, Vf was 3.5 V and light emission output was 2.2 mW.

【0030】[比較例1]実施例1において、第二のn
型層33を成長させず、GaNコンタクト層を連続的に
4μmの膜厚で成長させる他は同様にして、図1に示す
ような構造の発光素子とした。この発光素子の活性層
は、図2に示すように正電極9と、負電極8との間で強
く発光し、均一な発光を得ることができなかった。また
If20mAにおいて、Vfは3.6V、発光出力1.
2mWであった。
[Comparative Example 1] In Example 1, the second n
A light emitting device having a structure as shown in FIG. 1 was obtained in the same manner except that the GaN contact layer was continuously grown to a thickness of 4 μm without growing the mold layer 33. As shown in FIG. 2, the active layer of the light emitting device emitted strong light between the positive electrode 9 and the negative electrode 8, and could not obtain uniform light emission. At If 20 mA, Vf is 3.6 V, and light emission output is 1.V.
It was 2 mW.

【0031】[0031]

【発明の効果】以上説明したように、本発明の発光素子
は全て活性層から均一な面発光を得て発光出力の向上し
た素子を実現できる。また、実施例1、2のように第二
のn型層33を負電極8と、基板1との間に形成した発
光素子は、明らかにVfが低下している。また実施例3
は第二のn型層が基板と負電極との間にないので、Vf
は低下に関しては影響が少ないが、第二のn型層を多層
膜としているので、活性層、p型クラッド層、p型コン
タクト層の結晶欠陥が少なくなり、発光出力が向上して
いる。このように本発明の発光素子はキャリア濃度の大
きい第二のn型層が第一のn型層に接して活性層側に形
成されていることにより、均一な面発光を得て、発光出
力の向上した素子を実現することができる。
As described above, all of the light-emitting devices of the present invention can obtain uniform surface light emission from the active layer and can realize a device with improved light-emission output. Further, in the light-emitting element in which the second n-type layer 33 is formed between the negative electrode 8 and the substrate 1 as in Examples 1 and 2, Vf is clearly reduced. Example 3
Is Vf because there is no second n-type layer between the substrate and the negative electrode.
Has little effect on the decrease, but since the second n-type layer is a multilayer film, crystal defects in the active layer, the p-type cladding layer, and the p-type contact layer are reduced, and the light emission output is improved. As described above, the light-emitting element of the present invention has a uniform surface emission and a light-emission output because the second n-type layer having a high carrier concentration is formed on the active layer side in contact with the first n-type layer. Can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 従来の発光素子の構造を示す模式断面図。FIG. 1 is a schematic cross-sectional view illustrating a structure of a conventional light-emitting element.

【図2】 図1の発光素子の発光状態を示す模式断面
図。
FIG. 2 is a schematic cross-sectional view showing a light emitting state of the light emitting device of FIG.

【図3】 本発明の一実施例の発光素子の構造を示す模
式断面図。
FIG. 3 is a schematic cross-sectional view illustrating a structure of a light-emitting element according to one embodiment of the present invention.

【図4】 図3の発光素子の発光状態を示す模式断面
図。
FIG. 4 is a schematic cross-sectional view showing a light emitting state of the light emitting device of FIG.

【図5】 本発明の他の実施例の発光素子の発光状態を
示す模式断面図。
FIG. 5 is a schematic sectional view showing a light emitting state of a light emitting device according to another embodiment of the present invention.

【図6】 本発明の他の実施例の発光素子の構造を示す
模式断面図。
FIG. 6 is a schematic cross-sectional view illustrating a structure of a light emitting device according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1・・・・・基板 2・・・・・バッファ
層 4・・・・・n型クラッド層 5・・・・・活性層 6・・・・・p型クラッド層 7・・・・・p型コン
タクト層 8・・・・・負電極 9・・・・・正電極 3、3'、3”・・・・・第一のn型層(n型コンタク
ト層) 33、33' ・・・・・第二のn型層
1 ... substrate 2 ... buffer layer 4 ... n-type cladding layer 5 ... active layer 6 ... p-type cladding layer 7 ... p ... Negative electrode 9... Positive electrode 3, 3 ′, 3 ″... First n-type layer (n-type contact layer) 33, 33 ′. ..Second n-type layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 少なくともn型層が活性層と基板との間
に形成された構造を備える窒化ガリウム系化合物半導体
発光素子において、前記n型層は基板側に形成された第
一のn型層と、その第一のn型層に接して活性層側に形
成されて、第一のn型層よりも電子キャリア濃度が大き
い第二のn型層とを含み、その第二のn型層が少なくと
もインジウムを含む窒化ガリウム系化合物半導体(In
XAlYGa1-X-YN、0<X、0≦Y、X+Y≦1)よりな
ることを特徴とする窒化ガリウム系化合物半導体発光素
子。
1. A gallium nitride-based compound semiconductor light emitting device having a structure in which at least an n-type layer is formed between an active layer and a substrate, wherein the n-type layer is a first n-type layer formed on the substrate side And a second n-type layer formed on the active layer side in contact with the first n-type layer and having a higher electron carrier concentration than the first n-type layer. Is a gallium nitride-based compound semiconductor containing at least indium (In
A gallium nitride-based compound semiconductor light emitting device comprising: X Al Y Ga 1-XY N, 0 <X, 0 ≦ Y, X + Y ≦ 1).
【請求項2】 前記第二のn型層は互いに組成の異なる
窒化ガリウム系化合物半導体層が2層以上積層された多
層膜よりなることを特徴とする請求項1に記載の窒化ガ
リウム系化合物半導体発光素子。
2. The gallium nitride-based compound semiconductor according to claim 1, wherein the second n-type layer comprises a multilayer film in which two or more gallium nitride-based compound semiconductor layers having different compositions are stacked. Light emitting element.
JP32640498A 1994-07-06 1998-11-17 Gallium nitride based compound semiconductor light emitting device Expired - Lifetime JP3484997B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32640498A JP3484997B2 (en) 1994-07-06 1998-11-17 Gallium nitride based compound semiconductor light emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP15470894A JP2890390B2 (en) 1994-07-06 1994-07-06 Gallium nitride based compound semiconductor light emitting device
JP32640498A JP3484997B2 (en) 1994-07-06 1998-11-17 Gallium nitride based compound semiconductor light emitting device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP15470894A Division JP2890390B2 (en) 1994-07-06 1994-07-06 Gallium nitride based compound semiconductor light emitting device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002118852A Division JP3956753B2 (en) 2002-04-22 2002-04-22 Gallium nitride compound semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPH11220172A true JPH11220172A (en) 1999-08-10
JP3484997B2 JP3484997B2 (en) 2004-01-06

Family

ID=30445408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32640498A Expired - Lifetime JP3484997B2 (en) 1994-07-06 1998-11-17 Gallium nitride based compound semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP3484997B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001210863A (en) * 1999-11-17 2001-08-03 Lumileds Lighting Us Llc Semiconductor device having selectively doped iii-v nitride layers
JP2006013472A (en) * 2004-05-24 2006-01-12 Showa Denko Kk Iii group nitride semiconductor light emitting device
JP2006032933A (en) * 2004-06-18 2006-02-02 Showa Denko Kk Group iii nitride semiconductor light-emitting device
JP2006080378A (en) * 2004-09-10 2006-03-23 Toshiba Corp Semiconductor substrate, semiconductor element, method for manufacturing semiconductor element, and method for manufacturing semiconductor substrate
JP2009049422A (en) * 1999-11-16 2009-03-05 Panasonic Corp Semiconductor structure employing group iii nitride material system with inhibited phase separation, and photodetector
JP2009135532A (en) * 2009-03-13 2009-06-18 Toshiba Corp Semiconductor substrate and semiconductor device, and method of manufacturing semiconductor device and method of manufacturing semiconductor substrate
US7855386B2 (en) 2004-04-27 2010-12-21 Showa Denko K.K. N-type group III nitride semiconductor layered structure

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009049422A (en) * 1999-11-16 2009-03-05 Panasonic Corp Semiconductor structure employing group iii nitride material system with inhibited phase separation, and photodetector
JP2001210863A (en) * 1999-11-17 2001-08-03 Lumileds Lighting Us Llc Semiconductor device having selectively doped iii-v nitride layers
US7855386B2 (en) 2004-04-27 2010-12-21 Showa Denko K.K. N-type group III nitride semiconductor layered structure
JP2006013472A (en) * 2004-05-24 2006-01-12 Showa Denko Kk Iii group nitride semiconductor light emitting device
JP2006032933A (en) * 2004-06-18 2006-02-02 Showa Denko Kk Group iii nitride semiconductor light-emitting device
JP2006080378A (en) * 2004-09-10 2006-03-23 Toshiba Corp Semiconductor substrate, semiconductor element, method for manufacturing semiconductor element, and method for manufacturing semiconductor substrate
JP2009135532A (en) * 2009-03-13 2009-06-18 Toshiba Corp Semiconductor substrate and semiconductor device, and method of manufacturing semiconductor device and method of manufacturing semiconductor substrate

Also Published As

Publication number Publication date
JP3484997B2 (en) 2004-01-06

Similar Documents

Publication Publication Date Title
JP2890390B2 (en) Gallium nitride based compound semiconductor light emitting device
JP2785254B2 (en) Gallium nitride based compound semiconductor light emitting device
JP2778405B2 (en) Gallium nitride based compound semiconductor light emitting device
JP4954536B2 (en) Nitride semiconductor light emitting device
JP2890396B2 (en) Nitride semiconductor light emitting device
JP3250438B2 (en) Nitride semiconductor light emitting device
US8692228B2 (en) Semiconductor light emitting device and wafer
JP3551101B2 (en) Nitride semiconductor device
JP3063756B1 (en) Nitride semiconductor device
JP3890930B2 (en) Nitride semiconductor light emitting device
JP3744211B2 (en) Nitride semiconductor device
JP2000244013A (en) Nitride semiconductor element
JP3620292B2 (en) Nitride semiconductor device
JPH11191638A (en) Nitride semiconductor device
JP2918139B2 (en) Gallium nitride based compound semiconductor light emitting device
JP3484997B2 (en) Gallium nitride based compound semiconductor light emitting device
JPH10144960A (en) Method for manufacturing p-type nitride semiconductor and nitride semiconductor element
JP3763701B2 (en) Gallium nitride semiconductor light emitting device
JP3216596B2 (en) Gallium nitride based compound semiconductor light emitting device
JP3972943B2 (en) Gallium nitride compound semiconductor light emitting device
JP3956753B2 (en) Gallium nitride compound semiconductor light emitting device
JP3267250B2 (en) Nitride semiconductor light emitting device
KR19990014195A (en) The nitride semiconductor device
JPH06260681A (en) Gallium nitride compound semiconductor light-emitting element
JP3025760B2 (en) Gallium nitride based semiconductor laser device and method of manufacturing the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091024

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091024

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091024

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101024

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101024

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term