JP3972943B2 - Gallium nitride compound semiconductor light emitting device - Google Patents

Gallium nitride compound semiconductor light emitting device Download PDF

Info

Publication number
JP3972943B2
JP3972943B2 JP2005209227A JP2005209227A JP3972943B2 JP 3972943 B2 JP3972943 B2 JP 3972943B2 JP 2005209227 A JP2005209227 A JP 2005209227A JP 2005209227 A JP2005209227 A JP 2005209227A JP 3972943 B2 JP3972943 B2 JP 3972943B2
Authority
JP
Japan
Prior art keywords
layer
type layer
type
light emitting
gallium nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2005209227A
Other languages
Japanese (ja)
Other versions
JP2005317995A (en
Inventor
修二 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=35445021&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3972943(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2005209227A priority Critical patent/JP3972943B2/en
Publication of JP2005317995A publication Critical patent/JP2005317995A/en
Application granted granted Critical
Publication of JP3972943B2 publication Critical patent/JP3972943B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明はレーザダイオード(LD)、発光ダイオード(LED)等の発光素子に使用される窒化ガリウム系化合物半導体(InAlGa1−a−bN、0≦a、0≦b、a+b≦1)よりなる発光素子に関する。 The present invention relates to a gallium nitride-based compound semiconductor (In a Al b Ga 1-ab N, 0 ≦ a, 0 ≦ b, a + b ≦) used in a light emitting element such as a laser diode (LD) or a light emitting diode (LED). 1) It is related with the light emitting element which consists of.

現在、実用化されている光度1cdの青色LEDは窒化ガリウム系化合物半導体(InAlGa1−a−bN、0≦a、0≦b、a+b≦1)よりなり、図1に示す構造を有している。それは、サファイアよりなる基板1の表面に、GaNよりなるバッファ層2と、GaNよりなるn型層3と、AlGaNよりなるn型クラッド層4と、InGaNよりなる活性層5と、AlGaNよりなるp型クラッド層6と、GaNよりなるp型コンタクト層7とが順に積層されたダブルへテロ構造である。この青色LEDは順方向電流(If)20mAにおいて、順方向電圧(Vf)3.6V、ピーク発光波長450nm、光度1cd、発光出力1.2mWと、青色LEDでは過去最高の性能を示している。 A blue LED having a light intensity of 1 cd that is currently in practical use is composed of a gallium nitride compound semiconductor (In a Al b Ga 1-ab N, 0 ≦ a, 0 ≦ b, a + b ≦ 1), and is shown in FIG. It has a structure. That is, on the surface of a substrate 1 made of sapphire, a buffer layer 2 made of GaN, an n-type layer 3 made of GaN, an n-type cladding layer 4 made of AlGaN, an active layer 5 made of InGaN, and a p-type made of AlGaN. This is a double hetero structure in which a type cladding layer 6 and a p-type contact layer 7 made of GaN are sequentially laminated. This blue LED shows the highest performance of a blue LED, with a forward current (If) of 20 mA, a forward voltage (Vf) of 3.6 V, a peak emission wavelength of 450 nm, a luminous intensity of 1 cd, and an emission output of 1.2 mW.

前記構造のLEDにおいて、基板1はサファイアの他にZnO、SiC、GaAs、Si等の材料が使用可能であるが、一般的にはサファイアが用いられる。バッファ層2はGaNの他、GaAlN、AlN等が形成される。n型コンタクト層3、n型クラッド層4は窒化ガリウム系化合物半導体にSi、Ge、Sn、C等のn型ドーパントをドープした窒化ガリウム系化合物半導体で形成される。また、n型コンタクト層3、n型クラッド層4は、このように二層に分けなくても単一のn型層として、クラッド層およびコンタクト層として作用させてもよい(つまり、いずれかの層を省略できる)。活性層5は少なくともインジウムを含む窒化ガリウム系化合物半導体よりなり、ノンドープ、Zn、Mg、Cd、Be等のp型ドーパント及び/またはn型ドーパントがドープされている。p型クラッド層6、p型コンタクト層7は窒化ガリウム系化合物半導体にp型ドーパントをドープした後、400℃以上でアニーリングすることにより、p型とされている。また、p型クラッド層6、p型コンタクト層7は、単一のp型層として、クラッド層およびコンタクト層として作用させてもよい(n層と同様にいずれかの層を省略可能)。   In the LED having the structure described above, the substrate 1 can be made of materials such as ZnO, SiC, GaAs, and Si in addition to sapphire, but sapphire is generally used. In addition to GaN, the buffer layer 2 is formed of GaAlN, AlN, or the like. The n-type contact layer 3 and the n-type cladding layer 4 are formed of a gallium nitride compound semiconductor obtained by doping a gallium nitride compound semiconductor with an n-type dopant such as Si, Ge, Sn, or C. Further, the n-type contact layer 3 and the n-type clad layer 4 may be made to act as a clad layer and a contact layer as a single n-type layer without being divided into two layers in this way (that is, any one of them) Layer can be omitted). The active layer 5 is made of a gallium nitride compound semiconductor containing at least indium, and is doped with a non-doped, p-type dopant such as Zn, Mg, Cd, or Be and / or an n-type dopant. The p-type cladding layer 6 and the p-type contact layer 7 are made p-type by doping a gallium nitride compound semiconductor with a p-type dopant and then annealing at 400 ° C. or higher. Further, the p-type cladding layer 6 and the p-type contact layer 7 may act as a clad layer and a contact layer as a single p-type layer (any layer may be omitted as in the case of the n layer).

窒化ガリウム系化合物半導体の場合、他のGaAs、GaP、AlInGaP等のIII−V族化合物半導体に比べて、一般に電流が均一に広がりにくいという性質を有している。そこで図1のような構造のLED素子を実現した場合、n層から活性層に供給される電子の流れが、抵抗の低い箇所に集中してしまうという問題がある。図2は電流の集中による活性層の発光を模式的に示している。これは、n型コンタクト層3の負電極8より供給された電子が、図2の矢印に示すように、p型コンタクト層7の正電極9と、n型コンタクト層3の負電極8との間の抵抗が低くなるように、いちばん近い距離を流れることにより、活性層5が網掛け部で示すように部分的に強く発光していることを表している。このように、電子がn型コンタクト層3に均一に広がらないと、活性層5から均一な発光が得られないという欠点がある。   In the case of a gallium nitride-based compound semiconductor, the current generally has a property that it is difficult to spread uniformly compared to other III-V group compound semiconductors such as GaAs, GaP, and AlInGaP. Therefore, when the LED element having the structure as shown in FIG. 1 is realized, there is a problem that the flow of electrons supplied from the n layer to the active layer is concentrated on a portion having a low resistance. FIG. 2 schematically shows light emission of the active layer due to current concentration. This is because electrons supplied from the negative electrode 8 of the n-type contact layer 3 are formed between the positive electrode 9 of the p-type contact layer 7 and the negative electrode 8 of the n-type contact layer 3 as shown by arrows in FIG. It indicates that the active layer 5 emits light strongly as shown by the shaded portion by flowing the closest distance so that the resistance between them is low. As described above, there is a drawback that uniform light emission cannot be obtained from the active layer 5 unless the electrons spread uniformly in the n-type contact layer 3.

また、上記構造のLEDはVf3.6Vと、従来のMIS構造の窒化ガリウム系化合物半導体よりなる青色LEDに比べて、5V以上Vfを低下させた。これはp−n接合による発光を示すものであるが、Vfについてもまだ改良する余地があり、さらなるVfの低下が望まれている。   Further, the LED having the above structure has Vf of 3.6 V, which is 5 V or more lower than the blue LED made of the conventional MIS structure gallium nitride compound semiconductor. This indicates light emission by the pn junction, but there is still room for improvement with respect to Vf, and further reduction of Vf is desired.

従って本発明はこのような事情を鑑みてなされてものであり、その目的とするところは、ダブルへテロ、シングルへテロ等、少なくともn型層が活性層と基板との間に形成された構造を備える窒化ガリウム系化合物半導体発光素子において、まず第一に活性層より均一な発光を得て、素子の光度、出力を向上させることにあり、第二にVfをさらに低下させて、発光効率を向上させることにある。   Accordingly, the present invention has been made in view of such circumstances, and its object is to have a structure in which at least an n-type layer is formed between the active layer and the substrate, such as a double hetero, a single hetero, etc. In the gallium nitride-based compound semiconductor light-emitting device, the first is to obtain uniform light emission from the active layer, to improve the luminous intensity and output of the device, and the second is to further reduce the Vf, thereby improving the luminous efficiency. It is to improve.

我々はn型層にさらにキャリア濃度の高い層を介在させることにより、上記問題
が解決できることを見いだした。即ち、本発明の窒化ガリウム系化合物半導体発光素子は、基板上にn型層、活性層、p型層が積層された構造備え、p型層上と、n型層が一部露出された表面に、それぞれ電極が設けられた窒化ガリウム系化合物半導体発光素子であって、前記n型層中に、第一のn型層と、第一のn型層に接して、第一のn型層よりも電子キャリア濃度が大きい第二のn型層と、を有すると共に、前記露出されたn型層表面に形成された電極から供給された電子が、前記第二のn型層中で平行に供給若しくは移動する窒化ガリウム系化合物半導体発光素子。

We have found that the above problem can be solved by interposing a layer having a higher carrier concentration in the n-type layer. That is, the gallium nitride compound semiconductor light emitting device of the present invention has a structure in which an n-type layer, an active layer, and a p-type layer are stacked on a substrate, and a surface on which the n-type layer is partially exposed. And a first n-type layer in contact with the first n-type layer and the first n-type layer in the n-type layer. And an electron supplied from an electrode formed on the exposed n-type layer surface in parallel in the second n-type layer. A gallium nitride compound semiconductor light-emitting element that is supplied or moved.

以上説明したように、本発明の発光素子は全て活性層から均一な面発光を得て発光出力の向上した素子を実現できる。また、実施例1、2のように第二のn型層33を負電極8と、基板1との間に形成した発光素子は、明らかにVfが低下している。また実施例3は第二のn型層が基板と負電極との間にないので、Vfは低下に関しては影響が少ないが、第二のn型層を多層膜としているので、活性層、p型クラッド層、p型コンタクト層の結晶欠陥が少なくなり、発光出力が向上している。このように本発明の発光素子はキャリア濃度の大きい第二のn型層が第一のn型層に接して活性層側に形成されていることにより、均一な面発光を得て、発光出力の向上した素子を実現することができる。   As described above, all the light-emitting elements of the present invention can obtain a uniform light emission from the active layer to improve the light emission output. In addition, in the light emitting element in which the second n-type layer 33 is formed between the negative electrode 8 and the substrate 1 as in Examples 1 and 2, Vf is clearly reduced. In Example 3, since the second n-type layer is not between the substrate and the negative electrode, Vf has little influence on the decrease, but since the second n-type layer is a multilayer film, the active layer, p The crystal defects in the type cladding layer and the p-type contact layer are reduced, and the light emission output is improved. As described above, the light emitting device of the present invention has the second n-type layer having a high carrier concentration formed on the active layer side in contact with the first n-type layer, thereby obtaining uniform surface light emission and light emission output. An improved element can be realized.

本発明の一実施例の発光素子の構造を図3に示す。基本的な構造は図1に示す発光素子とほぼ同じであるが、第一のn型層であるn型コンタクト層3に接して、活性層5側にその第一のn型層3よりも電子キャリア濃度が大きい新たな第二のn型層33を形成している。基板1、バッファ層2、n型コンタクト層3、n型クラッド層4、活性層5、p型クラッド層6、p型コンタクト層7等は窒化ガリウム系化合物半導体で形成され、n型コンタクト層3とn型クラッド層4とを単一のn型層とすることもでき、またp型クラッド層6とp型コンタクト層7とを単一のp型層とすることもできる。   FIG. 3 shows the structure of a light emitting device according to an embodiment of the present invention. The basic structure is almost the same as that of the light emitting device shown in FIG. 1, but in contact with the n-type contact layer 3 which is the first n-type layer, the active layer 5 side is closer to the first n-type layer 3 than the first n-type layer 3. A new second n-type layer 33 having a high electron carrier concentration is formed. The substrate 1, the buffer layer 2, the n-type contact layer 3, the n-type cladding layer 4, the active layer 5, the p-type cladding layer 6, the p-type contact layer 7, etc. are formed of a gallium nitride compound semiconductor, and the n-type contact layer 3 And the n-type cladding layer 4 may be a single n-type layer, and the p-type cladding layer 6 and the p-type contact layer 7 may be a single p-type layer.

本発明の発光素子において、結晶性に優れた窒化ガリウム系化合物半導体層を成長させるには、基板1にサファイアを好ましく用い、バッファ層2にGaN、またはAlNを成長させ、10オングストローム〜0.5μmの膜厚で形成することが好ましい。   In the light emitting device of the present invention, in order to grow a gallium nitride-based compound semiconductor layer having excellent crystallinity, sapphire is preferably used for the substrate 1 and GaN or AlN is grown on the buffer layer 2 so that the thickness ranges from 10 Å to 0.5 μm. It is preferable to form with the film thickness.

活性層5と基板1との間に形成する第一のn型層は、n型コンタクト層3としては通常1μm〜5μmの膜厚で形成し、その表面にn型クラッド層4を形成する場合には50オングストローム〜1μmの膜厚で成長する。但し、前記のように、このn型クラッド層4は特に形成しなくてもよい。窒化ガリウム系化合物半導体としてはGaN、AlGaNが好ましく、最も好ましくはGaNとする。なぜならGaN、AlGaNはノンドープあるいはn型ドーパントをドープして容易にn型となり、ドーパントにより電子キャリア濃度を制御することが容易である。さらにAlGaNよりも単一層で結晶性のよい厚膜を形成するにはGaNが成長しやすい。例えば、サファイアを基板としてn型層とp型層とを順に積層した素子を実現した場合、n型コンタクト層3の電極8を設けるため、p型層をエッチングにより取り除き、n型コンタクト層3を露出させる必要があるが、単一層で厚膜が形成できると、エッチング深さの遊度があるので、実際の素子を実現する際に非常に好都合である。   The first n-type layer formed between the active layer 5 and the substrate 1 is usually formed with a thickness of 1 μm to 5 μm as the n-type contact layer 3, and the n-type cladding layer 4 is formed on the surface thereof. The film is grown to a thickness of 50 Å to 1 μm. However, as described above, the n-type cladding layer 4 need not be formed. As the gallium nitride compound semiconductor, GaN and AlGaN are preferable, and GaN is most preferable. This is because GaN and AlGaN easily become n-type by non-doping or doping with an n-type dopant, and the electron carrier concentration can be easily controlled by the dopant. Furthermore, GaN tends to grow in order to form a thick film having a single layer and better crystallinity than AlGaN. For example, when an element in which an n-type layer and a p-type layer are sequentially stacked using sapphire as a substrate is realized, the electrode 8 of the n-type contact layer 3 is provided, so that the p-type layer is removed by etching and the n-type contact layer 3 is removed. Although it is necessary to expose it, if a thick film can be formed with a single layer, there is a degree of freedom in etching depth, which is very convenient in realizing an actual device.

次に、活性層5は、通常50オングストローム〜0.5μmの膜厚で成長し、InGaNとすることが好ましい。InGaNはインジウムの混晶比によりバンド間発光を利用して発光素子の発光波長を紫〜緑色まで容易に変化させることができ、さらにn型、p型のドーパントをドープして発光中心とすることも容易である。さらにInのGaに対する混晶比(In/Ga)は0.5以下であることが好ましい。0.5より多いInGaNは結晶性がよくないので実用的な発光素子を得ることが困難となる傾向にある。最も優れた活性層としてはn型ドーパントと、p型ドーパントとがドープされてn型とされ、Gaに対するIn混晶比が0.5以下のInGaNを活性層とすることが好ましい。   Next, the active layer 5 is preferably grown to a thickness of usually 50 Å to 0.5 μm, and is preferably InGaN. InGaN can easily change the emission wavelength of the light-emitting element from purple to green using interband light emission based on the mixed crystal ratio of indium, and can also be doped with n-type and p-type dopants to be the emission center. Is also easy. Furthermore, the mixed crystal ratio (In / Ga) of In to Ga is preferably 0.5 or less. Since more than 0.5 InGaN has poor crystallinity, it tends to be difficult to obtain a practical light emitting device. As the most excellent active layer, an n-type dopant and a p-type dopant are doped to form an n-type, and InGaN having an In mixed crystal ratio of 0.5 or less to Ga is preferably used as the active layer.

活性層5の上に成長するp型層もGaN、AlGaNが好ましく、p型クラッド層6は50オングストローム〜1μmの膜厚で形成し、pコンタクト層7は50オングストローム〜5μmの膜厚で成長する。但し、このp型クラッド層6は特に形成させなくてもよい。窒化ガリウム系化合物半導体としてはGaN、AlGaNを好ましく形成する、これらは単一層で結晶性のよい厚膜が成長しやすく、またp型ドーパントをドープして400℃以上でアニールすると容易にp型となる傾向にある。   The p-type layer grown on the active layer 5 is also preferably GaN or AlGaN, the p-type cladding layer 6 is formed with a thickness of 50 angstroms to 1 μm, and the p contact layer 7 is grown with a thickness of 50 angstroms to 5 μm. . However, the p-type cladding layer 6 need not be particularly formed. As the gallium nitride compound semiconductor, GaN and AlGaN are preferably formed. These are easy to grow a thick film with a single layer and good crystallinity. Further, when doped with a p-type dopant and annealed at 400 ° C. or higher, the p-type is easily formed. Tend to be.

[作用]
図4に、図3の発光素子における第一のn型層であるn型コンタクト層3から、活性層5に供給される電子の流れを模式的に示す。これは、n型コンタクト層3から供給される電子が、矢印に示すように電子キャリア濃度の大きい第二のn型層33中を通って均一に広がることにより活性層5を均一に発光させることを示している。このように第一のn型層に接して、その第一のn型層よりも電子キャリア濃度の大きい第二のn型層33を活性層側に形成すると、電子が第二のn型層33中に均一に広がるので、活性層5から均一な面発光が得られる。
[Action]
FIG. 4 schematically shows the flow of electrons supplied from the n-type contact layer 3, which is the first n-type layer in the light emitting device of FIG. 3, to the active layer 5. This is because the electrons supplied from the n-type contact layer 3 uniformly spread through the second n-type layer 33 having a high electron carrier concentration as indicated by the arrows, thereby causing the active layer 5 to emit light uniformly. Is shown. When the second n-type layer 33 having a higher electron carrier concentration than the first n-type layer is formed on the active layer side in contact with the first n-type layer in this way, electrons are transferred to the second n-type layer. Since the active layer 5 spreads uniformly in the active layer 5, uniform surface emission can be obtained.

第二のn型層33はインジウムを含むInAlGa1−X−YN(0<X、Y≦0)とすることが好ましく、特に好ましくはInのGaに対する混晶比(In/Ga)が0.5以下のInGaNとするのがよい。なぜなら、Inを含む窒化ガリウム系化合物半導体の方が、含まないものよりも電子キャリア濃度の大きい層を形成しやすく、またInを含む結晶は、含まない結晶に比べて結晶が柔らかく、転位などの結晶欠陥を吸収しやすい。そのため基板上にAlGaN、GaN等の格子整合していない第一のn型層3を成長させた場合、その第一のn型層3の結晶欠陥を第二のn型層33で緩和することが可能であるからである。 The second n-type layer 33 is preferably In X Al Y Ga 1- XYN (0 <X, Y ≦ 0) containing indium, and particularly preferably a mixed crystal ratio of In to Ga (In / Ga) is preferably 0.5 or less InGaN. This is because the gallium nitride compound semiconductor containing In is easier to form a layer having a higher electron carrier concentration than the one containing no In, and the crystal containing In is softer than the crystal containing no In, such as dislocation. Easy to absorb crystal defects. Therefore, when the first n-type layer 3 such as AlGaN, GaN or the like that is not lattice-matched is grown on the substrate, the second n-type layer 33 relaxes the crystal defects of the first n-type layer 3. This is because it is possible.

第二のn型層33の電子キャリア濃度は1×1018/cm〜1×1022/cmの範囲に調整することが好ましく、また第二のn型層33よりも電子キャリア濃度の小さい第一のn型層は1×1016/cm〜1×1019/cmの範囲に調整することが好ましい。これらの電子キャリア濃度は、前記のように第二のn型層にSi、Ge、Sn、C等のn型ドーパントをドープすることにより調整可能である。第二のn型層33の電子キャリア濃度が1×1018/cmよりも小さいと、電子を広げる作用が得られにくくなり均一な活性層の発光が得られにくく、1×1022/cmよりも大きいと結晶性が悪くなり、発光素子の性能に悪影響を及ぼす恐れがある。また第一のn型層についても電子キャリア濃度が1×1016/cmよりも小さいと活性層自体の発光が得られにくく、また1×1019/cmよりも大きいと1μm以上の厚膜を形成した際に結晶性が悪くなる傾向にあり、素子の出力を低下させる恐れがあるからである。 The electron carrier concentration of the second n-type layer 33 is preferably adjusted to a range of 1 × 10 18 / cm 3 to 1 × 10 22 / cm 3 , and the electron carrier concentration is higher than that of the second n-type layer 33. The small first n-type layer is preferably adjusted to a range of 1 × 10 16 / cm 3 to 1 × 10 19 / cm 3 . These electron carrier concentrations can be adjusted by doping the second n-type layer with an n-type dopant such as Si, Ge, Sn, or C as described above. If the electron carrier concentration of the second n-type layer 33 is lower than 1 × 10 18 / cm 3, it is difficult to obtain the function of spreading electrons, and it is difficult to obtain uniform light emission of the active layer, 1 × 10 22 / cm. When it is larger than 3 , the crystallinity is deteriorated, and the performance of the light emitting element may be adversely affected. The first n-type layer also has a thickness of 1 μm or more when the electron carrier concentration is less than 1 × 10 16 / cm 3, and it is difficult to obtain light emission of the active layer itself, and when it is greater than 1 × 10 19 / cm 3. This is because the crystallinity tends to deteriorate when the film is formed, and the output of the element may be reduced.

第二のn型層33の膜厚は通常10オングストローム〜1μmの膜厚で、さらに好ましくは50オングストローム〜0.3μmの膜厚で形成することが好ましい。10オングストロームよりも薄いと結晶性が不十分となるので、電子を広げる作用が得られにくくなり均一な活性層の発光が得られにくく、また1μmよりも厚いと結晶欠陥が第二のn型層中に発生しやすくなり結晶性が悪くなるので、発光素子の性能を悪化させる恐れがある。   The film thickness of the second n-type layer 33 is usually 10 angstroms to 1 μm, more preferably 50 angstroms to 0.3 μm. If it is thinner than 10 angstroms, the crystallinity becomes insufficient, so that it is difficult to obtain the function of spreading electrons, and it is difficult to obtain uniform light emission of the active layer. This is likely to occur inside and the crystallinity is deteriorated, so that the performance of the light emitting element may be deteriorated.

さらに、第二のn型層33はIn、Ga、Alの組成比が異なる窒化ガリウム系化合物半導体を2層以上積層した多層膜としてもよい。多層膜とする際の各層の膜厚も10オングストローム〜1μm、さらに好ましくは50オングストローム〜0.3μmの多層膜とすることが好ましい。この第二のn型層33を多層膜とすることにより、第一のn型層の結晶欠陥を多層膜層で止めると共に、格子整合していない窒化ガリウム系化合物半導体を積層した際の結晶中の歪を緩和して、結晶性に優れた半導体層を成長できるので発光素子の出力を向上させることができる。   Further, the second n-type layer 33 may be a multilayer film in which two or more gallium nitride compound semiconductors having different composition ratios of In, Ga, and Al are stacked. The thickness of each layer in forming the multilayer film is preferably 10 Å to 1 μm, more preferably 50 Å to 0.3 μm. By forming the second n-type layer 33 as a multilayer film, the crystal defects in the first n-type layer are stopped by the multilayer film layer, and the gallium nitride compound semiconductor that is not lattice-matched is stacked. Therefore, the output of the light-emitting element can be improved because a semiconductor layer having excellent crystallinity can be grown.

次に、図5は本発明の他の実施例の発光素子の構造を示す模式断面図である。これは第一のn型層3に形成された負電極8と基板1との間に、第二のn型層33が形成され、第二のn型層33と負電極8との距離が接近していることを示している。本来であれば、電極8をキャリア濃度の大きい第二のn型層33の表面に形成できれば、例えば図4と比較して、電子がキャリア濃度の大きい第二のn型層33を通って流れるので、発光素子のVfを低下させることができる。しかしながら、サファイアのような絶縁性基板を用いた場合、エッチングを第二のn型層33で止めることが生産技術上困難であるため、図5のように第二のn型層33と負電極8との距離を短くして、電極8から注入された電子がキャリア濃度の大きい第二のn型層33を通ることにより、Vfを低下させることが可能となる。   Next, FIG. 5 is a schematic cross-sectional view showing the structure of a light emitting device of another embodiment of the present invention. This is because a second n-type layer 33 is formed between the negative electrode 8 formed on the first n-type layer 3 and the substrate 1, and the distance between the second n-type layer 33 and the negative electrode 8 is Indicates that you are approaching. Originally, if the electrode 8 can be formed on the surface of the second n-type layer 33 having a high carrier concentration, for example, electrons flow through the second n-type layer 33 having a high carrier concentration as compared with FIG. Therefore, Vf of the light emitting element can be reduced. However, when an insulating substrate such as sapphire is used, it is difficult to stop the etching with the second n-type layer 33 in terms of production technology. Therefore, the second n-type layer 33 and the negative electrode as shown in FIG. 8 is shortened, and electrons injected from the electrode 8 pass through the second n-type layer 33 having a high carrier concentration, whereby Vf can be lowered.

さらに、サファイアを基板とし、そのサファイア基板の表面に少なくともn型層と、活性層と、p型層とが順に積層されて、そのp型層と活性層とがエッチングされて露出されたn型層の表面に電極が形成される構造の発光素子においては、第二のn型層33を、n型層の電極形成面と基板との間に形成することにより効果的にVfを低下させることができる。なぜなら、SiC、ZnO、Si等の導電性基板の表面に窒化ガリウム系化合物半導体を成長した構造の発光素子であれば、n型層の電極は基板側に形成でき、n層側の電子は活性層に対し垂直に供給される。それに対し前記のようにサファイア基板を有する素子は、活性層に対し平行に供給される。垂直に供給される電子がn型層を移動する距離はせいぜい数μmであるのに対し、平行に供給される電子の移動距離は数十μm〜数百μmもある。従って電子が平行に供給される素子において、電子が平行に供給される第二のn型層のキャリア濃度を大きくすることにより、電子が移動しやすくなるのでVfを低下させることができる。   Furthermore, the sapphire is used as a substrate, and at least an n-type layer, an active layer, and a p-type layer are sequentially stacked on the surface of the sapphire substrate, and the p-type layer and the active layer are etched and exposed. In a light emitting device having a structure in which an electrode is formed on the surface of the layer, Vf can be effectively reduced by forming the second n-type layer 33 between the electrode formation surface of the n-type layer and the substrate. Can do. This is because if the light emitting device has a structure in which a gallium nitride compound semiconductor is grown on the surface of a conductive substrate such as SiC, ZnO, or Si, the n-type layer electrode can be formed on the substrate side, and the n-layer side electrons are active. Supplied perpendicular to the layer. On the other hand, the element having the sapphire substrate as described above is supplied in parallel to the active layer. The distance that vertically supplied electrons move through the n-type layer is at most several μm, whereas the distance of electrons supplied in parallel is several tens to several hundreds of μm. Therefore, in the element in which electrons are supplied in parallel, increasing the carrier concentration of the second n-type layer to which electrons are supplied in parallel makes it easier for the electrons to move, so that Vf can be lowered.

MOVPE法により、2インチφのサファイアよりなる基板1の表面に、GaNよりなるバッファ層2を0.02μmの膜厚で成長させる。このバッファ層2の表面に第一のn型層として、Siをドープした電子キャリア濃度5×10/18cmのn型GaNよりなるn型コンタクト層3を1μmの膜厚で成長させる。 A buffer layer 2 made of GaN is grown to a thickness of 0.02 μm on the surface of the substrate 1 made of sapphire having a diameter of 2 inches by the MOVPE method. This surface of the buffer layer 2 as the first n-type layer, the n-type contact layer 3 made of n-type GaN electron carrier concentration of 5 × 10/18 cm 3 doped with Si is grown to the thickness of 1 [mu] m.

次にn型コンタクト層3の表面に第二のn型層として、Siをドープした電子キャリア濃度1×1020/cmのn型In0.1Ga0.9N層を0.05μmの膜厚で成長させる。 Next, as a second n-type layer on the surface of the n-type contact layer 3, an n-type In0.1Ga0.9N layer doped with Si and having an electron carrier concentration of 1 × 10 20 / cm 3 is grown to a thickness of 0.05 μm. Let

次に同じくSiをドープした電子キャリア濃度5×1018/cmのGaNよりなるn型コンタクト層3’を3μmの膜厚で成長させる。 Next, an n-type contact layer 3 ′ made of GaN having an electron carrier concentration of 5 × 10 18 / cm 3 doped with Si is grown to a thickness of 3 μm.

n型コンタクト層3’の表面に、Siをドープした電子キャリア濃度1×1018/cmのn型Al0.2Ga0.8Nよりなるn型クラッド層を0.1μmの膜厚で成長させ、その上にSiとZnドープn型In0.1Ga0.9Nよりなる活性層5を0.1μmと、MgドープAl0.2Ga0.8Nよりなるp型クラッド層6と、MgドープGaNよりなるp型コンタクト層7を順に成長させて積層する。 On the surface of the n-type contact layer 3 ′, an n-type clad layer made of n-type Al0.2Ga0.8N having an electron carrier concentration of 1 × 10 18 / cm 3 doped with Si is grown to a thickness of 0.1 μm. An active layer 5 made of Si and Zn-doped n-type In0.1Ga0.9N is 0.1 μm, a p-type cladding layer 6 made of Mg-doped Al0.2Ga0.8N, and a p-type contact layer 7 made of Mg-doped GaN. Are sequentially grown and stacked.

以上のようにして得たウェーハをアニーリング装置に入れ、700℃でアニーリングして、p型クラッド層6およびp型コンタクト層7をさらに低抵抗なp型とした後、p型コンタクト層7の表面に所定の形状のマスクを形成し、p型コンタクト層側からエッチングを行い、n型コンタクト層3’を露出させる。   The wafer obtained as described above is put in an annealing apparatus and annealed at 700 ° C. to make the p-type cladding layer 6 and the p-type contact layer 7 have a lower resistance p-type, and then the surface of the p-type contact layer 7. Then, a mask having a predetermined shape is formed, and etching is performed from the p-type contact layer side to expose the n-type contact layer 3 ′.

後は常法に従い、p型コンタクト層7に正電極9と、露出したn型コンタクト層3’に負電極8を形成した後、チップ状に分離して、図5に示すような構造の青色発光素子とした。この発光素子発光させたところ、活性層5から主発光波長450nmの均一な面発光が観測され、順方向電流(If)20mAにおいて、Vfは3.3Vであり、発光出力は1.8mWであった。   Thereafter, according to a conventional method, a positive electrode 9 is formed on the p-type contact layer 7 and a negative electrode 8 is formed on the exposed n-type contact layer 3 ′, and then separated into chips to obtain a blue structure having a structure as shown in FIG. A light emitting element was obtained. When this light emitting device was made to emit light, uniform surface emission with a main emission wavelength of 450 nm was observed from the active layer 5, Vf was 3.3 V, and the light emission output was 1.8 mW at a forward current (If) of 20 mA. It was.

バッファ層2の表面に、第一のn型層として電子キャリア濃度1×1018/cmのGeドープGaNよりなるn型コンタクト層3を1μmの膜厚で成長し、その表面に電子キャリア濃度5×1020/cmのGeドープIn0.2Ga0.8Nよりなる第二のn型層を0.01μmの膜圧で成長させる。次に第二のn型層33の表面に同じく電子キャリア濃度1×1018/cmのGeドープn型GaNよりなるn型コンタクト層3’を2μmと、電子キャリア濃度5×1020/cmのGeドープn型In0.2Ga0.8Nよりなる第二のn型層33’を0.01μmと、電子キャリア濃度1×1018/cmのGeドープn型GaN層とを1μmの膜厚で順に成長させる。 An n-type contact layer 3 made of Ge-doped GaN having an electron carrier concentration of 1 × 10 18 / cm 3 is grown as a first n-type layer on the surface of the buffer layer 2 to a thickness of 1 μm, and an electron carrier concentration is formed on the surface. A second n-type layer made of 5 × 10 20 / cm 3 Ge-doped In 0.2 Ga 0.8 N is grown at a film pressure of 0.01 μm. Next, on the surface of the second n-type layer 33, an n-type contact layer 3 ′ made of Ge-doped n-type GaN having an electron carrier concentration of 1 × 10 18 / cm 3 is set to 2 μm, and the electron carrier concentration is 5 × 10 20 / cm. 3 μm of the second n-type layer 33 ′ made of 3 Ge-doped n-type In 0.2 Ga 0.8 N and 1 μm of the Ge-doped n-type GaN layer having an electron carrier concentration of 1 × 10 18 / cm 3 Grow in order.

後は実施例1と同様にしてn型クラッド層4、活性層5、p型クラッド層6、p型コンタクト層7を積層して、図6に示すような構造の青色発光素子とした。但し、図6に示すように、p型コンタクト層7からのエッチング深さはn型コンタクト層3’までとし、負電極8はn型コンタクト層3’の表面に形成した。そして、この発光素子を発光させたところ、実施例1と同様に活性層5からは均一な面発光が観測され、If20mAにおいてVf3.2V、発光出力は2.0mWであった。   Thereafter, the n-type cladding layer 4, the active layer 5, the p-type cladding layer 6 and the p-type contact layer 7 were laminated in the same manner as in Example 1 to obtain a blue light emitting device having a structure as shown in FIG. However, as shown in FIG. 6, the etching depth from the p-type contact layer 7 is up to the n-type contact layer 3 ', and the negative electrode 8 is formed on the surface of the n-type contact layer 3'. When this light emitting device was caused to emit light, uniform surface light emission was observed from the active layer 5 as in Example 1, Vf of 3.2 V at If20 mA, and light emission output of 2.0 mW.

バッファ層2の表面に、第一のn型層として電子キャリア濃度1×1018/cmのSiドープAl0.1Ga0.9Nよりなるn型コンタクト層3を3μmの膜厚で成長させる。次にその表面に、電子キャリア濃度1×1020/cmのSiドープIn0.2Ga0.8Nを0.01μmと、電子キャリア濃度1×1020/cmのSiドープAl0.05Ga0.95Nを0.01μmとを、それぞれ交互に5層づつ積層した第二のn型層33を成長させる。 On the surface of the buffer layer 2, an n-type contact layer 3 made of Si-doped Al0.1Ga0.9N having an electron carrier concentration of 1 × 10 18 / cm 3 is grown as a first n-type layer to a thickness of 3 μm. Then on the surface thereof, and 0.01μm Si-doped In0.2Ga0.8N the electron carrier concentration 1 × 10 20 / cm 3, a Si-doped Al0.05Ga0.95N electron carrier concentration 1 × 10 20 / cm 3 0 A second n-type layer 33 in which five layers of 0.01 m are alternately stacked is grown.

次に第二のn型層33の表面に、SiとZnドープn型In0.1Ga0.9Nよりなる活性層5を0.1μmと、MgドープAl0.2Ga0.8Nよりなるp型クラッド層6と、MgドープGaNよりなるp型コンタクト層7を順に成長させて積層する。つまり、実施例1のn型クラッド層4を成長させない他は同様にして活性層5、p型クラッド層6、p型コンタクト層7を成長させる。後は実施例1と同様にしてエッチングを行い、図3に示すような構造の発光素子とした。この発光素子を発光させたところ同様に活性層5からは均一な面発光が得られ、If20mAにおいて、Vf3.5Vであり、発光出力は2.2mWであった。
[比較例1]
Next, on the surface of the second n-type layer 33, an active layer 5 made of Si and Zn-doped n-type In0.1Ga0.9N is 0.1 .mu.m, and a p-type cladding layer 6 made of Mg-doped Al0.2Ga0.8N. Then, a p-type contact layer 7 made of Mg-doped GaN is sequentially grown and laminated. That is, the active layer 5, the p-type cladding layer 6, and the p-type contact layer 7 are grown in the same manner except that the n-type cladding layer 4 of Example 1 is not grown. Thereafter, etching was performed in the same manner as in Example 1 to obtain a light emitting device having a structure as shown in FIG. When this light emitting device was caused to emit light, uniform surface light emission was obtained from the active layer 5 in the same manner. At If20 mA, Vf was 3.5 V, and the light emission output was 2.2 mW.
[Comparative Example 1]

実施例1において、第二のn型層33を成長させず、GaNコンタクト層を連続的に4μmの膜厚で成長させる他は同様にして、図1に示すような構造の発光素子とした。この発光素子の活性層は、図2に示すように正電極9と、負電極8との間で強く発光し、均一な発光を得ることができなかった。またIf20mAにおいて、Vfは3.6V、発光出力1.2mWであった。   The light emitting device having the structure shown in FIG. 1 was obtained in the same manner as in Example 1 except that the second n-type layer 33 was not grown and the GaN contact layer was continuously grown to a thickness of 4 μm. The active layer of this light emitting element emitted strong light between the positive electrode 9 and the negative electrode 8 as shown in FIG. 2, and uniform light emission could not be obtained. Further, at If20 mA, Vf was 3.6 V and the light emission output was 1.2 mW.

本発明はレーザダイオード(LD)、発光ダイオード(LED)等の発光素子に使用される窒化ガリウム系化合物半導体(InAlGa1−a−bN、0≦a、0≦b、a+b≦1)よりなる発光素子に関する。 The present invention relates to a gallium nitride-based compound semiconductor (In a Al b Ga 1-ab N, 0 ≦ a, 0 ≦ b, a + b ≦) used in a light emitting element such as a laser diode (LD) or a light emitting diode (LED). 1) It is related with the light emitting element which consists of.

従来の発光素子の構造を示す模式断面図。FIG. 6 is a schematic cross-sectional view illustrating a structure of a conventional light emitting element. 図1の発光素子の発光状態を示す模式断面図。FIG. 2 is a schematic cross-sectional view illustrating a light emitting state of the light emitting element of FIG. 1. 本発明の一実施例の発光素子の構造を示す模式断面図。1 is a schematic cross-sectional view illustrating a structure of a light-emitting element according to an embodiment of the present invention. 図3の発光素子の発光状態を示す模式断面図。FIG. 4 is a schematic cross-sectional view illustrating a light emission state of the light emitting element of FIG. 3. 本発明の他の実施例の発光素子の発光状態を示す模式断面図。The schematic cross section which shows the light emission state of the light emitting element of the other Example of this invention. 本発明の他の実施例の発光素子の構造を示す模式断面図。The schematic cross section which shows the structure of the light emitting element of the other Example of this invention.

符号の説明Explanation of symbols

1・・・・・基板 2・・・・・バッファ層
4・・・・・n型クラッド層 5・・・・・活性層
6・・・・・p型クラッド層 7・・・・・p型コンタクト層
8・・・・・負電極 9・・・・・正電極
3、3'、3”・・・・・第一のn型層(n型コンタクト層)
33、33' ・・・・・第二のn型層
DESCRIPTION OF SYMBOLS 1 ... Substrate 2 ... Buffer layer 4 ... n-type cladding layer 5 ... Active layer 6 ... p-type cladding layer 7 ... p Type contact layer 8 ... negative electrode 9 ... positive electrode 3, 3 ', 3 "... first n-type layer (n-type contact layer)
33, 33 '... the second n-type layer

Claims (6)

基板上にn型層、活性層、p型層が積層された構造備え、該p型層上と、該n型層が一部露出された表面に、それぞれ正電極と負電極が設けられた窒化ガリウム系化合物半導体発光素子であって、
前記n型層中に、第一のn型層と、第一のn型層に接して、第一のn型層よりも電子キャリア濃度が大きい第二のn型層と、を有すると共に、
前記n型層中の活性層と前記露出表面の間にあるn型層領域において、
前記第一のn型層と、該第一のn型層の活性層側に設けられた前記第二のn型層と、該第二のn型層の活性層側に前記第一のn型層と、該第一のn型層の上にn型クラッド層と、を有する窒化ガリウム系化合物半導体発光素子。
A structure in which an n-type layer, an active layer, and a p-type layer are stacked on a substrate is provided, and a positive electrode and a negative electrode are provided on the p-type layer and on a surface where the n-type layer is partially exposed, respectively. A gallium nitride compound semiconductor light emitting device,
The n-type layer has a first n-type layer and a second n-type layer in contact with the first n-type layer and having a higher electron carrier concentration than the first n-type layer,
In the n-type layer region between the active layer in the n-type layer and the exposed surface,
The first n-type layer, the second n-type layer provided on the active layer side of the first n-type layer, and the first n-type layer on the active layer side of the second n-type layer A gallium nitride-based compound semiconductor light-emitting element having a mold layer and an n-type cladding layer on the first n-type layer.
基板上にn型層、活性層、p型層が積層された構造備え、該p型層上と、該n型層が一部露出された表面に、それぞれ正電極と負電極が設けられた窒化ガリウム系化合物半導体発光素子であって、
前記n型層中に、第一のn型層と、第一のn型層に接して、第一のn型層よりも電子キャリア濃度が大きい第二のn型層と、を有すると共に、
前記n型層中の基板と前記露出表面の間にあるn型層領域において、
前記第一のn型層と、該第一のn型層の基板側に設けられた第二のn型層とを有する窒化ガリウム系化合物半導体発光素子。
A structure in which an n-type layer, an active layer, and a p-type layer are stacked on a substrate is provided, and a positive electrode and a negative electrode are provided on the p-type layer and on a surface where the n-type layer is partially exposed, respectively. A gallium nitride compound semiconductor light emitting device,
The n-type layer has a first n-type layer and a second n-type layer in contact with the first n-type layer and having a higher electron carrier concentration than the first n-type layer,
In the n-type layer region between the substrate in the n-type layer and the exposed surface,
The first and n-type layer, a second n-type layer and, a gallium nitride-based compound semiconductor light-emitting device that have a provided on the substrate side of said first n-type layer.
前記n型層領域に、前記第二のn型層の下に接して、第一のn型層をさらに有する請求項1又は2記載の窒化ガリウム系化合物半導体発光素子。 Wherein the n-type layer region, the second contact under the n-type layer, a first n-type layer further comprises claim 1 or gallium nitride-based compound 2, wherein the semiconductor light emitting element. 前記第一のn型層と第二のn型層が、第一のn型層、第二のn型層、第一のn型層、第二のn型層、第一のn型層をこの順に積層した構造であり、該2つの第二のn型層が、それぞれ、前記負電極の露出表面より、活性層側と基板側に設けられている請求項1乃至のいずれか1項に記載の窒化ガリウム系化合物半導体発光素子。 The first n-type layer and the second n-type layer are a first n-type layer, a second n-type layer, a first n-type layer, a second n-type layer, and a first n-type layer. 4. The structure according to any one of claims 1 to 3 , wherein the two second n-type layers are provided on the active layer side and the substrate side from the exposed surface of the negative electrode, respectively. The gallium nitride-based compound semiconductor light-emitting device according to Item. 前記第二のn型層の膜厚が、10オングストローム〜1μmである請求項1乃至4のいずれか1項に記載の窒化物半導体発光素子。 5. The nitride semiconductor light emitting device according to claim 1, wherein the second n-type layer has a thickness of 10 Å to 1 μm. 前記第一のn型層が、GaN若しくはAlGaNである請求項1乃至5のいずれか1項に記載の窒化物半導体発光素子。 The nitride semiconductor light-emitting element according to claim 1, wherein the first n-type layer is GaN or AlGaN.
JP2005209227A 2005-07-19 2005-07-19 Gallium nitride compound semiconductor light emitting device Expired - Lifetime JP3972943B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005209227A JP3972943B2 (en) 2005-07-19 2005-07-19 Gallium nitride compound semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005209227A JP3972943B2 (en) 2005-07-19 2005-07-19 Gallium nitride compound semiconductor light emitting device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002118852A Division JP3956753B2 (en) 2002-04-22 2002-04-22 Gallium nitride compound semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JP2005317995A JP2005317995A (en) 2005-11-10
JP3972943B2 true JP3972943B2 (en) 2007-09-05

Family

ID=35445021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005209227A Expired - Lifetime JP3972943B2 (en) 2005-07-19 2005-07-19 Gallium nitride compound semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP3972943B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI398966B (en) * 2009-06-08 2013-06-11 Epistar Corp Light-emitting device and the manufacturing method thereof

Also Published As

Publication number Publication date
JP2005317995A (en) 2005-11-10

Similar Documents

Publication Publication Date Title
JP2890390B2 (en) Gallium nitride based compound semiconductor light emitting device
JP3250438B2 (en) Nitride semiconductor light emitting device
US8741686B2 (en) Semiconductor device
US8513694B2 (en) Nitride semiconductor device and manufacturing method of the device
JP2890396B2 (en) Nitride semiconductor light emitting device
JP2785254B2 (en) Gallium nitride based compound semiconductor light emitting device
JP3890930B2 (en) Nitride semiconductor light emitting device
JP2010067709A (en) Semiconductor light-emitting element, and wafer
WO2017188324A1 (en) Group-iii nitride stacked body and group-iii nitride light-emitting element
JP2002033512A (en) Nitride semiconductor light emitting diode
JP2007109885A (en) Semiconductor light-emitting device and manufacturing method thereof
JP2001077412A (en) Semiconductor element and manufacture thereof
JPH11191639A (en) Nitride semiconductor device
KR101025971B1 (en) Nitride semiconductor light emitting device
JP2918139B2 (en) Gallium nitride based compound semiconductor light emitting device
JP3484997B2 (en) Gallium nitride based compound semiconductor light emitting device
JP2004104088A (en) Nitride semiconductor device
JP2007200933A (en) Method of manufacturing nitride-based semiconductor element
JP3972943B2 (en) Gallium nitride compound semiconductor light emitting device
JP3216596B2 (en) Gallium nitride based compound semiconductor light emitting device
JP3956753B2 (en) Gallium nitride compound semiconductor light emitting device
JP2011205148A (en) Semiconductor device
CN112802869A (en) White light LED with adjustable single-chip integrated nitride light-emitting wavelength and preparation method thereof
JP2006135001A (en) Semiconductor element and its manufacturing method
JP3267250B2 (en) Nitride semiconductor light emitting device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050816

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070604

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157