JPH11217650A - Free-drilling steel - Google Patents

Free-drilling steel

Info

Publication number
JPH11217650A
JPH11217650A JP3203198A JP3203198A JPH11217650A JP H11217650 A JPH11217650 A JP H11217650A JP 3203198 A JP3203198 A JP 3203198A JP 3203198 A JP3203198 A JP 3203198A JP H11217650 A JPH11217650 A JP H11217650A
Authority
JP
Japan
Prior art keywords
inclusions
steel
spherical
rod
nucleus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3203198A
Other languages
Japanese (ja)
Other versions
JP3496804B2 (en
Inventor
Masashi Miyamoto
昌司 宮本
Masao Uchiyama
雅夫 内山
Naoki Iwama
直樹 岩間
Kazuhiko Hiraoka
和彦 平岡
Norimasa Tokokage
典正 常陰
Kazutaka Okura
和孝 大庫
Kunio Naito
国雄 内藤
Motohide Mori
元秀 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Toyota Motor Corp
Toyota Central R&D Labs Inc
Aichi Steel Corp
Original Assignee
Sanyo Special Steel Co Ltd
Toyota Motor Corp
Toyota Central R&D Labs Inc
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd, Toyota Motor Corp, Toyota Central R&D Labs Inc, Aichi Steel Corp filed Critical Sanyo Special Steel Co Ltd
Priority to JP03203198A priority Critical patent/JP3496804B2/en
Publication of JPH11217650A publication Critical patent/JPH11217650A/en
Application granted granted Critical
Publication of JP3496804B2 publication Critical patent/JP3496804B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a free-drilling steel capable of facilitating the discharge of chips at the time of deep hole working of a steel material for use in frinctional parts, producing excellent fatigue strength, preventing the stoppage of a production line, and attaining improvement in productivity. SOLUTION: The steel has a composition consisting of, by weight ratio, 0.05-0.50% C, 0.03-1.00% Si, 0.50-2.00% Mn, 0.01-0.11% S, 0.005-0.040% Al, either or both of 0.05-0.30% Pb and 0.01-0.30% Bi, and the balance Fe with impurities. This steel has spherical or rod-like inclusions in its matrix. The spherical inclusions have oxides as nuclei and the rod-like inclusions have sulfides as nuclei, and at least a part of the outside peripheral part of each nucleus has a layer containing either or both of Pb and Bi. Further, the size of these inclusions are regulated to 9 to 50 μm in width and 25 to 50 μm in length, and the number of the inclusions is regulated to >=8 pieces per square millimeter at an arbitrary cross section parallel to rolling direction, in a position at a depth one-fourth the diameter of the steel.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【技術分野】本発明は、機能部品として使用される鋼材
において、機械加工を実施する場合に、機械加工のうち
で深孔あけ加工時に切粉の排出を容易にする鋼である。
さらに夕ップ加工、リ一マ加工、中ぐり加工等の切粉排
出を容易にし、突発的な切粉つまりに起因する生産ライ
ンの停止を防ぐ鋼材を提供するものである.また切粉つ
まりと工具または被削材ヘの巻き付きを防止するととも
に、使用工具の摩耗を低減させ、工具費の低滅から生産
性の向上を得る快穿孔鋼である。
TECHNICAL FIELD The present invention relates to steel which facilitates the discharge of chips during deep hole drilling during machining in a steel material used as a functional component.
In addition, it provides steel material that facilitates chip discharge such as napping, reaming, boring, etc., and prevents the production line from stopping due to sudden chipping. This is a free-perforated steel that prevents winding around a tool or a work material, reduces wear of a tool to be used, and improves productivity by reducing tool cost.

【0002】[0002]

【従来技術】Pb、Bi、Te、ln、Seなど低融点の元素を添
加した鋼( 例えば特開昭56-38453、特開昭60-152653 、
特開平1-165749、特開平1-168849、特開平9-13119 な
ど) がある。これらの一連の鋼は切削加工時に切粉を分
断させ、切粉が工具または被削材に巻きつくことを防ぐ
ことから、突発的な生産ラインの停止を防ぐことを目的
とする。また被削材内のせん断領域での変形を容易にす
ることから、切粉の生成時の負荷か減少し、切削工具の
寿命延長を得る。一方、Ca脱酸鋼で代表されるように工
具すくい面上に硫化物または低融点の複合酸化物を生成
させて工具寿命を延長させる鋼がある。
2. Description of the Related Art Steels to which low-melting elements such as Pb, Bi, Te, ln, and Se are added (for example, JP-A-56-38453, JP-A-60-152653,
Japanese Patent Application Laid-Open Nos. 1-165749, 1-168849, and 9-13119). The purpose of these series of steels is to prevent chips from being cut off during cutting and prevent the chips from wrapping around the tool or work material, thereby preventing a sudden stop of the production line. Further, since the deformation in the shearing region in the work material is facilitated, the load at the time of generation of the chips is reduced, and the life of the cutting tool is extended. On the other hand, there is a steel, such as Ca deoxidized steel, which generates a sulfide or a low melting point composite oxide on a tool rake face to extend tool life.

【0003】しかし切粉が不安定に分断すると、例えば
深孔あけ加工時に微細に分断した切粉がドリルの溝に滞
積し、ドリルの折損を起こす場合がある。また低融点の
Pb、Bi、Teなどを添加すると、刃先近傍の被削材内のせ
ん断領域の変形が激しいために刃先稜側で切粉が生成
し、工具のすくい面摩耗が刃先稜近傍の狭い領域で発生
することから、刃先の欠損を生じて工具寿命の低下をお
こす場合もある。この現象を防ぐためにS 、Caなどを同
時に添加し、すくい面上に硫化物または低融点の複合酸
化物を滞積させて、工具寿命を延長せしめる鋼がある(
公告平7-56061)。
[0003] However, if the chips are divided in an unstable manner, for example, finely divided chips may accumulate in the grooves of the drill during deep hole drilling, causing breakage of the drill. Low melting point
When Pb, Bi, Te, etc. are added, the shear area in the work material near the cutting edge is severely deformed, so chips are generated on the ridge side of the cutting edge, and tool rake surface wear occurs in a narrow area near the cutting edge Therefore, there is a case where the cutting edge is lost and the tool life is shortened. In order to prevent this phenomenon, there are steels that simultaneously add S, Ca, etc., accumulate sulfides or low-melting-point composite oxides on the rake face to extend tool life (
Public notice 7-56061).

【0004】しかしこの場合には切粉の分断が十分に安
定せず、深孔あけ加工時にドリルの折損を起こす場合が
ある。上述のように、従来鋼は工具寿命延長を目的にし
たものと切粉の分断を目的にしたものの混合提案であ
り、この両者を十分に達成する鋼はないようである。
[0004] In this case, however, the cutting of the chips is not sufficiently stable, and the drill may be broken during deep hole drilling. As described above, conventional steels are proposed to be mixed with those intended to extend tool life and those intended to cut chips, and it seems that no steel achieves both of them sufficiently.

【0005】また鋼中に平均粒径10μm 〜30μm の硫化
物を0.01〜0.09%(重量比) 含有させて切粉の分断と工具
寿命の延長を得る提案がある( 特開平5-163550) 。この
鋼中には粒径50μm を越える硫化物が存在し、機能部品
として疲労強度が要求される場合には、50μm 以上の介
在物が応力集中時に切り欠き現象を引き出して、強度の
低下から本鋼の採用は困難である。
[0005] Further, there has been proposed a method in which sulfides having an average particle diameter of 10 μm to 30 μm are contained in a steel in an amount of 0.01 to 0.09% (weight ratio) to obtain cutting chips and extend tool life (Japanese Patent Laid-Open No. 5-163550). In this steel, sulfides having a particle size exceeding 50 μm are present, and when fatigue strength is required as a functional component, inclusions with a size of 50 μm or more draw out a notch phenomenon when stress is concentrated, and the strength decreases. The adoption of steel is difficult.

【0006】[0006]

【解決しようとする課題】一般に疲労強度を向上させる
ために硬さを増加させる。しかし一方、高硬度のために
切削工具の寿命は短期化する。また快削性を得るために
S 、Ca、Pb、Biなどの元素を添加すると、それらが切り
欠きの原因となり、疲労強度を低下させる。このよう
に、疲労強度と切削性とは相反する特性である。本発明
は、これらの問題に対して、この相反する疲労強度と切
削性の両方ともに優れた性能を持つ高疲労強度穿孔鋼を
提供するものである。
Generally, hardness is increased to improve fatigue strength. However, on the other hand, the life of the cutting tool is shortened due to the high hardness. Also, to get free cutting
When elements such as S, Ca, Pb, and Bi are added, they cause notches and reduce fatigue strength. As described above, the fatigue strength and the machinability are contradictory characteristics. The present invention provides a high-fatigue-strength perforated steel that has excellent performance in both of these conflicting fatigue strengths and machinability in response to these problems.

【0007】本発明では、刃先近傍の発生する被削材内
のせん断領域における介在物の挙動を詳細に観察するこ
とから、介在物の変形と切粉の変形を解析し、切粉が工
具または被削材に巻き付くこと、または深孔あけ加工時
に切粉つまリによるドリル折損から生産ラインの停止を
防ぐことを目的とする。特に深孔あけ加工、例えば孔あ
け深さがドリル径の10倍以上の場合に滑らかに切粉を排
出し、ドリルの突発的な折損を防ぐことを目的とする。
さらに工具寿命を延長せしめる合金元素を添加し、上述
の切粉挙動と工具接触部の相互作用を解析することから
工具寿命の延長も同時に達成する。
In the present invention, the behavior of inclusions in the shear region in the work material generated in the vicinity of the cutting edge is observed in detail. An object of the present invention is to prevent the production line from being stopped from being wound around a work material or from a breakage of a drill due to a chip pinch during deep hole drilling. In particular, it is an object of the present invention to smoothly discharge chips when deep drilling, for example, when the drilling depth is 10 times or more the drill diameter, and to prevent sudden breakage of the drill.
Further, by adding an alloy element for extending the tool life and analyzing the interaction between the above-mentioned chip behavior and the tool contact portion, the extension of the tool life can be achieved at the same time.

【0008】[0008]

【課題の解決手段】本発明での第1発明は、C:0.05〜0.
50%(重量比、以下同じ) 、Si:0.03 〜1.00% 、Mn:0.50
〜2.00% 、S:0.01〜0.11% 、Al:0.005〜0.040%に加え
て、Pb:0.05〜0.30% 、Bi:0.01 〜0.30% の1 種以上を
含有し、残部がFeと不純物からなり、このマトリックス
中に球状または棒状介在物を有し、球状介在物は酸化物
を核としまた棒状介在物は硫化物を核とし、それぞれの
核の外周部の少なくとも一部にPbまたはBiの1 種以
上を含む層を有し、これら介在物の大きさが幅9 〜50μ
m、長さ25〜50μmであり、その数が鋼中の直径の1/
4での圧延方向に平行な任意の断面における1mm2当たり
8 個以上存在することを特徴とする快穿孔鋼である。
According to a first aspect of the present invention, C: 0.05-0.
50% (weight ratio, the same applies hereinafter), Si: 0.03-1.00%, Mn: 0.50
~ 2.00%, S: 0.01 ~ 0.11%, Al: 0.005 ~ 0.040%, Pb: 0.05 ~ 0.30%, Bi: 0.01 ~ 0.30%, at least one of which contains Fe and impurities, The matrix has spherical or rod-shaped inclusions, the spherical inclusions having oxides as nuclei and the rod-shaped inclusions having sulfides as nuclei, and at least a part of the outer periphery of each nucleus is composed of one kind of Pb or Bi. It has a layer containing the above, and the size of these inclusions is 9-50 μm in width.
m, length 25-50 μm, the number of which is 1 /
1 mm 2 per in any cross section parallel to the rolling direction at 4
It is a free-drilling steel characterized by the presence of eight or more pieces.

【0009】本発明での第2発明は、C:0.05〜0.50%(重
量比、以下同じ) 、Si:0.03 〜1.00% 、Mn:0.50 〜2.00
% 、S:0.01〜0.11% 、Al:0.005〜0.040%に加えて、Pb:
0.05〜0.30% 、Bi:0.01 〜0.30% の1 種以上を含有し、
残部がFeと不純物からなり、このマトリックス中に球状
または棒状介在物を有し、球状介在物は(Al 、Si)0xide
を核としまた棒状介在物はMnS を核とし、それぞれの核
の外周部の少なくとも一部にPbまたはBiの1 種以上
を含む層を有し、これら介在物の大きさが幅9 〜50μ
m、長さ25〜50μmであり、その数が鋼中の直径の1/
4での圧延方向に平行な任意の断面における1mm2当たり
8 個以上存在することを特徴とする快穿孔鋼である。
The second invention of the present invention is characterized in that C: 0.05 to 0.50% (weight ratio, the same applies hereinafter), Si: 0.03 to 1.00%, Mn: 0.50 to 2.00
%, S: 0.01-0.11%, Al: 0.005-0.040%, plus Pb:
0.05 to 0.30%, Bi: 0.01 to 0.30%
The balance consists of Fe and impurities, and has spherical or rod-shaped inclusions in this matrix, and the spherical inclusions are (Al, Si) 0xide
And the rod-like inclusions have MnS as nuclei, and at least a part of the outer periphery of each nucleus has a layer containing at least one of Pb and Bi, and the size of these inclusions is 9 to 50 μm in width.
m, length 25-50 μm, the number of which is 1 /
1 mm 2 per in any cross section parallel to the rolling direction at 4
It is a free-drilling steel characterized by the presence of eight or more pieces.

【0010】また第3発明はC:0.05〜0.50%(重量比、以
下同じ) 、Si:0.03 〜1.00% 、Mn:0.50 〜2.00% 、S:0.
01〜0.11% 、Al:0.005〜0.040%、Ca:0.001〜0.020%に加
えて、Pb:0.05 〜0.30% 、Bi:0.01 〜0.30% の1 種以上
を含有し、残部がFeと不純物からなり、このマトリック
ス中に球状または棒状介在物を有し、球状介在物は(Al
、Si、Ca)0xide、(Al 、Si)0xide、(Al 、Ca)0xide、
(Si 、Ca)0xide、(Mn 、Ca)S、CaS の一種または複数種
を核としまた棒状介在物はMnS を核とし、それぞれの核
の外、部の少なくとも一部にPbまたはBiの1 種以上
を含む層を有し、これら介在物の大きさが幅9 〜50μ
m、長さ25〜50μmであり、その数が鋼中の直径の1/
4での圧延方向に平行な任意の断面における1mm2当たり
8 個以上存在することを特徴とする快穿孔鋼である。
In the third invention, C: 0.05 to 0.50% (weight ratio, the same applies hereinafter), Si: 0.03 to 1.00%, Mn: 0.50 to 2.00%, S: 0.
01-0.11%, Al: 0.005-0.040%, Ca: 0.001-0.020%, Pb: 0.05-0.30%, Bi: 0.01-0.30%, with the balance being Fe and impurities. Has spherical or rod-shaped inclusions in this matrix, and the spherical inclusions are (Al
, Si, Ca) 0xide, (Al, Si) 0xide, (Al, Ca) 0xide,
One or more of (Si, Ca) Oxide, (Mn, Ca) S, and CaS are nuclei, and the rod-like inclusions are nuclei of MnS, and Pb or Bi is at least partially outside and outside of each nucleus. A layer containing more than one species, and the size of these inclusions is 9-50 μm in width.
m, length 25-50 μm, the number of which is 1 /
1 mm 2 per in any cross section parallel to the rolling direction at 4
It is a free-drilling steel characterized by the presence of eight or more pieces.

【0011】第4発明は、請求項1〜3において、Cr:2
% 以下、Mo:1% 以下、Ni:3% 以下、V:0.5%以下のうち1
種または2 種以上を含有することを特徴とする快穿孔鋼
である。
In a fourth aspect of the present invention, in the first to third aspects, Cr: 2
% Or less, Mo: 1% or less, Ni: 3% or less, V: 0.5% or less 1
It is a free-drilling steel characterized by containing one or more types.

【0012】第5発明は、鋼塊中心部の凝固速度が、0.
02〜1.3mm/sec となるようにインゴットケースの温度測
定により、インゴットケースの上部と外壁部に設置した
電磁場発生手段による電磁場の強弱から熱電子放出量を
制御して介在物の大きさ、量、数を制御することを特徴
することを特徴とする請求項1〜4の快穿孔鋼の製造方
法である。
According to a fifth aspect of the present invention, the solidification rate at the center of the steel ingot is 0.1
By measuring the temperature of the ingot case so that it becomes 02 to 1.3 mm / sec, the size and amount of the inclusions are controlled by controlling the amount of thermionic emission from the strength of the electromagnetic field by the electromagnetic field generating means installed on the upper part of the ingot and the outer wall. The method for producing free-perforated steel according to any one of claims 1 to 4, wherein the number is controlled.

【0013】すなわち(Al 、Si、Ca)0xide、(Al 、Si)0
xide、(Al 、Ca)0xide、(Si 、Ca)0xide、(Mn 、Ca)S、
CaS 、MnS の1 種または複数種介在物は、切削時に工具
寿命を延長させ、工具と鋼材間で潤滑機能を示す。
That is, (Al, Si, Ca) 0xide, (Al, Si) 0
xide, (Al, Ca) 0xide, (Si, Ca) 0xide, (Mn, Ca) S,
One or more inclusions of CaS and MnS extend the tool life during cutting and exhibit a lubricating function between the tool and steel.

【0014】またこれらの複合介在物の外郭部に低融点
のPbまたはBiまたは両者が存在すれば、切削温度の上昇
によつてこれらの元素が溶解し、介在物と地金との境界
に間隙が発生した状態と近似して介在物の変形を促す切
り欠き現象を起こす。その結果、介在物は切粉生成時に
安定な変形を促す核となり、切粉の分断を促進する。
If low-melting Pb or Bi or both are present in the outer shell of these composite inclusions, these elements are dissolved by an increase in the cutting temperature, and a gap is formed at the boundary between the inclusion and the base metal. Notch phenomena that promote deformation of inclusions in a manner similar to the state in which cracks occur. As a result, the inclusions serve as nuclei that promote stable deformation during chip generation, and promote the cutting of chips.

【0015】かかる現象を発現させるためには、充分な
大きさの介在物が一定数量以上必要である。以下にその
大きさと数量の限定理由について述べる。まず、介在物
の幅につては、9 μm 以下の幅の介在物はせん断域にお
けるせん断変形抵抗が大きく、たとえ介在物周囲のPb、
またはBiが溶融したとしても上述したような介在物の変
形が起こりにくい。しかし、50μm 以上の場合は、疲労
亀裂の起点となり、またはその伝播を容易にすることか
ら上限を50μm とした。介在物の長さについては、25μ
m 以下の場合、介在物の切り欠き効果によって発生した
亀裂が、他の介在物から発生した亀裂と連結して、切屑
を横断するまでの亀裂に成長しにくく、結果として切屑
は分断しない。しかし50μm 以上の場合、疲労強度が低
下するため上限を50μm とした。
In order to exhibit such a phenomenon, a sufficiently large number of inclusions are required. The reasons for limiting the size and quantity are described below. First, regarding the width of inclusions, inclusions with a width of 9 μm or less have a large shear deformation resistance in the shear zone.
Alternatively, even if Bi is melted, the above-described deformation of the inclusion is unlikely to occur. However, when the thickness is 50 μm or more, the upper limit is set to 50 μm because it becomes the starting point of fatigue cracks or facilitates the propagation thereof. 25μ for inclusion length
In the case of m or less, the cracks generated by the notch effect of the inclusions are hard to grow into cracks crossing the chips by being connected with the cracks generated from other inclusions, and as a result, the chips are not divided. However, when the thickness is 50 μm or more, the fatigue strength decreases, so the upper limit is set to 50 μm.

【0016】介在物の数については、切屑の分断は、複
数の介在物を起点とする亀裂の連結によって切り屑分断
にいたる大きな亀裂に成長することによるものだが、た
とえ充分な大きさの介在物であっても、その数が少ない
と前述したような亀裂の連結が起きにくい。したがっ
て、切屑の分断のためには上述した充分な大きさの介在
物が、少なくとも圧延方向に任意の断面で1mm2当たり8
個以上必要である。したがって、上記の現象を有効に安
定な状態で発生させるには、限定理由で述べたように介
在物の大きさと数量が定義され、本発明を生じめた研究
成果として、それらの介在物の幅が9 μm 〜50μm 、お
よび長さが25μm 〜50μm であるものが鋼中の直径/4位
置の圧延方向に平行な任意の断面における1mm2内に8 個
以上存在することが必要である。
With respect to the number of inclusions, chip breaking is caused by the growth of large cracks up to chip breaking by connection of cracks originating from a plurality of inclusions, but even if the inclusions are large enough. However, if the number is small, crack connection as described above is unlikely to occur. Therefore, the above-mentioned inclusions having a sufficient size for cutting chips are required to have at least 8 inclusions per mm 2 in any cross section in the rolling direction.
You need more than one. Therefore, in order to effectively generate the above phenomenon in a stable state, the size and number of inclusions are defined as described for the limiting reason, and the width of the inclusions is defined as a research result that resulted in the present invention. It is necessary that at least 8 of the steels having a diameter of 9 μm to 50 μm and a length of 25 μm to 50 μm exist in 1 mm 2 in an arbitrary cross section parallel to the rolling direction at the diameter / 4 position in the steel.

【0017】すなわち上述の安定した切粉分断現象と工
具摩耗の低減現象を目的とするために、刃先近傍の被削
材のせん断領域における切粉の生成と変形を容易にする
ような切削温度で容易に溶解する低融点の元素、工具と
被削材間で潤滑機能を示す元素の添加を行う。
That is, in order to achieve the above-mentioned stable chip breaking phenomenon and tool wear reduction phenomenon, the cutting temperature is set so as to facilitate the generation and deformation of the chip in the shear region of the work material near the cutting edge. Add an element that easily dissolves and has a low melting point, and an element that has a lubricating function between the tool and the work material.

【0018】また、上述のような適度な大きさの介在物
を適当量鋼中に存在させるためには、溶解炉中の溶融鋼
に取鍋の底部より不活性ガス吹き込むなどの手段により
溶融鋼を攪拌しながら上述の各元素を添加し、連続鋳造
もしくはインゴット鋳造における凝固速度の制御、また
は溶融鋼中の酸素量の制御による硫化物系介在物の核と
なる酸化物系介在物量の制御等の様々な手段によって制
御が可能である。たとえば、インゴットケースの温度測
定により、インゴットケースの上部と外壁部に設置した
電磁場発生手段による電磁場の強弱から熱電子放出量を
制御して介在物の大きさ、量、数を制御するという製造
方法により鋼塊中心部の凝固速度を、0.02〜1.3mm/sec
となるように制御することが可能である。
Further, in order to make the inclusions of an appropriate size as described above exist in an appropriate amount in the steel, the molten steel in the melting furnace is blown into the molten steel from the bottom of the ladle by a means such as blowing an inert gas. The above-mentioned elements are added while stirring to control the solidification rate in continuous casting or ingot casting, or control of the amount of oxide-based inclusions that become the core of sulfide-based inclusions by controlling the amount of oxygen in molten steel, etc. Can be controlled by various means. For example, by measuring the temperature of the ingot case, a manufacturing method of controlling the size, quantity and number of inclusions by controlling the amount of thermionic emission from the strength of the electromagnetic field by the electromagnetic field generating means installed on the upper part and the outer wall of the ingot case The solidification speed at the center of the steel ingot by 0.02-1.3 mm / sec
It is possible to control so that

【0019】次に刃先近傍の被削材内のせん断域におけ
る上述の各元素を含む複合化合物よりなる介在物の変形
挙動と切粉の生成現象を解析することから切粉の安定な
分断現象と工具摩耗の低減方法を得る。その際に介在物
の組成と形状を観察し、切粉生成時の介在物の変形が組
成と形状の違いによって異なリ、本発明の目的である最
適な切粉の分断と工具摩耗の低減を得る介在物の組成と
形状を得る。
Next, by analyzing the deformation behavior of inclusions made of the composite compound containing each of the above-mentioned elements and the generation phenomenon of chips in the shear region in the work material near the cutting edge, a stable cutting phenomenon of the chips can be obtained. A method for reducing tool wear is obtained. At that time, observe the composition and shape of the inclusions, and the deformation of the inclusions during chip generation differs depending on the difference in composition and shape, and the purpose of the present invention is to optimize the cutting of chips and reduce tool wear. Obtain the composition and shape of the resulting inclusions.

【0020】次に各元素の限定理由について説明する。
まずC は鋼の機械的強度を増すものであり少なくとも0.
05%必要であるが、0.5 %以上では効果が著しく加工性
が低下することから上限を0.5 %とした。Siは脱酸剤と
して溶融鋼中に添加され少なくとも0.03%必要である
が、多量に添加すると靭性が低下し被削性も悪化するこ
とから上限を1.00%とした。Mnは固溶硬化作用が大きく
硬度を確保するためには0.5 %以上必要であるが、多量
の添加では過度に硬化し加工性が低下するため上限を2.
00%とした。
Next, the reasons for limiting each element will be described.
First, C increases the mechanical strength of steel and is at least 0.
However, if the content is 0.5% or more, the effect is remarkable and the workability deteriorates, so the upper limit is set to 0.5%. Si is added to the molten steel as a deoxidizing agent and must be at least 0.03%, but if added in a large amount, the toughness is lowered and the machinability is also deteriorated, so the upper limit was made 1.00%. Mn has a solid solution hardening effect and is required to be 0.5% or more in order to secure hardness. However, when added in a large amount, Mn is excessively hardened and the workability is reduced, so the upper limit is 2.
00%.

【0021】S はMnとMnS を形成し被削性を向上させる
ためには少なくとも0.01%必要であるが、過度の添加で
は熱間加工性が低下するため上限を0.12%とした。Alは
脱酸剤として少なくとも0.005 %必要であるが、Al203
の形成によって被削性を悪化させることから上限を0.04
0 %とした。
S must be at least 0.01% in order to form Mn and MnS and improve machinability. However, excessive addition of S lowers the hot workability, so the upper limit was made 0.12%. Al needs at least 0.005% as a deoxidizing agent, but Al 2 O 3
The upper limit is 0.04 because machinability is deteriorated by the formation of
0%.

【0022】Pbは切屑処理性および穿孔性を向上させる
ためには少なくとも0.05%必要であるが、過度の添加は
機械的性質を悪化させるため上限を0.30%とした。Biは
少量でPbと同様に効果があり、その効果を発揮させるた
めには最低0.01%必要であるが、過度の添加では機械的
性質を悪化させるため上限を0.30%とした。
Pb is required to be at least 0.05% in order to improve the chip controllability and the perforation property, but the upper limit is set to 0.30% because excessive addition deteriorates the mechanical properties. Bi has an effect similar to that of Pb in a small amount, and at least 0.01% is required to exert its effect. However, an excessive addition deteriorates the mechanical properties, so the upper limit was set to 0.30%.

【0023】Caは酸化物系介在物を比較的低融点の介在
物に変化させ被削性における有害性を緩和し、また硫化
物を球状化することによって鋼の機械的性質を向上させ
るとともに、切削工具の表面に保護皮膜を形成し工具の
摩耗を防ぐ効果があるが、その効果を発揮させるために
は少なくとも0.001 %必要であるが、0.020 %を超える
とその効果が飽和するため上限を0.020 %とした。
Ca changes oxide-based inclusions into inclusions with a relatively low melting point to reduce the harmfulness in machinability, and also improves the mechanical properties of steel by spheroidizing sulfides. It has the effect of forming a protective film on the surface of the cutting tool to prevent wear of the tool, but at least 0.001% is required to achieve the effect, but if it exceeds 0.020%, the effect is saturated, so the upper limit is 0.020%. %.

【0024】また第4発明に関するCrは、強度を向上さ
せる働きがあるが、過度に添加すると被削性が悪化する
ため上限を2 %とした。Moは焼き入れ性を向上させる効
果を有するが、1 %を超えると効果の割にコストが増大
するため、上限を1 %とした。Niは靭性を向上させる効
果を有するが、3 %を超えると効果の割にコストが増大
することから、上限を3 %とした。V は鍛造後の冷却中
にフェライト組織中に析出し強度を向上させる効果を有
するが、0.5 %添加してもその効果は飽和するため上限
を0.5 %とした。
The Cr according to the fourth aspect of the present invention has the function of improving the strength, but if added excessively, the machinability deteriorates, so the upper limit was made 2%. Mo has the effect of improving the hardenability, but if it exceeds 1%, the cost increases for the effect, so the upper limit was made 1%. Ni has the effect of improving toughness, but if it exceeds 3%, the cost increases for the effect, so the upper limit was set to 3%. V has the effect of improving the strength by precipitating in the ferrite structure during cooling after forging, but the effect is saturated even if added by 0.5%, so the upper limit was made 0.5%.

【0025】刃先近傍の被削材内のせん断域では、被削
材の変形から切削温度が発生し、硫化物系介在物及び硫
化物と酸化物の複合介在物の表面を被覆しているPb、B
i、またはその合金等の溶融温度の低い元素が最初に溶
融し、介在物の核となる溶融温度の高い元素の複合物と
被削材の地金との間隙に空隙が生じた状態と同等とな
る。そのためにこの空隙が応力集中の作用を起こし、介
在物の核となる硫化物、酸化物、またはその複合物の変
形を増長して、最適な切粉の分断を得るせん断域の変形
を促す。またこれらの介在物の変形または破砕は工具と
切粉または被削材の仕上げ面との擦過において潤滑機能
を起こす合金元素の複合物となり、工具寿命を延長す
る。
In a shear zone in the work material near the cutting edge, a cutting temperature is generated due to the deformation of the work material, and Pb covering the surfaces of the sulfide-based inclusions and the composite inclusions of sulfide and oxide. , B
Equivalent to a state in which an element with a low melting temperature such as i or its alloy melts first, and a gap is created in the gap between the composite of the element with a high melting temperature, which is the core of inclusions, and the base metal of the work material Becomes For this reason, these voids cause a stress concentration effect, and increase the deformation of sulfides, oxides, or a composite thereof serving as nuclei of inclusions, and promote the deformation of the shearing region for obtaining the optimal cutting chips. In addition, deformation or crushing of these inclusions becomes a composite of alloying elements that cause a lubricating function when the tool rubs against the chip or the finished surface of the work material, thereby extending the tool life.

【0026】上述の現象を起こす介在物の組成は、核に
潤滑機能を示す化合物、外郭に低融点な合金元素であ
る。また介在物の形状は、せん断域においてせん断現象
を容易にする、すなわち切粉の生成を容易にするために
は大きいものが良い。ただし、機能部品として使用中に
介在物が応力集中の切り欠き効果を引き出して疲労強度
が低下することを防ぐために、介在物の大きさは50μm
が上限である。
The composition of the inclusions causing the above-mentioned phenomenon is a compound having a lubricating function in the nucleus and an alloy element having a low melting point in the outer shell. The shape of the inclusions is preferably large to facilitate the shearing phenomenon in the shearing region, that is, to facilitate the generation of chips. However, the size of the inclusions is 50 μm to prevent the inclusions from drawing out the stress concentration notch effect during use as a functional component and reducing the fatigue strength.
Is the upper limit.

【0027】[0027]

【発明の実施の形態】以下に、本発明の特徴を比較鋼と
の比較によって説明する。表1はこれらの供試鋼の化学
成分を示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The features of the present invention will be described below by comparison with comparative steel. Table 1 shows the chemical composition of these test steels.

【0028】[0028]

【表1】 [Table 1]

【0029】表1において、A 〜M 鋼は本発明鋼を示
し、この中のH 鋼は第1発明鋼、A 〜D 鋼は第2発明
鋼、E 〜G 鋼は第3発明鋼であり、またI 〜M 鋼は比較
鋼である。上記の成分鋼の鋳造において、介在物寸法の
分布を制御するため数種類のインゴットケース及び断熱
方法の選択によって鋼塊中心部の完全凝固時間を5 〜16
0分まで変化させた。
In Table 1, A to M steels indicate the steels of the present invention, in which H steel is the first invention steel, A to D steels are the second invention steels, and E to G steels are the third invention steels. , And I to M steels are comparative steels. In the casting of the above component steel, the complete solidification time of the central part of the ingot is 5 to 16 by selecting several types of ingot cases and heat insulating methods to control the distribution of inclusion sizes.
Changed to 0 minutes.

【0030】鋳造した鋼塊は鍛圧比10で圧延または鍛伸
し、A 〜D 鋼、およびH 鋼、I 鋼、L 鋼、M 鋼は850 ℃
で60分保持した後空冷、またE 鋼、およびF 鋼、J 鋼、
K 鋼については1200℃にて30分保持した後空冷、G 鋼に
ついては925 ℃で60分保持した後空冷した。その後、穿
孔性試験用としてφ40に旋削加工するとともに、直径/4
の位置の圧延または鍛伸方向に平行な断面において、10
0 μm ×100 μm の視野で50視野にわたり介在物の大き
さの分布を調査し、その分布を1mm2に換算した。
The cast ingot is rolled or forged at a forging pressure ratio of 10, and A to D steel, and H steel, I steel, L steel, and M steel are 850 ° C.
Air cooling after holding for 60 minutes, and also E steel, and F steel, J steel,
K steel was kept at 1200 ° C for 30 minutes and air-cooled, and G steel was kept at 925 ° C for 60 minutes and air-cooled. After that, while turning to φ40 for drilling test, diameter / 4
In the section parallel to the rolling or forging direction at the position
The distribution of the size of the inclusions was examined over 50 fields of view of 0 μm × 100 μm, and the distribution was converted to 1 mm 2 .

【0031】表2はA 〜M 鋼の鋼塊中心部の完全凝固時
間と鋼中の直径/4の位置の圧延方向と平行な任意の断面
1mm2における幅が9 μm 〜50μm および長さが25μm 〜
50μm の比較的大きい介在物の個数、および穿孔深さを
示す。
Table 2 shows the complete solidification time at the center of the ingot of A to M steel and the arbitrary cross section parallel to the rolling direction at the position of diameter / 4 in the steel.
9 μm to 50 μm width and 25 μm to length at 1 mm 2
The number of relatively large inclusions of 50 μm and the drilling depth are shown.

【0032】[0032]

【表2】 [Table 2]

【0033】この穿孔深さは、切粉つまりの評価に主体
を置くために図1に示す方法を採用し、安定な穿孔深さ
を求める。すなわち切粉がドリルの溝に滞積し、詰まる
現象を示した場合にはドリルに罹るスラス卜よりは卜ル
クが上昇し、切粉の排出度合いを明確に示す。採用した
ドリル試験条件ではドリル径に対して孔あけ深さを12倍
にして、未貫通孔の試験方法を採用することから各被削
材の孔あけ性を評価する。
As for the perforation depth, a method shown in FIG. 1 is employed in order to focus on the evaluation of chips, and a stable perforation depth is obtained. That is, when the chips accumulate in the grooves of the drill and exhibit a phenomenon of clogging, the torque rises more than the thrusts associated with the drill, clearly indicating the degree of chip discharge. Under the adopted drill test conditions, the drilling depth is 12 times as large as the drill diameter, and the drilling property of each work material is evaluated by adopting the test method for non-through holes.

【0034】ドリル寿命試験は、SKH9のφ6ストレート
ドリルを用い、切削速度18.8m /min 、送り速度0.1mm/
rev 潤滑なしの条件で、深さ50mmの孔を300 回穿孔した
後の刃先マージン部の摩耗を測定した。その結果を表3
に示す。
The drill life test was performed using a SKH9 φ6 straight drill at a cutting speed of 18.8 m / min and a feed speed of 0.1 mm /
rev Under no lubrication conditions, the wear of the cutting edge margin was measured after drilling a 50 mm deep hole 300 times. Table 3 shows the results.
Shown in

【0035】[0035]

【表3】 [Table 3]

【0036】また、A 鋼、C 鋼、E 鋼、F 鋼、J 鋼、L
鋼において疲れ限度を調査した。すなわち、A 鋼、C
鋼、L 鋼においては850 ℃にて焼き入れ後550 ℃にて焼
戻しを行い、また、E 鋼、F 鋼、J 鋼においてはドリル
試験同様、1200℃にて30分保持した後空冷を行った試験
片にて疲労試験を実施した。疲労試験方法については、
平行部φ8mm の平滑試験片を用い、小野式回転曲げ疲労
試験において107 回における値を疲れ限度として、疲れ
限度を引張り強さで割った耐久比でもって結果を整理し
た。その結果と、直径/4の位置における圧延、または鍛
伸方向の任意の断面1mm2中の幅あるいは長さが50μm を
超える介在物の個数を表4に示す。
In addition, steel A, steel C, steel E, steel F, steel J, steel L
The fatigue limit was investigated in steel. That is, A steel, C
For steel and L steel, they were quenched at 850 ° C and then tempered at 550 ° C, and for E steel, F steel, and J steel, as in the drill test, they were kept at 1200 ° C for 30 minutes and then air-cooled. A fatigue test was performed on the test piece. For the fatigue test method,
With smooth specimen parallel section 8 mm diameter, a limit fatigue values of 10 7 times in rotating bending fatigue test Ono equation to organize results with divided by endurance ratio tensile strength and fatigue limit. Table 4 shows the results and the number of inclusions having a width or length exceeding 50 μm in an arbitrary cross section of 1 mm 2 in the rolling or forging direction at the position of diameter / 4.

【0037】[0037]

【表4】 [Table 4]

【0038】介在物の組成の構成状態は、図2に示すよ
うに、球状の複合系介在物では核が(Al 、Ca)0xide、(C
a 、Mn)Sであり、その外郭にBiまたはPbが被覆してい
る。棒状のMnS 系では核がMnS であり、一部(Al 、Ca)0
xideを含む場合もあリ、その輪郭にBiまたはPbが被覆し
てる。
As shown in FIG. 2, the composition of the inclusions is such that the nuclei of the spherical composite inclusions are (Al, Ca) 0xide, (C
a, Mn) S, the outer surface of which is coated with Bi or Pb. In the rod-shaped MnS system, the nucleus is MnS, and some (Al, Ca) 0
It may contain xide, and its outline is covered with Bi or Pb.

【0039】以上の結果が示すように、本発明鋼では安
定穿孔深さがすべて60mm以上であり、安定した良好な穿
孔性が得られている。これは、刃先近傍の被削材内のせ
ん断域では切削温度により介在物の外郭に存在するBiま
たはPbが溶融し、介在物の核と被削材の地金との間に空
隙が生じ、さらに切削工具によって外力が加わることに
よってこの空隙が応力集中の切り欠き効果を示し、介在
物の核内にある(Al 、Ca)0xide、(Ca 、Mn)SまたはMnS
の変形と破砕を容易にし被削材内のせん断域の変形を容
易にすることによるものである。
As shown by the above results, in the steel of the present invention, the stable piercing depth is all 60 mm or more, and stable and excellent piercing properties are obtained. This is because in the shear zone in the work material near the cutting edge, Bi or Pb present in the outer shell of the inclusion is melted by the cutting temperature, and a gap is generated between the core of the inclusion and the metal of the work material, Further, when an external force is applied by a cutting tool, this gap shows a notch effect of stress concentration, and (Al, Ca) 0xide, (Ca, Mn) S or MnS in the nucleus of the inclusion.
This facilitates the deformation and crushing of the material and facilitates the deformation of the shear zone in the work material.

【0040】比較鋼を見ると、I 鋼はBiにより硫化物ま
たは硫化物と酸化物の複合介在物が被覆されているにも
かかわらず、凝固時間が短いことにより介在物が比較的
小さく安定穿孔深さは本発明鋼に及ばなかった。J 鋼で
は、介在物はPbに被覆され、穿孔性も良好であるが、凝
固時間が過度に長いことから50μm を超える介在物が存
在し、耐久比を著しく低下させている。K 鋼では、凝固
時間かひじょうに短いことから適度に大きい介在物が少
なく、穿孔性が悪くなっている。L 鋼では、PbまたはBi
が添加されておらず、また著しく凝固時間が長いことか
ら穿孔性、耐久比とも悪化している。M 鋼では、介在物
は充分大きいがPbまたはBiが添加されていないことか
ら、安定穿孔深さは本発明鋼に及ばなかった。ドリル摩
耗では、凝固時間が長く介在物が適度に多く、なおかつ
Pb及びBiを含むA 鋼及びC 鋼が良好な結果を示した。こ
のことは、Pb及びBi自体のもつ潤滑作用だけではなく、
上述の構成要素を持つ介在物がせん断域において変形と
破砕から工具面との擦過過程において潤滑機能を示した
結果である。
Looking at the comparative steels, despite the fact that the steel I was coated with sulfides or composite inclusions of sulfides and oxides, the inclusions were relatively small due to the short solidification time. The depth did not reach the steel of the present invention. In the J steel, the inclusions are coated with Pb and the piercing property is good, but since the solidification time is excessively long, the inclusions exceeding 50 μm are present, which significantly lowers the durability ratio. In K steel, since the solidification time is very short, there are few moderately large inclusions and the piercing property is poor. Pb or Bi for L steel
Is not added, and since the solidification time is remarkably long, the piercing property and the durability ratio are deteriorated. In the M steel, the inclusions were sufficiently large, but Pb or Bi was not added, so that the stable drilling depth was lower than that of the steel of the present invention. In drill wear, the solidification time is long, the inclusions are moderately large, and
Steels A and C containing Pb and Bi showed good results. This is not only due to the lubricating action of Pb and Bi itself,
This is a result that the inclusion having the above-described components has a lubricating function in a process of rubbing against a tool surface from deformation and crushing in a shear region.

【0041】[0041]

【発明の効果】介在物が刃先近傍の被削材内のせん断域
において、十分に応力集中の切欠き効果を示せば工具径
の10倍以上の深孔あけ加工時の切粉生成が容易となる。
また介在物の変形と破砕に伴って切粉または仕上げ面と
の擦過過程において工具接触面に広く潤滑機能を示すこ
とから工具寿命の延長を得る。そして、高い疲労強度も
得ることができた。すなわち本発明は、機能部品に使用
される鋼材において、深穴加工時に切粉の排出を容易
で、工具寿命に優れ、かつ、疲労強度も優れることによ
り、生産ラインの停止を防ぎ、大幅な生産性の向上を計
ることのできる快穿孔鋼である。
According to the present invention, if inclusions show a notch effect of sufficient stress concentration in a shearing region in a work material near a cutting edge, it is easy to generate chips when drilling a deep hole of 10 times or more the tool diameter. Become.
In addition, the tool life is extended because the tool contact surface exhibits a wide lubrication function in the process of rubbing against the chip or the finished surface due to the deformation and crushing of the inclusions. And high fatigue strength was also obtained. That is, according to the present invention, a steel material used for a functional component can easily discharge chips during deep hole drilling, has excellent tool life, and has excellent fatigue strength. It is a free-drilling steel that can improve the properties.

【図面の簡単な説明】[Brief description of the drawings]

【図1】安定穿孔深さを求める方法。FIG. 1 shows a method for determining a stable drilling depth.

【図2】本発明快穿孔鋼内の代表的な介在物の組成構成
図。 表1:本発明快穿孔鋼の化学組成 表2:本発明快穿孔鋼の凝固時間と特定の大きさの介在物
の数、穿孔深さ 表3:本発明快穿孔鋼のドリル寿命 表4:本発明快穿孔鋼の耐久比
FIG. 2 is a diagram showing the composition of a typical inclusion in the free-perforated steel of the present invention. Table 1: Chemical composition of the free-perforated steel of the present invention Table 2: Solidification time of the free-perforated steel of the present invention, the number of inclusions of a specific size, drilling depth Table 3: Drill life of the free-perforated steel of the present invention Table 4: Present invention Durability ratio of free-piercing steel

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮本 昌司 愛知県東海市荒尾町ワノ割1番地 愛知製 鋼株式会社内 (72)発明者 内山 雅夫 愛知県東海市荒尾町ワノ割1番地 愛知製 鋼株式会社内 (72)発明者 岩間 直樹 愛知県東海市荒尾町ワノ割1番地 愛知製 鋼株式会社内 (72)発明者 平岡 和彦 兵庫県姫路市飾磨区中島字一文字3007番地 山陽特殊製鋼株式会社内 (72)発明者 常陰 典正 兵庫県姫路市飾磨区中島字一文字3007番地 山陽特殊製鋼株式会社内 (72)発明者 大庫 和孝 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 内藤 国雄 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 森 元秀 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shoji Miyamoto 1 Aomachi Wanowari, Tokai City, Aichi Prefecture Inside Aichi Steel Co., Ltd. (72) Inventor Masao Uchiyama 1 Wanowari Araocho, Tokai City, Aichi Prefecture Aichi Steel Inside (72) Inventor Naoki Iwama 1 Wanowari, Arao-cho, Tokai-shi, Aichi Prefecture Inside Aichi Steel Corporation (72) Inventor Kazuhiko Hiraoka 3007 Nakashima-shi, 1 character, Shikarima-ku, Himeji-shi, Hyogo Sanyo Special Steel Co., Ltd. (72) Inventor Norimasa Join 3007 one character, Nakajima-shi, Shima, Himeji City, Hyogo Prefecture Inside Sanyo Special Steel Co., Ltd. (72) Inventor Kazutaka Okochi 41-Cho, Yukumichi, Yoji, Nagakute-cho, Aichi-gun, Aichi Prefecture Inside Toyota Central Research Laboratory (72) Inventor Kunio Naito 41-41 Yokomichi, Nagakute-machi, Aichi-gun, Aichi Prefecture (72) Inventor Motohide Mori 1 Toyota Town, Toyota City, Aichi Prefecture Inside Toyota Motor Corporation

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 C:0.05〜0.50%(重量比、以下同じ) 、
Si:0.03 〜1.00% 、Mn:0.50 〜2.00% 、S:0.01〜0.11%
、Al:0.005〜0.040%に加えて、Pb:0.05 〜0.30% 、Bi:
0.01 〜0.30% の1 種以上を含有し、残部がFeと不純物
からなり、このマトリックス中に球状または棒状介在物
を有し、球状介在物は酸化物を核としまた棒状介在物は
硫化物を核とし、それぞれの核の外周部の少なくとも一
部にPbまたはBiの1 種以上を含む層を有し、これら
介在物の大きさが幅9 〜50μm、長さ25〜50μmであ
り、その数が鋼中の直径の1/4での圧延方向に平行な
任意の断面における1mm2当たり8 個以上存在することを
特徴とする快穿孔鋼。
(1) C: 0.05 to 0.50% (weight ratio, the same applies hereinafter);
Si: 0.03-1.00%, Mn: 0.50-2.00%, S: 0.01-0.11%
, Al: 0.005 to 0.040%, Pb: 0.05 to 0.30%, Bi:
The matrix contains one or more of 0.01 to 0.30%, with the balance being Fe and impurities, with spherical or rod-like inclusions in the matrix.Spherical inclusions have oxides as nuclei and rod-like inclusions have sulfides. The core has a layer containing at least one type of Pb or Bi at least at a part of the outer periphery of each nucleus. The size of these inclusions is 9 to 50 μm in width and 25 to 50 μm in length. there free drilling steel, characterized in that there are eight or more per 1 mm 2 at any cross-section parallel to the rolling direction at a quarter of the diameter of the steel.
【請求項2】 C:0.05〜0.50%(重量比、以下同じ) 、
Si:0.03 〜1.00% 、Mn:0.50 〜2.00% 、S:0.01〜0.11%
、Al:0.005〜0.040%に加えて、Pb:0.05 〜0.30% 、Bi:
0.01 〜0.30% の1 種以上を含有し、残部がFeと不純物
からなり、このマトリックス中に球状または棒状介在物
を有し、球状介在物は(Al 、Si)0xideを核としまた棒状
介在物はMnS を核とし、それぞれの核の外周部の少なく
とも一部にPbまたはBiの1 種以上を含む層を有し、
これら介在物の大きさが幅9 〜50μm、長さ25〜50μm
であり、その数が鋼中の直径の1/4での圧延方向に平
行な任意の断面における1mm2当たり8 個以上存在するこ
とを特徴とする快穿孔鋼。
2. C: 0.05 to 0.50% (weight ratio, hereinafter the same),
Si: 0.03-1.00%, Mn: 0.50-2.00%, S: 0.01-0.11%
, Al: 0.005 to 0.040%, Pb: 0.05 to 0.30%, Bi:
0.01 to 0.30% or more, the balance consisting of Fe and impurities, with spherical or rod-shaped inclusions in the matrix, the spherical inclusions having (Al, Si) 0xide as the core and rod-like inclusions Has a layer containing MnS as a nucleus and at least a part of the outer periphery of each nucleus containing at least one kind of Pb or Bi,
The size of these inclusions is 9-50 μm in width and 25-50 μm in length
Wherein the number is at least 8 per 1 mm 2 in an arbitrary cross section parallel to the rolling direction at 1/4 of the diameter in the steel.
【請求項3】 C:0.05〜0.50%(重量比、以下同じ) 、S
i:0.03 〜1.00% 、Mn:0.50 〜2.00% 、S:0.01〜0.11%
、Al:0.005〜0.040%、Ca:0.001〜0.020%に加えて、Pb:
0.05 〜0.30% 、Bi:0.01 〜0.30% の1 種以上を含有
し、残部がFeと不純物からなり、このマトリックス中に
球状または棒状介在物を有し、球状介在物は(Al 、Si、
Ca)0xide、(Al 、Si)0xide、(Al 、Ca)0xide、(Si 、C
a)0xide、(Mn、Ca)S、CaS の一種または複数種を核とし
また棒状介在物はMnS を核とし、それぞれの核の外周部
の少なくとも一部にPbまたはBiの1 種以上を含む層
を有し、これら介在物の大きさが幅9 〜50μm、長さ25
〜50μmであり、その数が鋼中の直径の1/4での圧延
方向に平行な任意の断面における1mm2当たり8 個以上存
在することを特徴とする快穿孔鋼。
3. C: 0.05 to 0.50% (weight ratio, the same applies hereinafter), S
i: 0.03 to 1.00%, Mn: 0.50 to 2.00%, S: 0.01 to 0.11%
, Al: 0.005 to 0.040%, Ca: 0.001 to 0.020%, and Pb:
0.05 to 0.30%, Bi: 0.01 to 0.30%, at least one of which contains Fe and impurities, has a spherical or rod-shaped inclusion in the matrix, and the spherical inclusion is (Al, Si,
Ca) 0xide, (Al, Si) 0xide, (Al, Ca) 0xide, (Si, C
a) Oxide, (Mn, Ca) S, CaS as one or more nuclei and rod-shaped inclusions having MnS as a nucleus, and at least a part of the outer periphery of each nucleus contains at least one of Pb or Bi The size of these inclusions is 9-50 μm in width and 25 in length.
A free-drilling steel, characterized in that the number is at least 8 per 1 mm 2 in an arbitrary cross section parallel to the rolling direction at 1/4 of the diameter in the steel.
【請求項4】 請求項1〜3において、Cr:2% 以下、M
o:1% 以下、Ni:3% 以下、V:0.5%以下のうち1 種または2
種以上を含有することを特徴とする快穿孔鋼。
4. The method according to claim 1, wherein Cr: 2% or less, M
o: 1% or less, Ni: 3% or less, V: 0.5% or less
Free piercing steel characterized by containing at least one kind.
【請求項5】 鋼塊中心部の凝固速度が、0.02〜1.3mm/
sec となるようにインゴットケースの温度測定により、
インゴットケースの上部と外壁部に設置した電磁場発生
手段による電磁場の強弱から熱電子放出量を制御して介
在物の大きさ、量、数を制御することを特徴することを
特徴とする請求項1〜4の快穿孔鋼の製造方法。
5. The solidification rate at the center of the ingot is 0.02 to 1.3 mm /
By measuring the temperature of the ingot case to be sec
The size, quantity and number of inclusions are controlled by controlling the amount of thermionic emission from the strength of the electromagnetic field generated by the electromagnetic field generating means installed on the upper part of the ingot case and the outer wall. 4. The method for producing free-piercing steel according to any one of (1) to (4).
JP03203198A 1998-01-28 1998-01-28 Free-piercing steel Expired - Fee Related JP3496804B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03203198A JP3496804B2 (en) 1998-01-28 1998-01-28 Free-piercing steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03203198A JP3496804B2 (en) 1998-01-28 1998-01-28 Free-piercing steel

Publications (2)

Publication Number Publication Date
JPH11217650A true JPH11217650A (en) 1999-08-10
JP3496804B2 JP3496804B2 (en) 2004-02-16

Family

ID=12347513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03203198A Expired - Fee Related JP3496804B2 (en) 1998-01-28 1998-01-28 Free-piercing steel

Country Status (1)

Country Link
JP (1) JP3496804B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018021452A1 (en) * 2016-07-27 2018-02-01 新日鐵住金株式会社 Steel for machine structures
CN111014607A (en) * 2019-12-13 2020-04-17 河钢乐亭钢铁有限公司 Continuous casting high-quality accurate secondary cooling process

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018021452A1 (en) * 2016-07-27 2018-02-01 新日鐵住金株式会社 Steel for machine structures
CN109496239A (en) * 2016-07-27 2019-03-19 新日铁住金株式会社 Steel for mechanical structure
JPWO2018021452A1 (en) * 2016-07-27 2019-05-30 日本製鉄株式会社 Machine structural steel
CN111014607A (en) * 2019-12-13 2020-04-17 河钢乐亭钢铁有限公司 Continuous casting high-quality accurate secondary cooling process
CN111014607B (en) * 2019-12-13 2021-07-09 河钢乐亭钢铁有限公司 Continuous casting high-quality accurate secondary cooling process

Also Published As

Publication number Publication date
JP3496804B2 (en) 2004-02-16

Similar Documents

Publication Publication Date Title
EP1312689B1 (en) Steel for machine structural use
TWI307720B (en)
JP2002069569A (en) Free cutting steel for machine structure having excellent mechanical property
JP2004169052A (en) Steel excellent in machinability, and its production method
JP3706560B2 (en) Mechanical structural steel with excellent chip control and mechanical properties
JP7283271B2 (en) Free-cutting ferritic stainless steel and method for producing the same
US3846186A (en) Stainless steel having improved machinability
US4326886A (en) Steel for cold forging having good machinability and the method of making the same
US6596227B2 (en) Machine structure steel superior in chip disposability and mechanical properties and its method of making
JP2004176176A (en) Steel superior in machinability
JP3437079B2 (en) Machine structural steel with excellent chip control
JP2000087179A (en) Steel for machine structural use, excellent in machinability
JP2000282172A (en) Steel for machine structure excellent in machinability and toughness, and machine structural parts
JPH11217650A (en) Free-drilling steel
JP4348163B2 (en) Steel excellent in machinability and manufacturing method thereof
AU2006241390B2 (en) Free-cutting steel having excellent high temperature ductility
WO2014125779A1 (en) Free machining steel with lead
JP2004068128A (en) Steel for machine structural use having excellent chip crushability
JP5114753B2 (en) Steel with excellent machinability and method for producing the same
JP2001220645A (en) Lead-free steel for machine structure excellent in machinability and small in anisotropy of strength
JP5583986B2 (en) Austenitic stainless free-cutting steel rod with excellent forgeability
JPS59205453A (en) Free cutting steel and preparation thereof
JP2008126273A (en) Manufacturing method of b-containing lead-free low carbon free cutting steel
JP3740042B2 (en) Method for controlling the morphology of sulfide inclusions
JP2671086B2 (en) Low carbon sulfur free cutting steel by continuous casting method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101128

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101128

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees