JPH1121554A - Production of liquid crystal display element - Google Patents

Production of liquid crystal display element

Info

Publication number
JPH1121554A
JPH1121554A JP17446397A JP17446397A JPH1121554A JP H1121554 A JPH1121554 A JP H1121554A JP 17446397 A JP17446397 A JP 17446397A JP 17446397 A JP17446397 A JP 17446397A JP H1121554 A JPH1121554 A JP H1121554A
Authority
JP
Japan
Prior art keywords
liquid crystal
meth
phase
acrylate monomer
crystal display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17446397A
Other languages
Japanese (ja)
Other versions
JP4334028B2 (en
Inventor
Shunsuke Kobayashi
駿介 小林
Hirokazu Furue
広和 古江
Hiroshi Hasebe
浩史 長谷部
Haruyoshi Takatsu
晴義 高津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP17446397A priority Critical patent/JP4334028B2/en
Publication of JPH1121554A publication Critical patent/JPH1121554A/en
Application granted granted Critical
Publication of JP4334028B2 publication Critical patent/JP4334028B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain an element capable of half-tone display by curing a liquid crystal composition containing a liquid crystal (meth)acrylate monomer and a ferroelectric liquid crystal during or after alignment in the state showing a chiral smectic C phase. SOLUTION: Between a pair of transparent substrates, a liquid crystal composition containing a liquid crystal (meth)acrylate monomer in a concentration of 0.1-10 wt.%, a ferroelectric liquid crystal and optionally a photopolymerization initiator is cured by irradiation with ultraviolet rays or electron beams during or after alignment under applied direct current voltage in the state showing a chiral smectic C phase to obtain a liquid crystal display element. The ferroelectric liquid crystal is desirably one which shows a smectic A phase and a nematic phase in a temperature region above that of a chiral smectic C phase. In the formula, X is H or methyl: r is 0 or 1; six-membered rings A, B and C are each a group represented by formula III; Y<1> and Y<2> are each a single bond, -OCH2 -, -CH2 CH2 - or the like; and Y<3> is H, a halogen, cyano or the like.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液晶表示素子、特
に強誘電性液晶表示素子の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display device, and more particularly to a method for manufacturing a ferroelectric liquid crystal display device.

【0002】[0002]

【従来の技術】クラーク及びラガーウオルにより提案さ
れた強誘電性液晶を用いた液晶表示素子(特開昭56−
107216号公報)は双安定性を有し、且つ電界の変
化に対する応答が高速であることから、大画面で高精細
な液晶表示素子としての応用が期待されている。しかし
ながら、双安定性を有していることから、中間調の表示
が困難という問題があった。
2. Description of the Related Art A liquid crystal display device using a ferroelectric liquid crystal proposed by Clark and Lager-Wall (Japanese Patent Laid-Open No.
No. 107216) has bistability and has a fast response to a change in an electric field, and is therefore expected to be applied to a large-screen and high-definition liquid crystal display device. However, since it has bistability, there is a problem that it is difficult to display a halftone.

【0003】[0003]

【本発明が解決しようとする課題】本発明が解決しよう
とする課題は、強誘電性液晶を用いた中間調の表示が可
能な液晶表示素子の製造方法を提供することにある。
An object of the present invention is to provide a method of manufacturing a liquid crystal display device capable of displaying a halftone using a ferroelectric liquid crystal.

【0004】[0004]

【課題を発明するための手段】本発明者等は上記課題を
解決するために、液晶素子の構成要素の一つである液晶
組成物に着目し鋭意検討した結果、かかる課題が強誘電
性液晶に液晶性(メタ)アクリレートモノマーを含有さ
せ、該組成物中に電圧を印加しながら液晶性(メタ)ア
クリレートモノマーを重合させることにより解決できる
ことを見いだし本発明を提供する至った。
Means for Solving the Problems In order to solve the above problems, the present inventors have focused on a liquid crystal composition, which is one of the components of a liquid crystal element, and as a result of studying the ferroelectric liquid crystal, The present invention has been found to be able to solve the problem by incorporating a liquid crystal (meth) acrylate monomer into the composition and polymerizing the liquid crystal (meth) acrylate monomer while applying a voltage to the composition, and has provided the present invention.

【0005】即ち、 1.一対の基板間に液晶性(メタ)アクリレートモノマ
ー及び強誘電性液晶を含有する液晶組成物を介在させて
液晶表示素子を得る方法において、該液晶組成物をカイ
ラルスメクチックC相を示す状態で配向させながら、も
しくは配向した後、硬化させることを特徴とする液晶表
示素子の製造方法。 2.液晶組成物中の液晶性(メタ)アクリレートモノマ
ーの濃度が0.1〜10重量%であることを特徴とする
上記1記載の液晶表示素子の製造方法。 3.液晶性(メタ)アクリレートモノマーが一般式
(I)
[0005] That is, In a method for obtaining a liquid crystal display device by interposing a liquid crystal composition containing a liquid crystal (meth) acrylate monomer and a ferroelectric liquid crystal between a pair of substrates, the liquid crystal composition is oriented in a state showing a chiral smectic C phase. A method for manufacturing a liquid crystal display device, comprising: curing while orienting. 2. 2. The method for producing a liquid crystal display device according to the above 1, wherein the concentration of the liquid crystalline (meth) acrylate monomer in the liquid crystal composition is 0.1 to 10% by weight. 3. The liquid crystalline (meth) acrylate monomer has a general formula (I)

【0006】[0006]

【化6】 Embedded image

【0007】(式中、Xは水素原子又はメチル基を表
し、rは0又は1の整数を表し、6員環A、B及びCは
それぞれ独立的に、
(Wherein, X represents a hydrogen atom or a methyl group, r represents an integer of 0 or 1, and the 6-membered rings A, B and C each independently represent

【0008】[0008]

【化7】 Embedded image

【0009】を表し、mは1〜4の整数を表し、Y1
びY2はそれぞれ独立的に、単結合、−CH2CH2−、
−CH2O−、−OCH2−、−COO−、−OCO−、
−C≡C−、−CH=CH−、−CF=CF−、−(C
24−、−CH2CH2CH2O−、−OCH2CH2
2−、−CH=CH−CH2CH2−、−CH2CH2
2O−を表し、Y3は水素原子、ハロゲン原子、シアノ
基、炭素原子1〜20のアルキル基、アルコキシ基、ア
ルケニル基、アルケニルオキシ基を表す。)で表される
(メタ)アクリレート化合物であることを特徴とする上
記1又は2記載の液晶表示素子の製造方法。 4.一般式(I)において、Xは水素原子を表し、rは
0を表し、6員環Aは、
Wherein m is an integer of 1 to 4, Y 1 and Y 2 are each independently a single bond, —CH 2 CH 2 —,
-CH 2 O -, - OCH 2 -, - COO -, - OCO-,
-C≡C-, -CH = CH-, -CF = CF-,-(C
H 2) 4 -, - CH 2 CH 2 CH 2 O -, - OCH 2 CH 2 C
H 2 -, - CH = CH -CH 2 CH 2 -, - CH 2 CH 2 C
H 2 O-a represents, Y 3 represents a hydrogen atom, a halogen atom, a cyano group, an alkyl group having 1 to 20 carbon atoms, an alkoxy group, an alkenyl group, an alkenyloxy group. 3. The method for producing a liquid crystal display device according to the above item 1 or 2, wherein the compound is a (meth) acrylate compound represented by the following formula: 4. In the general formula (I), X represents a hydrogen atom, r represents 0, and the 6-membered ring A is

【0010】[0010]

【化8】 Embedded image

【0011】を表し、6員環Cは、Wherein the six-membered ring C is

【0012】[0012]

【化9】 Embedded image

【0013】又はOr

【0014】[0014]

【化10】 Embedded image

【0015】を表し、Y1は単結合又はC≡C−を表
し、Y3は炭素原子数1〜10のアルキル基を表す。)
で表されることを特徴とする上記1、2又は3記載の液
晶表示素子の製造方法。 5.(1)電極層及び配向制御膜を有する第1の透明性
基板と、電極層及び配向制御膜を有する第2の基板の間
に、液晶性(メタ)アクリレートモノマー及び強誘電性
液晶材料を含有してなる第1工程、(2)介在させた液
晶組成物がカイラルスメクチックC相を示す状態で、直
流電圧を印加しながら、もしくは印加した後に、紫外線
もしくは電子線を照射することにより、液晶性(メタ)
アクリレートモノマーを高分子化させる第2工程を有す
ることを特徴とする上記1、2、3又は4記載の液晶表
示素子の製造方法。を前記課題の解決手段として見出し
た。
Wherein Y 1 represents a single bond or C≡C—, and Y 3 represents an alkyl group having 1 to 10 carbon atoms. )
4. The method for producing a liquid crystal display device according to the above item 1, 2 or 3, wherein 5. (1) A liquid crystal (meth) acrylate monomer and a ferroelectric liquid crystal material are contained between a first transparent substrate having an electrode layer and an alignment control film and a second substrate having an electrode layer and an alignment control film. And (2) irradiating an ultraviolet ray or an electron beam with or after applying a DC voltage in a state in which the interposed liquid crystal composition exhibits a chiral smectic C phase to thereby obtain a liquid crystal composition. (Meta)
5. The method for producing a liquid crystal display device according to the above 1, 2, 3, or 4, further comprising a second step of polymerizing the acrylate monomer. Was found as a means for solving the above-mentioned problem.

【0016】[0016]

【発明の実施の形態】以下に本発明の一例を示す。本発
明の製造方法は、液晶性(メタ)アクリレートの液晶性
骨格の配向方向を強誘電性液晶の双安定状態のうち、ど
ちらか一方の配向方向と一致させるために、液晶性(メ
タ)アクリレート及び強誘電性液晶を含有する液晶組成
物がカイラルスメクチックC相を示す状態を保ち、且つ
該液晶組成物に直流電圧を印加しながら、もしくは印加
した後に紫外線もしくは電子線を照射して液晶性(メ
タ)アクリレートを光硬化せしめることを特徴としてい
る。これにより本発明の製造方法で製造された液晶表示
素子においては、駆動電圧を印加していない時の強誘電
性液晶の配向方向は、製造の際の紫外線又は電子線照射
時の強誘電性液晶の配向方向とほぼ一致する。これは製
造の際の紫外線又は電子線照射時の強誘電性液晶の配向
方向に一致して配向した液晶性(メタ)アクリレート光
硬化物の液晶骨格の配向安定化効果によるものと考えら
れる。製造時の直流電圧と同符号の電圧を印加した時の
強誘電性液晶の配向は、製造の際の紫外線又は電子線照
射時の強誘電性液晶の配向からほとんど変化が無く、製
造時における直流電圧と異符号の電圧を印加した時の強
誘電性液晶の配向は、印加電圧の絶対値が大きくなるほ
ど連続的に、製造の際の紫外線又は電子線照射時の強誘
電性液晶の配向ではない、もう一方の双安定状態の配向
方向に近づいていく。つまり、本発明の製造方法により
製造された液晶表示素子における強誘電性液晶の配向状
態は、強誘電性液晶の双安定状態の2種の配向状態間に
おいて連続的に制御可能であるため、中間調の表示が実
現した。以下、本発明について更に詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An example of the present invention will be described below. The production method of the present invention is intended to make the alignment direction of the liquid crystalline skeleton of the liquid crystalline (meth) acrylate coincide with one of the bistable states of the ferroelectric liquid crystal. And a liquid crystal composition containing a ferroelectric liquid crystal and a liquid crystal composition while maintaining a state showing a chiral smectic C phase, and irradiating an ultraviolet ray or an electron beam to the liquid crystal composition with or after applying a DC voltage to the liquid crystal composition ( It is characterized by photo-curing (meth) acrylate. Thus, in the liquid crystal display device manufactured by the manufacturing method of the present invention, the orientation direction of the ferroelectric liquid crystal when no driving voltage is applied is changed when the ferroelectric liquid crystal is irradiated with ultraviolet light or electron beam during manufacturing. Almost coincides with the orientation direction. This is considered to be due to the effect of stabilizing the alignment of the liquid crystal skeleton of the liquid crystalline (meth) acrylate photo-cured material that has been aligned in accordance with the alignment direction of the ferroelectric liquid crystal during irradiation with ultraviolet light or electron beam during production. The orientation of the ferroelectric liquid crystal when a voltage having the same sign as the DC voltage at the time of production is hardly changed from the orientation of the ferroelectric liquid crystal at the time of irradiation with ultraviolet rays or electron beams during production. The orientation of the ferroelectric liquid crystal when a voltage having a different sign from the voltage is applied is not the orientation of the ferroelectric liquid crystal at the time of irradiation with ultraviolet rays or electron beams during production as the absolute value of the applied voltage increases. , Approaching the orientation direction of the other bistable state. That is, the alignment state of the ferroelectric liquid crystal in the liquid crystal display device manufactured by the manufacturing method of the present invention can be continuously controlled between the two kinds of alignment states of the bistable state of the ferroelectric liquid crystal. Key display has been realized. Hereinafter, the present invention will be described in more detail.

【0017】本発明において使用する強誘電性液晶は、
通常この技術分野で強誘電性液晶と認識されるものであ
れば特に制限なく使用することができるが、良好なカイ
ラルスメクチックC相の配向状態を得るため、カイラル
スメクチックC相より上の温度領域でスメクチックA相
を呈するものを使用するのが好ましく、さらに好ましく
は、良好な配向状態を得るためスメクチックC相より上
の温度領域でスメクチックA相及びネマチック相を呈す
るものを使用するのが好ましい。 本発明で使用する液
晶性(メタ)アクリレートモノマーは、表示素子として
の要求から、光硬化によって得られた高分子が強誘電性
液晶に配向安定化効果を及ぼすものであり、且つ強誘電
性液晶の駆動電圧を上昇させないものが好ましい。この
ような液晶性(メタ)アクリレートとしては、少なくと
も2つの6員環を有する液晶骨格を部分構造として有す
る環状アルコール、フェノール又は芳香族ヒドロキシ化
合物のアクリル酸又はメタクリル酸エステルである単官
能(メタ)アクリレートが好ましい。なぜなら、このよ
うな単官能(メタ)アクリレートは、(メタ)アクリロ
イルオキシ基と液晶骨格との間に、アルキレン基又はオ
キシアルキレン基等の液晶の技術分野でスペーサーと呼
ばれる柔軟性の連結基が無い。そのため、このような単
官能(メタ)アクリレートを重合させて得られる重合体
の主鎖には、スペーサーを介さず直接剛直な液晶骨格が
結合し、液晶骨格の熱運動は高分子主鎖により制限さ
れ、強誘電性液晶に配向安定化効果を及ぼせると考えら
れるためである。また、単官能(メタ)アクリレートで
あるため、光硬化しても高分子は3次元架橋構造を形成
せず、強誘電性液晶を高分子の籠で囲い込むような効果
による駆動電圧の上昇を避けることができると考えられ
る。
The ferroelectric liquid crystal used in the present invention is:
In general, any liquid crystal that is recognized as a ferroelectric liquid crystal in this technical field can be used without any particular limitation. However, in order to obtain a good orientation state of the chiral smectic C phase, the temperature is higher than the chiral smectic C phase. It is preferable to use one that exhibits a smectic A phase, and more preferably, one that exhibits a smectic A phase and a nematic phase in a temperature range above the smectic C phase in order to obtain a good orientation state. The liquid crystalline (meth) acrylate monomer used in the present invention is one in which a polymer obtained by photocuring exerts an alignment stabilizing effect on a ferroelectric liquid crystal due to a demand as a display element, and a ferroelectric liquid crystal. It is preferable that the driving voltage is not increased. Such a liquid crystalline (meth) acrylate is a monofunctional (meth) acrylate which is an acrylic acid or methacrylic acid ester of a cyclic alcohol, phenol or aromatic hydroxy compound having a liquid crystal skeleton having at least two 6-membered rings as a partial structure. Acrylates are preferred. This is because such a monofunctional (meth) acrylate does not have a flexible connecting group called a spacer in the technical field of liquid crystal such as an alkylene group or an oxyalkylene group between the (meth) acryloyloxy group and the liquid crystal skeleton. . Therefore, a rigid liquid crystal skeleton is directly bonded to the main chain of the polymer obtained by polymerizing such a monofunctional (meth) acrylate without using a spacer, and the thermal motion of the liquid crystal skeleton is limited by the polymer main chain. This is because it is considered that the ferroelectric liquid crystal can have an alignment stabilizing effect. In addition, since the polymer is a monofunctional (meth) acrylate, the polymer does not form a three-dimensional cross-linked structure even when photocured, and the drive voltage increases due to the effect of surrounding the ferroelectric liquid crystal with a polymer cage. It is thought that it can be avoided.

【0018】このような液晶性(メタ)アクリレートと
しては、一般式(I)
Such a liquid crystalline (meth) acrylate is represented by the general formula (I)

【0019】[0019]

【化11】 Embedded image

【0020】(式中、Xは水素原子又はメチル基を表
し、rは0又は1の整数を表し、6員環A、B及びCは
それぞれ独立的に、
(Wherein X represents a hydrogen atom or a methyl group, r represents an integer of 0 or 1, and the 6-membered rings A, B and C each independently represent

【0021】[0021]

【化12】 Embedded image

【0022】を表し、mは1〜4の整数を表し、Y1
びY2はそれぞれ独立的に、単結合、−CH2CH2−、
−CH2O−、−OCH2−、−COO−、−OCO−、
−C≡C−、−CH=CH−、−CF=CF−、−(C
24−、−CH2CH2CH2O−、−OCH2CH2
2−、−CH=CH−CH2CH2−、−CH2CH2
2O−を表し、Y3は水素原子、ハロゲン原子、シアノ
基、炭素原子1〜20のアルキル基、アルコキシ基、ア
ルケニル基、アルケニルオキシ基を表す。)で表される
(メタ)アクリレート化合物であることが特に好まし
い。
Wherein m is an integer of 1 to 4, Y 1 and Y 2 are each independently a single bond, —CH 2 CH 2 —,
-CH 2 O -, - OCH 2 -, - COO -, - OCO-,
-C≡C-, -CH = CH-, -CF = CF-,-(C
H 2) 4 -, - CH 2 CH 2 CH 2 O -, - OCH 2 CH 2 C
H 2 -, - CH = CH -CH 2 CH 2 -, - CH 2 CH 2 C
H 2 O-a represents, Y 3 represents a hydrogen atom, a halogen atom, a cyano group, an alkyl group having 1 to 20 carbon atoms, an alkoxy group, an alkenyl group, an alkenyloxy group. ) Is particularly preferable.

【0023】このような単官能(メタ)アクリレートの
具体的な例としては、式(1)〜(11)に挙げた化合
物が好ましいが、本発明の液晶組成物において使用する
ことができる単官能(メタ)アクリレートはこれらに限
定されるものではない。
As specific examples of such a monofunctional (meth) acrylate, the compounds listed in the formulas (1) to (11) are preferable, but the monofunctional (meth) acrylate which can be used in the liquid crystal composition of the present invention is preferred. The (meth) acrylate is not limited to these.

【0024】[0024]

【化13】 Embedded image

【0025】[0025]

【化14】 Embedded image

【0026】(上記において、Cは結晶相、Nはネマチ
ック相、Sはスメクチック相、Iは等方性液体相を表
し、数字は相転移温度を表す。) また、液晶性(メタ)アクリレート及び強誘電性液晶を
含有する液晶組成物中における液晶性(メタ)アクリレ
ートの濃度は、0.1から10重量%に調整するのが好
ましく、0.5から7重量%に調製するのがさらに好ま
しく、1から5重量%が特に好ましい。もし、液晶性
(メタ)アクリレートの濃度が0.1%より低いと、配
向安定化効果が得られにくくなり、コントラストが低下
し、10重量%より高いと強誘電性液晶の駆動電圧が増
大してしまう。
(In the above, C represents a crystal phase, N represents a nematic phase, S represents a smectic phase, I represents an isotropic liquid phase, and a number represents a phase transition temperature.) In addition, liquid crystal (meth) acrylate and The concentration of the liquid crystalline (meth) acrylate in the liquid crystal composition containing the ferroelectric liquid crystal is preferably adjusted to 0.1 to 10% by weight, more preferably adjusted to 0.5 to 7% by weight. From 1 to 5% by weight are particularly preferred. If the concentration of the liquid crystalline (meth) acrylate is lower than 0.1%, the effect of stabilizing the alignment is hardly obtained, and the contrast is lowered. If the concentration is higher than 10% by weight, the driving voltage of the ferroelectric liquid crystal is increased. Would.

【0027】配向制御膜としては従来用いられているラ
ビング処理を施したポリイミド配向膜を特に制限なく用
いることができる。またポリビニルシンナメート薄膜等
の有機薄膜に偏光紫外線を照射した、この技術分野で光
配向制御膜と呼ばれる配向制御膜も用いることができ
る。
As the alignment control film, a conventionally used polyimide alignment film subjected to a rubbing treatment can be used without any particular limitation. Further, an orientation control film called a photo-alignment control film in this technical field, in which an organic thin film such as a polyvinyl cinnamate thin film is irradiated with polarized ultraviolet light, can also be used.

【0028】基板としては、薄膜トランジスタ付きガラ
ス基板、ITO付きガラス基板、ITO付きプラスチッ
ク基板等を使用することができる。これらの基板上にカ
ラーフィルター層が付与されているものも好適に使用す
ることができる。
As the substrate, a glass substrate with a thin film transistor, a glass substrate with an ITO, a plastic substrate with an ITO or the like can be used. Those in which a color filter layer is provided on these substrates can also be suitably used.

【0029】本発明の製造方法によると、一対の基板間
に注入した重合性液晶組成物を、紫外線もしくは電子線
等のエネルギー線を照射することにより、前記重合性液
晶組成物を重合硬化させることを特徴とするものである
から、従って、少なくとも照射面側の基板には適当な透
明性が与えられていなければならない。即ち、(1)電
極層及び配向制御膜を有する第1の透明性基板と、電極
層及び配向制御膜を有する第2の基板の間に、液晶性
(メタ)アクリレートモノマー及び強誘電性液晶材料を
含有してなる第1工程、(2)介在させた液晶組成物が
カイラルスメクチックC相を示す状態で、直流電圧を印
加しながら、もしくは印加した後に、紫外線もしくは電
子線を照射することにより、液晶性(メタ)アクリレー
トモノマーを高分子化させる第2工程を有する液晶表示
素子の製造方法が好ましい。
According to the production method of the present invention, the polymerizable liquid crystal composition injected between a pair of substrates is irradiated with energy rays such as ultraviolet rays or electron beams to polymerize and cure the polymerizable liquid crystal composition. Therefore, at least the substrate on the irradiation surface side must be given appropriate transparency. That is, (1) a liquid crystal (meth) acrylate monomer and a ferroelectric liquid crystal material are interposed between a first transparent substrate having an electrode layer and an alignment control film and a second substrate having an electrode layer and an alignment control film. And (2) irradiating an ultraviolet ray or an electron beam with or after applying a DC voltage in a state where the interposed liquid crystal composition exhibits a chiral smectic C phase. A method for producing a liquid crystal display device having a second step of polymerizing a liquid crystalline (meth) acrylate monomer is preferable.

【0030】一対の基板間の距離、つまり液晶層の厚さ
は、使用する強誘電液晶の屈折率の異方性にも依存する
が、1から10ミクロンであることが好ましく、1.5
から7ミクロンがさらにこのましく、2から6ミクロン
が特に好ましい。液晶層の厚さが1ミクロンより小さい
と、十分な大きさの光学的なスイッチングが得られずコ
ントラストが低下してしまう傾向があり、液晶層の厚さ
が10ミクロンより大きいと内部に強誘電性液晶の螺旋
構造が形成し、製造段階で必須の双安定性が得られなく
なってしまう傾向がある。
The distance between the pair of substrates, that is, the thickness of the liquid crystal layer depends on the anisotropy of the refractive index of the ferroelectric liquid crystal used, but is preferably 1 to 10 μm, and is preferably 1.5 μm.
To 7 microns is even more preferred, and 2 to 6 microns is particularly preferred. If the thickness of the liquid crystal layer is smaller than 1 micron, a sufficient amount of optical switching cannot be obtained, and the contrast tends to decrease. The helical structure of the crystalline liquid crystal is formed, and the essential bistability tends not to be obtained in the production stage.

【0031】液晶性アクリレートモノマー及び強誘電性
液晶を含有する液晶組成物には、カイラルスメクチック
C相における光硬化性組成物の光硬化を迅速に行う目的
で、光重合開始剤を添加してもよい。ここで使用するこ
とができる光重合開始剤としては、例えば公知のベンゾ
インエーテル類、ベンゾフェノン類、アセトフェノン
類、ベンジルケタール類から選択して使用することがで
きる。その添加量は、液晶組成物中に含有される液晶性
アクリレートモノマーに対して、10重量%以下である
ことが好ましい。
To the liquid crystal composition containing a liquid crystal acrylate monomer and a ferroelectric liquid crystal, a photopolymerization initiator may be added for the purpose of rapidly photocuring the photocurable composition in the chiral smectic C phase. Good. The photopolymerization initiator that can be used here can be selected from, for example, known benzoin ethers, benzophenones, acetophenones, and benzyl ketals. The addition amount is preferably 10% by weight or less based on the liquid crystal acrylate monomer contained in the liquid crystal composition.

【0032】また、液晶性アクリレートモノマー及び強
誘電性液晶を含有する液晶組成物には、その保存安定性
を向上させる目的で、安定剤を添加してもよい。ここで
使用することができる安定剤としては、例えば公知のヒ
ドロキノン、ヒドロキノンモノアルキルエーテル類、第
三ブチルカテコール類等から選択して使用することがで
きる。またその添加量は、液晶組成物中に含有される光
硬化性組成物に対して0.05重量%以下であることが
好ましい。
Further, a stabilizer may be added to the liquid crystal composition containing the liquid crystal acrylate monomer and the ferroelectric liquid crystal for the purpose of improving the storage stability. As the stabilizer that can be used here, for example, known hydroquinone, hydroquinone monoalkyl ethers, tertiary butyl catechols, and the like can be selected and used. Further, the amount of addition is preferably 0.05% by weight or less based on the photocurable composition contained in the liquid crystal composition.

【0033】また、光硬化性組成物を高分子化させる行
程における紫外線又は電子線の照射量は、使用する液晶
組成物及び光重合開始剤の濃度にも依存するが、50か
ら10000mJ/cm2の範囲が好ましい。紫外線又
は電子線の照射量が、50mJ/cm2以下であると、
光硬化性組成物が十分に硬化せず、製造後の経時変化が
大きくなってしまい、10000mJ/cm2以上であ
ると液晶組成物自体が劣化してしまう傾向がある。
The irradiation amount of the ultraviolet ray or the electron beam in the process of polymerizing the photocurable composition depends on the liquid crystal composition used and the concentration of the photopolymerization initiator, but is from 50 to 10,000 mJ / cm 2. Is preferable. When the irradiation amount of ultraviolet rays or electron beams is 50 mJ / cm 2 or less,
The photocurable composition is not sufficiently cured, the change with time after production becomes large, and if it is 10,000 mJ / cm 2 or more, the liquid crystal composition itself tends to deteriorate.

【0034】また、紫外線又は電子線の照射工程におい
て、又はその前に印加する直流電圧は、その符号及び大
きさについては素子の目的によって自由に設定すること
ができるが、その大きさは強誘電性液晶が応答する電圧
以上に設定するのが好ましい。また紫外線又は電子線照
射中にも直流電圧を印加する方が、照射の前のみに直流
電圧を印加するよりも液晶表示素子における強誘電性液
晶の配向の均一性が優れるため、照射工程においては直
流電圧を印加し続ける方が好ましい。
The sign and magnitude of the DC voltage applied during or before the step of irradiating ultraviolet rays or electron beams can be freely set depending on the purpose of the device, but the magnitude is ferroelectric. It is preferable that the voltage is set to be equal to or higher than the voltage at which the reactive liquid crystal responds. Also, applying a DC voltage even during irradiation with ultraviolet rays or electron beams is more excellent in the uniformity of orientation of the ferroelectric liquid crystal in the liquid crystal display element than applying a DC voltage only before irradiation. It is preferable to keep applying the DC voltage.

【0035】[0035]

【実施例】以下、本発明の実施例を示し、本発明を更に
詳細に説明する。しかしながら、本発明はこれらの実施
例に限定されるものではない。 (実施例1)ITO透明電極付きの厚さ1.1mmのガ
ラス基板を用意し、透明電極面にポリイミド膜を300
オングストロームの厚さで形成した後、ラビング処理を
施してポリイミド配向膜付きガラス基板を得た。このよ
うにして得た2枚のポリイミド配向膜付き基板を、配向
膜が形成された面が内側になるようにして5.4ミクロ
ンの間隔をもって対向させて液晶セル(A)を作製し
た。この時、液晶セルの2枚の基板のラビング方向は、
パラレル方向になるように設定した。
The present invention will be described below in more detail with reference to Examples of the present invention. However, the invention is not limited to these examples. (Example 1) A glass substrate having a thickness of 1.1 mm with an ITO transparent electrode was prepared, and a polyimide film was coated on the transparent electrode surface with a thickness of 300 mm.
After forming to a thickness of Å, a rubbing treatment was performed to obtain a glass substrate with a polyimide alignment film. The two substrates with a polyimide alignment film thus obtained were opposed to each other with an interval of 5.4 μm so that the surface on which the alignment film was formed faced inside, to produce a liquid crystal cell (A). At this time, the rubbing directions of the two substrates of the liquid crystal cell are
It was set to be in the parallel direction.

【0036】次に、液晶性アクリレート化合物(1)Next, the liquid crystalline acrylate compound (1)

【0037】[0037]

【化15】 Embedded image

【0038】を49.5重量部、液晶性アクリレート化
合物(4)
49.5 parts by weight of a liquid crystalline acrylate compound (4)

【0039】[0039]

【化16】 Embedded image

【0040】を49.5重量部及び光重合開始剤「イル
ガキュア651」(チバガイギー製)1重量部からなる
光硬化性組成物(I)を調製した。この光硬化性組成物
(I)は、室温から46℃の範囲でネマチック液晶性を
示した。この光硬化性組成物(I)2重量部と強誘電性
液晶「TA−C100」(チッソ製)98重量部からな
る液晶組成物(L-1)を調製した。
A photocurable composition (I) was prepared comprising 49.5 parts by weight of the above and 1 part by weight of a photopolymerization initiator "Irgacure 651" (manufactured by Ciba Geigy). This photocurable composition (I) exhibited nematic liquid crystallinity in the range from room temperature to 46 ° C. A liquid crystal composition (L-1) comprising 2 parts by weight of the photocurable composition (I) and 98 parts by weight of a ferroelectric liquid crystal "TA-C100" (manufactured by Chisso) was prepared.

【0041】次に液晶セル(A)を80℃に保ちなが
ら、液晶組成物(L−1)を等方性液体相のまま注入
し、その後徐々に温度を室温まで下げることにより、液
晶組成物(L−1)をネマチック相、スメクチックA相
を順に経由してカイラルスメクチックC相まで相転移さ
せた。この液晶セル(A)に+4Vの電圧を印加しなが
ら偏光顕微鏡で観察したところ、ほぼ一軸配向している
のが確かめられた。また、その一軸配向の方位角はラビ
ング方向に対して約+10.5度傾いていた。この液晶
セル(A)を室温に保ち、カイラルスメクチックC相を
示している状態で、+4Vの直流電圧を印加しながら、
中心波長365nmで強度2mW/cm2の紫外線を3
0秒間照射して液晶組成物中に含有される光硬化性組成
物(I)を光硬化させた。この液晶セル(A)を偏光顕
微鏡で観察したところ、強誘電性液晶は欠陥が無い均一
な一軸配向をしているのが確かめられた。また、電圧を
印加していない状態において、強誘電性液晶の配向方向
は、ラビング方向に対して約+7.5度であり、紫外線
の照射時の配向とほぼ同一方向であることが確かめられ
た。さらに偏光顕微鏡の観察下で、液晶セル(A)に、
+4Vの電圧を印加したところ強誘電性液晶の配向方向
はラビング方向に対して約+10度であった。次に液晶
セル(A)に印加する電圧を+4Vから徐々に減じて0
Vまで変化させた時、強誘電性液晶の配向方向はほとん
ど変化がなかったのに対し、0Vから−4Vまで変化さ
せた時、強誘電性液晶の配向方向はラビング方向に対し
て約+7.5度から約−10度まで連続的に変化するの
が観察された。この液晶セル(A)を直交する2枚の偏
光板の間に置き、印加電圧−光透過率特性を測定した。
この時、液晶セル(A)のラビング方向と偏光板の透過
軸との角度は22.5度をなすように配置し、温度は3
0度に設定した。印加電圧−光透過率特性の測定結果を
第1図に示した。この第1図から、本発明の液晶表示素
子は印加する電圧を変えることで、透過率を制御でき
る、つまり、中間調の表示が可能であることがわかる。 (実施例2)実施例1の紫外線照射時における印加電圧
を直流の−4Vにした以外は同様にして液晶セルを作製
した。この液晶セルを直交する2枚の偏光板の間に置
き、印加電圧−コントラスト特性を測定した。この時の
液晶セルは、電圧を印加していない状態において最も透
過率が低くなるように配置した。26℃から32℃まで
温度を変化させながら測定した印加電圧−コントラスト
特性を第2図に示した。この第2図からも、本発明の液
晶表示素子は印加する電圧を変えることで、透過率を制
御できる、つまり、中間調の表示が可能であることがわ
かる。 (実施例3)実施例1で作製した液晶セル(A)と同様
の液晶セル(B)を作製した。この液晶セル(B)を8
0℃に保ちながら、実施例1で調製した液晶組成物(L
−1)を等方性液体相のまま注入し、その後徐々に温度
を室温まで下げることにより、液晶組成物(L−1)を
ネマチック相、スメクチックA相を順に経由してカイラ
ルスメクチックC相まで相転移させた。この液晶セル
(B)を室温に保ち、+4Vの直流電圧を5分間印加し
た。その直後、液晶セル(B)に室温において、中心波
長365nmで強度2mW/cm2の紫外線を30秒間
照射して液晶組成物中に含有される光硬化性組成物
(I)を光硬化させた。この液晶セル(B)の印加電圧
−光透過率特性を実施例1と同様にして測定したとこ
ろ、印加電圧の変化に従って連続的に光透過率が変化す
るのが観察された。
Next, while maintaining the liquid crystal cell (A) at 80 ° C., the liquid crystal composition (L-1) was injected in an isotropic liquid phase, and the temperature was gradually lowered to room temperature. (L-1) was subjected to a phase transition to a chiral smectic C phase via a nematic phase and a smectic A phase in this order. Observation with a polarizing microscope while applying a voltage of +4 V to the liquid crystal cell (A) confirmed that the liquid crystal cell (A) was substantially uniaxially oriented. The azimuthal angle of the uniaxial orientation was inclined about +10.5 degrees with respect to the rubbing direction. While maintaining the liquid crystal cell (A) at room temperature and showing a chiral smectic C phase, while applying a DC voltage of +4 V,
Ultraviolet light with a central wavelength of 365 nm and an intensity of 2 mW / cm 2
By irradiating for 0 second, the photocurable composition (I) contained in the liquid crystal composition was photocured. Observation of the liquid crystal cell (A) with a polarizing microscope confirmed that the ferroelectric liquid crystal had a uniform uniaxial orientation without any defect. In addition, when no voltage was applied, the orientation direction of the ferroelectric liquid crystal was about +7.5 degrees with respect to the rubbing direction, and it was confirmed that the orientation was almost the same as the orientation at the time of ultraviolet irradiation. . Further, under observation with a polarizing microscope, the liquid crystal cell (A)
When a voltage of +4 V was applied, the orientation direction of the ferroelectric liquid crystal was about +10 degrees with respect to the rubbing direction. Next, the voltage applied to the liquid crystal cell (A) is gradually reduced from +4 V to 0
When the voltage was changed to 0 V, the orientation direction of the ferroelectric liquid crystal hardly changed. On the other hand, when the voltage was changed from 0 V to -4 V, the orientation direction of the ferroelectric liquid crystal was approximately +7. A continuous change from 5 degrees to about -10 degrees was observed. This liquid crystal cell (A) was placed between two orthogonal polarizing plates, and the applied voltage-light transmittance characteristics were measured.
At this time, the angle between the rubbing direction of the liquid crystal cell (A) and the transmission axis of the polarizing plate is 22.5 degrees, and the temperature is 3 degrees.
It was set to 0 degrees. FIG. 1 shows the measurement results of the applied voltage-light transmittance characteristics. From FIG. 1, it is understood that the transmittance of the liquid crystal display device of the present invention can be controlled by changing the applied voltage, that is, halftone display is possible. (Example 2) A liquid crystal cell was manufactured in the same manner as in Example 1 except that the applied voltage at the time of ultraviolet irradiation was changed to -4 V DC. This liquid crystal cell was placed between two orthogonal polarizing plates, and the applied voltage-contrast characteristics were measured. At this time, the liquid crystal cells were arranged such that the transmittance was lowest when no voltage was applied. FIG. 2 shows the applied voltage-contrast characteristics measured while changing the temperature from 26 ° C. to 32 ° C. FIG. 2 also shows that the liquid crystal display element of the present invention can control the transmittance by changing the applied voltage, that is, it can display a halftone. Example 3 A liquid crystal cell (B) similar to the liquid crystal cell (A) manufactured in Example 1 was manufactured. This liquid crystal cell (B)
While maintaining the temperature at 0 ° C., the liquid crystal composition (L
-1) is injected in an isotropic liquid phase, and then the temperature is gradually lowered to room temperature, whereby the liquid crystal composition (L-1) passes through the nematic phase and the smectic A phase in order to the chiral smectic C phase. Phase transition was performed. The liquid crystal cell (B) was kept at room temperature, and a DC voltage of +4 V was applied for 5 minutes. Immediately thereafter, the liquid crystal cell (B) was irradiated with ultraviolet light having a central wavelength of 365 nm and an intensity of 2 mW / cm 2 for 30 seconds at room temperature to light-cur the photocurable composition (I) contained in the liquid crystal composition. . When the applied voltage-light transmittance characteristic of the liquid crystal cell (B) was measured in the same manner as in Example 1, it was observed that the light transmittance continuously changed according to the change of the applied voltage.

【0042】[0042]

【発明の効果】本発明の液晶表示素子の製造方法は、強
誘電性液晶を用いた表示素子において、中間調表示が可
能な液晶表示素子の製造方法を提供するものである。従
って、本発明の液晶表示素子の製造方法は、TFT素子
等との組み合わせにより視角特性に優れた中間調表示が
可能な表示素子を実現するものとして非常に有用であ
る。
The method of manufacturing a liquid crystal display device according to the present invention provides a method of manufacturing a liquid crystal display device capable of halftone display in a display device using a ferroelectric liquid crystal. Therefore, the method for manufacturing a liquid crystal display element of the present invention is very useful as a display element capable of performing halftone display with excellent viewing angle characteristics in combination with a TFT element or the like.

【0043】[0043]

【図面の簡単な説明】[Brief description of the drawings]

【0044】[0044]

【図1】実施例1における本発明の液晶表示素子の製造
方法により得た液晶表示素子の印加電圧−光透過率特性
の測定結果を示した図である。
FIG. 1 is a view showing a measurement result of an applied voltage-light transmittance characteristic of a liquid crystal display element obtained by a method of manufacturing a liquid crystal display element of the present invention in Example 1.

【0045】[0045]

【図2】実施例2における本発明の液晶表示素子の製造
方法により得た液晶表示素子の印加電圧−コントラスト
特性の測定結果を示した図である。
FIG. 2 is a view showing a measurement result of an applied voltage-contrast characteristic of a liquid crystal display element obtained by a method of manufacturing a liquid crystal display element of the present invention in Example 2.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高津 晴義 東京都東大和市仲原3−6−27 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Haruyoshi Takatsu 3-6-27 Nakahara, Higashiyamato-shi, Tokyo

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 一対の基板間に液晶性(メタ)アクリレ
ートモノマー及び強誘電性液晶を含有する液晶組成物を
介在させて液晶表示素子を得る方法において、該液晶組
成物をカイラルスメクチックC相を示す状態で配向させ
ながら、もしくは配向した後、硬化させることを特徴と
する液晶表示素子の製造方法。
1. A method for obtaining a liquid crystal display device by interposing a liquid crystal composition containing a liquid crystal (meth) acrylate monomer and a ferroelectric liquid crystal between a pair of substrates, wherein the liquid crystal composition is converted into a chiral smectic C phase. A method for producing a liquid crystal display element, comprising curing while orienting in the state shown in the figure.
【請求項2】 液晶組成物中の液晶性(メタ)アクリレ
ートモノマーの濃度が0.1〜10重量%であることを
特徴とする請求項1記載の液晶表示素子の製造方法。
2. The method according to claim 1, wherein a concentration of the liquid crystalline (meth) acrylate monomer in the liquid crystal composition is 0.1 to 10% by weight.
【請求項3】 液晶性(メタ)アクリレートモノマーが
一般式(I) 【化1】 (式中、Xは水素原子又はメチル基を表し、rは0又は
1の整数を表し、6員環A、B及びCはそれぞれ独立的
に、 【化2】 を表し、mは1〜4の整数を表し、Y1及びY2はそれぞ
れ独立的に、単結合、−CH2CH2−、−CH2O−、
−OCH2−、−COO−、−OCO−、−C≡C−、
−CH=CH−、−CF=CF−、−(CH24−、−
CH2CH2CH2O−、−OCH2CH2CH2−、−CH
=CH−CH2CH2−、−CH2CH2CH2O−を表
し、Y3は水素原子、ハロゲン原子、シアノ基、炭素原
子1〜20のアルキル基、アルコキシ基、アルケニル
基、アルケニルオキシ基を表す。)で表される(メタ)
アクリレート化合物であることを特徴とする請求項1又
は2記載の液晶表示素子の製造方法。
3. A liquid crystalline (meth) acrylate monomer represented by the following general formula (I): (Wherein, X represents a hydrogen atom or a methyl group, r represents an integer of 0 or 1, and the 6-membered rings A, B, and C each independently represent: And m represents an integer of 1 to 4, Y 1 and Y 2 are each independently a single bond, —CH 2 CH 2 —, —CH 2 O—,
—OCH 2 —, —COO—, —OCO—, —C≡C—,
-CH = CH -, - CF = CF -, - (CH 2) 4 -, -
CH 2 CH 2 CH 2 O - , - OCH 2 CH 2 CH 2 -, - CH
CHCH—CH 2 CH 2 —, —CH 2 CH 2 CH 2 O—, Y 3 represents a hydrogen atom, a halogen atom, a cyano group, an alkyl group having 1 to 20 carbon atoms, an alkoxy group, an alkenyl group, an alkenyloxy group. Represents a group. ) (Meta)
The method according to claim 1, wherein the method is an acrylate compound.
【請求項4】 一般式(I)において、Xは水素原子を
表し、rは0を表し、6員環Aは、 【化3】 を表し、6員環Cは、 【化4】 又は 【化5】 を表し、Y1は単結合又はC≡C−を表し、Y3は炭素原
子数1〜10のアルキル基を表す。)で表されることを
特徴とする請求項1、2又は3記載の液晶表示素子の製
造方法。
4. In the general formula (I), X represents a hydrogen atom, r represents 0, and the 6-membered ring A has the following formula: And the 6-membered ring C is Or Y 1 represents a single bond or C≡C—, and Y 3 represents an alkyl group having 1 to 10 carbon atoms. 4. The method for producing a liquid crystal display device according to claim 1, wherein the method is represented by the following formula:
【請求項5】 (1)電極層及び配向制御膜を有する第
1の透明性基板と、電極層及び配向制御膜を有する第2
の基板の間に、液晶性(メタ)アクリレートモノマー及
び強誘電性液晶材料を含有してなる第1工程、(2)介
在させた液晶組成物がカイラルスメクチックC相を示す
状態で、直流電圧を印加しながら、もしくは印加した後
に、紫外線もしくは電子線を照射することにより、液晶
性(メタ)アクリレートモノマーを高分子化させる第2
工程を有することを特徴とする請求項1、2、3又は4
記載の液晶表示素子の製造方法。
5. A first transparent substrate having an electrode layer and an orientation control film, and a second transparent substrate having an electrode layer and an orientation control film.
A first step comprising a liquid crystal (meth) acrylate monomer and a ferroelectric liquid crystal material between the substrates (1) and (2) in a state where the interposed liquid crystal composition exhibits a chiral smectic C phase, Irradiating ultraviolet rays or electron beams with or after the application, the second liquid crystal (meth) acrylate monomer is polymerized.
5. The method according to claim 1, further comprising a step.
The manufacturing method of the liquid crystal display element described in.
JP17446397A 1997-06-30 1997-06-30 Manufacturing method of liquid crystal display element Expired - Lifetime JP4334028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17446397A JP4334028B2 (en) 1997-06-30 1997-06-30 Manufacturing method of liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17446397A JP4334028B2 (en) 1997-06-30 1997-06-30 Manufacturing method of liquid crystal display element

Publications (2)

Publication Number Publication Date
JPH1121554A true JPH1121554A (en) 1999-01-26
JP4334028B2 JP4334028B2 (en) 2009-09-16

Family

ID=15978934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17446397A Expired - Lifetime JP4334028B2 (en) 1997-06-30 1997-06-30 Manufacturing method of liquid crystal display element

Country Status (1)

Country Link
JP (1) JP4334028B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1195205A (en) * 1997-09-18 1999-04-09 Dainippon Ink & Chem Inc Optically anisotropic film and its production as well as liquid crystal display device
JP2001033842A (en) * 1999-07-15 2001-02-09 Science Univ Of Tokyo Production of optical operational element using liquid crystal photodiode
KR20010065035A (en) * 1999-12-21 2001-07-11 구본준, 론 위라하디락사 Method for fabrication a liquid crystal display device
JP2002031822A (en) * 2000-05-11 2002-01-31 Semiconductor Energy Lab Co Ltd Method for manufacturing liquid crystal display device
JP2002303891A (en) * 2001-01-31 2002-10-18 Shunsuke Kobayashi Manufacturing method for liquid crystal display element
JP2004038038A (en) * 2002-07-05 2004-02-05 Ricoh Co Ltd Light deflection element, light deflection element manufacturing method, light deflection device, light deflection unit and picture display apparatus
KR100542082B1 (en) * 1999-12-20 2006-01-10 엘지.필립스 엘시디 주식회사 Method for fabricating a liquid crystal cell
JP2006323215A (en) * 2005-05-19 2006-11-30 Dainippon Printing Co Ltd Liquid crystal display element and method for manufacturing liquid crystal display element
JP2007286641A (en) * 2001-08-31 2007-11-01 Sharp Corp Liquid crystal display device and its manufacturing method
JP2008123007A (en) * 2001-10-02 2008-05-29 Sharp Corp Liquid crystal display device and manufacturing method therefor
JP2008248061A (en) * 2007-03-30 2008-10-16 Dic Corp Polymer-stabilizing liquid crystal composition and polymer-stabilized liquid crystal-displaying element
WO2008123235A1 (en) 2007-03-30 2008-10-16 Dic Corporation Polymer-stabilized liquid crystal composition, liquid crystal display, and process for production of liquid crystal display

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1195205A (en) * 1997-09-18 1999-04-09 Dainippon Ink & Chem Inc Optically anisotropic film and its production as well as liquid crystal display device
JP2001033842A (en) * 1999-07-15 2001-02-09 Science Univ Of Tokyo Production of optical operational element using liquid crystal photodiode
KR100542082B1 (en) * 1999-12-20 2006-01-10 엘지.필립스 엘시디 주식회사 Method for fabricating a liquid crystal cell
KR20010065035A (en) * 1999-12-21 2001-07-11 구본준, 론 위라하디락사 Method for fabrication a liquid crystal display device
JP2002031822A (en) * 2000-05-11 2002-01-31 Semiconductor Energy Lab Co Ltd Method for manufacturing liquid crystal display device
JP2002303891A (en) * 2001-01-31 2002-10-18 Shunsuke Kobayashi Manufacturing method for liquid crystal display element
JP4674738B2 (en) * 2001-01-31 2011-04-20 駿介 小林 Manufacturing method of liquid crystal display element
US8786808B2 (en) 2001-08-31 2014-07-22 Sharp Kabushiki Kaisha Liquid crystal display and method of manufacturing the same
US8717517B2 (en) 2001-08-31 2014-05-06 Sharp Kabushiki Kaisha Liquid crystal display and method of manufacturing the same
JP2007286641A (en) * 2001-08-31 2007-11-01 Sharp Corp Liquid crystal display device and its manufacturing method
JP2007286642A (en) * 2001-08-31 2007-11-01 Sharp Corp Liquid crystal display device and its manufacturing method
US8054429B2 (en) 2001-08-31 2011-11-08 Sharp Kabushiki Kaisha Liquid crystal display device
JP4602381B2 (en) * 2001-08-31 2010-12-22 シャープ株式会社 Liquid crystal display
US7586561B2 (en) 2001-08-31 2009-09-08 Sharp Kabushiki Kaisha Liquid crystal display and method of manufacturing the same
JP4633128B2 (en) * 2001-10-02 2011-02-16 シャープ株式会社 Manufacturing method of liquid crystal display device
JP2008123007A (en) * 2001-10-02 2008-05-29 Sharp Corp Liquid crystal display device and manufacturing method therefor
JP2004038038A (en) * 2002-07-05 2004-02-05 Ricoh Co Ltd Light deflection element, light deflection element manufacturing method, light deflection device, light deflection unit and picture display apparatus
JP2006323215A (en) * 2005-05-19 2006-11-30 Dainippon Printing Co Ltd Liquid crystal display element and method for manufacturing liquid crystal display element
WO2008123235A1 (en) 2007-03-30 2008-10-16 Dic Corporation Polymer-stabilized liquid crystal composition, liquid crystal display, and process for production of liquid crystal display
JP2008248061A (en) * 2007-03-30 2008-10-16 Dic Corp Polymer-stabilizing liquid crystal composition and polymer-stabilized liquid crystal-displaying element
US8405799B2 (en) 2007-03-30 2013-03-26 Dic Corporation Polymer-stabilized liquid crystal composition, liquid crystal display device, method for producing liquid crystal display device

Also Published As

Publication number Publication date
JP4334028B2 (en) 2009-09-16

Similar Documents

Publication Publication Date Title
KR101066784B1 (en) Liquid crystal display device
JP4528645B2 (en) Liquid crystal display element
JPH07120728A (en) Liquid crystal display element and its production
JP4207233B2 (en) Liquid crystal composition and optical anisotropic body using the same
JP4334028B2 (en) Manufacturing method of liquid crystal display element
JP5309645B2 (en) Polymer-stabilized ferroelectric liquid crystal composition and liquid crystal display device
JP2004133096A (en) Liquid crystal optical element and method for manufacturing liquid crystal optical element
JP2005196221A (en) Polymeric liquid crystal composition and method for producing optically anisotropic body
JP3771619B2 (en) Liquid crystal display element
JP3734044B2 (en) Polymerizable liquid crystal composition and method for producing optical anisotropic body
CN111198452B (en) Liquid crystal display device having a plurality of pixel electrodes
JP3774747B2 (en) Liquid crystal display
JPH08152609A (en) Liquid crystal display element and its production
JP4674738B2 (en) Manufacturing method of liquid crystal display element
JP3617653B2 (en) Method for producing substrate having optical anisotropy
JP4419221B2 (en) Polymer optical low-pass filter, its production method, and polymer optical low-pass filter composite
JPH0953074A (en) Liquid crystal display element and production thereof
JP2003315825A (en) Liquid crystal optical element
WO2005124440A1 (en) Liquid crystal display element
JP4667610B2 (en) Manufacturing method of liquid crystal display element
JPH09179101A (en) Liquid crystal display element and its production
JP2007225765A (en) Method for producing optically anisotropic body
JP4057698B2 (en) Liquid crystal display element and manufacturing method thereof
JP2001072976A (en) Liquid crystal cell and its preparation
JP3692431B2 (en) Liquid crystal device and liquid crystal display device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040608

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071221

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090623

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term