JPH11214004A - Negative electrode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery equipped with negative electrode using the negative electrode material - Google Patents

Negative electrode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery equipped with negative electrode using the negative electrode material

Info

Publication number
JPH11214004A
JPH11214004A JP10018596A JP1859698A JPH11214004A JP H11214004 A JPH11214004 A JP H11214004A JP 10018596 A JP10018596 A JP 10018596A JP 1859698 A JP1859698 A JP 1859698A JP H11214004 A JPH11214004 A JP H11214004A
Authority
JP
Japan
Prior art keywords
negative electrode
electrolyte secondary
secondary battery
alloy
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10018596A
Other languages
Japanese (ja)
Other versions
JP4032479B2 (en
Inventor
Harunari Shimamura
治成 島村
Yoshiaki Nitta
芳明 新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP01859698A priority Critical patent/JP4032479B2/en
Publication of JPH11214004A publication Critical patent/JPH11214004A/en
Application granted granted Critical
Publication of JP4032479B2 publication Critical patent/JP4032479B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery with a high capacity, superior cycle performance, and higher safety performance. SOLUTION: A metal that capable of forming an alloy with lithium, or an alloy, an oxide, or a nitride consisting of two kinds or more elements including a metal that is capable of forming an alloy with lithium forms carbide by means of a reaction with carbon to be in a state of chemically bonding with carbon particles as a negative electrode material for a nonaqueous electrolyte secondary battery a composite material of carbon, metal, an alloy, oxide, or nitride is used. Thereby, a nonaqueous electrolyte secondary battery with a high capacity, a superior cycle characteristic, and higher safety performance is provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解質二次電
池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery.

【0002】[0002]

【従来の技術】非水電解質二次電池は、小型,軽量でか
つ高エネルギー密度を有しているため、使用する機器の
ポータブル化,コードレス化に寄与することが期待され
ている。
2. Description of the Related Art Non-aqueous electrolyte secondary batteries are small, lightweight, and have a high energy density, and are therefore expected to contribute to portable and cordless equipment used.

【0003】従来、非水電解質二次電池の正極活物質と
しては、LiCoO2 ,LiNiO 2 ,LiMn
24 ,V25 等の金属酸化物が知られており、一方、
負極活物質としては、金属リチウム,Li−Al合金,
Li−Pb合金等が考えられたが、充放電サイクルを繰
り返すと、デンドライト状のリチウムが析出,成長し、
最後にはセパレータを貫き正負極の短絡をもたらすこと
があり、実用化には到っていない。
Conventionally, the positive electrode active material of a non-aqueous electrolyte secondary battery
Is LiCoOTwo, LiNiO Two, LiMn
TwoOFour, VTwoOFiveAre known, while, on the other hand,
As the negative electrode active material, metallic lithium, Li-Al alloy,
Although a Li-Pb alloy was considered, the charge-discharge cycle was repeated.
Then, dendrite-like lithium precipitates and grows,
Finally, through the separator, causing a short circuit between the positive and negative electrodes
And it has not been put to practical use.

【0004】そこで、安全上の理由から、リチウムを吸
蔵したり放出することが可能で、サイクル特性に優れた
黒鉛等の炭素材料が一部で実用化されている。
[0004] For safety reasons, some carbon materials, such as graphite, capable of inserting and extracting lithium and having excellent cycle characteristics have been put to practical use.

【0005】さらに、炭素材料の充放電容量の高容量化
のために、特開平5−299073号公報に開示されて
いるように、芯を形成する高結晶炭素粒子の表面をVI
II族の金属元素を含む膜で被覆し、さらにその上を炭
素で被覆した炭素複合体や、特開平2−121258号
公報に開示されているように炭素物質とリチウムと合金
可能な金属との混合物が知られている。
Further, in order to increase the charge / discharge capacity of the carbon material, as disclosed in Japanese Patent Application Laid-Open No. 5-299073, the surface of the high-crystalline carbon particles forming the core is formed by VI.
A carbon composite coated with a film containing a Group II metal element and further coated with carbon, or a carbon composite and a metal capable of being alloyed with lithium as disclosed in JP-A-2-121258. Mixtures are known.

【0006】また、特開平8−273702号公報に開
示のように、炭素粒子にリチウムと合金を形成する金属
を担持させることにより、高容量,充放電サイクル特性
の優れたリチウム二次電池が知られている。
Further, as disclosed in Japanese Patent Application Laid-Open No. 8-273702, a lithium secondary battery having high capacity and excellent charge / discharge cycle characteristics is known by supporting a metal forming an alloy with lithium on carbon particles. Have been.

【0007】[0007]

【発明が解決しようとする課題】しかし、特開平5−2
99073号公報,特開平2−121258号公報に開
示のものでは、炭素に金属を被覆することで炭素自体の
理論容量が引き出されておらず、出力密度が充分ではな
かった。また、特開平8−273702号公報に開示の
ものでは、炭素にリチウムと合金可能な金属微粒子を担
持することで、容量を黒鉛よりも大きく、充放電サイク
ル特性は向上させているが、依然として電気自動車用電
池としては容量,サイクル特性において不充分であり、
さらに安全性の面においても問題があった。
However, Japanese Patent Laid-Open Publication No.
In the technology disclosed in Japanese Patent Application Laid-Open No. 99073 and Japanese Patent Application Laid-Open No. 2-121258, the theoretical capacity of carbon itself was not obtained by coating carbon with metal, and the output density was not sufficient. Japanese Patent Application Laid-Open No. H8-273702 discloses that, by carrying metal fine particles that can be alloyed with lithium on carbon, the capacity is larger than that of graphite and the charge / discharge cycle characteristics are improved. Insufficient capacity and cycle characteristics for automotive batteries
There was also a problem in terms of safety.

【0008】[0008]

【課題を解決するための手段】本発明は、前記する課題
を解決するために、炭素粒子界面において、リチウムと
合金を形成することができる金属、もしくはリチウムと
合金を形成することができる金属を含む2種類以上の元
素からなる合金または酸化物または窒化物が、炭素との
反応により炭化物を形成し、炭素粒子と化学結合の状態
にあるものを非水電解質二次電池用負極材料としたもの
で、その非水電解質二次電池用負極材料を負極に用いる
ことにより、高容量でサイクル特性に優れ、さらに安全
性が高い非水電解質二次電池を提供しようとするもので
ある。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a metal capable of forming an alloy with lithium or a metal capable of forming an alloy with lithium at a carbon particle interface. An alloy or oxide or nitride composed of two or more types of elements that form a carbide by reacting with carbon and that is in a chemical bond with carbon particles is used as a negative electrode material for a non-aqueous electrolyte secondary battery By using the negative electrode material for a non-aqueous electrolyte secondary battery as a negative electrode, a non-aqueous electrolyte secondary battery having high capacity, excellent cycle characteristics, and high safety is provided.

【0009】[0009]

【発明の実施の形態】本発明は、各請求項に記載した構
成とすることにより実施できるのであるが、その実施形
態を理解し易くするために、以下に本発明の技術の特徴
とする技術的背景を明示する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention can be implemented by adopting the configuration described in each claim. However, in order to make the embodiment easy to understand, the following is a technical feature of the present invention. Explicit background.

【0010】本発明の負極材料は、既存の炭素粒子(X
線回折法による面間隔d(002)が、3.35〜4.
1Å)自身の持つ容量に、リチウムと合金を形成するこ
とができる1種類の金属、もしくはリチウムと合金を形
成することができる金属を少なくとも1種類以上含む含
む2種類以上の元素からなる合金または酸化物または窒
化物の容量をプラスして高容量化を図り、さらに炭素粒
子と金属もしくは合金または酸化物または窒化物とが、
その炭素粒子の界面において、炭素とその金属もしくは
合金または酸化物または窒化物の組成からなる炭化物を
形成し、炭素粒子とその金属もしくは合金または酸化物
または窒化物との間で化学結合することで優れたサイク
ル特性を示す材料である。このように、炭素粒子と金属
もしくは合金または酸化物または窒化物とが炭化物を形
成して強力に結合しているというところが、本発明の強
調している特徴である。特開平8−273702号公報
に開示のように、単に炭素にリチウムと合金可能な金属
微粒子を担持させるだけ(特開平8−273702号公
報の実施例においてX線回折で担持金属しか見られない
と記されており、炭化物については記されていない)で
は、リチウムの吸蔵と放出に伴う担持金属の膨張,収縮
により担持金属が炭素より脱離し易くなり、サイクルを
重ねると集電体より浮いてしまい、金属の集電性が悪化
し不活性化する。この結果、自動二輪車や電気自動車で
求められるサイクル特性を満たすことができなくなるの
である。
[0010] The negative electrode material of the present invention is prepared by using existing carbon particles (X
The plane distance d (002) by the line diffraction method is 3.35 to 4.
1Å) An alloy or an oxide composed of two or more elements including at least one kind of metal capable of forming an alloy with lithium, or at least one kind of metal capable of forming an alloy with lithium, in its own capacity. Increase the capacity by adding the capacity of the material or nitride, and furthermore, carbon particles and metal or alloy or oxide or nitride,
At the interface of the carbon particles, a carbide having a composition of carbon and the metal or alloy or oxide or nitride is formed, and a chemical bond is formed between the carbon particles and the metal or alloy or oxide or nitride. It is a material that shows excellent cycle characteristics. Thus, the feature emphasized in the present invention is that the carbon particles and the metal or the alloy or the oxide or the nitride form carbides and are strongly bonded. As disclosed in Japanese Patent Application Laid-Open No. 8-273702, only metal fine particles capable of being alloyed with lithium are supported on carbon (in the examples of Japanese Patent Application Laid-Open No. 8-273702, only the supported metal is seen by X-ray diffraction. (But not for carbides), the supported metal expands and contracts due to the occlusion and release of lithium, so that the supported metal is more likely to be desorbed from carbon, and floats over the current collector after repeated cycles. In addition, the current collecting property of the metal is deteriorated and inactivated. As a result, the cycle characteristics required for a motorcycle or an electric vehicle cannot be satisfied.

【0011】ところが本発明の負極材料は、単に炭素粒
子と金属もしくは合金または酸化物または窒化物を担持
させるのではなく、炭素粒子の界面に炭素と金属もしく
は合金または酸化物または窒化物の組成からなる炭化物
を形成して、炭素と金属もしくは合金または酸化物また
は窒化物間を化学結合により強力な結合にすることで、
金属や合金または酸化物または窒化物が膨張,収縮で炭
素粒子から容易に脱離することを防止することで、特開
平8−273702号公報に開示の非水電解質二次電池
よりも優れたサイクル特性を示すものである。さらに、
炭素により多くの金属もしくは合金または酸化物または
窒化物を結合させることも可能となり、特開平8−27
3702号公報に開示の非水電解質二次電池よりもかな
りの高容量が期待できる。
However, the negative electrode material of the present invention does not simply carry carbon particles and a metal or alloy, an oxide or a nitride, but uses a composition of carbon and a metal or an alloy or an oxide or a nitride at the interface of the carbon particles. To form a strong bond between the carbon and the metal or alloy or oxide or nitride by chemical bonding,
By preventing the metal, alloy, oxide or nitride from easily detaching from the carbon particles due to expansion and contraction, a cycle superior to the non-aqueous electrolyte secondary battery disclosed in JP-A-8-273702 is achieved. It shows the characteristics. further,
It is also possible to combine more metals or alloys or oxides or nitrides with carbon.
A considerably higher capacity can be expected than the non-aqueous electrolyte secondary battery disclosed in Japanese Patent No. 3702.

【0012】このように、本発明の負極材料では100
0〜2000サイクル、さらにそれ以上のサイクルにお
いても高容量で容量維持ができる優れたサイクル特性を
有するものである。
Thus, in the negative electrode material of the present invention, 100
It has excellent cycle characteristics in which the capacity can be maintained at a high capacity even in a cycle of 0 to 2,000 cycles or more.

【0013】また、特開平8−273702号公報に開
示の技術にあるように、AgやSnを炭素粒子に担持さ
せたものでは、AgやSnと炭素との結合が弱いため、
充放電サイクルを繰り返していくと、リチウムを吸蔵し
たり放出したりする担持金属の膨張,収縮により担持金
属が炭素粒子より脱離し、その結果、集電性が低下し過
電圧が大きくなる。そのため、充放電サイクルを100
0サイクル以上繰り返すとサイクル劣化が著しいものと
なる。そのサイクル劣化状態では、脱離した金属がリチ
ウムを吸蔵した状態で存在し、そしてそれらの金属は比
表面積が大きいため熱的に不安定な状態にあるため、安
全性の観点から非常に危険な状態にある。このように、
単に炭素粒子に金属を担持するだけでは安全性の面にお
いても問題があった。
Further, as disclosed in Japanese Patent Application Laid-Open No. Hei 8-273702, in the case where Ag or Sn is supported on carbon particles, the bond between Ag and Sn and carbon is weak.
As the charge / discharge cycle is repeated, the supported metal detaches from the carbon particles due to expansion and contraction of the supported metal that occludes and releases lithium, and as a result, the current collecting property decreases and the overvoltage increases. Therefore, the charge / discharge cycle is set to 100
When the cycle is repeated for 0 cycles or more, the cycle deterioration becomes remarkable. In the cycle-deteriorated state, the desorbed metals exist in a state where they occlude lithium, and those metals are in a thermally unstable state due to a large specific surface area, which is extremely dangerous from the viewpoint of safety. In state. in this way,
There is also a problem in terms of safety by simply supporting the metal on the carbon particles.

【0014】しかし、本発明の負極材料は充放電サイク
ルを繰り返しても、炭素と金属もしくは合金または酸化
物または窒化物が炭素界面において炭化物を形成して、
相互に強固に化学結合しているため、充放電サイクルを
繰り返しても金属もしくは合金または酸化物または窒化
物が、自分自身の膨張,収縮により炭素粒子より脱離す
ることは皆無であり、1000サイクル以上の充放電を
行っても炭素材固有の劣化要因を除くとサイクルの劣化
がないので、リチウムが炭素材料上から離れた部位に蓄
積されることがなく、高い安全性を有するものである。
However, in the negative electrode material of the present invention, even if the charge and discharge cycle is repeated, carbon and the metal or alloy or oxide or nitride form carbide at the carbon interface,
Since they are strongly chemically bonded to each other, even if the charge / discharge cycle is repeated, the metal, alloy, oxide, or nitride does not desorb from the carbon particles due to expansion and contraction of itself, and thus, 1000 cycles. Even if the above-mentioned charge / discharge is performed, there is no deterioration of the cycle except for the deterioration factors inherent to the carbon material. Therefore, lithium does not accumulate in a portion distant from the carbon material, and the safety is high.

【0015】以上の理由により、本発明の負極材料を用
いることで、高容量で優れたサイクル特性、そして高い
安全性を有する非水電解質二次電池を提供することがで
きる。
For the above reasons, by using the negative electrode material of the present invention, a non-aqueous electrolyte secondary battery having high capacity, excellent cycle characteristics, and high safety can be provided.

【0016】以下に本発明の実施にあたり使用する材料
について詳述する。炭素粒子としては、天然黒鉛,人造
黒鉛,石油,石炭ピッチもしくはコークスから得られる
易黒鉛化性炭素を650〜1000℃の温度範囲で焼成
した炭素,石油,石炭ピッチもしくはコークスの不融化
処理したものや、樹脂等を600〜1300℃の温度範
囲で焼成した難黒鉛化性炭素等があり、それらの形状は
球形,塊状,鱗片状,繊維状あるいはそれらの粉砕品で
あって良い。これらの炭素材料のうち請求項2記載のよ
うにX線回折法による面間隔d(002)が、3.35
〜4.1Åであることが好ましく、さらに平均粒径が1
〜50μmであることが好ましい。
Hereinafter, the materials used in carrying out the present invention will be described in detail. As the carbon particles, natural graphite, artificial graphite, petroleum, graphitizable carbon obtained from coal pitch or coke, infusibilized carbon, petroleum, coal pitch or coke fired in a temperature range of 650 to 1000 ° C. And non-graphitizable carbon obtained by firing a resin or the like in a temperature range of 600 to 1300 ° C., and the shape thereof may be spherical, massive, scale-like, fibrous, or a crushed product thereof. Among these carbon materials, the plane distance d (002) determined by the X-ray diffraction method as described in claim 2 is 3.35.
To 4.1 °, and the average particle size is preferably 1 to 4.1 °.
It is preferably from 50 μm to 50 μm.

【0017】また、炭素粒子に金属もしくは合金を結合
させる方法としては、蒸着法,スパッタリング法,湿式
還元法,電気化学的還元法,メッキ法,気相還元ガス処
理法,機械式混合法,高周波熱プラズマ法等があるが、
それぞれの方法において炭素粒子と金属もしくは合金と
が炭素界面において炭化物を作るように条件を設定する
必要がある。
The method for bonding a metal or an alloy to carbon particles includes a vapor deposition method, a sputtering method, a wet reduction method, an electrochemical reduction method, a plating method, a gas phase reduction gas treatment method, a mechanical mixing method, and a high frequency wave. There is a thermal plasma method, etc.
In each method, it is necessary to set conditions so that the carbon particles and the metal or alloy form carbide at the carbon interface.

【0018】そして、リチウムと合金を形成することが
できる金属としては、請求項4記載のようにAl,B
a,B,Ca,Si,Sr,Mgの群のうちから選ばれ
る金属元素であることが好ましく、リチウムと合金を形
成することができる金属を少なくとも1種類以上含む2
種類以上の元素からなる合金または酸化物または窒化物
において、遷移金属が少なくとも1種類以上、または典
型金属が少なくとも1種類以上含まれていることが好ま
しく、さらにリチウムと合金を形成することができる金
属、もしくはリチウムと合金を形成することができる金
属を少なくとも1種類以上含む2種類以上の元素からな
る合金または酸化物または窒化物の平均粒径は0.01
〜1μmであることが好ましく、炭素粒子に対する重量
比率としては1〜20重量%であることが好適である。
As the metal capable of forming an alloy with lithium, Al, B
a, B, Ca, Si, Sr, or a metal element selected from the group consisting of Mg, and preferably contains at least one kind of metal capable of forming an alloy with lithium.
In alloys or oxides or nitrides composed of more than one kind of element, it is preferable that at least one kind of transition metal or at least one kind of typical metal is contained, and further, a metal capable of forming an alloy with lithium Or an alloy or oxide or nitride composed of two or more elements containing at least one metal capable of forming an alloy with lithium has an average particle diameter of 0.01.
And preferably 1 to 20% by weight based on carbon particles.

【0019】以上のように、非水電解質と、正極と、リ
チウムを吸蔵したり放出することができる負極を有する
非水電解質二次電池において、前記負極の構成材料に、
請求項1記載の特徴を有する負極材料を用いることによ
り、高容量で、サイクル特性が優れ、さらに高い安全性
を有する非水電解質二次電池を実現することができる。
As described above, in a non-aqueous electrolyte secondary battery having a non-aqueous electrolyte, a positive electrode, and a negative electrode capable of inserting and extracting lithium, the constituent materials of the negative electrode include:
By using the negative electrode material having the characteristics described in claim 1, a nonaqueous electrolyte secondary battery having high capacity, excellent cycle characteristics, and high safety can be realized.

【0020】本発明の非水電解質二次電池における負極
活物質は、本発明の負極材料に導電材として炭素を5〜
80重量%含有させて用いることが好ましく、また正極
活物質は、Co,Ni,Mn,Ti,Mo,W,Nb,
V,Fe,Cr等の1種類以上の遷移金属の複合酸化物
や複合硫化物等の化合物を用いることが好ましく、特に
高電圧,高エネルギー密度に関しては、LiCoO2
LiNiO2 ,LiMn24 等の正極活物質が好適で
ある。
The negative electrode active material in the non-aqueous electrolyte secondary battery of the present invention is obtained by adding carbon as a conductive material to the negative electrode material of the present invention.
It is preferable that the positive electrode active material is contained in an amount of 80% by weight. Co, Ni, Mn, Ti, Mo, W, Nb,
It is preferable to use compounds such as composite oxides and composite sulfides of one or more transition metals such as V, Fe, Cr and the like. Particularly with respect to high voltage and high energy density, LiCoO 2 ,
Positive electrode active materials such as LiNiO 2 and LiMn 2 O 4 are suitable.

【0021】さらに、非水電解質の溶媒としては、エチ
レンカーボネート(以下、ECという),プロピレンカ
ーボネート(以下、PCという),ジメチルカーボネー
ト(以下、DMCという),エチルメチルカーボネート
(以下、EMCという),ジエチルカーボネート(以
下、DECという)等の環状,鎖状炭酸エステル類、γ
−ブチロラクトン等のγ−ラクトン類、1,2−ジメト
キシエタン(以下、DMEという),1,2−ジエトキ
シエタン(以下、DEEという),エトキシメトキシエ
タン(以下、EMEという)等の鎖状炭酸エーテル類、
テトラヒドロフラン等の環状エーテル類、アセトニトリ
ル等のニトリル類等のなかから選ばれた溶媒もしくは2
種類以上の混合溶媒が用いられ、特に炭酸エステル系の
有機溶媒が好適である。非水電解質の溶質としては、L
iAsF6 ,LiPF6 ,LiAlCl4 ,LiClO
4 ,LiCF3SO3 ,LiSbF6 ,LiSCN,L
iCl,LiC6HSO3 ,Li(CF3SO22 ,L
iC(CF3SO23 ,C4 6SO3Li等のリチウム
塩およびこれらの混合物を用いる。
Further, as a solvent for the non-aqueous electrolyte,
Lencarbonate (hereinafter referred to as EC), propylene carbonate
-Carbonate (hereinafter referred to as PC), dimethyl carbonate
(Hereinafter referred to as DMC), ethyl methyl carbonate
(Hereinafter referred to as EMC), diethyl carbonate (hereinafter referred to as EMC)
Cyclic, chain carbonates such as
-Γ-lactones such as butyrolactone, 1,2-dimethoate
Xiethane (hereinafter referred to as DME), 1,2-diethoxy
Cietan (hereinafter referred to as DEE), ethoxymethoxye
Chain carbonate ethers such as tan (hereinafter referred to as EME),
Cyclic ethers such as tetrahydrofuran, acetonitrile
Or a solvent selected from nitriles such as
More than one type of mixed solvent is used, especially carbonate-based
Organic solvents are preferred. As the solute of the non-aqueous electrolyte, L
iAsF6, LiPF6, LiAlClFour, LiClO
Four, LiCFThreeSOThree, LiSbF6, LiSCN, L
iCl, LiC6HSOThree, Li (CFThreeSOTwo)Two, L
iC (CFThreeSOTwo)Three, CFourF 6SOThreeLithium such as Li
Salts and mixtures thereof are used.

【0022】また、請求項12記載の発明は、自動二輪
車を駆動するモータの動力源に請求項8ないし11に記
載の発明のいずれか1項に記載した非水電解質二次電池
を使用することができる用途発明を特定したものであ
る。
According to a twelfth aspect of the present invention, the non-aqueous electrolyte secondary battery according to any one of the eighth to eleventh aspects of the present invention is used as a power source of a motor for driving a motorcycle. It specifies an application invention that can be used.

【0023】また、請求項13記載の発明は、電気自動
車を駆動するモータの動力源に請求項8ないし11に記
載の発明のいずれか1項に記載した非水電解質二次電池
を使用することができる用途発明を特定したものであ
る。
According to a thirteenth aspect of the present invention, the non-aqueous electrolyte secondary battery according to any one of the eighth to eleventh aspects of the present invention is used as a power source of a motor for driving an electric vehicle. It specifies an application invention that can be used.

【0024】[0024]

【実施例】以下、図面とともに本発明をさらに詳しく具
体的に説明するが、本発明はこれら実施例に限定される
ものではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in more detail with reference to the drawings, but the present invention is not limited to these embodiments.

【0025】(実施例1)炭素粒子として、平均粒径2
0μmの以下に示す炭素粒子ないしを用いた。炭素
粒子は、高純度処理品の天然黒鉛とした。炭素粒子
は、石油ピッチから得られる炭化品を、2800℃で熱
処理した人造黒鉛とした。炭素粒子は、石油ピッチを
不融化しAr雰囲気中で、750℃で熱処理した低温焼
成の易黒鉛化性炭素とした。炭素粒子は、フェノール
樹脂をAr雰囲気中で、850℃で熱処理した低温焼成
の難黒鉛化性炭素とした。炭素粒子は、フェノール樹
脂を空気中にて架橋処理を行い、1100℃で熱処理し
た非晶質炭素(高温焼成の難黒鉛化性炭素)とした。
(Example 1) As carbon particles, an average particle diameter of 2
0 μm carbon particles shown below were used. The carbon particles were high-purity processed natural graphite. The carbon particles were artificial graphite obtained by heat-treating a carbonized product obtained from petroleum pitch at 2800 ° C. As the carbon particles, petroleum pitch was made infusible, and was made into a graphitizable carbon which was heat-treated at 750 ° C. in an Ar atmosphere and fired at a low temperature. The carbon particles were made of non-graphitizable carbon obtained by heat-treating a phenol resin at 850 ° C. in an Ar atmosphere at low temperature. The carbon particles were made into amorphous carbon (high-temperature sinterable non-graphitizable carbon) which was obtained by subjecting a phenol resin to a crosslinking treatment in air and heat-treating it at 1100 ° C.

【0026】これらの炭素粒子と化学結合させる金属,
合金としては、Al,Ba,B,Ca,Si,Sr,M
g,NiSi2 とSiの包晶合金,AlSb,CuMg
Sb,SiO,AlNを用い、比較例としてAg,S
n,Biを用いて炭素への担持を行った。
A metal chemically bonded to these carbon particles,
As alloys, Al, Ba, B, Ca, Si, Sr, M
g, peritectic alloy of NiSi 2 and Si, AlSb, CuMg
Sb, SiO, AlN were used, and Ag, S
Loading on carbon was performed using n and Bi.

【0027】炭素粒子と金属,合金との化学結合の方法
としては、次のように行った。4MHzの高周波磁場中
でアルゴンの高周波プラズマ内に金属もしくは合金また
は酸化物または窒化物の粉末を送り込み、それらを蒸気
化させ、その領域に前記した平均粒径20μmの炭素粒
子ないしの粉末を分散させ、蒸気圧制御により炭素
粒子に平均粒径0.1μmの金属もしくは合金または酸
化物または窒化物の超微粒子5重量%を化学結合させ
る。Al,Ba,B,Ca,Si,Sr,Mg,NiS
2 とSiの包晶合金,AlSb,CuMgSb,Si
O,AlNに関しては、炭素界面に炭化物を形成させる
条件で行い、Ag,Sn,Biに関しては、単に担持さ
せる条件で行った。
The method of chemical bonding between the carbon particles and the metal or alloy was performed as follows. In a high-frequency magnetic field of 4 MHz, metal, alloy, oxide, or nitride powder is fed into a high-frequency plasma of argon, vaporized, and the carbon particles or powder having an average particle diameter of 20 μm are dispersed in the region. 5% by weight of ultrafine metal or alloy or oxide or nitride fine particles having an average particle diameter of 0.1 μm are chemically bonded to the carbon particles by controlling the vapor pressure. Al, Ba, B, Ca, Si, Sr, Mg, NiS
peritectic alloy of i 2 and Si, AlSb, CuMgSb, Si
O and AlN were carried out under the condition of forming a carbide at the carbon interface, and Ag, Sn and Bi were carried out under the condition of simply supporting carbide.

【0028】作製したサンプルは、X線回折とXPS
(X−ray Photoelectron Spec
troscopy)にて解析を行った。
The prepared sample was subjected to X-ray diffraction and XPS
(X-ray Photoelectron Spec
(troscopy).

【0029】炭素粒子にAl,Ba,B,Ca,Si,
Sr,Mg,NiSi2 とSiの包晶合金,AlSb,
CuMgSb,SiO,AlNの金属もしくは合金また
は酸化物または窒化物を結合させた粒子では、X線回折
から炭素,各金属もしくは合金または酸化物または窒化
物、そして炭素粒子との反応により生成されたと考えら
れる炭化物として、AlではAl43 、BaではBa
2 、BではB4C、CaではCaC2 、SiではSi
C、SrではSrC2 、MgではMgC2 、NiSi2
とSiの包晶合金ではSiC、AlSbではAl
43 、CuMgSbではMgC2 、SiOではSi
C、AlNではAl43 が確認された。さらに、XP
Sの解析により炭素粒子と結合している元素の化学結合
状態を調べた。一例として挙げると平均粒径20μmの
炭素粒子に平均粒径0.1μmのSiを熱プラズマ法に
より結合させたサンプルでは、Si2pの結合エネルギ
ーは99.4eVとなった。次に、アルゴンスパッタに
よって炭素粒子上のSiを0.09μm程度除去し、同
様に測定したところSi2pピークが99.4eVと1
00.4eVの2本現れた。99.4eVの方はSi金
属単体のSi2pの結合エネルギーを反映しており、1
00.4eVの方はSiCのSiの結合エネルギーを反
映したものと考えられる(JEOLのHandbook
of X−ray Photoelectron S
pectroscopy参考による)。つまり、Siは
炭素粒子と界面において炭化物SiCを形成して結合し
ていることがわかる。また、他の金属、もしくは合金ま
たは酸化物または窒化物についても同じ方法で測定し、
それぞれがSiと同様に炭素粒子の界面において炭化物
を形成し、炭素粒子と化学結合の状態にあることがわか
った。
Al, Ba, B, Ca, Si,
Sr, Mg, peritectic alloy of NiSi 2 and Si, AlSb,
X-ray diffraction suggests that particles of CuMgSb, SiO, AlN, which are bonded to a metal or alloy or oxide or nitride, are formed by reaction with carbon, each metal or alloy or oxide or nitride, and carbon particles. Al 4 C 3 for Al and Ba for Ba
C 2, the B B 4 C, the Ca CaC 2, Si in Si
SrC 2 for C and Sr, MgC 2 and NiSi 2 for Mg
SiC in peritectic alloy of Si and Si, Al in AlSb
4 C 3 , MgC 2 for CuMgSb, Si for SiO
In C and AlN, Al 4 C 3 was confirmed. Furthermore, XP
The chemical bonding state of the element bonded to the carbon particles was examined by S analysis. As an example, in a sample in which Si having an average particle diameter of 0.1 μm is bonded to carbon particles having an average particle diameter of 20 μm by a thermal plasma method, the binding energy of Si2p is 99.4 eV. Next, about 0.09 μm of Si on the carbon particles was removed by argon sputtering, and the same measurement was performed.
Two lines of 00.4 eV appeared. The value of 99.4 eV reflects the binding energy of Si2p of the Si metal alone, and 1
It is considered that the value of 00.4 eV reflects the binding energy of Si of SiC (Handbook of JEOL).
of X-ray Photoelectron S
Spectroscopy reference). In other words, it is understood that Si forms carbide SiC and bonds at the interface with the carbon particles. Also, other metals, or alloys or oxides or nitrides are measured in the same way,
It was found that each formed a carbide at the interface of the carbon particles similarly to Si, and was in a state of a chemical bond with the carbon particles.

【0030】しかし、Ag,Sn,Biに関して、アル
ゴンスパッタする前としたものにおいても、1本の結合
エネルギーのみしか観測されず(Ag3d5/2:36
8.2eV,Sn3d5/2:484.87eV,Bi4
7/2:157.8eV)、Ag,Sn,Biの炭素粒
子へ担持したものは、炭素粒子との界面に炭化物を形成
せずに結合していると考えられる。
However, with respect to Ag, Sn, and Bi, only one bond energy was observed before argon sputtering (Ag3d5 / 2 : 36).
8.2 eV, Sn3d5 / 2 : 484.87 eV, Bi4
f 7/2 : 157.8 eV) and Ag, Sn, Bi supported on carbon particles are considered to be bonded to the interface with the carbon particles without forming carbides.

【0031】このように、金属もしくは合金または酸化
物または窒化物を化学結合、もしくは担持させた炭素粒
子粉末を負極活物質として用いた。
As described above, a carbon particle powder in which a metal, an alloy, an oxide, or a nitride is chemically bonded or supported is used as a negative electrode active material.

【0032】次に、上記のように作製した負極材料を用
いて円筒形電池を作製し、電池特性評価を行った。図1
に本発明の負極を用いた円筒形電池の縦断面図を示す。
図1において、正極1は正極活物質としてLiCoO2
を用い、導電材としてカーボンブラック、結着剤として
ポリ4フッ化エチレンの水性ディスパージョンを重量比
で100:2.5:7.5の割合で混合したものをアル
ミニウム箔芯材に両面塗着,乾燥,圧延した後、所定の
大きさに切断してチタン製の正極リード板2をスポット
溶接して作製した。
Next, a cylindrical battery was manufactured using the negative electrode material manufactured as described above, and the battery characteristics were evaluated. FIG.
1 shows a longitudinal sectional view of a cylindrical battery using the negative electrode of the present invention.
In FIG. 1, a positive electrode 1 is LiCoO 2 as a positive electrode active material.
A mixture of carbon black as a conductive material and an aqueous dispersion of polytetrafluoroethylene as a binder in a weight ratio of 100: 2.5: 7.5 is applied on both sides of an aluminum foil core material. , Dried and rolled, cut into a predetermined size, and spot welded to a positive electrode lead plate 2 made of titanium.

【0033】負極3は上記で作製した負極活物質粉末に
対し、結着剤としてポリフッ化ビニリデンと導電材とし
て炭素材料(アセチレンブラック,人造黒鉛,球状黒
鉛,天然黒鉛,繊維状黒鉛,易黒鉛化性炭素,難黒鉛化
性炭素等が使用できる)を重量比で75:20:5の割
合で混合して得られる合剤の所定量を銅箔芯材に塗着,
乾燥,圧延した後、所定の大きさに切断して、銅製の負
極リード板4をスポット溶接して作製した。5はポリプ
ロピレン樹脂製の微孔性フィルムからなるセパレータ
で、正極1と負極3をこのセパレータ5を介して渦巻き
状に巻回して極板群を構成する。極板群の上下にそれぞ
れポリプロピレン樹脂製の上絶縁板6,下絶縁板7を配
設して鉄にニッケルメッキしたケース8に挿入し、正極
リード板2をチタン製の封口板9に、負極リード板4を
ケース8の底部にそれぞれスポット溶接した後、電解液
を注入し、ガスケット10を介して、封口し電池を作製
した。
The negative electrode 3 is prepared by adding polyvinylidene fluoride as a binder and a carbon material (acetylene black, artificial graphite, spherical graphite, natural graphite, fibrous graphite, easily graphitized) to the negative electrode active material powder prepared above. And a non-graphitizable carbon can be used at a weight ratio of 75: 20: 5, and a predetermined amount of the mixture is applied to a copper foil core material.
After being dried and rolled, it was cut into a predetermined size, and a copper negative electrode lead plate 4 was formed by spot welding. Reference numeral 5 denotes a separator made of a microporous film made of a polypropylene resin. The positive electrode 1 and the negative electrode 3 are spirally wound through the separator 5 to form an electrode plate group. An upper insulating plate 6 and a lower insulating plate 7 made of a polypropylene resin are respectively disposed above and below the electrode plate group, and inserted into a case 8 plated with nickel on iron, and the positive electrode lead plate 2 is inserted into a titanium sealing plate 9 and the negative electrode After the lead plate 4 was spot-welded to the bottom of the case 8, respectively, an electrolytic solution was injected, and the resultant was sealed via a gasket 10 to produce a battery.

【0034】この電池の寸法は直径17mm,高さ50
mmである。11は正極端子であり、負極端子はケース
8がこれを兼ねている。
The dimensions of this battery are 17 mm in diameter and 50 in height.
mm. Reference numeral 11 denotes a positive terminal, and the case 8 also serves as the negative terminal.

【0035】電解液は、溶質としてLiPF6 のリチウ
ム塩1.5mol/dm3 を、溶媒としてECの高粘度
有機溶媒とDECの低粘度有機溶媒の1:1混合溶媒に
溶解したものを用いた。
The electrolyte used was a lithium salt of LiPF 6 as a solute, 1.5 mol / dm 3. Was dissolved in a 1: 1 mixed solvent of a high-viscosity organic solvent of EC and a low-viscosity organic solvent of DEC as a solvent.

【0036】本発明を実施した電池の負極材料は、炭素
にAl,Ba,B,Ca,Si,Sr,Mg,NiSi
2 とSiの包晶合金,AlSb,CuMgSb,Si
O,AlNを化学結合させたものを用い、比較電池には
前記した炭素〜単体のもの、ならびに炭素にAg,
Sn,Biを担持させたものを用いた。
The negative electrode material of the battery embodying the present invention is composed of Al, Ba, B, Ca, Si, Sr, Mg, NiSi
2 and Si peritectic alloy, AlSb, CuMgSb, Si
A battery in which O and AlN are chemically bonded is used, and the comparative battery includes the above-described carbon to simple substance, and Ag,
What carried Sn and Bi was used.

【0037】各電池の評価は、0.2C(1C充放電と
は、1時間で780mAhの充放電に相当)定電流充放
電サイクル試験を行った。充電上限電圧は4.2V、放
電下限電圧は3.0Vとした。結果は、初期,300サ
イクル後,1000サイクル後の放電容量を表1に示し
た。
For the evaluation of each battery, a constant current charge / discharge cycle test was performed at 0.2 C (1 C charge / discharge corresponds to 780 mAh charge / discharge in one hour). The charge upper limit voltage was 4.2 V, and the discharge lower limit voltage was 3.0 V. Table 1 shows the discharge capacity at the initial stage, after 300 cycles, and after 1000 cycles.

【0038】[0038]

【表1】 [Table 1]

【0039】表1より本発明の実施例における負極材料
を用いた電池は、それぞれの炭素材料(d(002)=
3.35〜4.1Å)別における1サイクル目の放電容
量は、比較電池よりも高容量になっている。つまり、本
発明を実施した電池1,2,3では比較電池4,5より
も、また、本発明を実施した電池6,7では比較電池
8,9よりも、本発明を実施した電池10,11,12
では比較電池13,14よりも、本発明を実施した電池
15,16では比較電池17,18よりも、本発明を実
施した電池19,20では比較電池21,22よりも1
サイクル目の放電容量が高くなっていることがわかる。
As can be seen from Table 1, the batteries using the negative electrode material according to the embodiment of the present invention have different carbon materials (d (002) =
3.35 to 4.14), the discharge capacity in the first cycle is higher than that of the comparative battery. That is, in the batteries 1, 2 and 3 according to the present invention, the batteries 10 and 10 according to the present invention were compared with the comparative batteries 4 and 5 and in the batteries 6 and 7 according to the present invention as compared with the comparative batteries 8 and 9. 11,12
In comparison with the comparative batteries 13 and 14, the batteries 15 and 16 embodying the present invention are more than the comparative batteries 17 and 18 and the batteries 19 and 20 embodying the present invention are one more than the comparative batteries 21 and 22.
It can be seen that the discharge capacity at the cycle is high.

【0040】また、300サイクル目の放電容量を比べ
ると、炭素粒子に金属もしくは合金または酸化物または
窒化物を化学結合させたものや担持させた本発明を実施
した各電池は、炭素のみの比較電池(表1中の結合させ
る金属,合金がなしの電池)に比べ大きな放電容量を示
している。
Further, comparing the discharge capacity at the 300th cycle, it is found that each battery in which the present invention in which carbon particles are chemically bonded to a metal or alloy or an oxide or a nitride, or which carries them, has a carbon content of only carbon. It shows a larger discharge capacity than the battery (the battery without the metal or alloy to be bonded in Table 1).

【0041】そして、1000サイクル目になると、本
発明を実施した電池1,2,3,6,7,10,11,
12,15,16,19,20においては、依然高容量
を保っており、サイクル劣化の少ないことがわかる。こ
の要因としては、本発明の負極材料が炭素粒子の界面に
おいて炭素と金属もしくは合金または酸化物または窒化
物との反応により炭化物を作り、炭素粒子と金属もしく
は合金または酸化物または窒化物が化学結合により強力
に結合していることで、充放電を繰り返すことによる金
属もしくは合金または酸化物または窒化物が自分自身の
膨張,収縮で、炭素粒子から脱離することが防止され、
その結果、極板劣化が小さく抑えられたためと考えられ
る。しかし、単に炭素粒子に金属を担持させた比較電池
5,9,14,18,22においては、放電容量が炭素
のみで作製された比較電池よりも小さくなっている。こ
の原因としては、充放電サイクルによる担持金属の膨
張,収縮により担持金属が電極から離れ不活性化したこ
とによるものと考えられる。さらに、この金属の劣化過
程において母材の炭素粒子に何らかの悪影響を与え、放
電容量が炭素粒子のみで作製された比較電池よりも小さ
くなったものと考えられる。
At the 1000th cycle, the batteries 1, 2, 3, 6, 7, 10, 11, 11
12, 15, 16, 19, and 20, the high capacity is still maintained and the cycle deterioration is small. This is due to the fact that the negative electrode material of the present invention forms carbide at the interface of carbon particles by the reaction between carbon and metal or alloy or oxide or nitride, and the carbon particles and metal or alloy or oxide or nitride are chemically bonded. By bonding more strongly, the metal or alloy or oxide or nitride due to repeated charge and discharge is prevented from desorbing from the carbon particles due to its own expansion and contraction,
As a result, it is considered that the electrode plate deterioration was suppressed to a small value. However, in the comparative batteries 5, 9, 14, 18, and 22 in which a metal is simply supported on carbon particles, the discharge capacity is smaller than that in the comparative batteries made of only carbon. It is considered that this is because the carried metal separated from the electrode and became inactive due to expansion and contraction of the carried metal due to the charge / discharge cycle. Further, it is considered that during the metal degradation process, the carbon particles of the base material had some adverse effect, and the discharge capacity was smaller than that of the comparative battery made of only the carbon particles.

【0042】安全性に対する判断は、各サンプルを負極
材料に用いた電池を1000サイクルの充放電を行い、
充電状態で電池を分解して取り出した負極材料の、TG
−DTAの熱測定を室温から350℃の温度範囲で行
い、その温度範囲内において熱量の最大値を示す温度
が、炭素材料のみからなる負極材料の場合と比較して高
いか低いかにより安全性を判断した。
The judgment on safety was made by charging and discharging the battery using each sample as a negative electrode material for 1000 cycles.
TG of the negative electrode material taken out by disassembling the battery in the charged state
-Perform DTA heat measurement in the temperature range from room temperature to 350 ° C, and determine whether the temperature at which the calorific value reaches the maximum value within that temperature range is higher or lower than that of the negative electrode material consisting of only carbon material. Was judged.

【0043】その結果、本発明の負極材料では、炭素材
料のみで構成された負極材料より熱量の最大値を示す温
度が高かった。そして、炭素粒子に単に金属を担持させ
た負極材料では、炭素材料のみで構成された負極材料よ
り熱量の最大値を示す温度が低かった。
As a result, in the negative electrode material of the present invention, the temperature showing the maximum value of the calorific value was higher than that of the negative electrode material composed of only the carbon material. In the negative electrode material in which a metal was simply supported on carbon particles, the temperature at which the maximum value of the calorific value was lower than that of the negative electrode material composed of only the carbon material.

【0044】このように本発明の負極材料は、安全性の
面においても優れているものであることがわかる。
Thus, it can be seen that the negative electrode material of the present invention is also excellent in safety.

【0045】以上のように、本発明の負極材料を非水電
解質二次電池に用いれば、炭素粒子のみの材料や単に金
属を炭素粒子に担持させた材料を用いた二次電池よりも
高容量で、優れたサイクル特性,高い安全性を示す非水
電解質二次電池を提供することができる。
As described above, when the negative electrode material of the present invention is used for a nonaqueous electrolyte secondary battery, a higher capacity is obtained than a secondary battery using a material containing only carbon particles or a material in which a metal is simply supported on carbon particles. Thus, a non-aqueous electrolyte secondary battery exhibiting excellent cycle characteristics and high safety can be provided.

【0046】(実施例2)次に、実施例1における炭素
を用い、その炭素の平均粒径を0.5〜70μmに
篩い分けを行い、それぞれの粒径の炭素に平均粒径0.
1μmのSi粒子を熱プラズマ法にて化学結合させた。
この時、X線回折やXPSの解析により、炭素粒子界面
にSiCが形成されていることを確認した。また、炭素
粒子の平均粒径の違いにより、化学結合するSi量にも
差異が生じたので、各平均粒径の炭素粒子に対するSi
量(重量比率)を化学分析にて求めた。また、比較例と
してSiのかわりに平均粒径0.1μmのAgを0(炭
素のみ)〜50重量%担持させた炭素粒子を用いた。
Agの担持では実施例1と同様、炭素界面に炭素とAg
の炭化物は見られなかった。
(Example 2) Next, the carbon in Example 1 was sieved to have an average particle diameter of 0.5 to 70 µm, and the carbon having the average particle diameter of 0.
1 μm Si particles were chemically bonded by a thermal plasma method.
At this time, it was confirmed by X-ray diffraction and XPS analysis that SiC was formed at the carbon particle interface. Also, the difference in the average particle size of the carbon particles caused a difference in the amount of Si chemically bonded.
The amount (weight ratio) was determined by chemical analysis. As a comparative example, carbon particles carrying 0 (only carbon) to 50% by weight of Ag having an average particle size of 0.1 μm were used instead of Si.
In the case of carrying Ag, as in Example 1, carbon and Ag
No carbides were found.

【0047】これらサンプルを負極活物質として非水電
解質二次電池を実施例1と同方法にて作製した。そして
電池の評価は、実施例1と同じように0.2C(1C充
放電とは、1時間で780mAhの充放電に相当)定電
流充放電サイクル試験を行った。また、充電上限電圧は
4.2V、放電下限電圧は3.0Vとした。結果とし
て、初期,300サイクル後,1000サイクル後の放
電容量を表2に示した。
Using these samples as a negative electrode active material, a non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1. In the evaluation of the battery, a 0.2 C (1 C charge / discharge corresponds to 780 mAh charge / discharge in 1 hour) constant current charge / discharge cycle test was performed in the same manner as in Example 1. The charge upper limit voltage was 4.2 V, and the discharge lower limit voltage was 3.0 V. As a result, Table 2 shows the discharge capacity at the initial stage, after 300 cycles, and after 1000 cycles.

【0048】[0048]

【表2】 [Table 2]

【0049】表2(A)より、炭素の平均粒径が0.5
〜50μm範囲の電池(電池23〜26)の1サイクル
目(初期)の放電容量は、黒鉛の理論容量を越えるほど
の高容量であることがわかる。
According to Table 2 (A), the average particle size of carbon is 0.5
It can be seen that the discharge capacity in the first cycle (initial) of the batteries (batteries 23 to 26) in the range of 5050 μm is high enough to exceed the theoretical capacity of graphite.

【0050】電池27,28(平均粒径がそれぞれ7
0,100μm)では、Si量が少ないためか1サイク
ル目の放電容量は、表2(B)に示す比較例の電池35
の炭素のみで作製された電池に比較して若干大きくな
っているが、1000サイクル後の放電容量では炭素
のみで作製された電池よりも放電容量が若干小さくなっ
ている。この原因としては、炭素に化学結合させた若干
のSi量がサイクル特性に何らかの悪影響を及ぼしてい
るものと考えられる。また、電池23の場合は、炭素粒
子に化学結合させたSi量が炭素粒子に対し40重量%
あり、そのため1サイクル目の放電容量は3243mA
hもあるが、1000サイクル目では放電容量が炭素の
みで作製された表2(B)に示す比較例の電池35より
も小さなものとなった。この原因は、負極材料全体に占
めるSi量が多すぎるため、充放電サイクルに伴うSi
の膨張,収縮も大きくなり、過電圧が大きくなったため
と考えられる。よって、炭素粒子の平均粒径は1〜50
μmの場合が優れたサイクル特性を示すことがわかる。
Batteries 27 and 28 (each having an average particle size of 7
0,100 μm), the discharge capacity in the first cycle may be lower than that of the battery 35 of the comparative example shown in Table 2 (B), probably because of the small amount of Si.
However, the discharge capacity after 1000 cycles is slightly smaller than that of the battery made only of carbon, as compared with the battery made of only carbon. It is considered that the cause is that a slight amount of Si chemically bonded to carbon has some adverse effect on cycle characteristics. In the case of the battery 23, the amount of Si chemically bonded to the carbon particles was 40% by weight based on the carbon particles.
Therefore, the discharge capacity in the first cycle is 3243 mA
h, but at the 1000th cycle, the discharge capacity was smaller than that of the battery 35 of the comparative example shown in Table 2 (B) manufactured using only carbon. This is because the amount of Si in the entire negative electrode material is too large,
It is considered that the expansion and contraction of the gas increased, and the overvoltage increased. Therefore, the average particle size of the carbon particles is 1 to 50.
It can be seen that the case of μm shows excellent cycle characteristics.

【0051】比較例として表2(B)の炭素平均粒径が
1〜50μmの場合、1サイクル目の放電容量は炭素
のみ使用の電池35より大きくなるが、1000サイク
ル後ではそれ以下になってしまう。この原因は、Agが
炭素粒子と強く結合していないため、充放電サイクルを
繰り返していくと、Agの膨張,収縮によりAgが炭素
粒子より離れAg粒子が不活性化し、極板の緩みが生じ
て炭素自身も放電容量の低下が起こったものと考えられ
る。
As a comparative example, when the average carbon particle diameter in Table 2 (B) is 1 to 50 μm, the discharge capacity in the first cycle is larger than that of the battery 35 using only carbon, but becomes smaller after 1000 cycles. I will. The cause is that Ag is not strongly bonded to the carbon particles. Therefore, when the charge / discharge cycle is repeated, Ag is separated from the carbon particles by the expansion and contraction of Ag, the Ag particles are inactivated, and the electrode plate is loosened. It is considered that the discharge capacity of carbon itself also decreased.

【0052】また、安全性に関しても実施例1と同様
に、各サンプルを負極材料に用いた電池を1000サイ
クルの充放電を行い、充電状態で電池を分解し、その負
極材料のTG−DTA測定を室温から350℃の温度範
囲で行い、その温度範囲内で熱量の最大値を示す温度
を、炭素のみで構成される負極材料において示す温度と
の比較によって安全性を判断した。
As for the safety, as in Example 1, a battery using each sample as a negative electrode material was charged and discharged for 1000 cycles, the battery was disassembled in a charged state, and TG-DTA measurement of the negative electrode material was performed. Was carried out in a temperature range from room temperature to 350 ° C., and safety was judged by comparing the temperature showing the maximum value of the calorific value within the temperature range with the temperature shown in the negative electrode material composed only of carbon.

【0053】その結果、炭素の平均粒径が1〜100
μm(電池24〜28)の負極材料の熱量の最大値を示
す温度は、炭素材料のみの負極材料より高く、比較例の
電池の負極材料の熱量の最大値を示す温度は、全て炭素
材料のみの負極材料より低かった。
As a result, the average particle size of carbon was 1 to 100.
The temperature at which the maximum value of the calorific value of the negative electrode material of μm (batteries 24 to 28) is higher than that of the negative electrode material of only the carbon material, and the temperature at which the maximum value of the calorific value of the negative electrode material of the battery of the comparative example is only the carbon material Lower than the negative electrode material.

【0054】以上より、本発明の負極材料における炭素
粒子は平均粒径が1〜50μmで、また炭素粒子に結合
する金属もしくは合金の炭素粒子に対する重量比は、1
〜20重量%の場合、容量,サイクル特性,安全性に対
し、より一層の優れた特性を示すことがわかる。
As described above, the carbon particles in the negative electrode material of the present invention have an average particle diameter of 1 to 50 μm, and the weight ratio of the metal or alloy bonded to the carbon particles to the carbon particles is 1
It can be seen that when the content is up to 20% by weight, more excellent characteristics are exhibited with respect to capacity, cycle characteristics and safety.

【0055】(実施例3)次に、実施例1の平均粒径2
0μmの炭素を用い、その炭素に平均粒径が0.0
05〜10μmのSi粒子を熱プラズマ法にて結合させ
た。この時、X線回折やXPSの解析により、炭素粒子
界面にSiCが形成されていることを確認した。また、
比較例としてSiのかわりに平均粒径が0.005〜1
0μmのAgに担持させたものを用いた。Agでは実施
例1と同様、炭素界面に炭化物は見られなかった。
(Example 3) Next, the average particle size of Example 1
0 μm of carbon having an average particle size of 0.0
05-10 μm Si particles were bonded by a thermal plasma method. At this time, it was confirmed by X-ray diffraction and XPS analysis that SiC was formed at the carbon particle interface. Also,
As a comparative example, the average particle diameter is 0.005 to 1 instead of Si.
What was carried on Ag of 0 μm was used. In Ag, as in Example 1, no carbide was found at the carbon interface.

【0056】このサンプルを負極活物質として非水電解
質二次電池を実施例1と同方法にて作製した。そして電
池の評価は、実施例1と同じように0.2C(1C充放
電とは、1時間で780mAhの充放電に相当)定電流
充放電サイクル試験を行い、充電上限電圧は4.2V,
放電下限電圧は3.0Vとした。結果は、初期,300
サイクル後,1000サイクル後の放電容量を表3
(A)(Siに関するもの),表3(B)(比較例とし
てAgに関するもの)に示した。
Using this sample as a negative electrode active material, a non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1. In the evaluation of the battery, a constant current charge / discharge cycle test of 0.2 C (1 C charge / discharge is equivalent to 780 mAh charge / discharge in one hour) was performed in the same manner as in Example 1. The charge upper limit voltage was 4.2 V.
The discharge lower limit voltage was 3.0 V. The result is initial, 300
Table 3 shows the discharge capacity after 1000 cycles.
(A) (for Si) and Table 3 (B) (for Ag as a comparative example).

【0057】[0057]

【表3】 [Table 3]

【0058】表3(A)より、炭素粒子と結合させるS
iの平均粒径は、0.005〜10μmの範囲では1サ
イクル目の放電容量が、前記表2(B)に示す電池35
の炭素(平均粒径20μm)のみの場合(800mA
h)より大きくなり、電池40,41のSiの平均粒径
が2〜10μm範囲では、1000サイクル目の放電容
量がいずれも500mAh以下と極端に低下している。
これはSi粒子が2μm以上になると、炭素粒子とSi
との界面に炭化物を形成して強力に化学結合する効果が
薄らいでしまい、金属や合金等が膨張,収縮で炭素粒子
から脱落してしまい、サイクル劣化が起こってしまうも
のと考えられる。
From Table 3 (A), it is found that S bonded to carbon particles
When the average particle size of i is in the range of 0.005 to 10 μm, the discharge capacity at the first cycle is not larger than that of the battery 35 shown in Table 2 (B).
Carbon (average particle size 20 μm) only (800 mA
h), and when the average particle diameter of Si of the batteries 40 and 41 is in the range of 2 to 10 μm, the discharge capacity at the 1000th cycle is extremely reduced to 500 mAh or less.
This is because when the Si particles become 2 μm or more, carbon particles and Si particles
It is thought that the effect of forming a carbide at the interface with and strongly bonding chemically is weakened, and metals and alloys fall off from the carbon particles due to expansion and contraction, resulting in cycle deterioration.

【0059】表3(B)の炭素粒子にAgを担持した場
合では、1サイクル目の放電容量は先述した表2(B)
の電池35の放電容量以上を示すが、1000サイクル
後では表記した全ての平均粒径において500mAh程
度以下になる。この原因としては実施例2と同様に、A
gが炭素粒子と強く結合していないため、充放電サイク
ルを繰り返していくと、Agの膨張,収縮によりAgが
炭素粒子より離れAg粒子の不活性化、そして極板膨張
による炭素粒子の放電容量の低下を招き、1000サイ
クル後の放電容量は黒鉛以下になると考えられる。
When Ag was carried on the carbon particles in Table 3 (B), the discharge capacity in the first cycle was as shown in Table 2 (B).
Although the discharge capacity of the battery 35 is equal to or higher than that of the battery 35, the average particle diameter becomes 1000 mAh or less after 1000 cycles. The reason for this is that A
Since g is not strongly bonded to the carbon particles, when the charge and discharge cycle is repeated, Ag separates from the carbon particles due to expansion and contraction of the Ag, inactivates the Ag particles, and discharge capacity of the carbon particles due to electrode plate expansion. It is considered that the discharge capacity after 1000 cycles becomes less than graphite.

【0060】安全性に関しても実施例1と同様に、各サ
ンプルを負極材料に用いた電池を1000サイクルの充
放電を行い、充電状態で電池を分解し、その負極材料の
TG−DTA測定を室温から350℃の温度範囲で行
い、その温度範囲内で熱量の最大値を示す温度を、炭素
のみで構成される負極材料において示す温度との比較に
よって安全性を判断した。
Regarding safety, as in Example 1, a battery using each sample as a negative electrode material was charged and discharged for 1000 cycles, the battery was disassembled in a charged state, and TG-DTA measurement of the negative electrode material was performed at room temperature. To 350 ° C., and safety was determined by comparing the temperature showing the maximum value of the calorific value within the temperature range with the temperature shown for the negative electrode material composed only of carbon.

【0061】その結果、Siの平均粒径が0.01〜1
μm、すなわち電池37〜39の負極材料の熱量の最大
値を示す温度は、炭素材料のみの負極材料より高かっ
た。しかし、電池36,40,41,42〜47の負極
材料の熱量の最大値を示す温度は、炭素材料のみの負極
材料より低かった。
As a result, the average grain size of Si was 0.01 to 1
μm, that is, the temperature at which the maximum value of the calorific value of the negative electrode material of the batteries 37 to 39 was higher than that of the negative electrode material including only the carbon material. However, the temperature showing the maximum value of the calorific value of the negative electrode materials of the batteries 36, 40, 41, and 42 to 47 was lower than that of the negative electrode material including only the carbon material.

【0062】電池36は、Siの平均粒径が0.005
μmと小さいため比表面積がかなり大きく、熱量の最大
値を示す温度が炭素材料のみの負極材料より高くなった
ものと考えられる。
The battery 36 has an average Si particle diameter of 0.005.
It is considered that the specific surface area was considerably large due to the small size of μm, and the temperature at which the maximum value of the calorific value was higher than that of the negative electrode material containing only the carbon material.

【0063】電池40,41では、炭素粒子に結合した
Siが大きく、大きな粒子の金属,合金で見られるよう
に充放電サイクルを繰り返すとSiが微細化し、比表面
積がかなり大きくなり、熱量の最大値を示す温度が炭素
材料のみの負極材料より高くなったものと考えられる。
In the batteries 40 and 41, Si bonded to the carbon particles is large, and when charge and discharge cycles are repeated as seen in the case of metals and alloys of large particles, Si becomes finer, the specific surface area becomes considerably large, and the maximum amount of heat is increased. It is considered that the temperature indicating the value was higher than that of the negative electrode material containing only the carbon material.

【0064】電池42〜47では、炭素粒子とAgとの
結合が弱いため、1000サイクルも充放電を繰り返す
とAgがリチウムと結合したままの状態で炭素粒子から
脱離し、それにより比表面積の増大を招き、熱量の最大
値を示す温度が炭素材料のみの負極材料より高くなった
ものと考えられる。
In the batteries 42 to 47, the bond between the carbon particles and Ag is weak. Therefore, when charge and discharge are repeated for 1000 cycles, the Ag is desorbed from the carbon particles while remaining bonded to lithium, thereby increasing the specific surface area. It is considered that the temperature at which the maximum value of the calorific value became higher than that of the negative electrode material containing only the carbon material.

【0065】以上より、本発明の負極材料における炭素
粒子に化学結合させる金属もしくは合金の平均粒径が、
0.01〜1μmの場合、容量,サイクル特性,安全性
に対し、より一層の優れた特性を示すことがわかる。
As described above, the average particle size of the metal or alloy chemically bonded to the carbon particles in the negative electrode material of the present invention is:
It can be seen that when the thickness is 0.01 to 1 μm, more excellent characteristics are exhibited with respect to capacity, cycle characteristics, and safety.

【0066】(実施例4)次に、平均粒径20μmの実
施例1の炭素に平均粒径0.1μmのSi粒子を熱プ
ラズマ法にて化学結合させた炭素粒子(X線回折やEP
MAの解析で炭素粒子界面にSiCが形成されているこ
とを確認)と、導電材としてのアセチレンブラック(そ
の他、導電材としては実施例1に示した炭素類、全てが
使用できる)を混合したものを用いて負極極板を作製し
円筒形電池を作製した。
Example 4 Next, carbon particles obtained by chemically bonding Si particles having an average particle diameter of 0.1 μm to the carbon of Example 1 having an average particle diameter of 20 μm by a thermal plasma method (X-ray diffraction or EP
MA analysis confirmed that SiC was formed at the carbon particle interface) and acetylene black as a conductive material (other carbons shown in Example 1 as a conductive material, all of which can be used) were mixed. A negative electrode plate was manufactured using the obtained material, and a cylindrical battery was manufactured.

【0067】そして電池の評価は、実施例1と同じよう
に0.2C(1C充放電とは、1時間で780mAhの
充放電に相当)定電流充放電サイクル試験を行った。充
電上限電圧は4.2V,放電下限電圧は3.0Vとし
た。結果として、初期,300サイクル後,1000サ
イクル後の放電容量を表4に示した。また、比較例とし
て導電材なしで作製した電池の評価も行った。
For the evaluation of the battery, a constant current charge / discharge cycle test of 0.2 C (1 C charge / discharge corresponds to 780 mAh charge / discharge in 1 hour) was performed in the same manner as in Example 1. The charge upper limit voltage was 4.2 V, and the discharge lower limit voltage was 3.0 V. As a result, Table 4 shows the discharge capacity at the initial stage, after 300 cycles, and after 1000 cycles. Also, as a comparative example, a battery manufactured without a conductive material was evaluated.

【0068】[0068]

【表4】 [Table 4]

【0069】表4より、電池49〜51では1サイクル
目の放電容量は、比較例の電池53に比べ導電材を混合
したことにより若干低下しているが、1000サイクル
目の放電容量を比較すると比較例の電池53よりも高容
量になることがわかる。これは導電材を加えると導電性
の向上により直接抵抗成分が低く抑えられ過電圧の低下
により、放電容量の維持率が向上したものによると考え
られる。
From Table 4, the discharge capacity in the first cycle is slightly lower in the batteries 49 to 51 than in the battery 53 of the comparative example due to the mixing of the conductive material. It can be seen that the capacity is higher than that of the battery 53 of the comparative example. This is considered to be due to the fact that when a conductive material is added, the direct resistance component is suppressed to a low level by the improvement in conductivity, and the overvoltage is reduced, thereby improving the maintenance ratio of the discharge capacity.

【0070】しかし、電池48のように導電材が少ない
とその効果が得られず、また電池52のように導電材が
多いと負極材料の高容量化ができない。
However, when the amount of the conductive material is small as in the battery 48, the effect cannot be obtained. When the amount of the conductive material is large as in the battery 52, the capacity of the negative electrode material cannot be increased.

【0071】安全性に関しても実施例1と同様に、各サ
ンプルを負極材料に用いた電池を1000サイクルの充
放電を行い、充電状態で電池を分解し、その負極材料の
TG−DTA測定を室温から350℃の温度範囲で行
い、その温度範囲内で熱量の最大値を示す温度を、炭素
のみで構成される負極材料において示す温度との比較に
よって安全性を判断した。
Regarding safety, as in Example 1, a battery using each sample as a negative electrode material was charged and discharged for 1000 cycles, the battery was disassembled in a charged state, and TG-DTA measurement of the negative electrode material was performed at room temperature. To 350 ° C., and safety was determined by comparing the temperature showing the maximum value of the calorific value within the temperature range with the temperature shown for the negative electrode material composed only of carbon.

【0072】その結果、電池48〜52や、さらに比較
例の電池53においても、それらの負極材料の熱量の最
大値を示す温度は、炭素材料のみの負極材料より高かっ
た。
As a result, also in the batteries 48 to 52 and the battery 53 of the comparative example, the temperature at which the maximum value of the calorific value of the negative electrode material was higher than that of the negative electrode material containing only the carbon material.

【0073】以上より、本発明の負極材料に導電材とし
て炭素を5〜80重量%含有させることにより安全性は
全く問題なく、初期容量は若干減少するもののさらにサ
イクル特性の優れた電池特性を得ることができることが
わかる。
As described above, when the negative electrode material of the present invention contains carbon as a conductive material in an amount of 5 to 80% by weight, there is no problem in safety at all, and a battery characteristic with further excellent cycle characteristics is obtained although the initial capacity is slightly reduced. We can see that we can do it.

【0074】さらに、本発明の負極材料を非水電解質二
次電池に用いる場合、正極活物質には、リチウムを含有
するCo,Ni,Mn遷移金属化合物以外に、Ti,M
o,W,Nb,V,Fe,Cr等の1種類以上の遷移金
属の複合酸化物や複合硫化物等の化合物を用いても同等
の効果が得られる。特に、高電圧,高エネルギー密度に
関しては、LiCoO2 ,LiNiO2 ,LiMn2
4 等の正極活物質が好適である。
Further, when the negative electrode material of the present invention is used in a non-aqueous electrolyte secondary battery, the positive electrode active material may include Ti, Mn transition metal compounds other than lithium-containing Co, Ni, Mn transition metal compounds.
The same effect can be obtained by using a compound such as a composite oxide or a composite sulfide of one or more transition metals such as o, W, Nb, V, Fe, and Cr. In particular, regarding high voltage and high energy density, LiCoO 2 , LiNiO 2 , LiMn 2 O
A positive electrode active material such as 4 is suitable.

【0075】そして、実施例1〜4において非水電解質
二次電池に用いられた電解質の溶媒としては、EC,P
C,DMC,EMC,DEC等の環状,鎖状炭酸エステ
ル類、γ−ブチロラクトン等のγ−ラクトン類、DM
E,DEE,EME等の鎖状炭酸エーテル類、テトラヒ
ドロフラン等の環状エーテル類、アセトニトリル等のニ
トリル類等から選ばれた溶媒、もしくは2種類以上の混
合溶媒を用いても実施例のECとDECを1:1で混合
した場合と同等の効果が得られる。特に、ECを必須成
分として含む混合溶媒を使用することが好適である。
In Examples 1-4, EC, P were used as the solvent of the electrolyte used for the non-aqueous electrolyte secondary batteries.
Cyclic, chain carbonates such as C, DMC, EMC, and DEC; γ-lactones such as γ-butyrolactone; DM
The EC and DEC of the examples can be obtained by using a solvent selected from chain carbonate ethers such as E, DEE and EME, cyclic ethers such as tetrahydrofuran, nitriles such as acetonitrile, or a mixed solvent of two or more kinds. The same effect as in the case of mixing 1: 1 can be obtained. In particular, it is preferable to use a mixed solvent containing EC as an essential component.

【0076】そして、非水電解質の溶質としては、Li
AsF6 ,LiPF6 ,LiAlCl4 ,LiCl
4 ,LiCF3SO3 ,LiSbF6 ,LiSCN,
LiCl,LiC6HSO3 ,Li(CF3SO22
LiC(CF3SO23 ,C46SO3Li等のリチウ
ム塩およびこれらの混合物を用いても実施例のLiPF
6と同様の効果が得られる。
The non-aqueous electrolyte solute is Li
AsF 6 , LiPF 6 , LiAlCl 4 , LiCl
O 4 , LiCF 3 SO 3 , LiSbF 6 , LiSCN,
LiCl, LiC 6 HSO 3 , Li (CF 3 SO 2 ) 2 ,
LiPF such as LiC (CF 3 SO 2 ) 3 , C 4 F 6 SO 3 Li or a mixture thereof may be used to prepare the LiPF.
The same effect as in 6 is obtained.

【0077】また、電池の形状に関しては、本実施例で
は円筒形を用いたが、コイン形,角形,その他いかなる
形状の電池でも使用できる。そして、本発明の負極活物
質はポリマー電池の負極活物質としても有効である。
Further, as for the shape of the battery, the cylindrical shape is used in this embodiment, but a coin shape, a square shape, or any other shape can be used. And the negative electrode active material of the present invention is also effective as a negative electrode active material of a polymer battery.

【0078】そして、請求項8ないし11記載の発明の
いずれかの非水電解質二次電池で、かつ上記のいかなる
電池形状においても、自動二輪車や電気自動車のモータ
を駆動する動力源に適用可能である。
The non-aqueous electrolyte secondary battery according to any one of claims 8 to 11 and any of the above battery shapes can be applied to a power source for driving a motor of a motorcycle or an electric vehicle. is there.

【0079】[0079]

【発明の効果】本発明は、前述したようにリチウムの吸
蔵ならびに放出のできる非水電解質二次電池の負極材料
として、炭素粒子界面に、リチウムと合金を形成するこ
とができる金属、もしくはリチウムと合金を形成するこ
とができる金属を含む2種類以上の元素からなる合金ま
たは酸化物または窒化物が、炭素とその金属もしくは合
金または酸化物または窒化物との反応により炭化物を形
成し、炭素粒子と化学結合の状態にある複合炭素材料を
用いることにより、高容量で優れたサイクル特性、そし
て高安全性を有する非水電解質二次電池を実現できる。
According to the present invention, as described above, as a negative electrode material of a non-aqueous electrolyte secondary battery capable of inserting and extracting lithium, a metal capable of forming an alloy with lithium or an alloy of lithium at the carbon particle interface is used. An alloy or oxide or nitride composed of two or more elements including a metal capable of forming an alloy forms a carbide by reacting carbon with the metal or alloy or oxide or nitride, and forms carbon and By using a composite carbon material in a chemically bonded state, a nonaqueous electrolyte secondary battery having high capacity, excellent cycle characteristics, and high safety can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例における負極を用いた円筒形
電池の縦断面図
FIG. 1 is a longitudinal sectional view of a cylindrical battery using a negative electrode according to one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 正極 2 正極リード板 3 負極 4 負極リード板 5 セパレータ 6 上部絶縁板 7 下部絶縁板 8 ケース 9 封口板 10 ガスケット 11 正極端子 DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Positive electrode lead plate 3 Negative electrode 4 Negative electrode lead plate 5 Separator 6 Upper insulating plate 7 Lower insulating plate 8 Case 9 Sealing plate 10 Gasket 11 Positive electrode terminal

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 炭素粒子の界面において、リチウムと合
金を形成することができる金属、もしくはリチウムと合
金を形成することができる金属を含む2種類以上の元素
からなる合金または酸化物または窒化物が、炭素とその
金属もしくは合金との反応により炭化物を形成し、炭素
粒子と化学結合の状態にあることを特徴とする非水電解
質二次電池用負極材料。
At the interface between carbon particles, an alloy or an oxide or a nitride composed of two or more elements including a metal capable of forming an alloy with lithium or a metal capable of forming an alloy with lithium is formed. A negative electrode material for a non-aqueous electrolyte secondary battery, which forms a carbide by reacting carbon with its metal or alloy and is in a state of being chemically bonded to carbon particles.
【請求項2】 炭素粒子は、X線回折法による面間隔d
(002)が、3.35〜4.1Åであることを特徴と
する請求項1記載の非水電解質二次電池用負極材料。
2. The method according to claim 1, wherein the carbon particles have a plane distance d determined by X-ray diffraction.
2. The negative electrode material for a non-aqueous electrolyte secondary battery according to claim 1, wherein (002) is 3.35 to 4.1%.
【請求項3】 炭素粒子は、平均粒径が1〜50μmで
あることを特徴とする請求項1記載の非水電解質二次電
池用負極材料。
3. The negative electrode material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the carbon particles have an average particle diameter of 1 to 50 μm.
【請求項4】 リチウムと合金を形成することができる
金属は、Al,Ba,B,Ca,Si,Sr,Mgの群
のうちから選ばれた金属であることを特徴とする請求項
1記載の非水電解質二次電池用負極材料。
4. The metal according to claim 1, wherein the metal capable of forming an alloy with lithium is a metal selected from the group consisting of Al, Ba, B, Ca, Si, Sr, and Mg. Negative electrode material for non-aqueous electrolyte secondary batteries.
【請求項5】 リチウムと合金を形成することができる
金属を含む2種類以上の元素からなる合金または酸化物
または窒化物は、遷移金属が少なくとも1種類以上また
は典型金属が少なくとも1種類以上含まれていることを
特徴とする請求項1記載の非水電解質二次電池用負極材
料。
5. An alloy or an oxide or a nitride composed of two or more elements including a metal capable of forming an alloy with lithium contains at least one transition metal or at least one typical metal. The negative electrode material for a non-aqueous electrolyte secondary battery according to claim 1, wherein:
【請求項6】 リチウムと合金を形成することができる
金属、もしくはリチウムと合金を形成することができる
金属を含む2種類以上の元素からなる合金または酸化物
または窒化物は、平均粒径が0.01〜1μmであるこ
とを特徴とする請求項1記載の非水電解質二次電池用負
極材料。
6. An alloy or an oxide or a nitride composed of two or more elements including a metal capable of forming an alloy with lithium, or a metal capable of forming an alloy with lithium, has an average particle size of 0%. 2. The negative electrode material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the thickness is from 0.01 to 1 [mu] m.
【請求項7】 炭素粒子に対する、リチウムと合金を形
成することができる金属、もしくはリチウムと合金を形
成することができる金属を含む2種類以上の元素からな
る合金または酸化物または窒化物の重量比率は、1〜2
0重量%であることを特徴とする請求項1記載の非水電
解質二次電池用負極材料。
7. A weight ratio of carbon to a metal capable of forming an alloy with lithium or an alloy or oxide or nitride of two or more elements including a metal capable of forming an alloy with lithium. Is 1-2
The negative electrode material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the amount is 0% by weight.
【請求項8】 非水電解質と、正極と、リチウムを吸蔵
したり放出することができる負極を有する非水電解質二
次電池において、請求項1記載の負極材料を用いた負極
を備えたことを特徴とする非水電解質二次電池。
8. A non-aqueous electrolyte secondary battery having a non-aqueous electrolyte, a positive electrode, and a negative electrode capable of inserting and extracting lithium, comprising a negative electrode using the negative electrode material according to claim 1. Characteristic non-aqueous electrolyte secondary battery.
【請求項9】 請求項1記載の負極材料に導電材として
炭素を5〜80重量%含有させて構成した負極を備えた
ことを特徴とする請求項8記載の非水電解質二次電池。
9. A non-aqueous electrolyte secondary battery according to claim 8, further comprising a negative electrode comprising the negative electrode material according to claim 1 containing 5 to 80% by weight of carbon as a conductive material.
【請求項10】 リチウム含有遷移金属化合物を正極活
物質とする正極を備えたことを特徴とする請求項8記載
の非水電解質二次電池。
10. The non-aqueous electrolyte secondary battery according to claim 8, further comprising a positive electrode using a lithium-containing transition metal compound as a positive electrode active material.
【請求項11】 リチウム塩を炭酸エステル系有機溶媒
に溶かした状態の非水電解質を備えたことを特徴とする
請求項8記載の非水電解質二次電池。
11. The non-aqueous electrolyte secondary battery according to claim 8, further comprising a non-aqueous electrolyte in which a lithium salt is dissolved in a carbonate-based organic solvent.
【請求項12】 自動二輪車を駆動するモータの動力源
として使用することを特徴とする請求項8ないし11の
いずれか1項に記載した非水電解質二次電池。
12. The non-aqueous electrolyte secondary battery according to claim 8, wherein the non-aqueous electrolyte secondary battery is used as a power source of a motor for driving a motorcycle.
【請求項13】 電気自動車を駆動するモータの動力源
として使用することを特徴とする請求項8ないし11の
いずれか1項に記載した非水電解質二次電池。
13. The non-aqueous electrolyte secondary battery according to claim 8, wherein the non-aqueous electrolyte secondary battery is used as a power source of a motor for driving an electric vehicle.
JP01859698A 1998-01-30 1998-01-30 Non-aqueous electrolyte secondary battery negative electrode material and non-aqueous electrolyte secondary battery provided with a negative electrode using the negative electrode material Expired - Fee Related JP4032479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01859698A JP4032479B2 (en) 1998-01-30 1998-01-30 Non-aqueous electrolyte secondary battery negative electrode material and non-aqueous electrolyte secondary battery provided with a negative electrode using the negative electrode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01859698A JP4032479B2 (en) 1998-01-30 1998-01-30 Non-aqueous electrolyte secondary battery negative electrode material and non-aqueous electrolyte secondary battery provided with a negative electrode using the negative electrode material

Publications (2)

Publication Number Publication Date
JPH11214004A true JPH11214004A (en) 1999-08-06
JP4032479B2 JP4032479B2 (en) 2008-01-16

Family

ID=11976033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01859698A Expired - Fee Related JP4032479B2 (en) 1998-01-30 1998-01-30 Non-aqueous electrolyte secondary battery negative electrode material and non-aqueous electrolyte secondary battery provided with a negative electrode using the negative electrode material

Country Status (1)

Country Link
JP (1) JP4032479B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000014817A1 (en) * 1998-09-08 2000-03-16 Sumitomo Metal Industries, Ltd. Negative electrode material for nonaqueous electrode secondary battery and method for producing the same
JP2001210323A (en) * 2000-01-26 2001-08-03 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2005135779A (en) * 2003-10-31 2005-05-26 Rikkyo Gakuin Lithium secondary battery and its manufacturing method
WO2007055007A1 (en) * 2005-11-10 2007-05-18 Pionics Co., Ltd. Particle of negative electrode active material for lithium secondary battery, negative electrode making use of the same and process for producing them
JP2007165293A (en) * 2005-11-16 2007-06-28 Jfe Chemical Corp Lithium-ion secondary battery anode, its manufacturing method, and lithium-ion secondary battery
JP2008508670A (en) * 2004-07-30 2008-03-21 センタ・ナショナル・デチュード・スパティアレ Cathode composite material and manufacturing method thereof, cathode and lithium ion battery
JP2009176603A (en) * 2008-01-25 2009-08-06 Tokai Carbon Co Ltd Carbon minute sphere powder for negative electrode material of lithium ion secondary battery and its manufacturing method
US7629082B2 (en) * 2004-04-23 2009-12-08 Lg Chem, Ltd. Anode active material with improved electrochemical properties and electrochemical device comprising the same
US20120132859A1 (en) * 2009-04-06 2012-05-31 Bernard Lestriez Electrode composite
JP2013008707A (en) * 2012-10-12 2013-01-10 Nissan Motor Co Ltd Electrode for lithium ion secondary battery
US20130295446A1 (en) * 2012-05-02 2013-11-07 Showa Denko K.K. Negative electrode material for lithium battery
JP2014070008A (en) * 2012-10-01 2014-04-21 Showa Denko Kk Method for producing composite material, and composite material
WO2014096307A1 (en) * 2012-12-21 2014-06-26 Dritte Patentportfolio Beteiligungsgesellschaft Mbh & Co. Kg Method for producing an anode coating
WO2014178093A1 (en) * 2013-05-03 2014-11-06 Showa Denko K.K. Negative electrode material for lithium ion battery and use thereof

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6835496B1 (en) 1998-09-08 2004-12-28 Sumitomo Metal Industries, Ltd. Negative electrode material for a non-aqueous electrolyte secondary battery and processes for its manufacture
US6881518B2 (en) 1998-09-08 2005-04-19 Sumitomo Metal Industries, Ltd. Process for manufacture of negative electrode material for a non-aqueous electrolyte secondary battery
WO2000014817A1 (en) * 1998-09-08 2000-03-16 Sumitomo Metal Industries, Ltd. Negative electrode material for nonaqueous electrode secondary battery and method for producing the same
JP2001210323A (en) * 2000-01-26 2001-08-03 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2005135779A (en) * 2003-10-31 2005-05-26 Rikkyo Gakuin Lithium secondary battery and its manufacturing method
US7629082B2 (en) * 2004-04-23 2009-12-08 Lg Chem, Ltd. Anode active material with improved electrochemical properties and electrochemical device comprising the same
US7754385B2 (en) 2004-04-23 2010-07-13 Lg Chem, Ltd. Anode active material with improved electrochemical properties and electrochemical device comprising the same
JP2008508670A (en) * 2004-07-30 2008-03-21 センタ・ナショナル・デチュード・スパティアレ Cathode composite material and manufacturing method thereof, cathode and lithium ion battery
WO2007055007A1 (en) * 2005-11-10 2007-05-18 Pionics Co., Ltd. Particle of negative electrode active material for lithium secondary battery, negative electrode making use of the same and process for producing them
JP2007165293A (en) * 2005-11-16 2007-06-28 Jfe Chemical Corp Lithium-ion secondary battery anode, its manufacturing method, and lithium-ion secondary battery
JP2009176603A (en) * 2008-01-25 2009-08-06 Tokai Carbon Co Ltd Carbon minute sphere powder for negative electrode material of lithium ion secondary battery and its manufacturing method
US20120132859A1 (en) * 2009-04-06 2012-05-31 Bernard Lestriez Electrode composite
US9263728B2 (en) * 2009-04-06 2016-02-16 Centre National De La Recherche Scientifique Electrode composite
US20130295446A1 (en) * 2012-05-02 2013-11-07 Showa Denko K.K. Negative electrode material for lithium battery
WO2013164914A1 (en) * 2012-05-02 2013-11-07 Showa Denko K.K. Negative electrode material for lithium ion battery and use thereof
JP2014519135A (en) * 2012-05-02 2014-08-07 昭和電工株式会社 Negative electrode material for lithium ion battery and its use
US9299978B2 (en) * 2012-05-02 2016-03-29 Showa Denko K.K. Negative electrode material for lithium battery
JP2014070008A (en) * 2012-10-01 2014-04-21 Showa Denko Kk Method for producing composite material, and composite material
JP2013008707A (en) * 2012-10-12 2013-01-10 Nissan Motor Co Ltd Electrode for lithium ion secondary battery
WO2014096307A1 (en) * 2012-12-21 2014-06-26 Dritte Patentportfolio Beteiligungsgesellschaft Mbh & Co. Kg Method for producing an anode coating
WO2014178093A1 (en) * 2013-05-03 2014-11-06 Showa Denko K.K. Negative electrode material for lithium ion battery and use thereof

Also Published As

Publication number Publication date
JP4032479B2 (en) 2008-01-16

Similar Documents

Publication Publication Date Title
JP4876468B2 (en) Nonaqueous electrolyte secondary battery
US6746799B2 (en) Lithium phosphate composite positive electrode and non-aqueous electrolyte cell
US6555268B1 (en) Negative electrode for secondary cell, negative plate for secondary cell, and secondary cell comprising the same
JP4529274B2 (en) Non-aqueous electrolyte battery
JP5072323B2 (en) Nonaqueous electrolyte secondary battery and method for producing negative electrode material for nonaqueous electrolyte secondary battery
JP3436033B2 (en) Non-aqueous electrolyte secondary battery
JP2004119176A (en) Negative electrode active material for nonaqueous electrolyte rechargeable battery, and nonaqueous electrolyte rechargeable battery
JPH04342966A (en) Secondary battery with non-aqueous solvent
JP4032479B2 (en) Non-aqueous electrolyte secondary battery negative electrode material and non-aqueous electrolyte secondary battery provided with a negative electrode using the negative electrode material
JP2002373648A (en) Negative electrode, nonaqueous electrolyte secondary battery, and method for producing the negative electrode
JP3062304B2 (en) Non-aqueous solvent secondary battery
JP4482953B2 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP3016627B2 (en) Non-aqueous solvent secondary battery
JP4441935B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and battery using the same
JP2001006730A (en) Nonaqueous electrolyte battery
WO2006103829A1 (en) Nonaqueous electrolyte secondary battery
JP2003123843A (en) Cell and manufacturing method of the same
JP3848187B2 (en) Anode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JPH10312807A (en) Lithium secondary battery and manufacture of negative electrode
JPH08329946A (en) Manufacture of nonaqueous electrolyte secondary battery
JP2002110251A (en) Lithium ion secondary battery
JP2004193005A (en) Electrode material for nonaqueous electrolyte battery, electrode, and nonaqueous electrolyte battery
JP3144832B2 (en) Non-aqueous solvent secondary battery
JP2003151543A (en) Negative electrode active substance and nonaqueous electrolyte secondary battery
JPH04370661A (en) Secondary battery with nonaqueous solvent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041007

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20041112

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070806

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees