JP4032479B2 - Non-aqueous electrolyte secondary battery negative electrode material and non-aqueous electrolyte secondary battery provided with a negative electrode using the negative electrode material - Google Patents

Non-aqueous electrolyte secondary battery negative electrode material and non-aqueous electrolyte secondary battery provided with a negative electrode using the negative electrode material Download PDF

Info

Publication number
JP4032479B2
JP4032479B2 JP01859698A JP1859698A JP4032479B2 JP 4032479 B2 JP4032479 B2 JP 4032479B2 JP 01859698 A JP01859698 A JP 01859698A JP 1859698 A JP1859698 A JP 1859698A JP 4032479 B2 JP4032479 B2 JP 4032479B2
Authority
JP
Japan
Prior art keywords
negative electrode
carbon
secondary battery
electrolyte secondary
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01859698A
Other languages
Japanese (ja)
Other versions
JPH11214004A (en
Inventor
治成 島村
芳明 新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP01859698A priority Critical patent/JP4032479B2/en
Publication of JPH11214004A publication Critical patent/JPH11214004A/en
Application granted granted Critical
Publication of JP4032479B2 publication Critical patent/JP4032479B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、非水電解質二次電池に関するものである。
【0002】
【従来の技術】
非水電解質二次電池は、小型,軽量でかつ高エネルギー密度を有しているため、使用する機器のポータブル化,コードレス化に寄与することが期待されている。
【0003】
従来、非水電解質二次電池の正極活物質としては、LiCoO2 ,LiNiO2 ,LiMn24 ,V25 等の金属酸化物が知られており、一方、負極活物質としては、金属リチウム,Li−Al合金,Li−Pb合金等が考えられたが、充放電サイクルを繰り返すと、デンドライト状のリチウムが析出,成長し、最後にはセパレータを貫き正負極の短絡をもたらすことがあり、実用化には到っていない。
【0004】
そこで、安全上の理由から、リチウムを吸蔵したり放出することが可能で、サイクル特性に優れた黒鉛等の炭素材料が一部で実用化されている。
【0005】
さらに、炭素材料の充放電容量の高容量化のために、特開平5−299073号公報に開示されているように、芯を形成する高結晶炭素粒子の表面をVIII族の金属元素を含む膜で被覆し、さらにその上を炭素で被覆した炭素複合体や、特開平2−121258号公報に開示されているように炭素物質とリチウムと合金可能な金属との混合物が知られている。
【0006】
また、特開平8−273702号公報に開示のように、炭素粒子にリチウムと合金を形成する金属を担持させることにより、高容量,充放電サイクル特性の優れたリチウム二次電池が知られている。
【0007】
【発明が解決しようとする課題】
しかし、特開平5−299073号公報,特開平2−121258号公報に開示のものでは、炭素に金属を被覆することで炭素自体の理論容量が引き出されておらず、出力密度が充分ではなかった。また、特開平8−273702号公報に開示のものでは、炭素にリチウムと合金可能な金属微粒子を担持することで、容量を黒鉛よりも大きく、充放電サイクル特性は向上させているが、依然として電気自動車用電池としては容量,サイクル特性において不充分であり、さらに安全性の面においても問題があった。
【0008】
【課題を解決するための手段】
本発明は、前記する課題を解決するために、炭素粒子の表面において、リチウムと合金
を形成することができる金属が、高周波熱プラズマによる炭素との反応により炭化物を形成し、炭素粒子と化学結合の状態にあるものを非水電解質二次電池用負極材料としたもので、その非水電解質二次電池用負極材料を負極に用いることにより、高容量でサイクル特性に優れ、さらに安全性が高い非水電解質二次電池を提供しようとするものである。
【0009】
【発明の実施の形態】
本発明は、各請求項に記載した構成とすることにより実施できるのであるが、その実施形態を理解し易くするために、以下に本発明の技術の特徴とする技術的背景を明示する。
【0010】
本発明の負極材料は、既存の炭素粒子(X線回折法による面間隔d(002)が、3.35〜4.1Å)自身の持つ容量に、リチウムと合金を形成することができる金属の容量をプラスして高容量化を図り、さらに炭素粒子と金属とが、その炭素粒子の表面において、炭素とその金属の組成からなる炭化物を形成し、炭素粒子とその金属との間で化学結合することで優れたサイクル特性を示す材料である。このように、炭素粒子と金属とが炭化物を形成して強力に結合しているというところが、本発明の強調している特徴である。特開平8−273702号公報に開示のように、単に炭素にリチウムと合金可能な金属微粒子を担持させるだけ(特開平8−273702号公報の実施例においてX線回折で担持金属しか見られないと記されており、炭化物については記されていない)では、リチウムの吸蔵と放出に伴う担持金属の膨張,収縮により担持金属が炭素より脱離し易くなり、サイクルを重ねると集電体より浮いてしまい、金属の集電性が悪化し不活性化する。この結果、自動二輪車や電気自動車で求められるサイクル特性を満たすことができなくなるのである。
【0011】
ところが本発明の負極材料は、単に炭素粒子に金属を担持させるのではなく、炭素粒子の表面に炭素と金属の組成からなる炭化物を形成して、炭素と金属間を化学結合により強力な結合にすることで、金属が膨張,収縮で炭素粒子から容易に脱離することを防止することで、特開平8−273702号公報に開示の非水電解質二次電池よりも優れたサイクル特性を示すものである。さらに、炭素により多くの金属を結合させることも可能となり、特開平8−273702号公報に開示の非水電解質二次電池よりもかなりの高容量が期待できる。
【0012】
このように、本発明の負極材料では1000〜2000サイクル、さらにそれ以上のサイクルにおいても高容量で容量維持ができる優れたサイクル特性を有するものである。
【0013】
また、特開平8−273702号公報に開示の技術にあるように、AgやSnを炭素粒子に担持させたものでは、AgやSnと炭素との結合が弱いため、充放電サイクルを繰り返していくと、リチウムを吸蔵したり放出したりする担持金属の膨張,収縮により担持金属が炭素粒子より脱離し、その結果、集電性が低下し過電圧が大きくなる。そのため、充放電サイクルを1000サイクル以上繰り返すとサイクル劣化が著しいものとなる。そのサイクル劣化状態では、脱離した金属がリチウムを吸蔵した状態で存在し、そしてそれらの金属は比表面積が大きいため熱的に不安定な状態にあるため、安全性の観点から非常に危険な状態にある。このように、単に炭素粒子に金属を担持するだけでは安全性の面においても問題があった。
【0014】
しかし、本発明の負極材料は充放電サイクルを繰り返しても、炭素と金属が炭素界面において炭化物を形成して、相互に強固に化学結合しているため、充放電サイクルを繰り返しても金属が、自分自身の膨張,収縮により炭素粒子より脱離することは皆無であり、1000サイクル以上の充放電を行っても炭素材固有の劣化要因を除くとサイクルの劣化がないので、リチウムが炭素材料上から離れた部位に蓄積されることがなく、高い安全性を有するものである。
【0015】
以上の理由により、本発明の負極材料を用いることで、高容量で優れたサイクル特性、そして高い安全性を有する非水電解質二次電池を提供することができる。
【0016】
以下に本発明の実施にあたり使用する材料について詳述する。
炭素粒子としては、天然黒鉛,人造黒鉛,石油,石炭ピッチもしくはコークスから得られる易黒鉛化性炭素を650〜1000℃の温度範囲で焼成した炭素,石油,石炭ピッチもしくはコークスの不融化処理したものや、樹脂等を600〜1300℃の温度範囲で焼成した難黒鉛化性炭素等があり、それらの形状は球形,塊状,鱗片状,繊維状あるいはそれらの粉砕品であって良い。これらの炭素材料のうち請求項2記載のようにX線回折法による面間隔d(002)が、3.35〜4.1Åであることが好ましく、さらに平均粒径が1〜50μmであることが好ましい。
【0017】
また、炭素粒子に金属を結合させる方法としては、高周波熱プラズマ法があるが、その方法において炭素粒子と金属とが炭素表面において炭化物を作るように条件を設定する必要がある。
【0018】
そして、リチウムと合金を形成することができる金属としては、請求項記載のようにAl,Ba,B,Ca,Si,Sr,Mgの群のうちから選ばれる金属元素であることが好ましく、さらにリチウムと合金を形成することができる金属の平均粒径は0.01〜1μmであることが好ましく、炭素粒子に対する重量比率としては1〜20重量%であることが好適である。
【0019】
以上のように、非水電解質と、正極と、リチウムを吸蔵したり放出することができる負極を有する非水電解質二次電池において、前記負極の構成材料に、請求項1記載の特徴を有する負極材料を用いることにより、高容量で、サイクル特性が優れ、さらに高い安全性を有する非水電解質二次電池を実現することができる。
【0020】
本発明の非水電解質二次電池における負極活物質は、本発明の負極材料に導電材として炭素を5〜80重量%含有させて用いることが好ましく、また正極活物質は、Co,Ni,Mn,Ti,Mo,W,Nb,V,Fe,Cr等の1種類以上の遷移金属の複合酸化物や複合硫化物等の化合物を用いることが好ましく、特に高電圧,高エネルギー密度に関しては、LiCoO2 ,LiNiO2 ,LiMn24 等の正極活物質が好適である。
【0021】
さらに、非水電解質の溶媒としては、エチレンカーボネート(以下、ECという),プロピレンカーボネート(以下、PCという),ジメチルカーボネート(以下、DMCという),エチルメチルカーボネート(以下、EMCという),ジエチルカーボネート(以下、DECという)等の環状,鎖状炭酸エステル類、γ−ブチロラクトン等のγ−ラクトン類、1,2−ジメトキシエタン(以下、DMEという),1,2−ジエトキシエタン(以下、DEEという),エトキシメトキシエタン(以下、EMEという)等の鎖状炭酸エーテル類、テトラヒドロフラン等の環状エーテル類、アセトニトリル等のニトリル類等のなかから選ばれた溶媒もしくは2種類以上の混合溶媒が用いられ、特に炭酸エステル系の有機溶媒が好適である。非水電解質の溶質としては、LiAsF6 ,LiPF6 ,LiAlCl4 ,LiClO4 ,LiCF3SO3 ,LiSbF6 ,LiSCN,LiCl,LiC6HSO3 ,Li(CF3SO22 ,LiC(CF3SO23 ,C46SO3Li等のリチウム塩およびこれらの混合物を用いる。
【0022】
また、請求項記載の発明は、自動二輪車を駆動するモータの動力源に請求項ないしに記載の発明のいずれか1項に記載した非水電解質二次電池を使用することができる用途発明を特定したものである。
【0023】
また、請求項記載の発明は、電気自動車を駆動するモータの動力源に請求項ないしに記載の発明のいずれか1項に記載した非水電解質二次電池を使用することができる用途発明を特定したものである。
【0024】
【実施例】
以下、図面とともに本発明をさらに詳しく具体的に説明するが、本発明はこれら実施例に限定されるものではない。
【0025】
(実施例1)
炭素粒子として、平均粒径20μmの以下に示す炭素粒子▲1▼ないし▲5▼を用いた。
炭素粒子▲1▼は、高純度処理品の天然黒鉛とした。
炭素粒子▲2▼は、石油ピッチから得られる炭化品を、2800℃で熱処理した人造黒鉛とした。
炭素粒子▲3▼は、石油ピッチを不融化しAr雰囲気中で、750℃で熱処理した低温焼成の易黒鉛化性炭素とした。
炭素粒子▲4▼は、フェノール樹脂をAr雰囲気中で、850℃で熱処理した低温焼成の難黒鉛化性炭素とした。
炭素粒子▲5▼は、フェノール樹脂を空気中にて架橋処理を行い、1100℃で熱処理した非晶質炭素(高温焼成の難黒鉛化性炭素)とした。
【0026】
これらの炭素粒子と化学結合させる金属,合金としては、Al,Ba,B,Ca,Si,Sr,Mg,NiSi2 とSiの包晶合金,AlSb,CuMgSb,SiO,AlNを用い、比較例としてAg,Sn,Biを用いて炭素への担持を行った。
【0027】
炭素粒子と金属,合金との化学結合の方法としては、次のように行った。4MHzの高周波磁場中でアルゴンの高周波プラズマ内に金属もしくは合金または酸化物または窒化物の粉末を送り込み、それらを蒸気化させ、その領域に前記した平均粒径20μmの炭素粒子▲1▼ないし▲5▼の粉末を分散させ、蒸気圧制御により炭素粒子に平均粒径0.1μmの金属もしくは合金または酸化物または窒化物の超微粒子5重量%を化学結合させる。Al,Ba,B,Ca,Si,Sr,Mg,NiSi2 とSiの包晶合金,AlSb,CuMgSb,SiO,AlNに関しては、炭素界面に炭化物を形成させる条件で行い、Ag,Sn,Biに関しては、単に担持させる条件で行った。
【0028】
作製したサンプルは、X線回折とXPS(X−ray Photoelectron Spectroscopy)にて解析を行った。
【0029】
炭素粒子にAl,Ba,B,Ca,Si,Sr,Mg,NiSi2 とSiの包晶合金,AlSb,CuMgSb,SiO,AlNの金属もしくは合金または酸化物または窒化物を結合させた粒子では、X線回折から炭素,各金属もしくは合金または酸化物または窒化物、そして炭素粒子との反応により生成されたと考えられる炭化物として、AlではAl43 、BaではBaC2 、BではB4C、CaではCaC2 、SiではSiC、SrではSrC2 、MgではMgC2 、NiSi2 とSiの包晶合金ではSiC、AlSbではAl43 、CuMgSbではMgC2 、SiOではSiC、AlNではAl43 が確認された。さらに、XPSの解析により炭素粒子と結合している元素の化学結合状態を調べた。一例として挙げると平均粒径20μmの炭素粒子に平均粒径0.1μmのSiを熱プラズマ法により結合させたサンプルでは、Si2pの結合エネルギーは99.4eVとなった。次に、アルゴンスパッタによって炭素粒子上のSiを0.09μm程度除去し、同様に測定したところSi2pピークが99.4eVと100.4eVの2本現れた。99.4eVの方はSi金属単体のSi2pの結合エネルギーを反映しており、100.4eVの方はSiCのSiの結合エネルギーを反映したものと考えられる(JEOLのHandbook of X−ray Photoelectron Spectroscopy参考による)。つまり、Siは炭素粒子と界面において炭化物SiCを形成して結合していることがわかる。また、他の金属、もしくは合金または酸化物または窒化物についても同じ方法で測定し、それぞれがSiと同様に炭素粒子の界面において炭化物を形成し、炭素粒子と化学結合の状態にあることがわかった。
【0030】
しかし、Ag,Sn,Biに関して、アルゴンスパッタする前としたものにおいても、1本の結合エネルギーのみしか観測されず(Ag3d5/2:368.2eV,Sn3d5/2:484.87eV,Bi4f7/2:157.8eV)、Ag,Sn,Biの炭素粒子へ担持したものは、炭素粒子との界面に炭化物を形成せずに結合していると考えられる。
【0031】
このように、金属もしくは合金または酸化物または窒化物を化学結合、もしくは担持させた炭素粒子粉末を負極活物質として用いた。
【0032】
次に、上記のように作製した負極材料を用いて円筒形電池を作製し、電池特性評価を行った。図1に本発明の負極を用いた円筒形電池の縦断面図を示す。図1において、正極1は正極活物質としてLiCoO2 を用い、導電材としてカーボンブラック、結着剤としてポリ4フッ化エチレンの水性ディスパージョンを重量比で100:2.5:7.5の割合で混合したものをアルミニウム箔芯材に両面塗着,乾燥,圧延した後、所定の大きさに切断してチタン製の正極リード板2をスポット溶接して作製した。
【0033】
負極3は上記で作製した負極活物質粉末に対し、結着剤としてポリフッ化ビニリデンと導電材として炭素材料(アセチレンブラック,人造黒鉛,球状黒鉛,天然黒鉛,繊維状黒鉛,易黒鉛化性炭素,難黒鉛化性炭素等が使用できる)を重量比で75:20:5の割合で混合して得られる合剤の所定量を銅箔芯材に塗着,乾燥,圧延した後、所定の大きさに切断して、銅製の負極リード板4をスポット溶接して作製した。5はポリプロピレン樹脂製の微孔性フィルムからなるセパレータで、正極1と負極3をこのセパレータ5を介して渦巻き状に巻回して極板群を構成する。極板群の上下にそれぞれポリプロピレン樹脂製の上絶縁板6,下絶縁板7を配設して鉄にニッケルメッキしたケース8に挿入し、正極リード板2をチタン製の封口板9に、負極リード板4をケース8の底部にそれぞれスポット溶接した後、電解液を注入し、ガスケット10を介して、封口し電池を作製した。
【0034】
この電池の寸法は直径17mm,高さ50mmである。11は正極端子であり、負極端子はケース8がこれを兼ねている。
【0035】
電解液は、溶質としてLiPF6 のリチウム塩1.5mol/dm3 を、溶媒としてECの高粘度有機溶媒とDECの低粘度有機溶媒の1:1混合溶媒に溶解したものを用いた。
【0036】
本発明を実施した電池の負極材料は、炭素にAl,Ba,B,Ca,Si,Sr,Mg,NiSi2 とSiの包晶合金,AlSb,CuMgSb,SiO,AlNを化学結合させたものを用い、比較電池には前記した炭素▲1▼〜▲5▼単体のもの、ならびに炭素にAg,Sn,Biを担持させたものを用いた。
【0037】
各電池の評価は、0.2C(1C充放電とは、1時間で780mAhの充放電に相当)定電流充放電サイクル試験を行った。充電上限電圧は4.2V、放電下限電圧は3.0Vとした。結果は、初期,300サイクル後,1000サイクル後の放電容量を表1に示した。
【0038】
【表1】

Figure 0004032479
【0039】
表1より本発明の実施例における負極材料を用いた電池は、それぞれの炭素材料(d(002)=3.35〜4.1Å)別における1サイクル目の放電容量は、比較電池よりも高容量になっている。つまり、本発明を実施した電池1,2,3では比較電池4,5よりも、また、本発明を実施した電池6,7では比較電池8,9よりも、本発明を実施した電池10,11,12では比較電池13,14よりも、本発明を実施した電池15,16では比較電池17,18よりも、本発明を実施した電池19,20では比較電池21,22よりも1サイクル目の放電容量が高くなっていることがわかる。
【0040】
また、300サイクル目の放電容量を比べると、炭素粒子に金属もしくは合金または酸化物または窒化物を化学結合させたものや担持させた本発明を実施した各電池は、炭素のみの比較電池(表1中の結合させる金属,合金がなしの電池)に比べ大きな放電容量を示している。
【0041】
そして、1000サイクル目になると、本発明を実施した電池1,2,3,6,7,10,11,12,15,16,19,20においては、依然高容量を保っており、サイクル劣化の少ないことがわかる。この要因としては、本発明の負極材料が炭素粒子の界面において炭素と金属もしくは合金または酸化物または窒化物との反応により炭化物を作り、炭素粒子と金属もしくは合金または酸化物または窒化物が化学結合により強力に結合していることで、充放電を繰り返すことによる金属もしくは合金または酸化物または窒化物が自分自身の膨張,収縮で、炭素粒子から脱離することが防止され、その結果、極板劣化が小さく抑えられたためと考えられる。しかし、単に炭素粒子に金属を担持させた比較電池5,9,14,18,22においては、放電容量が炭素のみで作製された比較電池よりも小さくなっている。この原因としては、充放電サイクルによる担持金属の膨張,収縮により担持金属が電極から離れ不活性化したことによるものと考えられる。さらに、この金属の劣化過程において母材の炭素粒子に何らかの悪影響を与え、放電容量が炭素粒子のみで作製された比較電池よりも小さくなったものと考えられる。
【0042】
安全性に対する判断は、各サンプルを負極材料に用いた電池を1000サイクルの充放電を行い、充電状態で電池を分解して取り出した負極材料の、TG−DTAの熱測定を室温から350℃の温度範囲で行い、その温度範囲内において熱量の最大値を示す温度が、炭素材料のみからなる負極材料の場合と比較して高いか低いかにより安全性を判断した。
【0043】
その結果、本発明の負極材料では、炭素材料のみで構成された負極材料より熱量の最大値を示す温度が高かった。そして、炭素粒子に単に金属を担持させた負極材料では、炭素材料のみで構成された負極材料より熱量の最大値を示す温度が低かった。
【0044】
このように本発明の負極材料は、安全性の面においても優れているものであることがわかる。
【0045】
以上のように、本発明の負極材料を非水電解質二次電池に用いれば、炭素粒子のみの材料や単に金属を炭素粒子に担持させた材料を用いた二次電池よりも高容量で、優れたサイクル特性,高い安全性を示す非水電解質二次電池を提供することができる。
【0046】
(実施例2)
次に、実施例1における炭素▲1▼を用い、その炭素▲1▼の平均粒径を0.5〜70μmに篩い分けを行い、それぞれの粒径の炭素に平均粒径0.1μmのSi粒子を熱プラズマ法にて化学結合させた。この時、X線回折やXPSの解析により、炭素粒子界面にSiCが形成されていることを確認した。また、炭素粒子の平均粒径の違いにより、化学結合するSi量にも差異が生じたので、各平均粒径の炭素粒子に対するSi量(重量比率)を化学分析にて求めた。また、比較例としてSiのかわりに平均粒径0.1μmのAgを0(炭素▲1▼のみ)〜50重量%担持させた炭素粒子を用いた。Agの担持では実施例1と同様、炭素界面に炭素とAgの炭化物は見られなかった。
【0047】
これらサンプルを負極活物質として非水電解質二次電池を実施例1と同方法にて作製した。そして電池の評価は、実施例1と同じように0.2C(1C充放電とは、1時間で780mAhの充放電に相当)定電流充放電サイクル試験を行った。また、充電上限電圧は4.2V、放電下限電圧は3.0Vとした。結果として、初期,300サイクル後,1000サイクル後の放電容量を表2に示した。
【0048】
【表2】
Figure 0004032479
【0049】
表2(A)より、炭素の平均粒径が0.5〜50μm範囲の電池(電池23〜26)の1サイクル目(初期)の放電容量は、黒鉛の理論容量を越えるほどの高容量であることがわかる。
【0050】
電池27,28(平均粒径がそれぞれ70,100μm)では、Si量が少ないためか1サイクル目の放電容量は、表2(B)に示す比較例の電池35の炭素▲1▼のみで作製された電池に比較して若干大きくなっているが、1000サイクル後の放電容量では炭素▲1▼のみで作製された電池よりも放電容量が若干小さくなっている。この原因としては、炭素に化学結合させた若干のSi量がサイクル特性に何らかの悪影響を及ぼしているものと考えられる。また、電池23の場合は、炭素粒子に化学結合させたSi量が炭素粒子に対し40重量%あり、そのため1サイクル目の放電容量は3243mAhもあるが、1000サイクル目では放電容量が炭素のみで作製された表2(B)に示す比較例の電池35よりも小さなものとなった。この原因は、負極材料全体に占めるSi量が多すぎるため、充放電サイクルに伴うSiの膨張,収縮も大きくなり、過電圧が大きくなったためと考えられる。よって、炭素粒子の平均粒径は1〜50μmの場合が優れたサイクル特性を示すことがわかる。
【0051】
比較例として表2(B)の炭素平均粒径が1〜50μmの場合、1サイクル目の放電容量は炭素▲1▼のみ使用の電池35より大きくなるが、1000サイクル後ではそれ以下になってしまう。この原因は、Agが炭素粒子と強く結合していないため、充放電サイクルを繰り返していくと、Agの膨張,収縮によりAgが炭素粒子より離れAg粒子が不活性化し、極板の緩みが生じて炭素自身も放電容量の低下が起こったものと考えられる。
【0052】
また、安全性に関しても実施例1と同様に、各サンプルを負極材料に用いた電池を1000サイクルの充放電を行い、充電状態で電池を分解し、その負極材料のTG−DTA測定を室温から350℃の温度範囲で行い、その温度範囲内で熱量の最大値を示す温度を、炭素のみで構成される負極材料において示す温度との比較によって安全性を判断した。
【0053】
その結果、炭素▲1▼の平均粒径が1〜100μm(電池24〜28)の負極材料の熱量の最大値を示す温度は、炭素材料のみの負極材料より高く、比較例の電池の負極材料の熱量の最大値を示す温度は、全て炭素材料のみの負極材料より低かった。
【0054】
以上より、本発明の負極材料における炭素粒子は平均粒径が1〜50μmで、また炭素粒子に結合する金属もしくは合金の炭素粒子に対する重量比は、1〜20重量%の場合、容量,サイクル特性,安全性に対し、より一層の優れた特性を示すことがわかる。
【0055】
(実施例3)
次に、実施例1の平均粒径20μmの炭素▲1▼を用い、その炭素▲1▼に平均粒径が0.005〜10μmのSi粒子を熱プラズマ法にて結合させた。この時、X線回折やXPSの解析により、炭素粒子界面にSiCが形成されていることを確認した。また、比較例としてSiのかわりに平均粒径が0.005〜10μmのAgに担持させたものを用いた。Agでは実施例1と同様、炭素界面に炭化物は見られなかった。
【0056】
このサンプルを負極活物質として非水電解質二次電池を実施例1と同方法にて作製した。そして電池の評価は、実施例1と同じように0.2C(1C充放電とは、1時間で780mAhの充放電に相当)定電流充放電サイクル試験を行い、充電上限電圧は4.2V,放電下限電圧は3.0Vとした。結果は、初期,300サイクル後,1000サイクル後の放電容量を表3(A)(Siに関するもの),表3(B)(比較例としてAgに関するもの)に示した。
【0057】
【表3】
Figure 0004032479
【0058】
表3(A)より、炭素粒子と結合させるSiの平均粒径は、0.005〜10μmの範囲では1サイクル目の放電容量が、前記表2(B)に示す電池35の炭素▲1▼(平均粒径20μm)のみの場合(800mAh)より大きくなり、電池40,41のSiの平均粒径が2〜10μm範囲では、1000サイクル目の放電容量がいずれも500mAh以下と極端に低下している。これはSi粒子が2μm以上になると、炭素粒子とSiとの界面に炭化物を形成して強力に化学結合する効果が薄らいでしまい、金属や合金等が膨張,収縮で炭素粒子から脱落してしまい、サイクル劣化が起こってしまうものと考えられる。
【0059】
表3(B)の炭素粒子にAgを担持した場合では、1サイクル目の放電容量は先述した表2(B)の電池35の放電容量以上を示すが、1000サイクル後では表記した全ての平均粒径において500mAh程度以下になる。この原因としては実施例2と同様に、Agが炭素粒子と強く結合していないため、充放電サイクルを繰り返していくと、Agの膨張,収縮によりAgが炭素粒子より離れAg粒子の不活性化、そして極板膨張による炭素粒子の放電容量の低下を招き、1000サイクル後の放電容量は黒鉛以下になると考えられる。
【0060】
安全性に関しても実施例1と同様に、各サンプルを負極材料に用いた電池を1000サイクルの充放電を行い、充電状態で電池を分解し、その負極材料のTG−DTA測定を室温から350℃の温度範囲で行い、その温度範囲内で熱量の最大値を示す温度を、炭素のみで構成される負極材料において示す温度との比較によって安全性を判断した。
【0061】
その結果、Siの平均粒径が0.01〜1μm、すなわち電池37〜39の負極材料の熱量の最大値を示す温度は、炭素材料のみの負極材料より高かった。しかし、電池36,40,41,42〜47の負極材料の熱量の最大値を示す温度は、炭素材料のみの負極材料より低かった。
【0062】
電池36は、Siの平均粒径が0.005μmと小さいため比表面積がかなり大きく、熱量の最大値を示す温度が炭素材料のみの負極材料より高くなったものと考えられる。
【0063】
電池40,41では、炭素粒子に結合したSiが大きく、大きな粒子の金属,合金で見られるように充放電サイクルを繰り返すとSiが微細化し、比表面積がかなり大きくなり、熱量の最大値を示す温度が炭素材料のみの負極材料より高くなったものと考えられる。
【0064】
電池42〜47では、炭素粒子とAgとの結合が弱いため、1000サイクルも充放電を繰り返すとAgがリチウムと結合したままの状態で炭素粒子から脱離し、それにより比表面積の増大を招き、熱量の最大値を示す温度が炭素材料のみの負極材料より高くなったものと考えられる。
【0065】
以上より、本発明の負極材料における炭素粒子に化学結合させる金属もしくは合金の平均粒径が、0.01〜1μmの場合、容量,サイクル特性,安全性に対し、より一層の優れた特性を示すことがわかる。
【0066】
(実施例4)
次に、平均粒径20μmの実施例1の炭素▲1▼に平均粒径0.1μmのSi粒子を熱プラズマ法にて化学結合させた炭素粒子(X線回折やEPMAの解析で炭素粒子界面にSiCが形成されていることを確認)と、導電材としてのアセチレンブラック(その他、導電材としては実施例1に示した炭素類、全てが使用できる)を混合したものを用いて負極極板を作製し円筒形電池を作製した。
【0067】
そして電池の評価は、実施例1と同じように0.2C(1C充放電とは、1時間で780mAhの充放電に相当)定電流充放電サイクル試験を行った。充電上限電圧は4.2V,放電下限電圧は3.0Vとした。結果として、初期,300サイクル後,1000サイクル後の放電容量を表4に示した。また、比較例として導電材なしで作製した電池の評価も行った。
【0068】
【表4】
Figure 0004032479
【0069】
表4より、電池49〜51では1サイクル目の放電容量は、比較例の電池53に比べ導電材を混合したことにより若干低下しているが、1000サイクル目の放電容量を比較すると比較例の電池53よりも高容量になることがわかる。これは導電材を加えると導電性の向上により直接抵抗成分が低く抑えられ過電圧の低下により、放電容量の維持率が向上したものによると考えられる。
【0070】
しかし、電池48のように導電材が少ないとその効果が得られず、また電池52のように導電材が多いと負極材料の高容量化ができない。
【0071】
安全性に関しても実施例1と同様に、各サンプルを負極材料に用いた電池を1000サイクルの充放電を行い、充電状態で電池を分解し、その負極材料のTG−DTA測定を室温から350℃の温度範囲で行い、その温度範囲内で熱量の最大値を示す温度を、炭素のみで構成される負極材料において示す温度との比較によって安全性を判断した。
【0072】
その結果、電池48〜52や、さらに比較例の電池53においても、それらの負極材料の熱量の最大値を示す温度は、炭素材料のみの負極材料より高かった。
【0073】
以上より、本発明の負極材料に導電材として炭素を5〜80重量%含有させることにより安全性は全く問題なく、初期容量は若干減少するもののさらにサイクル特性の優れた電池特性を得ることができることがわかる。
【0074】
さらに、本発明の負極材料を非水電解質二次電池に用いる場合、正極活物質には、リチウムを含有するCo,Ni,Mn遷移金属化合物以外に、Ti,Mo,W,Nb,V,Fe,Cr等の1種類以上の遷移金属の複合酸化物や複合硫化物等の化合物を用いても同等の効果が得られる。特に、高電圧,高エネルギー密度に関しては、LiCoO2 ,LiNiO2 ,LiMn24 等の正極活物質が好適である。
【0075】
そして、実施例1〜4において非水電解質二次電池に用いられた電解質の溶媒としては、EC,PC,DMC,EMC,DEC等の環状,鎖状炭酸エステル類、γ−ブチロラクトン等のγ−ラクトン類、DME,DEE,EME等の鎖状炭酸エーテル類、テトラヒドロフラン等の環状エーテル類、アセトニトリル等のニトリル類等から選ばれた溶媒、もしくは2種類以上の混合溶媒を用いても実施例のECとDECを1:1で混合した場合と同等の効果が得られる。特に、ECを必須成分として含む混合溶媒を使用することが好適である。
【0076】
そして、非水電解質の溶質としては、LiAsF6 ,LiPF6 ,LiAlCl4 ,LiClO4 ,LiCF3SO3 ,LiSbF6 ,LiSCN,LiCl,LiC6HSO3 ,Li(CF3SO22 ,LiC(CF3SO23 ,C46SO3Li等のリチウム塩およびこれらの混合物を用いても実施例のLiPF6 と同様の効果が得られる。
【0077】
また、電池の形状に関しては、本実施例では円筒形を用いたが、コイン形,角形,その他いかなる形状の電池でも使用できる。そして、本発明の負極活物質はポリマー電池の負極活物質としても有効である。
【0078】
そして、請求項ないし記載の発明のいずれかの非水電解質二次電池で、かつ上記のいかなる電池形状においても、自動二輪車や電気自動車のモータを駆動する動力源に適用可能である。
【0079】
【発明の効果】
本発明は、前述したようにリチウムの吸蔵ならびに放出のできる非水電解質二次電池の負極材料として、炭素粒子表面に、リチウムと合金を形成することができる金属が、炭素とその金属と高周波熱プラズマによる反応により炭化物を形成することで、炭素粒子と化学結合の状態にある複合炭素材料を用いることにより、高容量で優れたサイクル特性、そして高安全性を有する非水電解質二次電池を実現できる。
【図面の簡単な説明】
【図1】本発明の一実施例における負極を用いた円筒形電池の縦断面図
【符号の説明】
1 正極
2 正極リード板
3 負極
4 負極リード板
5 セパレータ
6 上部絶縁板
7 下部絶縁板
8 ケース
9 封口板
10 ガスケット
11 正極端子[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-aqueous electrolyte secondary battery.
[0002]
[Prior art]
Non-aqueous electrolyte secondary batteries are small, light, and have a high energy density, and are therefore expected to contribute to making devices used portable and cordless.
[0003]
Conventionally, as a positive electrode active material of a nonaqueous electrolyte secondary battery, LiCoO2, LiNiO2, LiMn2OFour, V2OFiveOn the other hand, as the negative electrode active material, metal lithium, Li—Al alloy, Li—Pb alloy, etc. were considered, but when the charge / discharge cycle was repeated, dendritic lithium was Precipitation, growth, and finally through the separator may cause a short circuit between the positive and negative electrodes, which has not been put into practical use.
[0004]
Therefore, for safety reasons, some carbon materials such as graphite that can occlude and release lithium and have excellent cycle characteristics have been put into practical use.
[0005]
Further, in order to increase the charge / discharge capacity of the carbon material, as disclosed in JP-A-5-299073, the surface of the highly crystalline carbon particles forming the core is a film containing a Group VIII metal element. There are known carbon composites coated with carbon and further coated with carbon, and mixtures of carbon materials and metals that can be alloyed with lithium as disclosed in JP-A-2-121258.
[0006]
Further, as disclosed in JP-A-8-273702, a lithium secondary battery having high capacity and excellent charge / discharge cycle characteristics is known by supporting a metal that forms an alloy with lithium on carbon particles. .
[0007]
[Problems to be solved by the invention]
However, in the ones disclosed in JP-A-5-299073 and JP-A-2-121258, the theoretical capacity of the carbon itself is not drawn by coating the metal with carbon, and the output density is not sufficient. . Moreover, in the thing disclosed in Japanese Patent Application Laid-Open No. 8-273702, by carrying metal fine particles that can be alloyed with lithium on carbon, the capacity is larger than that of graphite and the charge / discharge cycle characteristics are improved. As a battery for automobiles, the capacity and cycle characteristics are insufficient, and there are also problems in terms of safety.
[0008]
[Means for Solving the Problems]
  In order to solve the problems described above, the present inventionLithium and alloys on the surface of carbon particles
The metal that can form the high frequency thermal plasmaA material that forms a carbide by a reaction with carbon and is in a chemical bond with carbon particles is used as a negative electrode material for a non-aqueous electrolyte secondary battery, and the negative electrode material for the non-aqueous electrolyte secondary battery is used for the negative electrode. Thus, a non-aqueous electrolyte secondary battery having a high capacity, excellent cycle characteristics, and high safety is to be provided.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The present invention can be implemented by adopting the configurations described in each claim. In order to facilitate understanding of the embodiments, the technical background that characterizes the technology of the present invention will be clarified below.
[0010]
  The negative electrode material of the present invention can form an alloy with lithium in the capacity of existing carbon particles (having an interplanar spacing d (002) of 3.35-4.1 mm by X-ray diffraction).MetallicIncrease capacity by adding capacity, and further with carbon particlesWith metalBut the carbon particlessurfaceIn carbon and itsMetallicForming carbides composed of carbon particles and theirWith metalIt is a material that exhibits excellent cycle characteristics by chemically bonding between. Thus, with carbon particlesWith metalIt is a feature emphasized by the present invention that is strongly bonded by forming a carbide. As disclosed in Japanese Patent Application Laid-Open No. 8-273702, only metal particles capable of being alloyed with lithium are supported on carbon (in the example of Japanese Patent Application Laid-Open No. 8-273702, only a supported metal can be seen by X-ray diffraction). In this case, the carbide is not described), and the supported metal is easily detached from the carbon due to the expansion and contraction of the supported metal accompanying the insertion and extraction of lithium, and floats from the current collector after repeated cycles. The current collecting property of the metal deteriorates and becomes inactive. As a result, the cycle characteristics required for motorcycles and electric vehicles cannot be satisfied.
[0011]
  However, the negative electrode material of the present invention is simply carbon particles.To metalOf carbon particlessurfaceWith carbonMetallicForming carbides of composition, carbon andBetween metalsBy making the bond stronger by chemical bond,MetalBy preventing easy detachment from the carbon particles due to expansion and contraction, the cycle characteristics superior to the nonaqueous electrolyte secondary battery disclosed in JP-A-8-273702 are exhibited. In addition, more carbonMetalIt is also possible to combine them, and a considerably higher capacity can be expected than the nonaqueous electrolyte secondary battery disclosed in JP-A-8-273702.
[0012]
As described above, the negative electrode material of the present invention has excellent cycle characteristics capable of maintaining capacity at a high capacity even in cycles of 1000 to 2000 cycles and further.
[0013]
In addition, as in the technique disclosed in Japanese Patent Application Laid-Open No. 8-273702, in the case where Ag or Sn is supported on carbon particles, the bond between Ag or Sn and carbon is weak, so the charge / discharge cycle is repeated. Then, the supported metal is desorbed from the carbon particles by the expansion and contraction of the supported metal that occludes or releases lithium, and as a result, the current collecting property is reduced and the overvoltage is increased. Therefore, when the charge / discharge cycle is repeated 1000 times or more, the cycle deterioration becomes remarkable. In the cycle deterioration state, the desorbed metals exist in a state where lithium is occluded, and since these metals are in a thermally unstable state due to their large specific surface area, they are extremely dangerous from the viewpoint of safety. Is in a state. Thus, there is a problem in terms of safety simply by loading a metal on carbon particles.
[0014]
  However, even if the negative electrode material of the present invention is repeatedly charged and discharged, carbon andMetalSince carbides are formed at the carbon interface and chemically bonded to each other, the charge / discharge cycle is repeated.MetalSince there is no detachment from the carbon particles due to its own expansion and contraction, even if charging / discharging for 1000 cycles or more, there is no cycle deterioration except for the deterioration factor inherent to the carbon material. It does not accumulate in parts away from the top and has high safety.
[0015]
For the above reasons, by using the negative electrode material of the present invention, it is possible to provide a non-aqueous electrolyte secondary battery having high capacity, excellent cycle characteristics, and high safety.
[0016]
The materials used for carrying out the present invention are described in detail below.
Carbon particles obtained by calcining easily graphitizable carbon obtained from natural graphite, artificial graphite, petroleum, coal pitch or coke in a temperature range of 650 to 1000 ° C., infusible carbon, petroleum, coal pitch or coke And non-graphitizable carbon obtained by baking a resin or the like in a temperature range of 600 to 1300 ° C., and the shape thereof may be a spherical shape, a lump shape, a scale shape, a fiber shape, or a pulverized product thereof. Among these carbon materials, the interplanar spacing d (002) by X-ray diffractometry as described in claim 2 is preferably 3.35 to 4.1 mm, and the average particle size is 1 to 50 μm. Is preferred.
[0017]
  In addition to carbon particlesMetalAs a method of combining,The high frequency thermal plasma methodThere areThatCarbon particles in the processWith metalIs carbonsurfaceIt is necessary to set conditions so as to form carbides.
[0018]
  And, as a metal capable of forming an alloy with lithium, the claim1As described, it may be a metal element selected from the group consisting of Al, Ba, B, Ca, Si, Sr, and Mg.Preferably,Can form an alloy with lithiumMetallicThe average particle size is preferably 0.01 to 1 μm, and the weight ratio with respect to the carbon particles is preferably 1 to 20% by weight.
[0019]
As described above, in a non-aqueous electrolyte secondary battery having a non-aqueous electrolyte, a positive electrode, and a negative electrode capable of occluding and releasing lithium, the negative electrode having characteristics of claim 1 as a constituent material of the negative electrode By using the material, a non-aqueous electrolyte secondary battery having a high capacity, excellent cycle characteristics, and higher safety can be realized.
[0020]
The negative electrode active material in the nonaqueous electrolyte secondary battery of the present invention is preferably used by containing 5 to 80% by weight of carbon as a conductive material in the negative electrode material of the present invention, and the positive electrode active material is Co, Ni, Mn , Ti, Mo, W, Nb, V, Fe, Cr, etc. It is preferable to use a compound such as a composite oxide or composite sulfide of one or more transition metals, and particularly with regard to high voltage and high energy density, LiCoO2, LiNiO2, LiMn2OFourA positive electrode active material such as is preferable.
[0021]
Further, as a solvent for the non-aqueous electrolyte, ethylene carbonate (hereinafter referred to as EC), propylene carbonate (hereinafter referred to as PC), dimethyl carbonate (hereinafter referred to as DMC), ethyl methyl carbonate (hereinafter referred to as EMC), diethyl carbonate ( Hereinafter, cyclic carbonates such as DEC), γ-lactones such as γ-butyrolactone, 1,2-dimethoxyethane (hereinafter referred to as DME), 1,2-diethoxyethane (hereinafter referred to as DEE). ), A chain carbonate ether such as ethoxymethoxyethane (hereinafter referred to as EME), a cyclic ether such as tetrahydrofuran, a nitrile such as acetonitrile or the like, or a mixed solvent of two or more types is used. Particularly preferred are carbonate-based organic solvents. As the solute of the non-aqueous electrolyte, LiAsF6, LiPF6, LiAlClFour, LiClOFour, LiCFThreeSOThree, LiSbF6, LiSCN, LiCl, LiC6HSOThree, Li (CFThreeSO2)2, LiC (CFThreeSO2)Three, CFourF6SOThreeLithium salts such as Li and mixtures thereof are used.
[0022]
  Claims8The invention described in claim is directed to a power source of a motor for driving a motorcycle.4Or7The use invention which can use the nonaqueous electrolyte secondary battery described in any one of the inventions described in the above is specified.
[0023]
  Claims9The invention described in claim is directed to a power source of a motor for driving an electric vehicle.4Or7The use invention which can use the nonaqueous electrolyte secondary battery described in any one of the inventions described in the above is specified.
[0024]
【Example】
Hereinafter, the present invention will be described in more detail with reference to the drawings. However, the present invention is not limited to these examples.
[0025]
Example 1
As the carbon particles, the following carbon particles (1) to (5) having an average particle diameter of 20 μm were used.
Carbon particles (1) were natural graphite of a high purity treated product.
Carbon particles (2) were artificial graphite obtained by heat-treating a carbonized product obtained from petroleum pitch at 2800 ° C.
The carbon particles {circle around (3)} were made into low-graphite easily graphitizable carbon that was heat-treated at 750 ° C. in an Ar atmosphere with an infusible petroleum pitch.
The carbon particles (4) were low-graphite non-graphitizable carbon obtained by heat-treating a phenol resin in an Ar atmosphere at 850 ° C.
Carbon particles (5) were amorphous carbon (high-temperature fired non-graphitizable carbon) obtained by crosslinking a phenol resin in the air and heat-treating at 1100 ° C.
[0026]
Examples of metals and alloys to be chemically bonded to these carbon particles include Al, Ba, B, Ca, Si, Sr, Mg, NiSi.2And Si peritectic alloy, AlSb, CuMgSb, SiO, and AlN, and Ag, Sn, and Bi as a comparative example were supported on carbon.
[0027]
The chemical bonding between the carbon particles and the metal / alloy was performed as follows. A metal, alloy, oxide or nitride powder is fed into a high-frequency plasma of argon in a high-frequency magnetic field of 4 MHz, vaporized, and carbon particles (1) to (5) having an average particle diameter of 20 μm are introduced into the region. The powder of (2) is dispersed, and 5% by weight of ultrafine particles of metal, alloy, oxide or nitride having an average particle diameter of 0.1 μm are chemically bonded to the carbon particles by vapor pressure control. Al, Ba, B, Ca, Si, Sr, Mg, NiSi2As for the peritectic alloy of Al and Si, AlSb, CuMgSb, SiO, and AlN, it was performed under the condition for forming a carbide at the carbon interface, and for Ag, Sn, and Bi, it was performed under the condition for simply supporting.
[0028]
The prepared sample was analyzed by X-ray diffraction and XPS (X-ray Photoelectron Spectroscopy).
[0029]
Carbon particles with Al, Ba, B, Ca, Si, Sr, Mg, NiSi2And X, X-ray diffraction shows carbon, each metal or alloy or oxide or nitride, and carbon for particles in which a peritectic alloy of Si and Si, AlSb, CuMgSb, SiO, and AlN metal or alloy or oxide or nitride is combined. As carbides that are thought to be generated by reaction with particles, Al is Al.FourCThree, Ba is BaC2, B is BFourFor C and Ca, CaC2, Si for SiC, Sr for SrC2, Mg for MgC2NiSi2SiC for Si and Si peritectic alloys, Al for AlSbFourCThreeMgC for CuMgSb2, SiC for SiO, Al for AlNFourCThreeWas confirmed. Further, the chemical bonding state of the elements bonded to the carbon particles was examined by XPS analysis. As an example, in a sample in which Si having an average particle size of 0.1 μm was bonded to carbon particles having an average particle size of 20 μm by a thermal plasma method, the binding energy of Si 2p was 99.4 eV. Next, Si on the carbon particles was removed by about 0.09 μm by argon sputtering, and when measured in the same manner, two Si2p peaks appeared, 99.4 eV and 100.4 eV. The 99.4 eV reflects the Si 2p binding energy of the Si metal alone, and the 100.4 eV reflects the Si Si binding energy (refer to JEOL's Handbook of X-ray Photoelectron Spectroscopy Reference). by). That is, it can be seen that Si is bonded to the carbon particles by forming carbide SiC at the interface. In addition, other metals, alloys, oxides or nitrides were measured by the same method, and it was found that each formed a carbide at the interface of carbon particles as in Si, and was in a chemical bond state with carbon particles. It was.
[0030]
However, regarding Ag, Sn, and Bi, only one binding energy is observed even before the argon sputtering (Ag3d).5/2: 368.2 eV, Sn3d5/2: 484.87 eV, Bi4f7/2157.8 eV), Ag, Sn, Bi supported on carbon particles are considered to be bonded without forming carbide at the interface with the carbon particles.
[0031]
As described above, the carbon particle powder in which a metal, an alloy, an oxide, or a nitride is chemically bonded or supported is used as the negative electrode active material.
[0032]
Next, a cylindrical battery was produced using the negative electrode material produced as described above, and battery characteristics were evaluated. FIG. 1 shows a longitudinal sectional view of a cylindrical battery using the negative electrode of the present invention. In FIG. 1, the positive electrode 1 is LiCoO as a positive electrode active material.2A mixture of carbon black as a conductive material and an aqueous dispersion of polytetrafluoroethylene as a binder in a weight ratio of 100: 2.5: 7.5 is coated on both sides of an aluminum foil core material. After drying, rolling, and cutting to a predetermined size, the positive electrode lead plate 2 made of titanium was spot welded.
[0033]
The negative electrode 3 was prepared by using polyvinylidene fluoride as a binder and a carbon material (acetylene black, artificial graphite, spherical graphite, natural graphite, fibrous graphite, graphitizable carbon, A predetermined amount of a mixture obtained by mixing non-graphitizable carbon etc. in a weight ratio of 75: 20: 5 is applied to a copper foil core, dried, rolled, and then a predetermined size. The copper negative electrode lead plate 4 was spot-welded and cut. 5 is a separator made of a polypropylene resin microporous film, and the positive electrode 1 and the negative electrode 3 are spirally wound through the separator 5 to constitute an electrode plate group. An upper insulating plate 6 and a lower insulating plate 7 made of polypropylene resin are arranged above and below the electrode plate group, respectively, and inserted into a case 8 which is nickel-plated on iron. The positive electrode lead plate 2 is attached to a titanium sealing plate 9 and a negative electrode. After the lead plate 4 was spot welded to the bottom of the case 8, an electrolytic solution was injected, and the lead plate 4 was sealed through the gasket 10 to produce a battery.
[0034]
This battery has a diameter of 17 mm and a height of 50 mm. Reference numeral 11 denotes a positive terminal, and the case 8 serves as the negative terminal.
[0035]
The electrolyte is LiPF as the solute.6Lithium salt of 1.5 mol / dmThree Was dissolved in a 1: 1 mixed solvent of a high-viscosity organic solvent of EC and a low-viscosity organic solvent of DEC as a solvent.
[0036]
The negative electrode material of the battery embodying the present invention is made of Al, Ba, B, Ca, Si, Sr, Mg, NiSi on carbon.2And Si peritectic alloy, AlSb, CuMgSb, SiO, and AlN are chemically bonded, and the comparative batteries are composed of the above-described carbon (1) to (5), as well as Ag, Sn, and Bi. The supported one was used.
[0037]
Each battery was evaluated by a constant current charge / discharge cycle test of 0.2C (1C charge / discharge corresponds to charge / discharge of 780 mAh in one hour). The charge upper limit voltage was 4.2V, and the discharge lower limit voltage was 3.0V. The results are shown in Table 1 as initial discharge capacity after 300 cycles and after 1000 cycles.
[0038]
[Table 1]
Figure 0004032479
[0039]
From Table 1, the batteries using the negative electrode material in the examples of the present invention have higher discharge capacity in the first cycle for each carbon material (d (002) = 3.35-4.1 Å) than the comparative battery. It is capacity. In other words, the batteries 1, 2 and 3 in which the present invention is implemented are compared with the comparative batteries 4 and 5, and the batteries 6 and 7 in which the present invention is implemented are compared with the batteries 10 and 10 in which the present invention is implemented. 11 and 12, compared with comparative batteries 13 and 14, batteries 15 and 16 according to the present invention are compared with comparative batteries 17 and 18, and batteries 19 and 20 according to the present invention are compared with comparative batteries 21 and 22 in the first cycle. It can be seen that the discharge capacity is increased.
[0040]
Further, when comparing the discharge capacity at the 300th cycle, each battery embodying the present invention in which a metal, an alloy, an oxide or a nitride is bonded to carbon particles or carried is compared with a carbon-only comparative battery (Table 1 shows a large discharge capacity compared to the battery 1 in FIG.
[0041]
At the 1000th cycle, the batteries 1, 2, 3, 6, 7, 10, 11, 12, 15, 16, 19, and 20 in which the present invention is implemented still maintain a high capacity, and the cycle deteriorates. You can see that there is little. This is because the negative electrode material of the present invention forms a carbide by the reaction of carbon and metal or alloy or oxide or nitride at the interface of carbon particles, and the carbon particle and metal or alloy or oxide or nitride are chemically bonded. The strong bonding makes it possible to prevent the metal or alloy or oxide or nitride due to repeated charge and discharge from detaching from the carbon particles due to its own expansion and contraction. This is thought to be because the deterioration was suppressed to a small level. However, in the comparative batteries 5, 9, 14, 18, and 22 in which the metal is simply supported on the carbon particles, the discharge capacity is smaller than that of the comparative battery made of only carbon. The cause of this is thought to be that the supported metal has been separated from the electrode and inactivated due to the expansion and contraction of the supported metal due to the charge / discharge cycle. Further, it is considered that in the process of deterioration of the metal, some adverse effect is exerted on the carbon particles of the base material, and the discharge capacity is smaller than that of the comparative battery made of only the carbon particles.
[0042]
Judgment on safety is performed by charging and discharging a battery using each sample as a negative electrode material for 1000 cycles, and performing a TG-DTA thermal measurement of the negative electrode material taken out by disassembling the battery in a charged state from room temperature to 350 ° C. Safety was judged based on whether the temperature showing the maximum amount of heat within the temperature range was higher or lower than that of the negative electrode material made only of the carbon material.
[0043]
As a result, in the negative electrode material of the present invention, the temperature indicating the maximum value of heat was higher than that of the negative electrode material composed only of the carbon material. And in the negative electrode material which made the carbon particle only carry | support metal, the temperature which shows the maximum value of calorie was lower than the negative electrode material comprised only with the carbon material.
[0044]
Thus, it turns out that the negative electrode material of the present invention is also excellent in terms of safety.
[0045]
As described above, when the negative electrode material of the present invention is used for a non-aqueous electrolyte secondary battery, it has a higher capacity and is superior to a secondary battery using a material composed solely of carbon particles or a material obtained by simply supporting a metal on carbon particles. In addition, it is possible to provide a non-aqueous electrolyte secondary battery that exhibits excellent cycle characteristics and high safety.
[0046]
(Example 2)
Next, the carbon (1) in Example 1 was used, and the average particle diameter of the carbon (1) was sieved to 0.5 to 70 μm. The particles were chemically bonded by a thermal plasma method. At this time, it was confirmed by the X-ray diffraction and XPS analysis that SiC was formed at the carbon particle interface. Further, since the difference in the average particle size of the carbon particles caused a difference in the amount of Si chemically bonded, the amount of Si (weight ratio) with respect to the carbon particles having each average particle size was determined by chemical analysis. As a comparative example, carbon particles carrying 0 to 50% by weight of Ag (only carbon (1)) with an average particle size of 0.1 μm were used instead of Si. In the case of Ag loading, as in Example 1, carbon and Ag carbides were not observed at the carbon interface.
[0047]
Using these samples as the negative electrode active material, non-aqueous electrolyte secondary batteries were produced in the same manner as in Example 1. And evaluation of the battery performed 0.2C (1C charging / discharging is equivalent to charging and discharging of 780 mAh in 1 hour) constant current charging / discharging cycle test similarly to Example 1. FIG. Moreover, the charge upper limit voltage was 4.2V, and the discharge lower limit voltage was 3.0V. As a result, the discharge capacity at the initial stage, after 300 cycles, and after 1000 cycles is shown in Table 2.
[0048]
[Table 2]
Figure 0004032479
[0049]
From Table 2 (A), the discharge capacity in the first cycle (initial stage) of the battery (batteries 23 to 26) in which the average particle diameter of carbon is in the range of 0.5 to 50 μm is high enough to exceed the theoretical capacity of graphite. I know that there is.
[0050]
In the batteries 27 and 28 (average particle diameters are 70 and 100 μm, respectively), the discharge capacity at the first cycle is produced only by the carbon (1) of the battery 35 of the comparative example shown in Table 2 (B) because of the small amount of Si. However, the discharge capacity after 1000 cycles is slightly smaller than that of a battery made of only carbon (1). The cause is considered to be that some amount of Si chemically bonded to carbon has some adverse effect on the cycle characteristics. In the case of the battery 23, the amount of Si chemically bonded to the carbon particles is 40% by weight with respect to the carbon particles. Therefore, the discharge capacity at the first cycle is 3243 mAh, but at the 1000th cycle, the discharge capacity is only carbon. It was smaller than the battery 35 of the comparative example shown in Table 2 (B). This is probably because the amount of Si occupying the whole negative electrode material is too large, so that the expansion and contraction of Si accompanying the charge / discharge cycle is increased, and the overvoltage is increased. Therefore, it can be seen that the average particle diameter of the carbon particles is 1 to 50 μm and exhibits excellent cycle characteristics.
[0051]
As a comparative example, when the average particle diameter of carbon in Table 2 (B) is 1 to 50 μm, the discharge capacity at the first cycle is larger than that of the battery 35 using only carbon (1), but after 1000 cycles, it becomes less than that. End up. This is because Ag is not strongly bonded to the carbon particles. Therefore, when the charge / discharge cycle is repeated, Ag is separated from the carbon particles due to expansion and contraction of Ag, and the Ag particles are inactivated, and the electrode plate is loosened. Therefore, it is considered that the discharge capacity of carbon itself has decreased.
[0052]
As for safety, as in Example 1, the battery using each sample as the negative electrode material was charged and discharged for 1000 cycles, the battery was disassembled in the charged state, and the TG-DTA measurement of the negative electrode material was performed from room temperature. Safety was judged by comparing the temperature showing the maximum value of the heat quantity within the temperature range of 350 ° C. with the temperature shown in the negative electrode material composed only of carbon.
[0053]
As a result, the temperature indicating the maximum value of the calorific value of the negative electrode material having an average particle diameter of carbon (1) of 1 to 100 μm (batteries 24 to 28) is higher than that of the carbon material alone, and the negative electrode material of the battery of the comparative example The temperature showing the maximum value of the amount of heat was lower than that of the negative electrode material made of only the carbon material.
[0054]
From the above, when the carbon particles in the negative electrode material of the present invention have an average particle diameter of 1 to 50 μm and the weight ratio of the metal or alloy bonded to the carbon particles to the carbon particles is 1 to 20 wt%, the capacity and cycle characteristics , It can be seen that it exhibits even better characteristics for safety.
[0055]
(Example 3)
Next, carbon (1) having an average particle diameter of 20 μm of Example 1 was used, and Si particles having an average particle diameter of 0.005 to 10 μm were bonded to the carbon (1) by a thermal plasma method. At this time, it was confirmed by the X-ray diffraction and XPS analysis that SiC was formed at the carbon particle interface. Moreover, what was carry | supported on Ag with an average particle diameter of 0.005-10 micrometers instead of Si was used as a comparative example. In Ag, as in Example 1, no carbide was observed at the carbon interface.
[0056]
A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 using this sample as the negative electrode active material. The battery was evaluated in the same manner as in Example 1 by performing a constant current charge / discharge cycle test at 0.2C (1C charge / discharge corresponds to charge / discharge of 780 mAh in one hour), and the charge upper limit voltage was 4.2V. The discharge lower limit voltage was 3.0V. The results are shown in Table 3 (A) (related to Si) and Table 3 (B) (related to Ag as a comparative example) at the initial stage, after 300 cycles and after 1000 cycles.
[0057]
[Table 3]
Figure 0004032479
[0058]
From Table 3 (A), the average particle size of Si bonded to the carbon particles is within the range of 0.005 to 10 μm, and the discharge capacity at the first cycle is the carbon of the battery 35 shown in Table 2 (B) (1). In the case of only (average particle size 20 μm), it becomes larger than (800 mAh), and when the average particle size of Si of batteries 40 and 41 is in the range of 2 to 10 μm, the discharge capacity at the 1000th cycle is extremely reduced to 500 mAh or less. Yes. This is because when the Si particles become 2 μm or more, the effect of forming a carbide at the interface between the carbon particles and Si to form a strong chemical bond is diminished, and metals and alloys are dropped from the carbon particles due to expansion and contraction. It is considered that cycle deterioration will occur.
[0059]
In the case where Ag is supported on the carbon particles of Table 3 (B), the discharge capacity at the first cycle is equal to or higher than the discharge capacity of the battery 35 of Table 2 (B) described above, but after 1000 cycles, all the averages described The particle size is about 500 mAh or less. The reason for this is that Ag is not strongly bonded to the carbon particles as in Example 2. Therefore, when the charge / discharge cycle is repeated, Ag separates from the carbon particles due to expansion and contraction of Ag, and the Ag particles are inactivated. In addition, the discharge capacity of the carbon particles is reduced due to electrode plate expansion, and the discharge capacity after 1000 cycles is considered to be less than that of graphite.
[0060]
Regarding safety, similarly to Example 1, the battery using each sample as a negative electrode material was charged and discharged for 1000 cycles, the battery was disassembled in a charged state, and the TG-DTA measurement of the negative electrode material was performed from room temperature to 350 ° C. Safety was judged by comparing the temperature showing the maximum amount of heat within the temperature range with the temperature shown in the negative electrode material composed only of carbon.
[0061]
As a result, the average particle diameter of Si was 0.01 to 1 μm, that is, the temperature indicating the maximum value of the calorific value of the negative electrode material of the batteries 37 to 39 was higher than that of the negative electrode material containing only the carbon material. However, the temperature showing the maximum value of the calorific value of the negative electrode material of the batteries 36, 40, 41, 42 to 47 was lower than that of the negative electrode material made of only the carbon material.
[0062]
The battery 36 is considered to have a relatively large specific surface area because the average particle size of Si is as small as 0.005 μm, and the temperature at which the maximum value of the heat is higher than that of the negative electrode material made of only the carbon material.
[0063]
In the batteries 40 and 41, the Si bonded to the carbon particles is large, and when the charge / discharge cycle is repeated as seen in large particles of metals and alloys, the Si becomes finer, the specific surface area becomes considerably large, and the maximum amount of heat is shown. It is considered that the temperature was higher than that of the negative electrode material made of only the carbon material.
[0064]
In the batteries 42 to 47, since the bond between the carbon particles and Ag is weak, when charging and discharging are repeated for 1000 cycles, the Ag is detached from the carbon particles while being bonded to lithium, thereby causing an increase in specific surface area. It is considered that the temperature at which the maximum amount of heat is obtained is higher than that of the negative electrode material made of only the carbon material.
[0065]
From the above, when the average particle diameter of the metal or alloy chemically bonded to the carbon particles in the negative electrode material of the present invention is 0.01 to 1 μm, it shows more excellent characteristics with respect to capacity, cycle characteristics, and safety. I understand that.
[0066]
Example 4
Next, carbon particles obtained by chemically bonding Si particles having an average particle diameter of 0.1 μm to the carbon (1) of Example 1 having an average particle diameter of 20 μm by a thermal plasma method (carbon particle interface by X-ray diffraction or EPMA analysis). A negative electrode plate using a mixture of acetylene black as a conductive material (in addition, the carbons shown in Example 1, all of which can be used as the conductive material). A cylindrical battery was produced.
[0067]
And evaluation of the battery performed 0.2C (1C charging / discharging is equivalent to charging and discharging of 780 mAh in 1 hour) constant current charging / discharging cycle test similarly to Example 1. FIG. The charge upper limit voltage was 4.2V, and the discharge lower limit voltage was 3.0V. As a result, the discharge capacity at the initial stage, after 300 cycles, and after 1000 cycles is shown in Table 4. In addition, a battery manufactured without a conductive material was also evaluated as a comparative example.
[0068]
[Table 4]
Figure 0004032479
[0069]
From Table 4, the discharge capacity of the first cycle in the batteries 49 to 51 is slightly reduced by mixing the conductive material as compared with the battery 53 of the comparative example. It can be seen that the capacity is higher than that of the battery 53. This is thought to be due to the fact that, when a conductive material is added, the resistance component is directly reduced by improving the conductivity, and the discharge capacity maintenance rate is improved by reducing the overvoltage.
[0070]
However, the effect cannot be obtained if the conductive material is small as in the battery 48, and the capacity of the negative electrode material cannot be increased if the conductive material is large as in the battery 52.
[0071]
Regarding safety, similarly to Example 1, the battery using each sample as a negative electrode material was charged and discharged for 1000 cycles, the battery was disassembled in a charged state, and the TG-DTA measurement of the negative electrode material was performed from room temperature to 350 ° C. Safety was judged by comparing the temperature showing the maximum amount of heat within the temperature range with the temperature shown in the negative electrode material composed only of carbon.
[0072]
As a result, also in the batteries 48 to 52 and the battery 53 of the comparative example, the temperature indicating the maximum value of the calorific value of these negative electrode materials was higher than that of the negative electrode material containing only the carbon material.
[0073]
From the above, by including 5 to 80% by weight of carbon as a conductive material in the negative electrode material of the present invention, there is no problem in safety, and although the initial capacity is slightly reduced, battery characteristics with further excellent cycle characteristics can be obtained. I understand.
[0074]
Furthermore, when the negative electrode material of the present invention is used for a non-aqueous electrolyte secondary battery, the positive electrode active material includes Ti, Mo, W, Nb, V, Fe, in addition to the Co, Ni, Mn transition metal compound containing lithium. The same effect can be obtained by using compounds such as composite oxides and composite sulfides of one or more transition metals such as Cr and Cr. Especially for high voltage and high energy density, LiCoO2, LiNiO2, LiMn2OFourA positive electrode active material such as is preferable.
[0075]
And as a solvent of the electrolyte used for the nonaqueous electrolyte secondary battery in Examples 1-4, cyclic | annular, chain | strand carbonates, such as EC, PC, DMC, EMC, DEC, (gamma)-, such as (gamma) -butyrolactone, etc. Even if a solvent selected from lactones, chain carbonate ethers such as DME, DEE, and EME, cyclic ethers such as tetrahydrofuran, nitriles such as acetonitrile, or a mixture of two or more kinds of ECs is used. An effect equivalent to that obtained by mixing 1: 1 with DEC can be obtained. In particular, it is preferable to use a mixed solvent containing EC as an essential component.
[0076]
As the solute of the nonaqueous electrolyte, LiAsF6, LiPF6, LiAlClFour, LiClOFour, LiCFThreeSOThree, LiSbF6, LiSCN, LiCl, LiC6HSOThree, Li (CFThreeSO2)2, LiC (CFThreeSO2)Three, CFourF6SOThreeEven if lithium salt such as Li and a mixture thereof are used, the LiPF of Example6The same effect can be obtained.
[0077]
Regarding the shape of the battery, a cylindrical shape is used in the present embodiment, but a battery having a coin shape, a square shape, or any other shape can be used. The negative electrode active material of the present invention is also effective as a negative electrode active material for polymer batteries.
[0078]
  And claims4Or7The nonaqueous electrolyte secondary battery according to any one of the described inventions and any battery shape described above can be applied to a power source for driving a motor of a motorcycle or an electric vehicle.
[0079]
【The invention's effect】
  As described above, the present invention provides a carbon particle as a negative electrode material for a non-aqueous electrolyte secondary battery capable of occluding and releasing lithium.surfaceCan form an alloy with lithiumMetal, Carbon and itsWith metalofBy high frequency thermal plasmaCarbide formed by reactionby doing,By using a composite carbon material in a state of chemical bonding with carbon particles, a non-aqueous electrolyte secondary battery having high capacity, excellent cycle characteristics, and high safety can be realized.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a cylindrical battery using a negative electrode in one embodiment of the present invention.
[Explanation of symbols]
1 Positive electrode
2 Positive lead plate
3 Negative electrode
4 Negative lead plate
5 Separator
6 Upper insulation plate
7 Lower insulation plate
8 cases
9 Sealing plate
10 Gasket
11 Positive terminal

Claims (9)

炭素粒子の表面において、リチウムと合金を形成することができる金属が、高周波熱プラズマによる炭素との反応により炭化物を形成することで、炭素粒子と金属とが化学結合の状態にあり、前記リチウムと合金を形成することができる金属は、Al,Ba,B,Ca,Si,Sr,Mgの群のうちから選ばれた金属であることを特徴とする非水電解質二次電池用負極材料。On the surface of the carbon particles, the metal capable of forming an alloy with lithium forms a carbide by a reaction with carbon by high-frequency thermal plasma , so that the carbon particles and the metal are in a chemically bonded state, and the lithium and A metal capable of forming an alloy is a metal selected from the group consisting of Al, Ba, B, Ca, Si, Sr, and Mg, and a negative electrode material for a non-aqueous electrolyte secondary battery. 炭素粒子は、X線回折法による面間隔d(002)が、3.35〜4.1Åであることを特徴とする請求項1記載の非水電解質二次電池用負極材料。  2. The negative electrode material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the carbon particles have an interplanar spacing d (002) by X-ray diffraction of 3.35 to 4.1 mm. 炭素粒子は、平均粒径が1〜50μmであることを特徴とする請求項1記載の非水電解質二次電池用負極材料。  The negative electrode material for a nonaqueous electrolyte secondary battery according to claim 1, wherein the carbon particles have an average particle diameter of 1 to 50 μm. 非水電解質と、正極と、リチウムを吸蔵したり放出することができる負極を有する非水電解質二次電池において、請求項1記載の負極材料を用いた負極を備えたことを特徴とする非水電解質二次電池。  A nonaqueous electrolyte secondary battery having a nonaqueous electrolyte, a positive electrode, and a negative electrode capable of occluding and releasing lithium, comprising a negative electrode using the negative electrode material according to claim 1. Electrolyte secondary battery. 導電材として炭素を5〜80重量%含有させて構成した負極を備えたことを特徴とする請求項記載の非水電解質二次電池。The nonaqueous electrolyte secondary battery according to claim 4, comprising a negative electrode containing 5 to 80% by weight of carbon as a conductive material. リチウム含有遷移金属化合物を正極活物質とする正極を備えたことを特徴とする請求項記載の非水電解質二次電池。The nonaqueous electrolyte secondary battery according to claim 4, comprising a positive electrode using a lithium-containing transition metal compound as a positive electrode active material. リチウム塩を炭酸エステル系有機溶媒に溶かした状態の非水電解質を備えたことを特徴とする請求項記載の非水電解質二次電池。The nonaqueous electrolyte secondary battery according to claim 4, comprising a nonaqueous electrolyte in a state where a lithium salt is dissolved in a carbonate ester organic solvent. 自動二輪車を駆動するモータの動力源として使用することを特徴とする請求項ないしのいずれか1項に記載した非水電解質二次電池。The nonaqueous electrolyte secondary battery according to any one of claims 4 to 7 , wherein the nonaqueous electrolyte secondary battery is used as a power source of a motor for driving a motorcycle. 電気自動車を駆動するモータの動力源として使用することを特徴とする請求項ないしのいずれか1項に記載した非水電解質二次電池。The nonaqueous electrolyte secondary battery according to any one of claims 4 to 7 , wherein the nonaqueous electrolyte secondary battery is used as a power source of a motor for driving an electric vehicle.
JP01859698A 1998-01-30 1998-01-30 Non-aqueous electrolyte secondary battery negative electrode material and non-aqueous electrolyte secondary battery provided with a negative electrode using the negative electrode material Expired - Fee Related JP4032479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01859698A JP4032479B2 (en) 1998-01-30 1998-01-30 Non-aqueous electrolyte secondary battery negative electrode material and non-aqueous electrolyte secondary battery provided with a negative electrode using the negative electrode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01859698A JP4032479B2 (en) 1998-01-30 1998-01-30 Non-aqueous electrolyte secondary battery negative electrode material and non-aqueous electrolyte secondary battery provided with a negative electrode using the negative electrode material

Publications (2)

Publication Number Publication Date
JPH11214004A JPH11214004A (en) 1999-08-06
JP4032479B2 true JP4032479B2 (en) 2008-01-16

Family

ID=11976033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01859698A Expired - Fee Related JP4032479B2 (en) 1998-01-30 1998-01-30 Non-aqueous electrolyte secondary battery negative electrode material and non-aqueous electrolyte secondary battery provided with a negative electrode using the negative electrode material

Country Status (1)

Country Link
JP (1) JP4032479B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100366978B1 (en) 1998-09-08 2003-01-09 마츠시타 덴끼 산교 가부시키가이샤 Negative electrode material for nonaqueous electrode secondary battery and method for producing the same
JP2001210323A (en) * 2000-01-26 2001-08-03 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2005135779A (en) * 2003-10-31 2005-05-26 Rikkyo Gakuin Lithium secondary battery and its manufacturing method
CN1947283B (en) 2004-04-23 2013-06-12 株式会社Lg化学 Anode active material with improved electrochemical properties and electrochemical device comprising the same
FR2873855B1 (en) * 2004-07-30 2006-12-08 Cnes Epic NEGATIVE ELECTRODE COMPOSITE MATERIAL, MANUFACTURING METHOD, NEGATIVE ELECTRODE AND LITHIUM-ION BATTERY
WO2007055007A1 (en) * 2005-11-10 2007-05-18 Pionics Co., Ltd. Particle of negative electrode active material for lithium secondary battery, negative electrode making use of the same and process for producing them
JP2007165293A (en) * 2005-11-16 2007-06-28 Jfe Chemical Corp Lithium-ion secondary battery anode, its manufacturing method, and lithium-ion secondary battery
JP5169248B2 (en) * 2008-01-25 2013-03-27 東海カーボン株式会社 Carbon microsphere powder for lithium ion secondary battery negative electrode material and method for producing the same
FR2944149B1 (en) * 2009-04-06 2011-04-29 Centre Nat Rech Scient COMPOSITE ELECTRODE.
US9299978B2 (en) * 2012-05-02 2016-03-29 Showa Denko K.K. Negative electrode material for lithium battery
JP5957353B2 (en) * 2012-10-01 2016-07-27 昭和電工株式会社 Method for producing composite material, and composite material
JP5637199B2 (en) * 2012-10-12 2014-12-10 日産自動車株式会社 Electrode for lithium ion secondary battery
DE102012112954A1 (en) * 2012-12-21 2014-06-26 Dritte Patentportfolio Beteiligungsgesellschaft Mbh & Co.Kg Process for producing an anode coating
WO2014178093A1 (en) * 2013-05-03 2014-11-06 Showa Denko K.K. Negative electrode material for lithium ion battery and use thereof

Also Published As

Publication number Publication date
JPH11214004A (en) 1999-08-06

Similar Documents

Publication Publication Date Title
JP4837661B2 (en) Electrode active material having multi-component oxide coating layer and method for producing the same
JP4177529B2 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP5329858B2 (en) Method for producing negative electrode active material for nonaqueous electrolyte secondary battery and negative electrode active material for nonaqueous electrolyte battery obtained thereby
JP4529274B2 (en) Non-aqueous electrolyte battery
JP3262704B2 (en) Carbon electrode for non-aqueous secondary battery, method for producing the same, and non-aqueous secondary battery using the same
JP4308446B2 (en) Carbonaceous material and lithium secondary battery
US6555268B1 (en) Negative electrode for secondary cell, negative plate for secondary cell, and secondary cell comprising the same
JP3436033B2 (en) Non-aqueous electrolyte secondary battery
KR20060051615A (en) Negative electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2003303585A (en) Battery
JP2007059213A (en) Nonaqueous electrolyte battery and negative active material
JP2004119176A (en) Negative electrode active material for nonaqueous electrolyte rechargeable battery, and nonaqueous electrolyte rechargeable battery
JP2005038720A (en) Method of manufacturing negative electrode and method of manufacturing battery
JP4032479B2 (en) Non-aqueous electrolyte secondary battery negative electrode material and non-aqueous electrolyte secondary battery provided with a negative electrode using the negative electrode material
JP2007042393A (en) Nonaqueous electrolyte battery and anode active material
JP2005108774A (en) Negative electrode active material for lithium secondary battery, lithium secondary battery, and manufacturing method of negative electrode active material for lithium secondary battery
JP3791797B2 (en) battery
JP5992198B2 (en) Method for producing negative electrode active material for nonaqueous electrolyte secondary battery and negative electrode active material for nonaqueous electrolyte battery obtained thereby
JP2003317705A (en) Battery
JP4482953B2 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP2007207465A (en) Nonaqueous electrolyte secondary battery
JP4441935B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and battery using the same
JP2001006730A (en) Nonaqueous electrolyte battery
JPH10312807A (en) Lithium secondary battery and manufacture of negative electrode
JP3848187B2 (en) Anode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041007

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20041112

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070806

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees