JP5169248B2 - Carbon microsphere powder for lithium ion secondary battery negative electrode material and method for producing the same - Google Patents

Carbon microsphere powder for lithium ion secondary battery negative electrode material and method for producing the same Download PDF

Info

Publication number
JP5169248B2
JP5169248B2 JP2008015002A JP2008015002A JP5169248B2 JP 5169248 B2 JP5169248 B2 JP 5169248B2 JP 2008015002 A JP2008015002 A JP 2008015002A JP 2008015002 A JP2008015002 A JP 2008015002A JP 5169248 B2 JP5169248 B2 JP 5169248B2
Authority
JP
Japan
Prior art keywords
raw material
containing gas
reactor
negative electrode
carbon microsphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008015002A
Other languages
Japanese (ja)
Other versions
JP2009176603A (en
Inventor
和男 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP2008015002A priority Critical patent/JP5169248B2/en
Publication of JP2009176603A publication Critical patent/JP2009176603A/en
Application granted granted Critical
Publication of JP5169248B2 publication Critical patent/JP5169248B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、高容量及び高入出力を有するリチウムイオン二次電池の負極材として用いられる炭素材料及びその製造方法に関する。   The present invention relates to a carbon material used as a negative electrode material of a lithium ion secondary battery having high capacity and high input / output, and a method for producing the same.

非水電解二次電池としてリチウム塩の有機電解質を用いたリチウムイオン二次電池は、軽量でエネルギー密度が高く、携帯用小型電子機器の電源をはじめ、近年ではハイブリッドカーや電気自動車などの動力用電源として期待されている。   Lithium ion secondary batteries using lithium salt organic electrolytes as non-aqueous electrolytic secondary batteries are lightweight and have high energy density, and are used for power sources such as portable cars and electric vehicles in recent years, including power supplies for portable small electronic devices. Expected as a power source.

近年の携帯用小型機器、例えば、携帯電話、携帯オーディオ機器、携帯ビデオカメラやデジタルカメラ等の高性能化に伴い、それらの消費電力は増加の一途であり、それらの電源として用いられるリチウムイオン二次電池には、更なる高容量化が求められている。その一方で、ハイブリッドカーや電気自動車などの電源には、高入出力特性、すなわち、急速充放電特性に優れることや、高寿命、すなわち、サイクル特性に優れることが求められている。このように、リチウムイオン二次電池には、多種に渡る特徴を持つリチウムイオン二次電池用の負極材が求められている。   With recent high performance of portable small devices such as cellular phones, portable audio devices, portable video cameras, digital cameras, etc., their power consumption is increasing, and lithium ion batteries used as their power sources are increasing. Secondary batteries are required to have higher capacities. On the other hand, power sources such as hybrid cars and electric vehicles are required to have high input / output characteristics, that is, rapid charge / discharge characteristics, and long life, that is, excellent cycle characteristics. Thus, a lithium ion secondary battery is required to have a negative electrode material for lithium ion secondary batteries having various characteristics.

高容量化の手段の一つとして金属リチウムを負極材として用いることが考えられる。しかし、金属リチウムは、充電時にリチウムイオンが、デンドライト状に析出し、成長し、安全性に問題があることから、取扱が困難である。   It is conceivable to use metallic lithium as a negative electrode material as one means for increasing the capacity. However, lithium metal is difficult to handle because lithium ions are deposited in a dendritic state during growth and grow and have safety problems.

黒鉛材はリチウムイオンの吸脱着に優れていることから、充放電の効率が高く、更に、放電時の電位も金属リチウムとほぼ等しく、高電圧の電池が得られるなどの利点を有する。しかし、黒鉛材を用いた場合の理論容量は372mAh/gであり、近年の黒鉛材は、その値にほぼ近づいていることから、黒鉛単体では高容量化に限界が生じている。   Since the graphite material is excellent in the adsorption and desorption of lithium ions, the charge / discharge efficiency is high, and further, the potential at the time of discharge is almost equal to that of metallic lithium, and a high voltage battery can be obtained. However, the theoretical capacity in the case of using a graphite material is 372 mAh / g, and recent graphite materials are almost close to the value, so there is a limit to increasing the capacity of graphite alone.

そこで、合金系の負極材の開発が行われており、金属としては、ケイ素、スズ、ビスマス、アルミニウム、アンチモンなどが代表的である。その中で、ケイ素は、リチウムを取り込む配位数が多く、その理論容量は4000mAh/gである。しかし、その一方で体積膨張が大きく、ケイ素の微粉化が進行し、繰り返し使用できない。そこで、ケイ素にケイ素酸化物や黒鉛、炭素を複合させることで、その体積膨張を抑えつつ、既存の黒鉛の容量をはるかに超える材料となる。   Thus, alloy-based negative electrode materials have been developed, and typical examples of metals include silicon, tin, bismuth, aluminum, and antimony. Among them, silicon has many coordination numbers for taking in lithium, and its theoretical capacity is 4000 mAh / g. However, on the other hand, the volume expansion is large and the pulverization of silicon proceeds, so that it cannot be used repeatedly. Therefore, by combining silicon oxide, graphite, and carbon with silicon, the volume expansion is suppressed and the material far exceeds the capacity of existing graphite.

上記のような、ケイ素を用いる複合材料では、ケイ素の粒子径は小さいほうが好ましく、数nmというレベルで存在させることにより、繰り返しの使用が可能となる。   In the composite material using silicon as described above, it is preferable that the particle diameter of silicon is small, and when it is present at a level of several nanometers, it can be used repeatedly.

ケイ素を含む炭素との複合材料としては、例えば、特開平7−315822号公報(特許文献1)には、原料の炭素源としてベンゼンなどの液体と、四塩化ケイ素、ジメチルジシクロシランなどの液体を、それぞれ高純度なアルゴンガスなどのキャリアーを用いて、熱分解炉に挿入し、200〜1100℃の温度範囲で熱分解し、1〜5時間持続させて堆積物を得る、化学蒸着法(CVD法)により得られた炭素質挿入化合物が開示されている。   As a composite material with carbon containing silicon, for example, JP-A-7-315822 (Patent Document 1) discloses a liquid such as benzene and a liquid such as silicon tetrachloride and dimethyldicyclosilane as a carbon source of a raw material. Each of these is inserted into a pyrolysis furnace using a carrier such as high-purity argon gas, pyrolyzed in a temperature range of 200 to 1100 ° C., and kept for 1 to 5 hours to obtain a deposit (chemical vapor deposition method ( A carbonaceous insertion compound obtained by the CVD method) is disclosed.

また、特開2004−47404号公報(特許文献2)には、酸化ケイ素をあらかじめ不活性ガス雰囲気下900〜1400℃で熱処理して不均化してなるケイ素化合物、シリコン微粒子をゾルゲル法により二酸化ケイ素でコーティングした複合物、シリコン微粉末を微粉状シリカと水を介して凝固させたものを焼結して得られる複合物、又はケイ素及びこの部分酸化物もしくは窒化物を不活性ガス気流下800〜1400℃で加熱したものを、800〜1400℃の温度で有機物ガス及び/又は蒸気で化学蒸着処理することにより得られる、ケイ素の微結晶がケイ素系化合物に分散した構造を有する粒子の表面を炭素でコーティングしてなる導電性ケイ素複合体が開示されている。   Japanese Patent Application Laid-Open No. 2004-47404 (Patent Document 2) discloses a silicon compound obtained by heat-treating silicon oxide in advance under an inert gas atmosphere at 900 to 1400 ° C. to disproportionate, and silicon fine particles obtained from silicon dioxide by a sol-gel method. A composite obtained by sintering a composite obtained by solidifying silicon fine powder through fine powdered silica and water, or silicon and its partial oxide or nitride under an inert gas stream The surface of particles having a structure in which silicon microcrystals are dispersed in a silicon-based compound obtained by chemical vapor deposition treatment with an organic gas and / or vapor at a temperature of 800 to 1400 ° C. is heated at 1400 ° C. A conductive silicon composite is disclosed which is coated with

また、特開平7−302588号公報(特許文献3)には、反応容器内にLi原料含有ガス、Si原料含有ガス及びC原料含有ガスを導入し、プラズマ反応により容器内の基板上にLi−Si−C系の合成物膜を形成することにより、Li、Si及びCを含有するリチウム二次電池用負極が開示されている。   In JP-A-7-302588 (Patent Document 3), a Li source-containing gas, a Si source-containing gas, and a C source-containing gas are introduced into a reaction vessel, and Li— A negative electrode for a lithium secondary battery containing Li, Si, and C is disclosed by forming a Si—C based composite film.

特開平7−315822号公報(特許請求の範囲)JP-A-7-315822 (Claims) 特開2004−47404号公報(特許請求の範囲)JP 2004-47404 A (Claims) 特開平7−302588号公報(特許請求の範囲)JP-A-7-302588 (Claims)

しかしながら、特許文献1の炭素質挿入化合物は、CVD法で生成しているので、バルク体が形成されていると考えられ、その大きさも1μm以上であると推測される。そのため、Liイオンの入出力特性が劣るという問題があった。また、特許文献1には、効率的に炭素質挿入化合物を量産することが困難であること、取扱が困難であること、原料の挿入が不安定であること等の問題もあった。   However, since the carbonaceous insertion compound of Patent Document 1 is produced by the CVD method, it is considered that a bulk body is formed, and its size is estimated to be 1 μm or more. Therefore, there was a problem that the input / output characteristics of Li ions were inferior. Patent Document 1 also has problems such as difficulty in mass-producing the carbonaceous insertion compound efficiently, difficulty in handling, and unstable insertion of raw materials.

また、特許文献2では、Si微結晶粒子を二酸化ケイ素中に分散させ、二酸化ケイ素表面にブラファイト構造を有する炭素をコーティングしているが、その炭素量は好ましくは10〜30wt%と記載されており、ナノ構造を有する純粋な炭素材に比べて、導電性は確保できない。よって、集電性の低下は避けられず、Liイオンの電極内の移動が妨げられ、高入出力特性が劣るという問題があった。   Moreover, in patent document 2, although Si microcrystal particle | grains are disperse | distributed in silicon dioxide and the carbon which has a braphite structure is coated on the silicon dioxide surface, the carbon amount is described as preferably 10-30 wt%. Therefore, the conductivity cannot be ensured as compared with a pure carbon material having a nanostructure. Therefore, a decrease in current collecting performance is inevitable, and movement of Li ions in the electrode is hindered, resulting in poor high input / output characteristics.

また、特許文献3では、膜厚が5〜20μmと厚く、高入出力特性が劣るという問題があった。   Moreover, in patent document 3, there existed a problem that a film thickness was as thick as 5-20 micrometers and the high input / output characteristic was inferior.

従って、本発明の課題は、優れた急速充放電特性、優れた充放電サイクル特性及び高初期効率を維持したまま、高容量及び高入出力を有するリチウムイオン二次電池の負極材を提供することにある。   Accordingly, an object of the present invention is to provide a negative electrode material for a lithium ion secondary battery having high capacity and high input / output while maintaining excellent rapid charge / discharge characteristics, excellent charge / discharge cycle characteristics and high initial efficiency. It is in.

本発明者らは、上記従来技術における課題を解決すべく、鋭意研究を重ねた結果、ケイ素源となる化合物及び炭素源となる化合物を、不活性ガスで希釈して、特定の温度の外熱式反応炉に導入して、特定の線速度で該外熱式反応炉内を通過させることにより、炭素源となる化合物が分解し炭化して、球状の炭素微小球になり、その際に、ケイ素源となる化合物の分解により生じたケイ素が該炭素微小球中に取り込まれるので、微細なケイ素を内包する炭素微小球が得られることを見出し、本発明を完成させるに至った。   As a result of intensive studies to solve the above-described problems in the prior art, the present inventors have diluted a compound serving as a silicon source and a compound serving as a carbon source with an inert gas, and thereby applied external heat at a specific temperature. When introduced into a reaction furnace and passed through the external heating reactor at a specific linear velocity, the carbon source compound is decomposed and carbonized into spherical carbon microspheres. Since silicon generated by the decomposition of the compound serving as a silicon source is taken into the carbon microspheres, it was found that carbon microspheres enclosing fine silicon can be obtained, and the present invention has been completed.

すなわち、本発明(1)は、ケイ素の含有量がケイ素原子換算で1〜30重量%、電子顕微鏡により測定した算術平均一次粒子径dnが150〜1000nm、揮発分Vmが5.0%以下、ディスクセントリフュージ装置(DCF)により測定したストークスモード径Dstに対するその半値幅ΔDstの比(半値幅ΔDst/ストークスモード径Dst)が0.40〜1.10、X線回折法により測定した結晶子格子面間隔d(002)が0.370nm以下の炭素微小球であることを特徴とするリチウムイオン二次電池負極材用の炭素微小球粉末を提供するものである。   That is, in the present invention (1), the silicon content is 1 to 30% by weight in terms of silicon atom, the arithmetic average primary particle diameter dn measured with an electron microscope is 150 to 1000 nm, the volatile matter Vm is 5.0% or less, The ratio of the half-value width ΔDst to the Stokes mode diameter Dst measured by the disc centrifuging apparatus (DCF) (half-value width ΔDst / Stokes mode diameter Dst) is 0.40 to 1.10, and the crystallite lattice plane measured by the X-ray diffraction method Provided is a carbon microsphere powder for a negative electrode material of a lithium ion secondary battery, characterized in that the distance d (002) is a carbon microsphere having a diameter of 0.370 nm or less.

また、本発明は、有機ケイ素化合物が不活性ガスで希釈されており且つ該有機ケイ素化合物の濃度が10〜50体積%である原料含有ガスを、反応炉内の温度が1000〜1400℃の外熱式反応炉に導入し、0.02〜4.0m/秒の線流速で、該外熱式反応炉を通過させ、次いで、生成した熱分解物を、該外熱式反応炉から冷却領域に移送して冷却し、次いで、捕集して、リチウムイオン二次電池負極材用の炭素微小球粉末を得ることを特徴とするリチウムイオン二次電池負極材用の炭素微小球粉末の製造方法を提供するものである。   Further, the present invention provides a raw material-containing gas in which an organosilicon compound is diluted with an inert gas and the concentration of the organosilicon compound is 10 to 50% by volume, and the temperature inside the reactor is outside 1000 to 1400 ° C. Introduced into a thermal reactor, passed through the externally heated reactor at a linear flow rate of 0.02 to 4.0 m / sec, and then the generated thermal decomposition product was cooled from the externally heated reactor to the cooling zone. The method for producing a carbon microsphere powder for a lithium ion secondary battery negative electrode material, characterized in that the carbon microsphere powder for a lithium ion secondary battery negative electrode material is obtained Is to provide.

また、本発明は、有機ケイ素化合物及び炭化水素が不活性ガスで希釈されており且つ該有機ケイ素化合物及び該炭化水素の合計濃度が10〜50体積%である原料含有ガスを、反応炉内の温度が1000〜1400℃の外熱式反応炉に導入し、0.02〜4.0m/秒の線流速で、該外熱式反応炉を通過させ、次いで、生成した熱分解物を、該外熱式反応炉から冷却領域に移送して冷却し、次いで、捕集して、リチウムイオン二次電池負極材用の炭素微小球粉末を得ることを特徴とするリチウムイオン二次電池負極材用の炭素微小球粉末の製造方法を提供するものである。   The present invention also provides a raw material-containing gas in which the organosilicon compound and hydrocarbon are diluted with an inert gas and the total concentration of the organosilicon compound and the hydrocarbon is 10 to 50% by volume in the reactor. It was introduced into an externally heated reactor having a temperature of 1000 to 1400 ° C., passed through the externally heated reactor at a linear flow rate of 0.02 to 4.0 m / sec, and then the generated pyrolyzate was For lithium ion secondary battery negative electrode material characterized in that it is transferred from an external heat reactor to a cooling region, cooled, and then collected to obtain carbon microsphere powder for negative electrode material of lithium ion secondary battery A method for producing a carbon microsphere powder is provided.

また、本発明は、無機ケイ素化合物及び炭化水素が不活性ガスで希釈されており、該炭化水素の濃度が10〜50体積%であり且つ該無機ケイ素化合物の濃度が1〜30体積%である原料含有ガスを、反応炉内の温度が1000〜1400℃の外熱式反応炉に導入し、0.02〜4.0m/秒の線流速で、該外熱式反応炉を通過させ、次いで、生成した熱分解物を、該外熱式反応炉から冷却領域に移送して冷却し、次いで、捕集して、リチウムイオン二次電池負極材用の炭素微小球粉末を得ることを特徴とするリチウムイオン二次電池負極材用の炭素微小球粉末の製造方法を提供するものである。   In the present invention, the inorganic silicon compound and the hydrocarbon are diluted with an inert gas, the concentration of the hydrocarbon is 10 to 50% by volume, and the concentration of the inorganic silicon compound is 1 to 30% by volume. The raw material-containing gas was introduced into an externally heated reactor having a temperature in the reactor of 1000 to 1400 ° C., and passed through the externally heated reactor at a linear flow rate of 0.02 to 4.0 m / sec. The produced thermal decomposition product is transferred from the external heating reactor to a cooling region, cooled, and then collected to obtain carbon microsphere powder for a lithium ion secondary battery negative electrode material. The manufacturing method of the carbon microsphere powder for lithium ion secondary battery negative electrode materials to be performed is provided.

また、本発明は、有機ケイ素化合物及び無機ケイ素化合物が不活性ガスで希釈されており、該有機ケイ素化合物の濃度が10〜50体積%であり且つ該無機ケイ素化合物の濃度が1〜30体積%である原料含有ガスを、反応炉内の温度が1000〜1400℃の外熱式反応炉に導入し、0.02〜4.0m/秒の線流速で、該外熱式反応炉を通過させ、次いで、生成した熱分解物を、該外熱式反応炉から冷却領域に移送して冷却し、次いで、捕集して、リチウムイオン二次電池負極材用の炭素微小球粉末を得ることを特徴とするリチウムイオン二次電池負極材用の炭素微小球粉末の製造方法を提供するものである。   In the present invention, the organosilicon compound and the inorganic silicon compound are diluted with an inert gas, the concentration of the organosilicon compound is 10 to 50% by volume, and the concentration of the inorganic silicon compound is 1 to 30% by volume. The raw material-containing gas is introduced into an externally heated reactor whose temperature in the reactor is 1000 to 1400 ° C., and is allowed to pass through the externally heated reactor at a linear flow rate of 0.02 to 4.0 m / sec. Then, the generated pyrolyzate is transferred from the external heating reactor to the cooling region, cooled, and then collected to obtain carbon microsphere powder for a lithium ion secondary battery negative electrode material. A feature of the present invention is to provide a method for producing carbon microsphere powder for a negative electrode material for a lithium ion secondary battery.

また、本発明は、有機ケイ素化合物、無機ケイ素化合物及び炭化水素が不活性ガスで希釈されており、該有機ケイ素化合物及び該炭化水素の合計濃度が10〜50体積%であり且つ該無機ケイ素化合物の濃度が1〜30体積%である原料含有ガスを、反応炉内の温度が1000〜1400℃の外熱式反応炉に導入し、0.02〜4.0m/秒の線流速で、該外熱式反応炉を通過させ、次いで、生成した熱分解物を、該外熱式反応炉から冷却領域に移送して冷却し、次いで、捕集して、リチウムイオン二次電池負極材用の炭素微小球粉末を得ることを特徴とするリチウムイオン二次電池負極材用の炭素微小球粉末の製造方法を提供するものである。   In the present invention, the organosilicon compound, the inorganic silicon compound and the hydrocarbon are diluted with an inert gas, the total concentration of the organosilicon compound and the hydrocarbon is 10 to 50% by volume, and the inorganic silicon compound A raw material-containing gas having a concentration of 1 to 30% by volume is introduced into an externally heated reactor whose temperature in the reactor is 1000 to 1400 ° C., and at a linear flow rate of 0.02 to 4.0 m / sec, The externally heated reactor is passed through, and then the generated thermal decomposition product is transferred from the externally heated reactor to the cooling region to be cooled, and then collected and used for a negative electrode material for a lithium ion secondary battery. The present invention provides a method for producing a carbon microsphere powder for a negative electrode material for a lithium ion secondary battery, characterized in that the carbon microsphere powder is obtained.

本発明によれば、優れた急速充放電特性、優れた充放電サイクル特性及び高初期効率を維持したまま、高容量及び高入出力を有するリチウムイオン二次電池の負極材を提供することができる。   According to the present invention, it is possible to provide a negative electrode material for a lithium ion secondary battery having high capacity and high input / output while maintaining excellent rapid charge / discharge characteristics, excellent charge / discharge cycle characteristics and high initial efficiency. .

本発明のリチウムイオン二次電池負極材用の炭素微小球粉末の製造方法は、原料含有ガスを、反応炉内の温度が1000〜1400℃の外熱式反応炉に導入し、0.02〜4.0m/秒の線流速で、該外熱式反応炉を通過させ、次いで、生成した熱分解物を、該外熱式反応炉から冷却領域に移送して冷却し、次いで、捕集して、リチウムイオン二次電池負極材用の炭素微小球粉末を得るリチウムイオン二次電池負極材用の炭素微小球粉末の製造方法である。   In the method for producing a carbon microsphere powder for a negative electrode material for a lithium ion secondary battery of the present invention, a raw material-containing gas is introduced into an externally heated reactor having a temperature in the reactor of 1000 to 1400 ° C. Pass the externally heated reactor at a linear flow rate of 4.0 m / sec, then transfer the generated pyrolyzate from the externally heated reactor to a cooling zone to cool, and then collect it. This is a method for producing a carbon microsphere powder for a lithium ion secondary battery negative electrode material to obtain a carbon microsphere powder for a lithium ion secondary battery negative electrode material.

本発明のリチウムイオン二次電池負極材用の炭素微小球粉末の製造方法について、図1を参照して説明する。図1は、本発明のリチウムイオン二次電池負極材用の炭素微小球粉末の製造方法を実施するための装置の全体構成を示す説明図である。なお、図1に示す該装置は、本発明のリチウムイオン二次電池負極材用の炭素微小球粉末の製造方法を実施するための装置の形態例であり、これに限定されるものではない。図1中、9は液体のケイ素化合物が貯蔵されている液体ケイ素化合物用タンク、10は気体のケイ素化合物が充填されている気体ケイ素化合物用ボンベ、11は気体の炭化水素が充填されている気体炭化水素ボンベ、12は不活性ガスボンベ、14は液体の炭化水素が貯蔵されている液体炭化水素用タンク、17は外熱式反応炉である。また、15は該液体ケイ素化合物用タンク9又は該液体炭化水素用タンク14を予熱するための予熱ヒーターであり、液体ケイ素化合物又は液体炭化水素を気化させるためのヒーターである。13は原料含有ガスの各原料の導入量を測定するための流量計である。そして、該液体ケイ素化合物用タンク9、該気体ケイ素化合物用ボンベ10、該気体炭化水素用ボンベ11及び該液体炭化水素用タンク14は、原料含有ガス導入管8に繋がっているので、所定の原料が混合され不活性ガスで希釈された原料含有ガスを、該原料含有ガス導入管8から、該外熱式反応炉17に導入できるようになっている。   The manufacturing method of the carbon microsphere powder for lithium ion secondary battery negative electrode materials of this invention is demonstrated with reference to FIG. FIG. 1 is an explanatory diagram showing the overall configuration of an apparatus for carrying out the method for producing a carbon microsphere powder for a negative electrode material for a lithium ion secondary battery of the present invention. In addition, this apparatus shown in FIG. 1 is an example of the apparatus for implementing the manufacturing method of the carbon microsphere powder for lithium ion secondary battery negative electrode materials of this invention, It is not limited to this. In FIG. 1, 9 is a liquid silicon compound tank in which a liquid silicon compound is stored, 10 is a gas silicon compound cylinder filled with a gaseous silicon compound, and 11 is a gas filled with a gaseous hydrocarbon. A hydrocarbon cylinder, 12 is an inert gas cylinder, 14 is a liquid hydrocarbon tank in which liquid hydrocarbons are stored, and 17 is an externally heated reactor. Reference numeral 15 denotes a preheating heater for preheating the liquid silicon compound tank 9 or the liquid hydrocarbon tank 14 and a heater for vaporizing the liquid silicon compound or the liquid hydrocarbon. 13 is a flow meter for measuring the introduction amount of each raw material of the raw material-containing gas. The liquid silicon compound tank 9, the gas silicon compound cylinder 10, the gas hydrocarbon cylinder 11, and the liquid hydrocarbon tank 14 are connected to the raw material-containing gas introduction pipe 8. The raw material containing gas mixed with and diluted with an inert gas can be introduced into the external heating reactor 17 from the raw material containing gas introduction pipe 8.

また、図1中、18は該外熱式反応炉17を加熱するためのヒーター、21は該外熱式反応炉17で生成した熱分解物及び不活性ガスを冷却するための冷却管、24は該熱分解物を捕集するための捕集室、25は該原料含有ガスの熱分解によって生成する酸性ガスを中和するための中和槽、26は該原料含有ガスの熱分解によって生成する分解ガスを完全燃焼させるための排ガス燃焼装置である。該中和槽25内には、例えば、水酸化ナトリウム等の塩基性液体が入れられている。20は該外熱式反応炉の温度を調節するための温度調節器であり、23は該外熱式反応炉内を予め脱酸素するための真空ポンプである。また、該捕集室24及び該真空ポンプ23に繋がる配管には、バルブ22が付設されている。   In FIG. 1, 18 is a heater for heating the externally heated reactor 17, 21 is a cooling pipe for cooling the pyrolyzate and inert gas generated in the externally heated reactor 17, 24 Is a collection chamber for collecting the pyrolyzate, 25 is a neutralization tank for neutralizing acidic gas generated by thermal decomposition of the raw material-containing gas, and 26 is generated by thermal decomposition of the raw material-containing gas An exhaust gas combustion apparatus for completely burning the cracked gas. In the neutralization tank 25, for example, a basic liquid such as sodium hydroxide is placed. 20 is a temperature controller for adjusting the temperature of the external heating reactor, and 23 is a vacuum pump for deoxidizing the inside of the external heating reactor in advance. A valve 22 is attached to the pipe connected to the collection chamber 24 and the vacuum pump 23.

また、図1中、19は該外熱式反応炉17の後段に、該原料含有ガスを導入するための後段側原料含有ガス導入管である。該液体ケイ素化合物用タンク9、該気体ケイ素化合物用ボンベ10、該気体炭化水素用ボンベ11及び該液体炭化水素用タンク14は、該後段側原料含有ガス導入管19にも繋がっているので、所定の原料が混合され不活性ガスで希釈された原料含有ガスを、該後段側原料含有ガス導入管19から、該外熱式反応炉17の後段部にも導入できるようになっている。   In FIG. 1, reference numeral 19 denotes a rear-stage raw material-containing gas introduction pipe for introducing the raw-material-containing gas into the rear stage of the external heating reactor 17. The liquid silicon compound tank 9, the gas silicon compound cylinder 10, the gas hydrocarbon cylinder 11, and the liquid hydrocarbon tank 14 are also connected to the downstream side raw material-containing gas introduction pipe 19, The raw material containing gas mixed with this raw material and diluted with an inert gas can be introduced into the rear stage portion of the external heating reactor 17 from the rear stage side raw material containing gas introduction pipe 19.

該外熱式反応炉17は、該原料含有ガス中の原料を、熱分解及び炭化して、ケイ素が内包された炭素微小球に転換するための反応炉である。該外熱式反応炉17としては、例えば、内径145mm、長さ1500mmの不透明石英管が挙げられる。図1では、該外熱式反応炉17の外側には、該ヒーター18が設置されているが、本発明において、外熱方式としては、高周波誘導加熱方式、電熱加熱方式、燃焼ガスを流す方式等が適用可能である。   The externally heated reactor 17 is a reactor for pyrolyzing and carbonizing the raw material in the raw material-containing gas into carbon microspheres containing silicon. Examples of the external heating reactor 17 include an opaque quartz tube having an inner diameter of 145 mm and a length of 1500 mm. In FIG. 1, the heater 18 is installed outside the external heating reactor 17. In the present invention, the external heating system includes a high frequency induction heating system, an electrothermal heating system, and a combustion gas flow system. Etc. are applicable.

該外熱式反応炉17は、該原料含有ガスの線流速を制御するために、管径が異なる耐熱性管を内挿できるようになっている。該耐熱性管は、例えば、ムライト製、炭化ケイ素製等である。   The external heating reactor 17 can be inserted with heat-resistant tubes having different tube diameters in order to control the linear flow velocity of the raw material-containing gas. The heat-resistant tube is made of, for example, mullite or silicon carbide.

該外熱式反応炉17内の温度は、熱電対又は放射温度計で該外熱式反応炉17内の温度を検出して、該温度調節器20で所定の温度に制御される。   The temperature in the external heating reactor 17 is controlled to a predetermined temperature by the temperature controller 20 by detecting the temperature in the external heating reactor 17 with a thermocouple or a radiation thermometer.

先ず、該液体ケイ素化合物用タンク9、該気体ケイ素化合物用ボンベ10、該気体炭化水素用ボンベ11及び該液体炭化水素用タンク14から原料を、該不活性ガスボンベ12から不活性ガスを、該原料含有ガス中の各原料の濃度が、所定の濃度となるように供給して、該原料含有ガス導入管8から、該原料含有ガスを、該外熱式反応炉17に導入する。そして、該原料含有ガスを、該外熱式反応炉17を通過させる。   First, the raw material from the liquid silicon compound tank 9, the gas silicon compound cylinder 10, the gas hydrocarbon cylinder 11 and the liquid hydrocarbon tank 14, the inert gas from the inert gas cylinder 12, the raw material The raw material containing gas is supplied from the raw material containing gas introduction pipe 8 to the external heating reactor 17 by supplying each raw material in the containing gas so as to have a predetermined concentration. Then, the raw material-containing gas is passed through the external heating reactor 17.

該外熱式反応炉17に導入された該原料含有ガス中の原料は、該外熱式反応炉17を通過することにより、熱分解及び炭化して、熱分解物になる。この時、該原料含有ガス中の原料は、炭化して、球状の炭素微小球になると共に、炭化の際に、内部に熱分解で生じたケイ素が内包される。そのため、該外熱式反応炉17を通過して外へ排出される該熱分解物は、ケイ素が内包されている炭素微小球である。   The raw material in the raw material-containing gas introduced into the external heating reactor 17 is pyrolyzed and carbonized by passing through the external heating reactor 17 to become a thermal decomposition product. At this time, the raw material in the raw material-containing gas is carbonized into spherical carbon microspheres, and silicon generated by thermal decomposition is included inside during carbonization. Therefore, the pyrolyzate discharged through the external heat reactor 17 is carbon microspheres containing silicon.

次いで、該外熱式反応炉17から排出される該熱分解物及び該不活性ガスを、該冷却管21にて冷却し、次いで、該捕集室24で、該熱分解物を捕集して、リチウムイオン二次電池負極材用の炭素微小球を得る。また、該排出ガスは、該捕集室24の後段の該中和槽25に導入され、該排出ガス中の酸性分解物が除去された後、該排ガス燃焼装置26に導入され、該排ガス中の分解ガスを完全燃焼させ、外部へと排出される。   Next, the pyrolyzate and the inert gas discharged from the external heating reactor 17 are cooled by the cooling pipe 21, and then the pyrolyzate is collected in the collection chamber 24. Thus, carbon microspheres for a negative electrode material for a lithium ion secondary battery are obtained. Further, the exhaust gas is introduced into the neutralization tank 25 at the rear stage of the collection chamber 24, and after acid decomposition products in the exhaust gas are removed, the exhaust gas is introduced into the exhaust gas combustion device 26. The cracked gas is completely burned and discharged to the outside.

図1に示す装置では、該原料含有ガス導入管8から該原料含有ガスを導入しつつ、該後段側原料含有ガス導入管19からも、該外熱式反応炉17の後段に、該原料含有ガスを導入することもできる。そして、該外熱式反応炉17の後段部に、該原料含有ガスを導入することにより、算術一次平均粒子径が450nmを超える炭素微小球を得易くなる。   In the apparatus shown in FIG. 1, the raw material-containing gas is introduced from the raw material-containing gas introduction pipe 8, and the raw material-containing gas is introduced from the rear-stage-side raw material-containing gas introduction pipe 19 to the rear stage of the external heating reactor 17. Gas can also be introduced. Then, by introducing the raw material-containing gas into the rear stage portion of the external heating reactor 17, it becomes easy to obtain carbon microspheres having an arithmetic primary average particle diameter exceeding 450 nm.

このようにして、図1に示す装置を用いて、本発明のリチウムイオン二次電池負極材用の炭素微小球粉末の製造方法を行い、炭素微小球粉末を得る。   Thus, using the apparatus shown in FIG. 1, the method for producing carbon microsphere powder for a negative electrode material of a lithium ion secondary battery of the present invention is performed to obtain carbon microsphere powder.

すなわち、本発明のリチウムイオン二次電池負極材用の炭素微小球粉末の製造方法(以下、本発明の炭素微小球粉末の製造方法とも記載する。)は、該原料含有ガスを、反応炉内の温度が1000〜1400℃の外熱式反応炉に導入し、0.02〜4.0m/秒の線流速で、該外熱式反応炉を通過させ、次いで、生成した熱分解物を、該外熱式反応炉から冷却領域に移送して冷却し、次いで、捕集して、リチウムイオン二次電池負極材用の炭素微小球粉末を得るリチウムイオン二次電池負極材用の炭素微小球粉末の製造方法である。   That is, the method for producing a carbon microsphere powder for a negative electrode material of a lithium ion secondary battery according to the present invention (hereinafter also referred to as the method for producing the carbon microsphere powder of the present invention) includes the raw material-containing gas in a reactor. Is introduced into an externally heated reactor having a temperature of 1000 to 1400 ° C., and is passed through the externally heated reactor at a linear flow rate of 0.02 to 4.0 m / sec. Carbon microspheres for lithium ion secondary battery negative electrode material obtained by transferring to the cooling region from the external heating reactor and cooling, and then collecting to obtain carbon microsphere powder for lithium ion secondary battery negative electrode material It is a manufacturing method of powder.

本発明の炭素微小球粉末の製造方法では、先ず、該原料含有ガスを、該外熱式反応炉に導入し、該外熱式反応炉を通過させる。なお、本発明では、該原料含有ガスを該外熱式反応炉に導入する部位を、前段原料含有ガス導入部位と呼び、後述する後段原料含有ガス導入部位と区別する。また、図1では、符号30で示される部位が、該前段原料含有ガス導入部位である。   In the method for producing the carbon microsphere powder of the present invention, first, the raw material-containing gas is introduced into the external heating reactor and allowed to pass through the external heating reactor. In the present invention, the part where the raw material-containing gas is introduced into the external heating reactor is referred to as a front-stage raw material-containing gas introduction part, and is distinguished from a later-stage raw material-containing gas introduction part. Moreover, in FIG. 1, the site | part shown by the code | symbol 30 is this front | former stage raw material containing gas introduction | transduction site | part.

本発明の炭素微小球粉末の製造方法は、該原料含有ガス中の原料の組合せとして、以下の5つの形態例:
(1)有機ケイ素化合物が不活性ガスで希釈された原料含有ガス(以下、原料含有ガス(1)とも記載する。)、
(2)有機ケイ素化合物及び炭化水素が不活性ガスで希釈された原料含有ガス(以下、原料含有ガス(2)とも記載する。)、
(3)無機ケイ素化合物及び炭化水素が不活性ガスで希釈された原料含有ガス(以下、原料含有ガス(3)とも記載する。)、
(4)有機ケイ素化合物及び無機ケイ素化合物が不活性ガスで希釈された原料含有ガス(以下、原料含有ガス(4)とも記載する。)、
(5)有機ケイ素化合物、無機ケイ素化合物及び炭化水素が不活性ガスで希釈された原料含有ガス(以下、原料含有ガス(5)とも記載する。)、
がある。
The method for producing carbon microsphere powder of the present invention includes the following five embodiments as combinations of raw materials in the raw material-containing gas:
(1) Raw material-containing gas in which an organosilicon compound is diluted with an inert gas (hereinafter also referred to as raw material-containing gas (1)),
(2) A raw material-containing gas in which an organosilicon compound and a hydrocarbon are diluted with an inert gas (hereinafter also referred to as a raw material-containing gas (2)),
(3) Raw material-containing gas obtained by diluting an inorganic silicon compound and hydrocarbon with an inert gas (hereinafter also referred to as raw material-containing gas (3)),
(4) A raw material-containing gas in which an organosilicon compound and an inorganic silicon compound are diluted with an inert gas (hereinafter also referred to as a raw material-containing gas (4)),
(5) A raw material-containing gas in which an organosilicon compound, an inorganic silicon compound, and a hydrocarbon are diluted with an inert gas (hereinafter also referred to as a raw material-containing gas (5)),
There is.

該原料含有ガスに係る該有機ケイ素化合物は、分子内に炭素原子を有するケイ素化合物である。該有機ケイ素化合物としては、例えば、Si原子の4つの置換基のうちの少なくとも1つが、アルキル基、アルコキシ基、芳香族基、シクロアルキル基等の炭素源となる置換基であるシラン化合物;主鎖が−Si−O−の繰り返し単位であり側鎖に炭素源となる置換基を有する化合物;主鎖が−Si−の繰り返し単位であり側鎖に炭素源となる置換基を有する化合物;主鎖が−Si−C−の繰り返し単位であり側鎖に置換基を有する化合物などが挙げられ、具体的には、例えば、tert−ブチルジメチルシラン(t−C(CHSiH)、トリヘキシルシラン((CH(CHSiH)等のアルキル基を1〜4有するアルキルシラン化合物;メトキシ基、エトキシ基等のアルコキシ基を1〜4有するアルコキシシラン化合物;側鎖に炭素源となる置換基を有するシリコーン類;側鎖に炭素源となる置換基を有するポリシラン化合物;ポリカルボシラン化合物等の有機ケイ素ポリマーなどが挙げられる。これらは、1種であっても2種以上の組合せであってもよい。これらのうち、常温で液体又は固体のものは、沸点以上に加熱され気化されて、該原料含有ガスに混合される。 The organosilicon compound related to the raw material-containing gas is a silicon compound having a carbon atom in the molecule. Examples of the organosilicon compound include a silane compound in which at least one of four substituents of Si atom is a substituent that serves as a carbon source such as an alkyl group, an alkoxy group, an aromatic group, or a cycloalkyl group; A compound in which the chain is a repeating unit of -Si-O- and has a substituent serving as a carbon source in the side chain; a compound in which the main chain is a repeating unit of -Si- and has a substituent serving as a carbon source in the side chain; A compound in which the chain is a repeating unit of —Si—C— and a substituent is present in the side chain, specifically, for example, tert-butyldimethylsilane (t—C 4 H 9 (CH 3 ) 2 SiH ), An alkylsilane compound having 1 to 4 alkyl groups such as trihexylsilane ((CH 3 (CH 2 ) 5 ) 3 SiH); an alkoxy having 1 to 4 alkoxy groups such as methoxy group and ethoxy group Examples thereof include xylsilane compounds; silicones having a substituent serving as a carbon source in the side chain; polysilane compounds having a substituent serving as a carbon source in the side chain; and organosilicon polymers such as a polycarbosilane compound. These may be one kind or a combination of two or more kinds. Of these, those that are liquid or solid at room temperature are heated to a boiling point or higher, vaporized, and mixed with the raw material-containing gas.

該原料含有ガスに係る該無機ケイ素化合物は、分子内に炭素原子を有さないケイ素化合物である。該無機ケイ素化合物としては、例えば、モノシラン(SiH)、ジシラン(Si)、クロロシラン(SiCl4−n:nは1〜4の整数)、ブロモシラン(SiBr4−n:nは1〜4の整数)が挙げられる。これらは、1種であっても2種以上の組合せであってもよい。これらのうち、常温で液体又は固体のものは、沸点以上に加熱され気化されて、該原料含有ガスに混合される。 The inorganic silicon compound related to the raw material-containing gas is a silicon compound having no carbon atom in the molecule. Examples of the inorganic silicon compound include monosilane (SiH 4 ), disilane (Si 2 H 6 ), chlorosilane (SiCl n H 4-n : n is an integer of 1 to 4), and bromosilane (SiBr n H 4-n : n is an integer of 1 to 4). These may be one kind or a combination of two or more kinds. Of these, those that are liquid or solid at room temperature are heated to a boiling point or higher, vaporized, and mixed with the raw material-containing gas.

該原料含有ガスに係る該炭化水素としては、メタン、エタン、プロパン、ブタン、エチレン、プロピレン、ブタジエン等の脂肪族炭化水素;ベンゼン、トルエン、キシレン等の単環式芳香族炭化水素;ナフタレン、アントラセン等の多環式芳香族炭化水素;天然ガス、都市ガス、液化天然ガスなどが挙げられる。これらは、1種であっても2種以上の組合せであってもよい。これらのうち、常温で液体又は固体のものは、沸点以上に加熱され気化されて、該原料含有ガスに混合される。   Examples of the hydrocarbons related to the raw material-containing gas include aliphatic hydrocarbons such as methane, ethane, propane, butane, ethylene, propylene and butadiene; monocyclic aromatic hydrocarbons such as benzene, toluene and xylene; naphthalene and anthracene And polycyclic aromatic hydrocarbons such as natural gas, city gas, and liquefied natural gas. These may be one kind or a combination of two or more kinds. Of these, those that are liquid or solid at room temperature are heated to a boiling point or higher, vaporized, and mixed with the raw material-containing gas.

該原料含有ガスに係る該不活性ガスは、原料となる有機ケイ素化合物、無機ケイ素化合物又は炭化水素を希釈するためのガスであり、これらの原料を、該外熱式反応炉に運び、該外熱式反応炉を通過させ、該外熱式反応炉で生成する熱分解物を炉の外へ運び出すキャリアーガスとして機能する。該不活性ガスとしては、水素ガスを除く、該原料の熱分解の時に安定で反応しない不活性なガスであり、例えば、窒素、アルゴン、ヘリウム、ネオン、キセノン、クリプトン等が挙げられる。   The inert gas related to the raw material-containing gas is a gas for diluting an organic silicon compound, an inorganic silicon compound or a hydrocarbon as a raw material, and these raw materials are transported to the external heating reactor, It functions as a carrier gas that passes through the thermal reactor and carries out the pyrolyzate produced in the externally heated reactor out of the furnace. The inert gas is an inert gas that is stable and does not react at the time of thermal decomposition of the raw material, excluding hydrogen gas, and examples thereof include nitrogen, argon, helium, neon, xenon, and krypton.

水素ガスをキャリアーガスに用いると、該原料の熱分解反応が抑制されるので、収率が低くなり、生産効率が悪くなる。更に、水素ガスをキャリアーガスに用いると、炭素微小球の表面が常時水素雰囲気であるため、炭化過程で脱水素反応が妨げられ、その結果、凹凸の多い炭素微小球になり、また、タール状の炭素分が残留し易くなる。   When hydrogen gas is used as the carrier gas, the thermal decomposition reaction of the raw material is suppressed, so that the yield is lowered and the production efficiency is deteriorated. Furthermore, when hydrogen gas is used as a carrier gas, the surface of the carbon microspheres is always in a hydrogen atmosphere, so the dehydrogenation reaction is hindered during the carbonization process, resulting in carbon microspheres with many irregularities, It is easy for carbon content to remain.

該原料含有ガスは、原料である該有機ケイ素化合物、該無機ケイ素化合物又は該炭化水素を含有するガスであり、該原料が不活性ガスで希釈されたガスである。   The raw material-containing gas is a gas containing the organic silicon compound, the inorganic silicon compound or the hydrocarbon as a raw material, and is a gas obtained by diluting the raw material with an inert gas.

該原料含有ガスが、該原料含有ガス(1)の場合、該原料含有ガス(1)中の該有機ケイ素化合物の濃度は、10〜50体積%、好ましくは12〜48体積%、特に好ましくは15〜45体積%である。該原料含有ガス(1)中の該有機ケイ素化合物の濃度が、上記範囲未満だと、原料含有ガスの線速度を低くする必要があり、そのため、反応管壁への熱分解物の付着が顕著となり、一方、上記範囲を超えると、均一な反応が進み難くなり、シャープな粒子分布の炭素微小球が得られ難くなるうえ、反応管内の閉塞を招くこともある。   When the raw material-containing gas is the raw material-containing gas (1), the concentration of the organosilicon compound in the raw material-containing gas (1) is 10 to 50% by volume, preferably 12 to 48% by volume, particularly preferably. 15 to 45% by volume. If the concentration of the organosilicon compound in the raw material-containing gas (1) is less than the above range, it is necessary to reduce the linear velocity of the raw material-containing gas, so that the pyrolyzate adheres significantly to the reaction tube wall. On the other hand, when the above range is exceeded, it is difficult for a uniform reaction to proceed, and it becomes difficult to obtain carbon microspheres having a sharp particle distribution, and the reaction tube may be blocked.

該原料含有ガス(1)に含有されている全原料中の炭素元素及びケイ素元素の比は、原子換算した時の炭素原子及びケイ素原子の合計に対するケイ素原子の重量比「Si/(C+Si)」で、好ましくは0.013〜0.37、特に好ましくは0.03〜0.32、更に好ましくは0.05〜0.30である。該原料含有ガス(1)に含有されている全原料中の炭素元素及びケイ素元素の比が、上記範囲内にあることにより、炭素微小球粉末中のケイ素原子の含有量を1〜30重量%とすることができるので、優れた急速充放電特性、優れた充放電サイクル特性及び高初期効率を維持したまま、容量及び入出力を高くすることができる。   The ratio of carbon element and silicon element in all raw materials contained in the raw material-containing gas (1) is the weight ratio of silicon atoms to the total of carbon atoms and silicon atoms in terms of atoms "Si / (C + Si)" And preferably from 0.013 to 0.37, particularly preferably from 0.03 to 0.32, and even more preferably from 0.05 to 0.30. When the ratio of carbon element and silicon element in all raw materials contained in the raw material-containing gas (1) is within the above range, the content of silicon atoms in the carbon microsphere powder is 1 to 30% by weight. Therefore, it is possible to increase the capacity and input / output while maintaining excellent rapid charge / discharge characteristics, excellent charge / discharge cycle characteristics, and high initial efficiency.

該原料含有ガスが、該原料含有ガス(2)の場合、該原料含有ガス(2)中の該有機ケイ素化合物及び該炭化水素の合計濃度は、10〜50体積%、好ましくは12〜48体積%、特に好ましくは15〜45体積%である。該原料含有ガス(2)中の該有機ケイ素化合物及び該炭化水素の合計濃度が、上記範囲未満だと、原料含有ガスの線速度を低くする必要があり、そのため、反応管壁への熱分解物の付着が顕著となり、一方、上記範囲を超えると、均一な反応が進み難くなり、シャープな粒子分布の炭素微小球が得られ難くなるうえ、反応管内の閉塞を招くこともある。   When the raw material-containing gas is the raw material-containing gas (2), the total concentration of the organosilicon compound and the hydrocarbon in the raw material-containing gas (2) is 10 to 50 volume%, preferably 12 to 48 volume. %, Particularly preferably 15 to 45% by volume. If the total concentration of the organosilicon compound and the hydrocarbon in the raw material-containing gas (2) is less than the above range, it is necessary to reduce the linear velocity of the raw material-containing gas. On the other hand, when the above range is exceeded, uniform reaction is difficult to proceed, and it is difficult to obtain carbon microspheres having a sharp particle distribution, and the reaction tube may be blocked.

該原料含有ガス(2)に含有されている全原料中の炭素元素及びケイ素元素の比は、原子換算した時の炭素原子及びケイ素原子の合計に対するケイ素原子の重量比「Si/(C+Si)」で、好ましくは0.013〜0.37、特に好ましくは0.03〜0.32、更に好ましくは0.05〜0.30である。該原料含有ガス(2)に含有されている全原料中の炭素元素及びケイ素元素の比が、上記範囲内にあることにより、炭素微小球粉末中のケイ素原子の含有量を1〜30重量%とすることができるので、優れた急速充放電特性、優れた充放電サイクル特性及び高初期効率を維持したまま、容量及び入出力を高くすることができる。   The ratio of carbon element and silicon element in all raw materials contained in the raw material-containing gas (2) is the weight ratio of silicon atoms to the total of carbon atoms and silicon atoms in terms of atoms "Si / (C + Si)" And preferably from 0.013 to 0.37, particularly preferably from 0.03 to 0.32, and even more preferably from 0.05 to 0.30. When the ratio of carbon element and silicon element in all raw materials contained in the raw material-containing gas (2) is within the above range, the content of silicon atoms in the carbon microsphere powder is 1 to 30% by weight. Therefore, it is possible to increase the capacity and input / output while maintaining excellent rapid charge / discharge characteristics, excellent charge / discharge cycle characteristics, and high initial efficiency.

該原料含有ガスが、該原料含有ガス(3)の場合、該原料含有ガス(3)中の該炭化水素の濃度は、10〜50体積%、好ましくは12〜48体積%、特に好ましくは10〜45体積%である。該原料含有ガス(3)中の該炭化水素の濃度が、上記範囲未満だと、原料含有ガスの線速度を低くする必要があり、そのため、反応管壁への熱分解物の付着が顕著となり、一方、上記範囲を超えると、均一な反応が進み難くなり、シャープな粒子分布の炭素微小球が得られ難くなるうえ、反応管内の閉塞を招くこともある。   When the raw material-containing gas is the raw material-containing gas (3), the concentration of the hydrocarbon in the raw material-containing gas (3) is 10 to 50% by volume, preferably 12 to 48% by volume, particularly preferably 10 ~ 45% by volume. If the concentration of the hydrocarbon in the raw material-containing gas (3) is less than the above range, it is necessary to lower the linear velocity of the raw material-containing gas, so that the pyrolysis product adheres to the reaction tube wall. On the other hand, when the above range is exceeded, it is difficult for a uniform reaction to proceed, and it becomes difficult to obtain carbon microspheres having a sharp particle distribution, and the reaction tube may be blocked.

該原料含有ガス(3)中の該無機ケイ素化合物の濃度は、1〜30体積%、好ましくは1.2〜29.5体積%、特に好ましくは1.5〜29体積%である。該原料含有ガス(3)中の該無機ケイ素化合物の濃度が、上記範囲内にあることにより、炭素微小球粉末中のケイ素原子の含有量を1〜30重量%とすることができるので、優れた急速充放電特性、優れた充放電サイクル特性及び高初期効率を維持したまま、容量及び入出力を高くすることができる。   The concentration of the inorganic silicon compound in the raw material-containing gas (3) is 1 to 30% by volume, preferably 1.2 to 29.5% by volume, particularly preferably 1.5 to 29% by volume. Since the concentration of the inorganic silicon compound in the raw material-containing gas (3) is within the above range, the content of silicon atoms in the carbon microsphere powder can be 1 to 30% by weight. The capacity and input / output can be increased while maintaining the rapid charge / discharge characteristics, excellent charge / discharge cycle characteristics, and high initial efficiency.

該原料含有ガス(3)に含有されている全原料中の炭素元素及びケイ素元素の比は、原子換算した時の炭素原子及びケイ素原子の合計に対するケイ素原子の重量比「Si/(C+Si)」で、好ましくは0.013〜0.37、特に好ましくは0.03〜0.32、更に好ましくは0.05〜0.30である。該原料含有ガス(3)に含有されている全原料中の炭素元素及びケイ素元素の比が、上記範囲内にあることにより、炭素微小球粉末中のSi原子の含有量を0.5〜30重量%とすることができるので、リチウムイオンの高い吸脱着速度、優れた充放電サイクル特性及び高初期効率を維持したまま、容量及び入出力を高くすることができる。   The ratio of carbon element and silicon element in all raw materials contained in the raw material-containing gas (3) is the weight ratio of silicon atoms to the total of carbon atoms and silicon atoms in terms of atoms "Si / (C + Si)" And preferably from 0.013 to 0.37, particularly preferably from 0.03 to 0.32, and even more preferably from 0.05 to 0.30. When the ratio of carbon element and silicon element in all raw materials contained in the raw material-containing gas (3) is within the above range, the content of Si atoms in the carbon microsphere powder is 0.5-30. Therefore, the capacity and input / output can be increased while maintaining high lithium ion adsorption / desorption rate, excellent charge / discharge cycle characteristics and high initial efficiency.

該原料含有ガスが、該原料含有ガス(4)の場合、該原料含有ガス(4)中の該有機ケイ素化合物の濃度は、10〜50体積%、好ましくは12〜48体積%、特に好ましくは15〜45体積%である。該原料含有ガス(4)中の該有機ケイ素化合物の濃度が、上記範囲未満だと、原料含有ガスの線速度を低くする必要があり、そのため、反応管壁への熱分解物の付着が顕著となり、一方、上記範囲を超えると、均一な反応が進み難くなり、シャープな粒子分布の炭素微小球が得られ難くなるうえ、反応管内の閉塞を招くこともある。   When the raw material-containing gas is the raw material-containing gas (4), the concentration of the organosilicon compound in the raw material-containing gas (4) is 10 to 50% by volume, preferably 12 to 48% by volume, particularly preferably. 15 to 45% by volume. If the concentration of the organosilicon compound in the raw material-containing gas (4) is less than the above range, it is necessary to reduce the linear velocity of the raw material-containing gas, so that the pyrolysis product adheres significantly to the reaction tube wall. On the other hand, when the above range is exceeded, it is difficult for a uniform reaction to proceed, and it becomes difficult to obtain carbon microspheres having a sharp particle distribution, and the reaction tube may be blocked.

該原料含有ガス(4)中の該無機ケイ素化合物の濃度は、1〜30体積%、好ましくは1.2〜29.5体積%、特に好ましくは1.5〜29体積%である。該原料含有ガス(4)中の該無機ケイ素化合物の濃度が、上記範囲内にあることにより、炭素微小球粉末中のケイ素原子の含有量を1〜30重量%とすることができるので、優れた急速充放電特性、優れた充放電サイクル特性及び高初期効率を維持したまま、容量及び入出力を高くすることができる。   The concentration of the inorganic silicon compound in the raw material-containing gas (4) is 1 to 30% by volume, preferably 1.2 to 29.5% by volume, particularly preferably 1.5 to 29% by volume. Since the concentration of the inorganic silicon compound in the raw material-containing gas (4) is within the above range, the content of silicon atoms in the carbon microsphere powder can be 1 to 30% by weight. The capacity and input / output can be increased while maintaining the rapid charge / discharge characteristics, excellent charge / discharge cycle characteristics, and high initial efficiency.

該原料含有ガス(4)に含有されている全原料中の炭素元素及びケイ素元素の比は、原子換算した時の炭素原子及びケイ素原子の合計に対するケイ素原子の重量比「Si/(C+Si)」で、好ましくは0.013〜0.37、特に好ましくは0.03〜0.32、更に好ましくは0.05〜0.30である。該原料含有ガス(4)に含有されている全原料中の炭素元素及びケイ素元素の比が、上記範囲内にあることにより、炭素微小球粉末中のケイ素原子の含有量を1〜30重量%とすることができるので、優れた急速充放電特性、優れた充放電サイクル特性及び高初期効率を維持したまま、容量及び入出力を高くすることができる。   The ratio of carbon element and silicon element in all the raw materials contained in the raw material-containing gas (4) is the weight ratio of silicon atoms to the total of carbon atoms and silicon atoms in terms of atoms "Si / (C + Si)" And preferably from 0.013 to 0.37, particularly preferably from 0.03 to 0.32, and even more preferably from 0.05 to 0.30. When the ratio of carbon element and silicon element in all raw materials contained in the raw material-containing gas (4) is within the above range, the content of silicon atoms in the carbon microsphere powder is 1 to 30% by weight. Therefore, it is possible to increase the capacity and input / output while maintaining excellent rapid charge / discharge characteristics, excellent charge / discharge cycle characteristics, and high initial efficiency.

該原料含有ガスが、該原料含有ガス(5)の場合、該原料含有ガス(5)中の該有機ケイ素化合物及び該炭化水素の合計濃度は、10〜50体積%、好ましくは12〜48体積%、特に好ましくは15〜45体積%である。該原料含有ガス(5)中の該有機ケイ素化合物及び該炭化水素の合計濃度が、上記範囲未満だと、原料含有ガスの線速度を低くする必要があり、そのため、反応管壁への熱分解物の付着が顕著となり、一方、上記範囲を超えると、均一な反応が進み難くなり、シャープな粒子分布の炭素微小球が得られ難くなるうえ、反応管内の閉塞を招くこともある。   When the raw material-containing gas is the raw material-containing gas (5), the total concentration of the organosilicon compound and the hydrocarbon in the raw material-containing gas (5) is 10 to 50 volume%, preferably 12 to 48 volume. %, Particularly preferably 15 to 45% by volume. If the total concentration of the organosilicon compound and the hydrocarbon in the raw material-containing gas (5) is less than the above range, it is necessary to reduce the linear velocity of the raw material-containing gas. On the other hand, when the above range is exceeded, uniform reaction is difficult to proceed, and it is difficult to obtain carbon microspheres having a sharp particle distribution, and the reaction tube may be blocked.

該原料含有ガス(5)中の該無機ケイ素化合物の濃度は、1〜30体積%、好ましくは1.2〜29.5体積%、特に好ましくは1.5〜29体積%である。該原料含有ガス(5)中の該無機ケイ素化合物の濃度が、上記範囲内にあることにより、炭素微小球粉末中のケイ素原子の含有量を1〜30重量%とすることができるので、優れた急速充放電特性、優れた充放電サイクル特性及び高初期効率を維持したまま、容量及び入出力を高くすることができる。   The concentration of the inorganic silicon compound in the raw material-containing gas (5) is 1 to 30% by volume, preferably 1.2 to 29.5% by volume, particularly preferably 1.5 to 29% by volume. Since the concentration of the inorganic silicon compound in the raw material-containing gas (5) is within the above range, the content of silicon atoms in the carbon microsphere powder can be 1 to 30% by weight. The capacity and input / output can be increased while maintaining the rapid charge / discharge characteristics, excellent charge / discharge cycle characteristics, and high initial efficiency.

該原料含有ガス(5)に含有されている全原料中の炭素元素及びケイ素元素の比は、原子換算した時の炭素原子及びケイ素原子の合計に対するケイ素原子の重量比「Si/(C+Si)」で、好ましくは0.013〜0.37、特に好ましくは0.03〜0.32、更に好ましくは0.05〜0.30である。該原料含有ガス(5)に含有されている全原料中の炭素元素及びケイ素元素の比が、上記範囲内にあることにより、炭素微小球粉末中のケイ素原子の含有量を0.5〜30重量%とすることができるので、優れた急速充放電特性、優れた充放電サイクル特性及び高初期効率を維持したまま、容量及び入出力を高くすることができる。   The ratio of carbon element and silicon element in all raw materials contained in the raw material-containing gas (5) is the weight ratio of silicon atoms to the total of carbon atoms and silicon atoms in terms of atoms "Si / (C + Si)" And preferably from 0.013 to 0.37, particularly preferably from 0.03 to 0.32, and even more preferably from 0.05 to 0.30. When the ratio of carbon element and silicon element in all raw materials contained in the raw material-containing gas (5) is within the above range, the content of silicon atoms in the carbon microsphere powder is 0.5-30. Therefore, the capacity and input / output can be increased while maintaining excellent rapid charge / discharge characteristics, excellent charge / discharge cycle characteristics and high initial efficiency.

本発明の炭素微小球粉末の製造方法において、該原料含有ガスを、該外熱式反応炉に導入し、該外熱式反応炉を通過させる際の該原料含有ガスの線速度は、0.02〜4.0m/秒、好ましくは0.04〜2.0m/秒である。該原料含有ガスの線速度が上記範囲未満だと、反応管壁への熱分解物が付着が顕著となり、経路閉塞を引き起こし易くなり、製造困難となる。一方、該原料含有ガスの線速度が上記範囲を超えると、該原料含有ガスの流れの均一性が低くなり、粒度分布が幅広くなるうえ、該原料含有ガスの充分な滞留時間が得られず、熱分解反応又は炭化反応が充分に進行しなくなる。   In the method for producing carbon microsphere powder of the present invention, the linear velocity of the raw material-containing gas when the raw material-containing gas is introduced into the externally heated reactor and passed through the externally heated reactor is 0. It is 02 to 4.0 m / sec, preferably 0.04 to 2.0 m / sec. When the linear velocity of the raw material-containing gas is less than the above range, thermal decomposition products on the reaction tube wall are remarkably attached, and the passage is likely to be clogged, resulting in difficulty in production. On the other hand, when the linear velocity of the raw material-containing gas exceeds the above range, the uniformity of the flow of the raw material-containing gas becomes low, the particle size distribution becomes wide, and sufficient residence time of the raw material-containing gas cannot be obtained, The thermal decomposition reaction or carbonization reaction does not proceed sufficiently.

本発明の炭素微小球粉末の製造方法において、該外熱式反応炉内の温度は、1000〜1400℃、好ましくは1050〜1350℃である。該外熱式反応炉内の温度が上記範囲未満だと、原料が炭化せずに炉外に出てしまい、炭素微小球が得られない。一方、該外熱式反応炉内の温度が上記範囲を超えると、炭化反応が速くなるので微粒となり易く、シャープな粒子分布が得られ難くなり、また、熱分解反応が促進され過ぎて、中間生成粒子が相互衝突する機会が多くなり過ぎるので、粒子の凝集が進み、粒度分布がブロード化する。また、該外熱式反応炉内の温度は、リチウムイオンを吸脱着しないSiCの生成を抑制し易くなる点で、1000〜1200℃が好ましい。   In the method for producing carbon microsphere powder of the present invention, the temperature in the externally heated reactor is 1000 to 1400 ° C, preferably 1050 to 1350 ° C. When the temperature in the external heating reactor is less than the above range, the raw material is not carbonized and goes out of the furnace, and carbon microspheres cannot be obtained. On the other hand, if the temperature in the externally heated reactor exceeds the above range, the carbonization reaction becomes faster, so it tends to become fine particles, making it difficult to obtain a sharp particle distribution, and the thermal decomposition reaction is promoted too much, so that Since there are too many opportunities for the produced particles to collide with each other, the aggregation of the particles proceeds and the particle size distribution becomes broad. Moreover, 1000-1200 degreeC is preferable at the point which becomes easy to suppress the production | generation of SiC which does not adsorb / desorb lithium ion as the temperature in this external heating type reactor.

本発明の炭素微小球粉末の製造方法では、該原料含有ガスを該前段原料含有ガス導入部位から導入しつつ、該原料含有ガスを後段原料含有ガス導入部位からも導入することができる。なお、図1中、符号31で示す部位が、該後段原料含有ガス導入部である。つまり、該原料含有ガスが、該前段原料含有ガス導入部位から導入され、該外熱式反応炉内を通過して、該外熱式反応炉から排出されるまでの間の該原料含有ガスの流れの途中に、更に該原料含有ガスを導入する。そして、本発明の炭素微小球粉末の製造方法では、該原料含有ガスを該前段原料含有ガス導入部位から導入しつつ、該原料含有ガスを該後段原料含有ガス導入部位からも導入することにより、450nmを超える炭素微小球粉末を得易くなる。該前段原料含有ガス導入部から導入された該原料含有ガス中の該原料は、熱分解及び炭化により、算術平均一次粒子径が150〜450nmの炭素微小球粉末になり易く、且つ、該外熱式反応炉の後段部分では、炭素微小球の生成に伴い、該原料の濃度が希薄になるので、粒成長がし難い条件になっている。そこで、該原料の濃度が希薄となる後段部分に、該原料含有ガスを導入することで、粒成長をさせることができる。なお、本発明で、該後段原料含有ガス導入部位とは、該前段原料含有ガス導入部位から導入され、該外熱式反応炉内を通過して、該外熱式反応炉から排出されるまでの間の該原料含有ガスの流れの途中であり、該前段原料含有ガス導入部位より後ろであればよく、該後段原料含有ガス導入部位の位置は、該原料含有ガスの線速度、該原料含有ガス中の各原料の濃度、該外熱式反応炉内の温度等の条件により適宜選択される。例えば、該後段原料含有ガス導入部位の位置は、該外熱式反応炉の加熱帯の後半部分にあってもよい。また、該外熱式反応炉内の加熱帯よりも後段部分でも、該原料が熱分解及び炭化するのに充分な温度になっているので、該後段原料含有ガス導入部位の位置は、該外熱式反応炉内の加熱帯よりも後段部分であってもよい。   In the method for producing the carbon microsphere powder of the present invention, the raw material-containing gas can be introduced also from the subsequent raw material-containing gas introduction site while the raw material-containing gas is introduced from the preceding raw material-containing gas introduction site. In addition, the site | part shown with the code | symbol 31 in FIG. 1 is this back | latter stage raw material containing gas introduction part. That is, the raw material-containing gas is introduced from the upstream raw material-containing gas introduction site, passed through the external heating reactor, and discharged from the external heating reactor. The raw material-containing gas is further introduced in the middle of the flow. And, in the method for producing the carbon microsphere powder of the present invention, while introducing the raw material-containing gas from the preceding raw material-containing gas introduction site, by introducing the raw material-containing gas also from the subsequent raw material-containing gas introduction site, It becomes easy to obtain carbon microsphere powders exceeding 450 nm. The raw material in the raw material-containing gas introduced from the former raw material-containing gas introduction part is likely to become carbon microsphere powder having an arithmetic average primary particle diameter of 150 to 450 nm due to thermal decomposition and carbonization, and the external heat In the latter part of the reaction furnace, the concentration of the raw material becomes dilute with the generation of carbon microspheres, so that it is difficult for the grains to grow. Therefore, grain growth can be achieved by introducing the raw material-containing gas into the subsequent stage where the concentration of the raw material is dilute. In the present invention, the latter-stage raw material-containing gas introduction site is introduced from the previous-stage raw material-containing gas introduction site, passes through the external heating reactor, and is discharged from the external heating reactor. The raw material containing gas is in the middle of the flow and may be behind the preceding raw material containing gas introduction site, and the position of the latter raw material containing gas introduction site is the linear velocity of the raw material containing gas, the raw material containing It is appropriately selected depending on conditions such as the concentration of each raw material in the gas and the temperature in the external heating reactor. For example, the position of the latter-stage raw material-containing gas introduction site may be in the latter half of the heating zone of the external heating reactor. Further, since the raw material is at a temperature sufficient for thermal decomposition and carbonization in the latter part of the heating zone in the external heating reactor, the position of the latter raw material-containing gas introduction site is The latter part may be sufficient as compared with the heating zone in the thermal reactor.

該後段原料含有ガス導入部位から導入する該原料含有ガスは、該原料含有ガス(1)、該原料含有ガス(2)、該原料含有ガス(3)、該原料含有ガス(4)又は該原料含有ガス(5)であり、該前段原料含有ガス導入部位から導入する該原料含有ガスと同一であってもよく、あるいは、該前段原料含有ガス導入部位から導入する該原料含有ガスと原料の組合せ又は原料の濃度が異なっていてもよい。   The raw material containing gas introduced from the subsequent raw material containing gas introduction site is the raw material containing gas (1), the raw material containing gas (2), the raw material containing gas (3), the raw material containing gas (4) or the raw material. The gas containing gas (5), which may be the same as the raw material containing gas introduced from the preceding raw material containing gas introduction site, or a combination of the raw material containing gas and the raw material introduced from the preceding raw material containing gas introduction site Or the density | concentration of a raw material may differ.

該後段原料含有ガス導入部位から導入する該原料含有ガスの導入量は、該前段原料含有ガス導入部位から導入する該原料含有ガスの導入量の50〜100体積%であり、炭素微小球粉末の一粒子径により、適宜選択される。   The introduction amount of the raw material containing gas introduced from the subsequent raw material containing gas introduction site is 50 to 100% by volume of the introduction amount of the raw material containing gas introduced from the previous raw material containing gas introduction site. It is appropriately selected depending on the particle size.

そして、本発明の炭素微小球粉末の製造方法では、該原料含有ガスを該外熱式反応炉を通過させることにより、該原料含有ガス中の該原料は、熱分解及び炭化して、該熱分解物となる。   In the method for producing carbon microsphere powder of the present invention, the raw material-containing gas is pyrolyzed and carbonized by passing the raw material-containing gas through the external heating reactor, and the heat It becomes a decomposition product.

本発明の炭素微小球粉末の製造方法では、次いで、生成した該熱分解物を、該不活性ガス及び分解ガスと共に、該外熱式反応炉の外へ排出して、該冷却領域に移送して、冷却する。該外熱式反応炉の外に移送された該熱分解物、該不活性ガス及び該分解ガスを、冷却する方法としては、特に制限されない。   In the carbon microsphere powder manufacturing method of the present invention, the generated pyrolyzate is then discharged out of the externally heated reactor together with the inert gas and cracked gas and transferred to the cooling region. And cool. The method for cooling the pyrolyzate, the inert gas and the cracked gas transferred to the outside heat reactor is not particularly limited.

本発明の炭素微小球粉末の製造方法では、次いで、該熱分解物を捕集して、リチウムイオン二次電池負極材用の炭素微小球粉末を得る。該熱分解物を捕集する方法としては、特に制限されない。   In the method for producing carbon microsphere powder of the present invention, the pyrolyzate is then collected to obtain carbon microsphere powder for a lithium ion secondary battery negative electrode material. The method for collecting the pyrolyzate is not particularly limited.

このように、本発明の炭素微小球粉末の製造方法を行うことにより、リチウムイオン二次電池負極材用の炭素微小球粉末、すなわち、本発明のリチウムイオン二次電池負極材用の炭素微小球粉末を得ることができる。   Thus, by performing the method for producing the carbon microsphere powder of the present invention, the carbon microsphere powder for the lithium ion secondary battery negative electrode material, that is, the carbon microsphere for the lithium ion secondary battery negative electrode material of the present invention. A powder can be obtained.

本発明のリチウムイオン二次電池負極材用の炭素微小球粉末(以下、本発明の炭素微小球粉末とも記載する。)は、ケイ素の含有量がケイ素原子換算で1〜30重量%、電子顕微鏡により測定した算術平均一次粒子径dnが150〜1000nm、揮発分Vmが5.0%以下、ディスクセントリフュージ装置(DCF)により測定したストークスモード径Dstに対するその半値幅ΔDstの比(半値幅ΔDst/ストークスモード径Dst)が0.40〜1.10、X線回折法により測定した結晶子格子面間隔d(002)が0.370nm以下の炭素微小球であるリチウムイオン二次電池負極材用の炭素微小球粉末である。   The carbon microsphere powder for a negative electrode material of a lithium ion secondary battery of the present invention (hereinafter also referred to as the carbon microsphere powder of the present invention) has a silicon content of 1 to 30% by weight in terms of silicon atoms, an electron microscope The arithmetic average primary particle diameter dn measured by the above is 150 to 1000 nm, the volatile content Vm is 5.0% or less, and the ratio of the half-value width ΔDst to the Stokes mode diameter Dst measured by the disk centrifuging device (DCF) Carbon for a lithium ion secondary battery negative electrode material, which is a carbon microsphere having a mode diameter Dst) of 0.40 to 1.10 and a crystallite lattice spacing d (002) of 0.370 nm or less measured by X-ray diffraction method. It is a microsphere powder.

本発明の炭素微小球粉末中のケイ素の含有量は、ケイ素原子換算で1〜30重量%、好ましくは2〜28重量%、特に好ましくは3〜27重量%である。炭素微小球粉末中のケイ素の含有量が、上記範囲未満だと、電池容量が低くなり、一方、上記範囲を超えると、サイクル特性が悪くなる。   The silicon content in the carbon microsphere powder of the present invention is 1 to 30% by weight, preferably 2 to 28% by weight, particularly preferably 3 to 27% by weight in terms of silicon atoms. When the content of silicon in the carbon microsphere powder is less than the above range, the battery capacity is lowered, while when it exceeds the above range, the cycle characteristics are deteriorated.

本発明の炭素微小球粉末の電子顕微鏡により測定した算術平均一次粒子径dnは、150〜1000nm、好ましくは200〜900nmである。炭素微小球粉末の電子顕微鏡により測定した算術平均一次粒子径が、上記範囲未満だと、比表面積が大き過ぎるため、電解液に対して活性になり、その結果電池の初期効率が低くなり、また、充放電のサイクルを繰り返すにつれて炭素六角網面の破壊が進み、サイクル特性が悪くなる、すなわち、繰り返し充放電した時の電池容量の維持率が低くなる。一方、炭素微小球粉末の電子顕微鏡により測定した算術平均一次粒子径が、上記範囲を超えると、粒子径が大き過ぎるために、リチウムイオンの拡散パスが長くなり、リチウムイオンのドープ及びアンドープ速度が遅くなる、すなわち、急速充放電特性が得られなくなる。なお、該算術平均一次粒子径dnは、以下の操作で求められる。先ず、超音波分散器を用いて周波数28kHzで30秒間の条件で、炭素微小球の試料をクロロホルムに分散させ、次いで、分散試料をカーボン支持膜に固定する(例えば、「粉体物性図説」粉体工学研究会編、P68(C)、”水面膜法”に記載されている。)。これを、電子顕微鏡で直接倍率10000倍、総合倍率100000倍に撮影し、得られた写真から、ランダムに1000個の粒子直径を計測し、14nmごとに区分して作成したヒストグラムから、算術平均一次粒子径を求める。   The arithmetic average primary particle diameter dn measured by the electron microscope of the carbon microsphere powder of the present invention is 150 to 1000 nm, preferably 200 to 900 nm. When the arithmetic average primary particle diameter of the carbon microsphere powder measured by an electron microscope is less than the above range, the specific surface area is too large, so that it becomes active against the electrolyte, resulting in low initial efficiency of the battery. As the charging / discharging cycle is repeated, the carbon hexagonal network surface is further destroyed, and the cycle characteristics are deteriorated. That is, the battery capacity retention rate when repeatedly charging / discharging is lowered. On the other hand, when the arithmetic average primary particle diameter measured by an electron microscope of the carbon microsphere powder exceeds the above range, the particle diameter is too large, so that the lithium ion diffusion path becomes longer, and the lithium ion doping and undoping speeds are increased. Slow, that is, rapid charge / discharge characteristics cannot be obtained. The arithmetic average primary particle diameter dn is obtained by the following operation. First, a sample of carbon microspheres is dispersed in chloroform using an ultrasonic disperser at a frequency of 28 kHz for 30 seconds, and then the dispersed sample is fixed to a carbon support film (for example, “Powder Physical Properties” powder) (It is described in the body engineering study group edition, P68 (C), "water surface membrane method"). This was taken directly with an electron microscope at a magnification of 10,000 times and a total magnification of 100,000 times. From the obtained photo, 1000 particle diameters were randomly measured, and the histogram was created by dividing each 14 nm, and the arithmetic average primary Obtain the particle size.

本発明の炭素微小球粉末の揮発分Vmは、5.0%以下、好ましくは4.5%以下である。炭素微小球の表面に存在するタール状物質や表面官能基は、表面の活性サイトを埋めることになるので、該タール状物質や該表面官能基はできるだけ少ないことが必要である。特に、原料の未分解物である該タール状物質はできるだけ排除されることが必要である。つまり、該タール状物質や該表面官能基が多過ぎると、炭素微小球表面の格子欠陥のような活性サイトが埋められ、リチウムイオンのドープ及びアンドープが阻止されるので、リチウムイオンの吸脱着速度が低くなる。そのため、該炭素微小球粉末の揮発分Vmを、上記範囲と規定する。なお、本発明において、炭素微小球粉末の揮発分Vmは、JIS K6221−1986「ゴム用カーボンブラックの試験方法」により測定される。   The volatile matter Vm of the carbon microsphere powder of the present invention is 5.0% or less, preferably 4.5% or less. Since the tar-like substances and surface functional groups present on the surface of the carbon microspheres fill the active sites on the surface, it is necessary that the tar-like substances and the surface functional groups be as few as possible. In particular, the tar-like substance that is an undecomposed product of the raw material needs to be eliminated as much as possible. In other words, if there are too many tar-like substances or surface functional groups, active sites such as lattice defects on the surface of the carbon microspheres are filled, and lithium ion doping and undoping are prevented, so the lithium ion adsorption / desorption rate Becomes lower. Therefore, the volatile matter Vm of the carbon microsphere powder is defined as the above range. In the present invention, the volatile matter Vm of the carbon microsphere powder is measured by JIS K6221-1986 “Testing method of carbon black for rubber”.

本発明の炭素微小球粉末のディスクセントリフュージ装置(DCF)により測定したストークスモード径Dstに対する該ストークスモード径Dstの半値幅ΔDstの比(ストークスモード径Dstの半値幅ΔDst/ストークスモード径Dst)は、0.40〜1.10、好ましくは0.45〜1.05である。一次粒子凝集体の大きさの分布が広過ぎると、負極内を電流が流れる際に、局所的な電流集中が起こるので、一次粒子凝集体の大きさの分布が狭いことが必要となる。一方、一次粒子凝集体の大きさの分布が狭過ぎると、電極形成時の塗工性が低くなる。そのため、該ストークスモード径Dstに対するその半値幅ΔDstの比を、上記範囲と規定する。   The ratio of the half-value width ΔDst of the Stokes mode diameter Dst to the Stokes mode diameter Dst measured by the disc centrifuging device (DCF) of the carbon microsphere powder of the present invention (half-value width ΔDst of the Stokes mode diameter Dst / Stokes mode diameter Dst) is: 0.40 to 1.10, preferably 0.45 to 1.05. If the size distribution of the primary particle aggregates is too wide, local current concentration occurs when a current flows in the negative electrode. Therefore, it is necessary that the size distribution of the primary particle aggregates is narrow. On the other hand, if the size distribution of the primary particle aggregates is too narrow, the coating property at the time of electrode formation is lowered. Therefore, the ratio of the half width ΔDst to the Stokes mode diameter Dst is defined as the above range.

また、本発明の炭素微小球粉末のディスクセントリフュージ装置(DCF)により測定したストークスモード径Dstは、150〜1500nmが好ましい。   Moreover, the Stokes mode diameter Dst measured by the disc centrifuging device (DCF) of the carbon microsphere powder of the present invention is preferably 150 to 1500 nm.

なお、本発明において、ストークスモード径Dst及びストークスモード径Dstの半値幅ΔDstは、以下の操作によって測定される。先ず、乾燥した炭素微小球を少量の界面活性剤を含む20容量%エタノール水溶液と混合して、炭素微小球が0.1kg/mの分散液を作成し、これを超音波で充分に分散させて炭素微小球分散液とする。次いで、ディスクセントリフュージ装置(英国JoyesLobel社製)を100s−1の回転数に設定し、スピン液(2重量%グリセリン水溶液、25℃)を0.015dm加えた後、0.001dmのバッファー液(20容量%エタノール水溶液、25℃)を注入する。次いで、温度25℃の炭素微小球分散液0.0005dmを注射器で加えた後、遠心沈降を開始し、同時に記録計を作動させて図2に示す分布曲線(横軸:炭素分散液試料を加えてからの経過時間、縦軸:炭素微小球分散液の遠心沈降に伴い変化した特定点で吸光度)を作成する。この分布曲線より、各時間Tでの各吸光度を読み取り、次式(数1): In the present invention, the Stokes mode diameter Dst and the half-value width ΔDst of the Stokes mode diameter Dst are measured by the following operation. First, dry carbon microspheres are mixed with a 20 volume% ethanol aqueous solution containing a small amount of a surfactant to prepare a dispersion of carbon microspheres of 0.1 kg / m 3 , and this is sufficiently dispersed with ultrasound. To obtain a carbon microsphere dispersion. Then, set the disk centrifuge apparatus (manufactured by UK JoyesLobel Co.) to the rotational speed of 100s -1, spin solution (2 wt% glycerine aqueous solution, 25 ° C.) after the addition 0.015Dm 3 a, buffer solution of 0.001Dm 3 (20 volume% ethanol aqueous solution, 25 ° C.) is injected. Next, after adding 0.0005 dm 3 of carbon microsphere dispersion at a temperature of 25 ° C. with a syringe, centrifugal sedimentation was started, and at the same time, the recorder was operated to show the distribution curve shown in FIG. 2 (horizontal axis: carbon dispersion sample Elapsed time after addition, vertical axis: absorbance at a specific point changed with centrifugal sedimentation of carbon microsphere dispersion. From this distribution curve, each absorbance at each time T is read, and the following equation (Equation 1):


(数1において、ηはスピン液の粘度(0.935×10−3Pa・s)、Nはディスク回転スピード(100s−1)、rは分散液注入点の半径(0.0456m)、rは吸光度測定点までの半径(0.0482m)、ρCBは炭素微小球の密度(kg/m)、ρはスピン液の密度(1.00178kg/m)である。)
から、ストークス相当径Dst(nm)を求める。次いで、得られた該ストークス相当径Dstと吸光度の分布曲線(横軸:ストークス相当径Dst、縦軸:吸光度)を作成し(図3)、該分布曲線における最大頻度のストークス相当径をストークスモード径Dst(nm)とする。
(In Equation 1, η is the viscosity of the spin liquid (0.935 × 10 −3 Pa · s), N is the disk rotation speed (100 s −1 ), r 1 is the radius of the dispersion injection point (0.0456 m), r 2 is the radius to the absorbance measuring point (0.0482m), ρ CB is the density of the carbon microspheres (kg / m 3), ρ 1 is the density of the spin fluid (1.00178kg / m 3).)
From this, the Stokes equivalent diameter Dst (nm) is obtained. Next, the obtained Stokes equivalent diameter Dst and absorbance distribution curve (horizontal axis: Stokes equivalent diameter Dst, vertical axis: absorbance) are prepared (FIG. 3), and the maximum frequency of the Stokes equivalent diameter in the distribution curve is represented by the Stokes mode. The diameter is Dst (nm).

このようにして得られたストークス相当径と吸光度の分布曲線(図3)におけるストークスモード径Dstに対し50%の頻度が得られる大小2点のストークス相当径の差を、ストークスモード径Dstの半値幅ΔDst(nm)とする。   The difference between two large and small Stokes equivalent diameters at which a frequency of 50% is obtained with respect to the Stokes equivalent diameter and the absorbance distribution curve (FIG. 3) obtained in this manner is half the Stokes mode diameter Dst. The value width is ΔDst (nm).

本発明の炭素微小球粉末のX線回折法により測定した結晶子格子面間隔d(002)は、0.370nm以下、好ましくは0.340〜0.368nmである。結晶子格子面間隔d(002)が0.370nmを超える結晶性状では、非晶質の度合が高いために、リチウムイオンがドープされるサイトが著しく低くなり、炭素六角網面層間にリチウムイオンを充分な量挿入することができなくなるので、電池容量が低くなる。なお、X線回折法による測定であるが、ターゲットをCu(Kα線)グラファイトモノクロメーター、スリットを発散スリット=1度、受光スリット=0.1mm、散乱スリット=1度の条件として、学振法により結晶子格子面間隔d(002)を求める。   The crystallite lattice spacing d (002) measured by the X-ray diffraction method of the carbon microsphere powder of the present invention is 0.370 nm or less, preferably 0.340 to 0.368 nm. When the crystallite lattice spacing d (002) exceeds 0.370 nm, the degree of amorphousness is high, so the sites where lithium ions are doped become extremely low, and lithium ions are intercalated between the carbon hexagonal network layers. Since a sufficient amount cannot be inserted, the battery capacity is lowered. Although the measurement is based on the X-ray diffraction method, the Gakushin method is performed under the condition that the target is a Cu (Kα ray) graphite monochromator, the slit is a diverging slit = 1 degree, the light receiving slit is 0.1 mm, and the scattering slit is 1 degree. To obtain a crystallite lattice spacing d (002).

本発明の炭素微小球粉末は、球体相互の凝集が極めて少ない、実質的に単一球状形態を有し、粒度分布がシャープである。また、本発明の炭素微小球粉末は、急速充放電特性に優れるので、坂道発進等の短時間での高出力が要求されるハイブリッドカーや電気自動車などの動力用電源の負極材として好適に使用される。また、本発明の炭素微小球粉末は、黒鉛化度が低く、黒鉛結晶の六角網面構造がさほど発達していない難黒鉛化炭素材料であることから、サイクル特性に優れ、高寿命である。   The carbon microsphere powder of the present invention has a substantially single spherical form with very little aggregation between spheres and a sharp particle size distribution. In addition, the carbon microsphere powder of the present invention is excellent in rapid charge / discharge characteristics, and is therefore suitably used as a negative electrode material for power sources of power sources such as hybrid cars and electric vehicles that require high output in a short time such as starting on a slope. Is done. In addition, the carbon microsphere powder of the present invention is a non-graphitizable carbon material having a low degree of graphitization and a not-developed hexagonal network structure of graphite crystals, and therefore has excellent cycle characteristics and a long life.

本発明の炭素微小球粉末をリチウムイオン二次電池の負極材として用いることにより、急速充放電特性に優れており、充放電サイクル特性に優れており、初期効率が高く、且つ、高容量及び高入出力であるリチウムイオン二次電池を提供できる。   By using the carbon microsphere powder of the present invention as a negative electrode material for a lithium ion secondary battery, it has excellent rapid charge / discharge characteristics, excellent charge / discharge cycle characteristics, high initial efficiency, high capacity and high capacity. A lithium ion secondary battery which is an input / output can be provided.

次に、実施例を挙げて本発明を更に具体的に説明するが、これは単に例示であって、本発明を制限するものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated more concretely, this is only an illustration and does not restrict | limit this invention.

(実施例1〜6、比較例1〜3)
(炭素微小球の製造)
内径145mm、長さ1500mmの外熱式反応炉に、表1に示す原料含有ガスの線速度及び外熱式反応炉内の温度で、表1に示す原料及び濃度の原料含有ガスを導入し通過させて、該外熱式反応炉から排出される熱分解物を冷却し、捕集し、炭素微小球粉末を得た。得られた炭素微小球粉末について、ケイ素元素の原子換算の含有量、電子顕微鏡により測定した算術平均一次粒子径dn、揮発分Vm、ディスクセントリフュージ装置(DCF)により測定したストークスモード径Dst及びその半値幅ΔDst、半値幅ΔDst/ストークスモード径Dst、X線回折法により測定した結晶子格子面間隔d(002)の測定結果を表1に示す。
・ケイ素元素の原子換算の含有量
炭素微小球5gを2600℃、1時間、アルゴンガス中で保持した後、その重量減少量から算出した。
(Examples 1-6, Comparative Examples 1-3)
(Manufacture of carbon microspheres)
Introducing and passing the raw material-containing gas of the raw material and concentration shown in Table 1 into an externally heated reactor having an inner diameter of 145 mm and a length of 1500 mm at the linear velocity of the raw material-containing gas shown in Table 1 and the temperature in the external heat reactor. The pyrolyzate discharged from the external heating reactor was cooled and collected to obtain carbon microsphere powder. About the obtained carbon microsphere powder, the atomic equivalent content of silicon element, the arithmetic average primary particle diameter dn measured by an electron microscope, the volatile matter Vm, the Stokes mode diameter Dst measured by a disk centrifuging device (DCF) and its half Table 1 shows the measurement results of the value width ΔDst, the half-value width ΔDst / Stokes mode diameter Dst, and the crystallite lattice spacing d (002) measured by the X-ray diffraction method.
-Content in terms of atoms of silicon element After 5 g of carbon microspheres were held in argon gas at 2600 ° C for 1 hour, the amount was calculated from the weight loss.

(性能評価)
<三極式のテストセル>
炭素微小球粉末に、N−メチル−2−ピロリドンに溶解したポリフッ化ビニリデン(PVDF)を固形分で10重量%加え、混練して炭素ペーストを作製し、この炭素ペーストを厚さ18μmの圧延銅箔に塗布し、乾燥した後、ロールプレスでプレスした。このシートから直径約16mmの円形に切り出して負極とし、金属リチウムを正極及び参照極とする三極式のテストセルを作製し、初期効率、可逆容量、レート特性を測定した。その結果を表1に示す。
(Performance evaluation)
<Tripolar test cell>
Polyvinylidene fluoride (PVDF) dissolved in N-methyl-2-pyrrolidone is added to carbon microsphere powder in a solid content of 10% by weight and kneaded to prepare a carbon paste. The carbon paste is rolled copper having a thickness of 18 μm. After apply | coating to foil and drying, it pressed with the roll press. A three-electrode test cell having a negative electrode obtained by cutting out a sheet having a diameter of about 16 mm from this sheet and using metallic lithium as a positive electrode and a reference electrode was measured, and initial efficiency, reversible capacity, and rate characteristics were measured. The results are shown in Table 1.

・初期効率
リチウム参照極に対して0.002Vまで一定電流で充電(リチウムイオンをドープ)した後、1.2Vまで一定電流で放電(リチウムイオンをアンドープ)させ、初回の充電電気量と放電電気量を測定して、次式:
初期効率(%)=(初回の放電電気量/初回の充電電気量)×100
から、初期効率を求めた。
-Initial efficiency Charge to a lithium reference electrode at a constant current up to 0.002V (doped with lithium ions), then discharge at a constant current up to 1.2V (undoped lithium ions), and the initial charge amount and discharge electricity Measure the quantity and use the following formula:
Initial efficiency (%) = (initial discharge electricity amount / initial charge electricity amount) × 100
From this, the initial efficiency was determined.

・可逆容量
更に、同条件で放充電を繰り返し、10サイクル目の放電できた電気量を、可逆容量(mAh/g)として求めた。
-Reversible capacity Furthermore, discharge was repeated under the same conditions, and the amount of electricity that could be discharged at the 10th cycle was determined as a reversible capacity (mAh / g).

・レート特性
二次電池としての充放電能力(放電容量が100mAh/gを下限として)を維持できる最少の充放電サイクル時間(分)でレート特性を評価した。レート特性は、充放電サイクルが短いほど、高入出力となる。
-Rate characteristics Rate characteristics were evaluated with the minimum charge / discharge cycle time (minutes) capable of maintaining the charge / discharge capacity as a secondary battery (with a discharge capacity of 100 mAh / g as a lower limit). The rate characteristic is higher in input / output as the charge / discharge cycle is shorter.

<サイクル特性>
・負極の作製
炭素微小球粉末に、N−メチル−2−ピロリドンに溶解したポリフッ化ビニリデン(PVDF)を固形分で10重量%加え、混練して炭素ペーストを作製し、この炭素ペーストを厚さ18μmの圧延銅箔に塗布し、乾燥した後、ロールプレスでプレスした。このシートから直径約16mmの円形に切り出して負極電極とした。
・正極の作製
正極に、コバルト酸リチウムLiCoOを用い、コバルト酸リチウムLiCoO粉末にポリフッ化ビニリデン粉末を5重量%、導電剤ケッチェンブラックECを5重量%加え、N−メチルピロリドンを用いて混合してスラリーを調製し、アルミ箔の上に塗布、乾燥することにより電極シートを作成した。このシートから直径約16mmの円形に切り出すことにより、正極電極を作製した。
・電池の作製
前記した負極電極及び正極電極を用い、電解液としてエチレンカーボネートとジメチルカーボネートの混合溶媒(体積比1:1混合)に、LiPFを1モル/リットルの濃度で溶解したものを用い、セパレーターにポリプロピレンの不織布を用いて、簡易型コイン形状電池を作製した。
・サイクル特性の測定
25℃の恒温下、端子電圧の放電下限電圧を3.0V、充電上限電圧を4.2Vとした電位範囲で0.5mA/cmの定電流下で充放電試験を行った。サイクル特性は、第1回目の炭素負極材料の単位重量当たりの放電容量に対する第500回目の炭素負極材料の単位重量当たりの放電容量の割合:
サイクル特性(%)=初期放電容量(mAh/g)/500サイクル目の放電容量(mAh/g)×100
として求めた。その結果を表1に示す。
<Cycle characteristics>
・ Production of negative electrode 10% by weight of polyvinylidene fluoride (PVDF) dissolved in N-methyl-2-pyrrolidone was added to carbon microsphere powder in a solid content and kneaded to prepare a carbon paste. It apply | coated to 18 micrometers roll copper foil, and after drying, it pressed with the roll press. This sheet was cut into a circle having a diameter of about 16 mm to form a negative electrode.
-Production of positive electrode Lithium cobalt oxide LiCoO 2 was used for the positive electrode, 5% by weight of polyvinylidene fluoride powder and 5% by weight of conductive agent Ketjen Black EC were added to the lithium cobalt oxide LiCoO 2 powder, and N-methylpyrrolidone was used. A slurry was prepared by mixing and applied to an aluminum foil and dried to prepare an electrode sheet. A positive electrode was produced by cutting the sheet into a circle having a diameter of about 16 mm.
-Production of battery Using the above-described negative electrode and positive electrode, a solution obtained by dissolving LiPF 6 at a concentration of 1 mol / liter in a mixed solvent of ethylene carbonate and dimethyl carbonate (volume ratio 1: 1 mixture) as an electrolytic solution was used. A simple coin-shaped battery was produced using a polypropylene nonwoven fabric for the separator.
・ Measurement of cycle characteristics A charge / discharge test was conducted at a constant current of 0.5 mA / cm 2 in a potential range where the terminal voltage was 3.0 V and the charge upper limit voltage was 4.2 V at a constant temperature of 25 ° C. It was. The cycle characteristic is the ratio of the discharge capacity per unit weight of the 500th carbon negative electrode material to the discharge capacity per unit weight of the first carbon negative electrode material:
Cycle characteristics (%) = initial discharge capacity (mAh / g) / 500th cycle discharge capacity (mAh / g) × 100
As sought. The results are shown in Table 1.

有機シラン化合物:tert−ブチルジメチルシラン、トリヘキシルシラン、メチルジクロロシラン
炭化水素:プロパン
無機シラン化合物:モノシラン
不活性ガス:窒素
Organosilane compound: tert-butyldimethylsilane, trihexylsilane, methyldichlorosilane Hydrocarbon: Propane Inorganic silane compound: Monosilane Inert gas: Nitrogen

実施例では、リチウムイオン二次電池の可逆容量が、ケイ素を含有しない比較例7と比べ、高くなっていた。また、実施例のサイクル特性、レート特性は、ケイ素を含有しない比較例7と比べ、良好であった。初期効率は、ケイ素を含有しない比較例7に比べ、同等な値で良好であった。   In the example, the reversible capacity of the lithium ion secondary battery was higher than that of Comparative Example 7 not containing silicon. In addition, the cycle characteristics and rate characteristics of the examples were better than those of Comparative Example 7 containing no silicon. The initial efficiency was good at an equivalent value as compared with Comparative Example 7 containing no silicon.

比較例1及び2は、ケイ素の含有量が殆どないため、レート特性、初期効率、サイクル特性については、良好なレベルであるものの、リチウムイオン二次電池の可逆容量が、ケイ素を含有しない比較例7と比べ、大差がなかった。ケイ素の含有量が多い比較例3〜6では、サイクル特性が悪く、且つ、レート特性も悪かった。   Since Comparative Examples 1 and 2 have almost no silicon content, the rate characteristics, initial efficiency, and cycle characteristics are good levels, but the reversible capacity of the lithium ion secondary battery does not contain silicon. Compared to 7, there was no significant difference. In Comparative Examples 3 to 6 having a large silicon content, the cycle characteristics were poor and the rate characteristics were also poor.

本発明のリチウムイオン二次電池負極材用の炭素微小球粉末の製造方法を実施するための装置の全体構成を示す説明図である。It is explanatory drawing which shows the whole structure of the apparatus for enforcing the manufacturing method of the carbon microsphere powder for lithium ion secondary battery negative electrode materials of this invention. Dst測定時における、炭素微小球分散液を加えてからの経過時間、と炭素微小球分散液の遠心沈降に伴い変化した特定点での吸光度を示した分布曲線である。It is the distribution curve which showed the elapsed time after adding a carbon microsphere dispersion at the time of Dst measurement, and the light absorbency in the specific point which changed with the centrifugal sedimentation of a carbon microsphere dispersion. Dst測定により得られたストークス相当径と吸光度の関係を示す分布曲線である。It is a distribution curve which shows the relationship between the Stokes equivalent diameter obtained by Dst measurement, and a light absorbency.

符号の説明Explanation of symbols

8 原料含有ガス導入管
9 液体ケイ素化合物用タンク
10 気体ケイ素化合物用ボンベ
11 気体炭化水素用ボンベ
12 不活性ガスボンベ
13 流量計
14 液体炭化水素タンク
15 予熱ヒーター
16 圧力計
17 外熱式反応炉
18 ヒーター
19 後段側原料含有ガス導入管
20 温度調節器
21 冷却管
22 バルブ
23 真空ポンプ
24 捕集室
25 中和槽
26 排ガス燃焼装置
30 前段原料含有ガス導入部位
31 後段原料含有ガス導入部位
8 Raw material containing gas introduction tube 9 Liquid silicon compound tank 10 Gas silicon compound cylinder 11 Gas hydrocarbon cylinder 12 Inert gas cylinder 13 Flow meter 14 Liquid hydrocarbon tank 15 Preheating heater 16 Pressure gauge 17 External heating reactor 18 Heater 19 Subsequent raw material-containing gas introduction pipe 20 Temperature controller 21 Cooling pipe 22 Valve 23 Vacuum pump 24 Collection chamber 25 Neutralization tank 26 Exhaust gas combustion device 30 Pre-stage raw material-containing gas introduction part 31 Rear-stage raw material-containing gas introduction part

Claims (7)

ケイ素の含有量がケイ素原子換算で1〜30重量%、電子顕微鏡により測定した算術平均一次粒子径dnが150〜1000nm、揮発分Vmが5.0%以下、ディスクセントリフュージ装置(DCF)により測定したストークスモード径Dstに対するその半値幅ΔDstの比(半値幅ΔDst/ストークスモード径Dst)が0.40〜1.10、X線回折法により測定した結晶子格子面間隔d(002)が0.370nm以下の炭素微小球であることを特徴とするリチウムイオン二次電池負極材用の炭素微小球粉末。   The content of silicon was 1 to 30% by weight in terms of silicon atom, the arithmetic average primary particle diameter dn measured with an electron microscope was 150 to 1000 nm, the volatile content Vm was 5.0% or less, and measured with a disc centrifuging device (DCF). The ratio of the half width ΔDst to the Stokes mode diameter Dst (half width ΔDst / Stokes mode diameter Dst) is 0.40 to 1.10, and the crystallite lattice spacing d (002) measured by the X-ray diffraction method is 0.370 nm. A carbon microsphere powder for a negative electrode material for a lithium ion secondary battery, which is the following carbon microsphere. 有機ケイ素化合物が不活性ガスで希釈されており且つ該有機ケイ素化合物の濃度が10〜50体積%である原料含有ガスを、反応炉内の温度が1000〜1400℃の外熱式反応炉に導入し、0.02〜4.0m/秒の線流速で、該外熱式反応炉を通過させ、次いで、生成した熱分解物を、該外熱式反応炉から冷却領域に移送して冷却し、次いで、捕集して、リチウムイオン二次電池負極材用の炭素微小球粉末を得ることを特徴とするリチウムイオン二次電池負極材用の炭素微小球粉末の製造方法。   A raw material-containing gas in which an organosilicon compound is diluted with an inert gas and the concentration of the organosilicon compound is 10 to 50% by volume is introduced into an externally heated reactor having a temperature in the reactor of 1000 to 1400 ° C. And passed through the external heating reactor at a linear flow rate of 0.02 to 4.0 m / sec, and then the generated pyrolyzate is transferred from the external heating reactor to a cooling region to be cooled. Then, the carbon microsphere powder for a lithium ion secondary battery negative electrode material is obtained by collecting and obtaining a carbon microsphere powder for a lithium ion secondary battery negative electrode material. 有機ケイ素化合物及び炭化水素が不活性ガスで希釈されており且つ該有機ケイ素化合物及び該炭化水素の合計濃度が10〜50体積%である原料含有ガスを、反応炉内の温度が1000〜1400℃の外熱式反応炉に導入し、0.02〜4.0m/秒の線流速で、該外熱式反応炉を通過させ、次いで、生成した熱分解物を、該外熱式反応炉から冷却領域に移送して冷却し、次いで、捕集して、リチウムイオン二次電池負極材用の炭素微小球粉末を得ることを特徴とするリチウムイオン二次電池負極材用の炭素微小球粉末の製造方法。   The raw material-containing gas in which the organosilicon compound and hydrocarbon are diluted with an inert gas and the total concentration of the organosilicon compound and the hydrocarbon is 10 to 50% by volume is set to a temperature in the reactor of 1000 to 1400 ° C. The external thermal reactor was introduced at a linear flow rate of 0.02 to 4.0 m / sec, and then the generated thermal decomposition product was removed from the external thermal reactor. The carbon microsphere powder for a lithium ion secondary battery negative electrode material is obtained by transferring to a cooling region, cooling, and then collecting to obtain a carbon microsphere powder for a lithium ion secondary battery negative electrode material. Production method. 無機ケイ素化合物及び炭化水素が不活性ガスで希釈されており、該炭化水素の濃度が10〜50体積%であり且つ該無機ケイ素化合物の濃度が1〜30体積%である原料含有ガスを、反応炉内の温度が1000〜1400℃の外熱式反応炉に導入し、0.02〜4.0m/秒の線流速で、該外熱式反応炉を通過させ、次いで、生成した熱分解物を、該外熱式反応炉から冷却領域に移送して冷却し、次いで、捕集して、リチウムイオン二次電池負極材用の炭素微小球粉末を得ることを特徴とするリチウムイオン二次電池負極材用の炭素微小球粉末の製造方法。   A raw material-containing gas in which an inorganic silicon compound and a hydrocarbon are diluted with an inert gas, the concentration of the hydrocarbon is 10 to 50% by volume, and the concentration of the inorganic silicon compound is 1 to 30% by volume is reacted. It was introduced into an externally heated reactor having a temperature in the furnace of 1000 to 1400 ° C., passed through the externally heated reactor at a linear flow rate of 0.02 to 4.0 m / sec, and then the pyrolyzate produced Is transferred to the cooling region from the external heating reactor, cooled, and then collected to obtain a carbon microsphere powder for a negative electrode material of a lithium ion secondary battery. Manufacturing method of carbon microsphere powder for negative electrode material. 有機ケイ素化合物及び無機ケイ素化合物が不活性ガスで希釈されており、該有機ケイ素化合物の濃度が10〜50体積%であり且つ該無機ケイ素化合物の濃度が1〜30体積%である原料含有ガスを、反応炉内の温度が1000〜1400℃の外熱式反応炉に導入し、0.02〜4.0m/秒の線流速で、該外熱式反応炉を通過させ、次いで、生成した熱分解物を、該外熱式反応炉から冷却領域に移送して冷却し、次いで、捕集して、リチウムイオン二次電池負極材用の炭素微小球粉末を得ることを特徴とするリチウムイオン二次電池負極材用の炭素微小球粉末の製造方法。   A raw material-containing gas in which an organic silicon compound and an inorganic silicon compound are diluted with an inert gas, the concentration of the organic silicon compound is 10 to 50% by volume, and the concentration of the inorganic silicon compound is 1 to 30% by volume The reactor was introduced into an externally heated reactor having a temperature of 1000 to 1400 ° C., passed through the externally heated reactor at a linear flow rate of 0.02 to 4.0 m / sec, and then generated heat. The decomposition product is transferred from the external heating reactor to a cooling region, cooled, and then collected to obtain a carbon microsphere powder for a negative electrode material of a lithium ion secondary battery. Manufacturing method of carbon microsphere powder for secondary battery negative electrode material. 有機ケイ素化合物、無機ケイ素化合物及び炭化水素が不活性ガスで希釈されており、該有機ケイ素化合物及び該炭化水素の合計濃度が10〜50体積%であり且つ該無機ケイ素化合物の濃度が1〜30体積%である原料含有ガスを、反応炉内の温度が1000〜1400℃の外熱式反応炉に導入し、0.02〜4.0m/秒の線流速で、該外熱式反応炉を通過させ、次いで、生成した熱分解物を、該外熱式反応炉から冷却領域に移送して冷却し、次いで、捕集して、リチウムイオン二次電池負極材用の炭素微小球粉末を得ることを特徴とするリチウムイオン二次電池負極材用の炭素微小球粉末の製造方法。   The organosilicon compound, the inorganic silicon compound and the hydrocarbon are diluted with an inert gas, the total concentration of the organosilicon compound and the hydrocarbon is 10 to 50% by volume, and the concentration of the inorganic silicon compound is 1 to 30 A raw material-containing gas having a volume% is introduced into an externally heated reactor whose temperature in the reactor is 1000 to 1400 ° C., and the externally heated reactor is placed at a linear flow rate of 0.02 to 4.0 m / sec. Then, the generated pyrolyzate is transferred from the external heating reactor to a cooling region to be cooled, and then collected to obtain a carbon microsphere powder for a negative electrode material for a lithium ion secondary battery. A method for producing carbon microsphere powder for a negative electrode material for a lithium ion secondary battery. 前記外熱式反応炉の後段原料含有ガス導入部位からも、下記原料含有ガス(1)〜(5):
(1)有機ケイ素化合物が不活性ガスで希釈された原料含有ガス、
(2)有機ケイ素化合物及び炭化水素が不活性ガスで希釈された原料含有ガス、
(3)無機ケイ素化合物及び炭化水素が不活性ガスで希釈された原料含有ガス、
(4)有機ケイ素化合物及び無機ケイ素化合物が不活性ガスで希釈された原料含有ガス、
(5)有機ケイ素化合物、無機ケイ素化合物及び炭化水素が不活性ガスで希釈された原料含有ガス、
のいずれかを導入することを特徴とする請求項2〜6いずれか1項記載のリチウムイオン二次電池負極材用の炭素微小球粉末の製造方法。
The following raw material-containing gases (1) to (5) are also introduced from the latter-stage raw material-containing gas introduction portion of the external heating reactor.
(1) a raw material-containing gas in which an organosilicon compound is diluted with an inert gas;
(2) a raw material-containing gas in which an organosilicon compound and a hydrocarbon are diluted with an inert gas;
(3) a raw material-containing gas in which an inorganic silicon compound and a hydrocarbon are diluted with an inert gas;
(4) Raw material-containing gas in which an organosilicon compound and an inorganic silicon compound are diluted with an inert gas,
(5) a raw material-containing gas obtained by diluting an organosilicon compound, an inorganic silicon compound, and a hydrocarbon with an inert gas;
Either of these is introduce | transduced, The manufacturing method of the carbon microsphere powder for lithium ion secondary battery negative electrode materials of any one of Claims 2-6 characterized by the above-mentioned.
JP2008015002A 2008-01-25 2008-01-25 Carbon microsphere powder for lithium ion secondary battery negative electrode material and method for producing the same Expired - Fee Related JP5169248B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008015002A JP5169248B2 (en) 2008-01-25 2008-01-25 Carbon microsphere powder for lithium ion secondary battery negative electrode material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008015002A JP5169248B2 (en) 2008-01-25 2008-01-25 Carbon microsphere powder for lithium ion secondary battery negative electrode material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009176603A JP2009176603A (en) 2009-08-06
JP5169248B2 true JP5169248B2 (en) 2013-03-27

Family

ID=41031480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008015002A Expired - Fee Related JP5169248B2 (en) 2008-01-25 2008-01-25 Carbon microsphere powder for lithium ion secondary battery negative electrode material and method for producing the same

Country Status (1)

Country Link
JP (1) JP5169248B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11616233B2 (en) 2018-03-14 2023-03-28 Lg Energy Solution, Ltd. Amorphous silicon-carbon composite, preparation method therefor, and lithium secondary battery comprising same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2383224B1 (en) * 2008-12-26 2016-11-16 Sekisui Chemical Co., Ltd. Process for producing carbon particles for electrode, carbon particles for electrode, and negative-electrode material for lithium-ion secondary battery
CN103682286B (en) * 2013-12-18 2015-09-02 南京毕汉特威高分子材料有限公司 Silicon/high molecular composite microsphere and silicon-carbon composite anode material for lithium ion battery and preparation method thereof
JP6079651B2 (en) * 2014-01-15 2017-02-15 信越化学工業株式会社 Method for producing negative electrode material for non-aqueous electrolyte secondary battery

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2122770C (en) * 1994-05-03 2000-10-03 Moli Energy (1990) Limited Carbonaceous host compounds and use as anodes in rechargeable batteries
JP3091949B2 (en) * 1995-02-24 2000-09-25 旭有機材工業株式会社 Method for producing silicon-containing carbon particles and negative electrode comprising the carbon particles
JP4032479B2 (en) * 1998-01-30 2008-01-16 松下電器産業株式会社 Non-aqueous electrolyte secondary battery negative electrode material and non-aqueous electrolyte secondary battery provided with a negative electrode using the negative electrode material
JP2000203818A (en) * 1999-01-13 2000-07-25 Hitachi Chem Co Ltd Composite carbon particle, its production, negative pole material, negative pole for lithium secondary battery or cell and lithium secondary battery or cell
JP2000243396A (en) * 1999-02-23 2000-09-08 Hitachi Ltd Lithium secondary battery and its manufacture and its negative electrode material and electric apparatus
JP3954001B2 (en) * 2003-10-01 2007-08-08 三星エスディアイ株式会社 Negative electrode active material for lithium secondary battery, lithium secondary battery, and method for producing negative electrode active material for lithium secondary battery
JP4518241B2 (en) * 2004-02-26 2010-08-04 東海カーボン株式会社 Negative electrode material for lithium secondary battery and method for producing the same
JP5057267B2 (en) * 2006-05-12 2012-10-24 東海カーボン株式会社 Anode material for lithium secondary battery
JP2007308774A (en) * 2006-05-19 2007-11-29 Utec:Kk Thin-film-forming apparatus and thin-film-forming method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11616233B2 (en) 2018-03-14 2023-03-28 Lg Energy Solution, Ltd. Amorphous silicon-carbon composite, preparation method therefor, and lithium secondary battery comprising same

Also Published As

Publication number Publication date
JP2009176603A (en) 2009-08-06

Similar Documents

Publication Publication Date Title
JP3952180B2 (en) Conductive silicon composite, method for producing the same, and negative electrode material for nonaqueous electrolyte secondary battery
KR101923092B1 (en) Si/g/c-composites for lithium-ion-batteries
JP6466635B2 (en) Method for producing negative electrode for nonaqueous electrolyte secondary battery and method for producing nonaqueous electrolyte secondary battery
JP2019114559A (en) Negative electrode material for nonaqueous electrolyte secondary batteries and secondary battery
JP4518241B2 (en) Negative electrode material for lithium secondary battery and method for producing the same
JP5949194B2 (en) Method for producing negative electrode active material for non-aqueous electrolyte secondary battery
EP3054505A1 (en) Silicon-containing material, negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and manufacturing method therefor
KR20190085942A (en) Negative electrode material for non-aqueous secondary battery, negative electrode for non-aqueous secondary battery and non-aqueous secondary battery
JP6981203B2 (en) Negative electrode material for non-aqueous secondary batteries, negative electrode for non-aqueous secondary batteries and non-aqueous secondary batteries
US20230395774A1 (en) Process for preparing silicon-containing composite particles
WO2013054476A1 (en) Silicon oxide for negative electrode material of nonaqueous electroltye secondary cell, method for producing same, lithium ion secondary cell, and electrochemical capacitor
JP2020001941A (en) Core-shell structure, manufacturing method thereof, composition for negative electrode using the core-shell structure as negative electrode active material, negative electrode, and secondary battery
US20190341617A1 (en) Anode materials for lithium ion batteries
WO2019150512A1 (en) Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP7456291B2 (en) Carbon-coated composite materials and their applications
JP5169248B2 (en) Carbon microsphere powder for lithium ion secondary battery negative electrode material and method for producing the same
JP2022095866A (en) Anode material for nonaqueous secondary battery, anode for nonaqueous secondary battery, and nonaqueous secondary battery
JP6451914B1 (en) Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2016106358A (en) Method for manufacturing negative electrode active material for nonaqueous electrolyte secondary battery
JP6079651B2 (en) Method for producing negative electrode material for non-aqueous electrolyte secondary battery
JP5057267B2 (en) Anode material for lithium secondary battery
JP2004296161A (en) Conductive material-coated silicon and its manufacturing method and electrode material for non-aqueous electrolyte secondary battery
TWI445235B (en) Method for manufacturing negative electrode carbon material
KR101377366B1 (en) Negative electrode material for lithium rechargeable battery
JP5386666B2 (en) Negative electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121128

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121217

LAPS Cancellation because of no payment of annual fees