JPH11213540A - Magnetic type encoder - Google Patents

Magnetic type encoder

Info

Publication number
JPH11213540A
JPH11213540A JP1072198A JP1072198A JPH11213540A JP H11213540 A JPH11213540 A JP H11213540A JP 1072198 A JP1072198 A JP 1072198A JP 1072198 A JP1072198 A JP 1072198A JP H11213540 A JPH11213540 A JP H11213540A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic member
magnetoresistive
movement
domain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1072198A
Other languages
Japanese (ja)
Inventor
Kazuhito Goto
和仁 後藤
Yoshiji Hasegawa
美次 長谷川
Kazumasa Nomura
和正 野村
Fumiteru Asai
文輝 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP1072198A priority Critical patent/JPH11213540A/en
Publication of JPH11213540A publication Critical patent/JPH11213540A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic type encoder wherein an output signal is corrected in a waveform distortion irrespective of a gap length between a magnetic detector and a magnetic member, the output is also improved in SN ratio and usable without trouble, and conditions for manufacture become also simple. SOLUTION: This magnetic type encoder is made up by forming plural linear magnetic domains 4 of a rare earth magnetic material which are arranged on the side of main surface 3a of a substrate 3 at a constant set spacing λin the moving direction as a magnetic scale and also magnetized in a specific direction, and thereby forming a magnetic member 1 to be mounted on the side of a detected body, and tilting a magnetic resistance element 6 on a magnetic detecting body 2 moving relatively to the magnetic member 1 and the magnetic domains 4 by a specific angle θ (0 deg.<θ<90 deg.) with respect to the width direction b of the magnetic member 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、回転モ―タなどの
回転運動量や、リニアモ―タなどの直線運動量を磁気的
に検出して電気信号を出力する磁気式エンコ―ダに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic encoder which magnetically detects the rotational momentum of a rotary motor or the like or the linear momentum of a linear motor or the like and outputs an electric signal.

【0002】[0002]

【従来の技術】周知のように、エンコ―ダは、被検出体
を検出する方法の違いから、光学式のものと磁気的なも
のとに大別される。磁気式エンコ―ダは、光学式エンコ
―ダに比べて、検出部分に塵芥が付着したり汚れがあつ
ても検出感度が影響を受けにくい、電力の消費が少な
い、発光素子や受光素子を配置する必要がなくコンパク
トに製作できる、また機械的強度が高いなどの点で、有
利とされている。
2. Description of the Related Art As is well known, encoders are broadly classified into optical ones and magnetic ones depending on the method of detecting an object to be detected. Compared to optical encoders, magnetic encoders are less affected by detection sensitivity even when dust or dirt adheres to the detection area, consume less power, and have light-emitting and light-receiving elements. It is advantageous in that it can be made compact without the need to perform it and has high mechanical strength.

【0003】磁気式エンコ―ダは、一般に、被検出体に
取り付けられる磁性部材を、たとえば、主面側に被検出
体の運動方向においてN極とS極とを交互に形成した、
いわゆる多極磁石により構成するとともに、この多極磁
石が回転または直線運動した際の交番する磁気を、ホ―
ル素子や磁気抵抗素子のような磁気検出素子をもつた磁
気検出体で検出する構成となつている。
A magnetic encoder generally has a magnetic member attached to an object to be detected, for example, an N pole and an S pole are alternately formed on the main surface side in the movement direction of the object to be detected.
It is composed of a so-called multi-pole magnet, and the alternating magnetism when the multi-pole magnet rotates or moves linearly is
The detection is performed by a magnetic detection body having a magnetic detection element such as a magnetic element or a magnetic resistance element.

【0004】多極磁石の作製は、たとえば、リニアエン
コ―ダでは、図15に示すように、長尺状の磁性部材1
01の主面側に対向して磁石ヘツド102を配設し、こ
の磁性部材101を長手方向に一定の速度で直線移動さ
せながら、この移動に同期させて着磁ヘツド102のコ
イル103に交番電流を流し、これにより、磁性部材1
01の主面に多数のN極とS極とを交互に着磁して、多
極磁石100を構成させるようにしているのが一般的で
ある。
A multi-pole magnet is manufactured by, for example, using a linear encoder as shown in FIG.
A magnet head 102 is disposed opposite to the main surface of the magnetic head 101, and the magnetic member 101 is linearly moved at a constant speed in the longitudinal direction, and an alternating current is supplied to the coil 103 of the magnetized head 102 in synchronization with the movement. And thereby the magnetic member 1
In general, a large number of N poles and S poles are alternately magnetized on the main surface of No. 01 to form the multipole magnet 100.

【0005】この多極磁石100を使用した磁気式エン
コ―ダ(リニアエンコ―ダ)では、図16に示すよう
に、多極磁石100を被検出体である長尺状の基材10
4に固定する一方、この多極磁石100の主面に微小な
間隙Gを存して対向する磁気検出体105が相対運動可
能に配設される。
In a magnetic encoder (linear encoder) using the multipole magnet 100, as shown in FIG. 16, the multipole magnet 100 is a long base material 10 to be detected.
4, a magnetic detector 105 facing the main surface of the multipole magnet 100 with a small gap G is provided so as to be capable of relative movement.

【0006】多極磁石100におけるN極およびS極
は、運動方向(矢印a方向)において、一定の幅λ/2
(λはN極もしくはS極の設定間隔)を有して基材10
4を横断して磁気目盛として構成される。磁気検出体1
05は、図17に示すように磁気抵抗素子106を構成
する、たとえば2個の磁気抵抗路106A,106Bを
有し、各磁気抵抗路106A,106Bは運動方向と直
交する方向、つまり多極磁石100の幅方向(矢印b方
向)に沿つて延出する長さLを有する。
The north and south poles of the multipole magnet 100 have a constant width λ / 2 in the direction of movement (the direction of arrow a).
(Λ is a set interval of N pole or S pole)
4 is configured as a magnetic scale across. Magnetic detector 1
Numeral 05 has, for example, two magnetoresistive paths 106A and 106B constituting the magnetoresistive element 106 as shown in FIG. 17, and each of the magnetoresistive paths 106A and 106B is a direction orthogonal to the direction of movement, that is, a multipole magnet. 100 has a length L extending along the width direction (direction of arrow b).

【0007】また、この2個の磁気抵抗路106A,1
06Bは、互いに直列接続されて、この直列接続体の両
端を電源Eに接続し、2個の磁気抵抗路106A,10
6Bの接続点mを中点電位Voの出力端子Qに接続して
ある。
The two magnetoresistive paths 106A, 1
06B are connected in series with each other, both ends of the series connection body are connected to a power source E, and two magnetoresistive paths 106A, 106A,
The connection point m of 6B is connected to the output terminal Q of the midpoint potential Vo.

【0008】この磁気式エンコ―ダにおいては、磁気検
出体105と被検出体104とを運動方向で相対変位さ
せれば、各磁気抵抗路106A,106Bにより多極磁
石100から磁気を検出するので、磁気検出体105か
らは被検出体104の運動量に対応した検出出力が電気
信号に変換して出力される。
In this magnetic encoder, if the magnetic detection body 105 and the detection body 104 are relatively displaced in the direction of movement, the magnetism is detected from the multipole magnet 100 by the respective magnetic resistance paths 106A and 106B. From the magnetic detector 105, a detection output corresponding to the momentum of the detection target 104 is converted into an electric signal and output.

【0009】[0009]

【発明が解決しようとする課題】このような磁気式エン
コ―ダによる出力信号は、各種機器の制御用信号として
使用されるが、実用的に図18の(A)に示すような正
弦波形となるのが望ましい。しかし、磁気検出体105
と多極磁石100との間の間隙Gは、たとえば、0.2
mm程度以下の微小な範囲内で配設されるため、間隙Gを
かなり高精度に設定しない限り、上記正弦波は得られに
くい。
The output signal from such a magnetic encoder is used as a control signal for various devices, but it has a sine waveform as shown in FIG. Is desirable. However, the magnetic detector 105
G between the magnet and the multipole magnet 100 is, for example, 0.2
The sine wave is hard to be obtained unless the gap G is set with extremely high precision because the sine wave is arranged within a minute range of about mm or less.

【0010】間隙Gが小さい領域では、多極磁石100
側から磁気抵抗路106A,106Bが受ける磁気の強
度が過大となり、出力信号が、図18の(B)に示すよ
うに歪んだ波形となり、制御用信号として使えなくな
る。また、上記間隙Gが小さい領域では、多極磁石10
0に局所的に存在している水平成分の磁界を磁気抵抗路
106A,106Bが検知してしまい、これも波形が歪
む原因となる。
In the region where the gap G is small, the multipole magnet 100
The strength of the magnetism received by the magnetoresistive paths 106A and 106B from the side becomes excessive, and the output signal becomes a distorted waveform as shown in FIG. 18B, and cannot be used as a control signal. In the region where the gap G is small, the multipole magnet 10
The magnetic field of the horizontal component locally present at zero is detected by the magnetoresistive paths 106A and 106B, which also causes the waveform to be distorted.

【0011】他方、間隙Gが大きい領域では、多極磁石
100側から磁気抵抗路106A,106Bが受ける磁
気の強度が過小となり、出力信号が、図18の(C)に
示すように、出力不足となつて、S/N比に著しく劣る
ものとなる。この場合、別途、増幅器やフイルタなどを
導入して出力信号を是正しない限り、やはり制御用信号
として使いにくい。
On the other hand, in a region where the gap G is large, the intensity of the magnetism received by the magnetoresistive paths 106A and 106B from the multipole magnet 100 becomes too small, and the output signal becomes insufficient as shown in FIG. As a result, the S / N ratio becomes extremely poor. In this case, unless an output signal is corrected by introducing an amplifier, a filter, or the like, it is still difficult to use the control signal.

【0012】特公平6−17800号公報には、磁気抵
抗素子を構成する磁気抵抗路の長さ方向と磁気抵抗素子
の最近接部での多極磁石主面とのなす角度を90°以下
に特定して、出力信号の強度を波形歪が生じないように
抑制することが提案されている。また、特開平5−24
8887号公報には、多極磁石における磁気目盛の1周
期内のN極またはS極を連ねる線に対して磁気抵抗素子
を相対的に特定の角度だけ傾斜させることにより、出力
信号の山部および谷部の波動を抑制して、出力信号の波
形歪みを小さくすることが提案されている。
Japanese Patent Publication No. 6-17800 discloses that the angle between the longitudinal direction of the magnetoresistive path constituting the magnetoresistive element and the main surface of the multi-pole magnet at the closest part of the magnetoresistive element is set to 90 ° or less. Specifically, it has been proposed to suppress the intensity of an output signal so that waveform distortion does not occur. Also, Japanese Patent Application Laid-Open No. 5-24
JP-A-8887 discloses that a magnetoresistive element is tilted by a specific angle relative to a line connecting N pole or S pole within one cycle of a magnetic scale in a multipole magnet, so that a peak portion of an output signal and It has been proposed to suppress the wave at the valley to reduce the waveform distortion of the output signal.

【0013】これらの提案方法によると、磁気検出体と
多極磁石の主面との間隙がかなり小さい領域での出力信
号の波形歪みの改善は可能となる。しかしながら、被検
出体側に取り付けられる多極磁石は、一般にフエライト
系の磁性部材で構成されているため、上記間隙の比較的
大きい領域では、出力信号が低下して、出力信号のS/
N比の劣化が顕著になるのは避けられない。
According to these proposed methods, it is possible to improve the waveform distortion of the output signal in a region where the gap between the magnetic detector and the main surface of the multipole magnet is considerably small. However, since the multipolar magnet attached to the object to be detected is generally made of a ferrite-based magnetic member, the output signal decreases in the region where the gap is relatively large, and the S / S of the output signal decreases.
It is inevitable that the deterioration of the N ratio becomes remarkable.

【0014】この出力強度の低下を抑制するために、多
極磁石をSm・Co系やNa・Fe系の希土類の磁性材
で構成することが考えられる。しかし、この場合、多極
磁石を着磁ヘツドで形成する際に電力不足が生じ、磁気
式エンコ―ダに使用可能な微細な磁気目盛を着磁形成さ
せにくいという問題がある。
In order to suppress the decrease in the output strength, it is conceivable that the multipolar magnet is made of a rare-earth magnetic material of Sm.Co type or Na.Fe type. However, in this case, there is a problem that power is insufficient when the multipole magnet is formed with the magnetized head, and it is difficult to magnetize a fine magnetic scale that can be used for a magnetic encoder.

【0015】本発明は、このような事情に照らし、磁気
検出体の出力信号に波形歪みや出力不足を生じることが
なく、制御用信号としてそのまま使用可能となり、磁気
検出体と磁性部材との間隙の選択範囲が広げられて、製
作条件の簡素化に役立つ磁気式エンコ―ダを提供するこ
とを目的としている。
According to the present invention, in view of such circumstances, the output signal of the magnetic detector does not suffer from waveform distortion or output shortage, and can be used as it is as a control signal, and the gap between the magnetic detector and the magnetic member can be used. The purpose of the present invention is to provide a magnetic encoder which has a wider range of choices and which helps to simplify the manufacturing conditions.

【0016】[0016]

【課題を解決するための手段】本発明者らは、上記の目
的に対し、鋭意検討した結果、被検出体側に取り付けら
れる磁性部材として、多極磁石に代えて、基板とこの基
板の主面側に運動方向で一定の設定間隔で設けられた単
一極の線形磁区とで構成し、かつこの線形磁区を希土類
の磁性材で構成したものを使用する一方、磁気検出体に
おける磁気抵抗素子を線形磁区に対して一定の角度θ
(0゜<θ<90゜)傾斜させることで、磁気検出体と
磁性部材との間隙の小さい領域での出力信号の波形歪み
を抑制できるとともに、単一極を表面に形成するための
着磁工程においては、着磁のためのコイル電流を交番さ
せる必要がなく、強力な一方向磁場中での着磁が可能で
あるため、上記希土類の磁性材をフルに磁化した状態で
磁区を形成することができ、その結果、上記間隙の大き
い領域での出力信号のS/N比も改善できるものである
ことを知り、本発明を完成するに至つた。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies on the above-mentioned objects, and as a result, as a magnetic member attached to the object to be detected, a substrate and a main surface of the substrate have been used instead of a multipolar magnet. A single-pole linear magnetic domain provided at a constant set interval in the direction of movement on the side, and this linear magnetic domain is made of a rare-earth magnetic material, while the magnetoresistive element in the magnetic detector is used. Constant angle θ with respect to the linear domain
By inclining (0 ° <θ <90 °), it is possible to suppress the waveform distortion of the output signal in a region where the gap between the magnetic detector and the magnetic member is small, and to magnetize a single pole on the surface. In the process, there is no need to alternate the coil current for magnetization, and magnetization in a strong one-way magnetic field is possible, so that the magnetic domain is formed in a state where the rare earth magnetic material is fully magnetized. As a result, it was found that the S / N ratio of the output signal in the region where the gap was large could be improved, and the present invention was completed.

【0017】すなわち、本発明は、被検出体側に取り付
けられる磁性部材と、この磁性部材に対して相対運動可
能な位置に配設される磁気検出体とを備え、上記被検出
体の回転または直線運動量を磁気的に検出する磁気式エ
ンコ―ダにおいて、上記磁性部材は、基板とこの基板の
主面側に磁気目盛として運動方向で一定の設定間隔で設
けられてかつ一定方向に磁化された単一極の複数の磁区
とからなり、各磁区は希土類の磁性材で構成されるとと
もに、運動方向で所定の幅を有するように線形に形成さ
れ、上記磁気検出体は、上記磁性部材の主面に平行でか
つ運動方向と交差する方向に延びる磁気抵抗路からなる
磁気抵抗素子を有し、上記磁区と磁気抵抗素子とが磁性
部材の幅方向に対して相対的に一定角度傾斜して設定さ
れていることを特徴とする磁気式エンコ―ダ(請求項1
〜4)に係るものである。
That is, the present invention comprises a magnetic member attached to the object to be detected, and a magnetic detector disposed at a position capable of moving relative to the magnetic member. In a magnetic encoder for detecting momentum magnetically, the magnetic member is provided as a magnetic scale on a main surface side of the substrate at a predetermined interval in the direction of motion and magnetized in a predetermined direction. Each magnetic domain is composed of a rare-earth magnetic material, and is formed linearly so as to have a predetermined width in the direction of movement, and the magnetic detector is a main surface of the magnetic member. And a magnetoresistive element comprising a magnetoresistive path extending in a direction intersecting with the direction of movement, wherein the magnetic domains and the magnetoresistive element are set to be inclined at a constant angle relative to the width direction of the magnetic member. Specially And magnetic to diene - da (claim 1
To 4).

【0018】[0018]

【発明の実施の形態】以下、本発明の実施の形態を、図
面にしたがつて説明する。図1は、本発明の磁気式リニ
アエンコ―ダに用いた磁性部材の外観を磁気検出体とと
もに示す斜視図、図2は、同磁気式リニアエンコ―ダの
概要を示す全体の構成図である。両図中、1は矢印a方
向へ直線運動する被検出体(図示せず)に取り付けられ
る磁性部材、2は磁性部材1の主面側に間隙Gを存して
対向配設されて磁性部材1に対して相対運動可能に設定
された磁気検出体である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view showing the appearance of a magnetic member used in a magnetic linear encoder according to the present invention together with a magnetic detector, and FIG. 2 is an overall configuration diagram showing an outline of the magnetic linear encoder. In both figures, reference numeral 1 denotes a magnetic member attached to an object to be detected (not shown) which linearly moves in the direction of arrow a, and 2 denotes a magnetic member which is disposed facing the main surface of the magnetic member 1 with a gap G therebetween. 1 is a magnetic detector set to be able to move relative to 1.

【0019】磁性部材1は、運動方向に沿う長尺状の基
板3と、その主面3a側に形成された磁気目盛としての
複数の磁区4とからなる。基板3は、強磁性体などから
板状に形成され、その主面3a側に基板3の幅方向に対
して一定角度θだけ傾斜してほぼ横断する複数個の孔部
5が、運動方向(基板の長手方向)で一定の設定間隔
(ピツチ)λで形成されている。この各孔部5に、基板
3の主面3aと面一となるように、Cm・Co系磁性材
やNa・Fe系磁性材などの希土類の磁性材が嵌着固定
されて、上記磁区4を形成している。この磁区4は、基
板3の主面3aに対して垂直な方向に沿つて磁化されて
いる。
The magnetic member 1 comprises an elongated substrate 3 along the direction of movement, and a plurality of magnetic domains 4 as magnetic scales formed on the main surface 3a side. The substrate 3 is formed in a plate shape from a ferromagnetic material or the like, and a plurality of holes 5 which are inclined at a predetermined angle θ with respect to the width direction of the substrate 3 and substantially traverse the main surface 3 a thereof in the movement direction ( They are formed at a constant set interval (pitch) λ in the longitudinal direction of the substrate). A rare-earth magnetic material such as a Cm-Co-based magnetic material or a Na-Fe-based magnetic material is fitted and fixed in each of the holes 5 so as to be flush with the main surface 3a of the substrate 3. Is formed. The magnetic domains 4 are magnetized along a direction perpendicular to the main surface 3a of the substrate 3.

【0020】磁性部材1において、各磁区4の運動方向
の幅Wは、たとえば(1/2)×λに設定され、これに
より各磁区4の平面形状は、一定の幅Wを有し、基板3
の幅方向に沿う線形となつている。なお、この例におい
ては、各磁区4は基板3を幅方向でほぼ横断する幅寸に
形成されているが、基板3を幅方向で完全に横断するよ
うな線形であつてもよい。
In the magnetic member 1, the width W of each magnetic domain 4 in the movement direction is set to, for example, (1/2) .times..lambda., Whereby the planar shape of each magnetic domain 4 has a constant width W. 3
It is linear along the width direction. In this example, each magnetic domain 4 is formed to have a width substantially traversing the substrate 3 in the width direction, but may be linear so as to completely traverse the substrate 3 in the width direction.

【0021】磁気検出体2は、検出面2aが基板3の主
面3aと平行となるように配設されるとともに、この検
出面2a側に磁気抵抗素子6が設けられている。磁気抵
抗素子6は、運動方向(磁区4の並ぶ方向)で所定間隔
を存して並設された2個の磁気抵抗路6A,6Bから構
成されている。これらの両磁気抵抗路6A,6Bは、運
動方向と同一平面内で直交する方向、つまり基板3の幅
方向(矢印b方向)に沿うように延出されている。
The magnetic detector 2 is disposed so that the detection surface 2a is parallel to the main surface 3a of the substrate 3, and a magnetoresistive element 6 is provided on the detection surface 2a side. The magnetoresistive element 6 is composed of two magnetoresistive paths 6A and 6B arranged side by side at a predetermined interval in the movement direction (direction in which the magnetic domains 4 are arranged). These two magnetoresistive paths 6A, 6B extend in a direction orthogonal to the direction of movement in the same plane, that is, along the width direction of the substrate 3 (the direction of arrow b).

【0022】2個の磁気抵抗路6A,6Bは、図3に示
すように、直列に接続されており、この直列接続体の両
端Pa,Pbを電源Eに接続し、一端Pbを接地してあ
る。これら両磁気抵抗路6A,6Bの接続点mに中点電
位Voの出力端子Qを接続してある。なお、磁気抵抗素
子6を構成する磁気抵抗路6A,6bの数は、2本に限
らず、任意に増減できるものである。
As shown in FIG. 3, the two magnetoresistive paths 6A and 6B are connected in series. Both ends Pa and Pb of this series connection are connected to a power source E, and one end Pb is grounded. is there. An output terminal Q of the midpoint potential Vo is connected to a connection point m between the two magnetoresistive paths 6A and 6B. The number of the magnetic resistance paths 6A and 6b constituting the magnetic resistance element 6 is not limited to two, but can be arbitrarily increased or decreased.

【0023】この構成において、各磁区4を基板3の幅
方向に対して一定角度θだけ傾斜させたことにより、各
磁区4と磁気抵抗素子6とは、上記幅方向に対して相対
的に一定角度θだけ傾斜した状態となる。傾斜角度θ
は、0゜<θ<90゜の範囲内で選択設定されるが、と
くに磁気抵抗路6A(6B)の長さをLとしたときに、
0<θ≦tan-1(λ/4L)を満足する関係に設定す
るのがよい。すなわち、磁気抵抗路6A(6B)の長さ
Lにおける運動方向への射影成分l(L×tanθ)が
λ/4以下となる、つまり、L×tanθ≦λ/4とな
る、したがつて、θ≦tan-1(λ/4L)を満足する
傾斜角度θに設定するのがよい。
In this configuration, each magnetic domain 4 is inclined at a fixed angle θ with respect to the width direction of the substrate 3 so that each magnetic domain 4 and the magnetoresistive element 6 are relatively fixed in the width direction. The state is inclined by the angle θ. Tilt angle θ
Is selected and set within the range of 0 ° <θ <90 °. In particular, when the length of the magnetoresistive path 6A (6B) is L,
It is preferable to set a relationship that satisfies 0 <θ ≦ tan −1 (λ / 4L). That is, the projected component 1 (L × tan θ) in the direction of motion at the length L of the magnetoresistive path 6A (6B) is λ / 4 or less, that is, L × tan θ ≦ λ / 4, It is preferable to set the inclination angle θ so as to satisfy θ ≦ tan −1 (λ / 4L).

【0024】このように構成される磁気式リニアエンコ
―ダでは、被検出体の矢印a方向の直線運動に伴つて磁
性部材1も同方向へ直線運動し、磁気検出体2も磁性部
材1に対して相対的に直線運動する。その結果、磁気抵
抗素子6を構成する2個の磁気抵抗路6A,6Bが磁性
部材1の各磁区4を磁化方向と交差する方向に横切り、
磁区4における磁気が水平方向の磁化成分として検出さ
れる。この検出出力fは、図2に示すように、CPUの
ような演算装置7に順次、送出され、この演算装置7で
は、上記出力fを受けて、単位時間あたりの磁区4の磁
気検出回数を算出し、被検出体の直線運動量のデ―タg
として送出する。
In the magnetic linear encoder configured as described above, the magnetic member 1 linearly moves in the same direction as the detected object moves in the direction of arrow a, and the magnetic detector 2 moves with respect to the magnetic member 1. Relatively linear motion. As a result, the two magnetoresistive paths 6A and 6B constituting the magnetoresistive element 6 cross each magnetic domain 4 of the magnetic member 1 in a direction intersecting the magnetization direction,
The magnetism in the magnetic domain 4 is detected as a horizontal magnetization component. As shown in FIG. 2, the detection output f is sequentially sent to an arithmetic unit 7 such as a CPU. The arithmetic unit 7 receives the output f and determines the number of times of magnetic detection of the magnetic domain 4 per unit time. Calculated and data g of the linear momentum of the object to be detected
Is sent out.

【0025】ここで、各磁区4と磁気抵抗路6A(6
B)とは、磁性部材1の幅方向に対して一定角度θだけ
相対的に傾斜しているため、直線運動時において、磁気
抵抗路6A(6B)が磁区4と非磁区部分との境界と交
差する領域が、運動方向において、L×tanθ分だけ
増大する。このため、磁気検出体2と磁性部材1の主面
との間隙Gが小さい領域において、磁気抵抗路6A(6
B)が磁区4の局所的に存在する水平成分の磁界を検出
する量が少なくなる。その結果として、出力信号の波形
歪みを小さく抑えることが可能となる。
Here, each magnetic domain 4 and the magnetoresistive path 6A (6
B) means that the magnetic resistance path 6A (6B) is in a linear motion with the boundary between the magnetic domain 4 and the non-magnetic domain part because the magnetic resistance path 6A (6B) is relatively inclined with respect to the width direction of the magnetic member 1. The crossing area increases by L × tan θ in the direction of motion. Therefore, in a region where the gap G between the magnetic detector 2 and the main surface of the magnetic member 1 is small, the magnetic resistance path 6A (6
B) reduces the amount of detecting the magnetic field of the horizontal component locally present in the magnetic domain 4. As a result, the waveform distortion of the output signal can be reduced.

【0026】また、各磁区4と磁気抵抗路6A(6B)
とを相対的に一定角度θだけ傾斜させたことにより、磁
気抵抗路6A(6B)が検出する磁界の水平方向成分の
検出量が減少するが、磁区4を希土類の磁性材で構成し
ているので、出力信号の出力強度(振幅値)が大幅に低
下することはない。しかも、磁性部材1と磁気検出体2
との間隙Gが大きい領域において、出力信号のS/N比
が改善される。その結果、各種機器の制御用信号として
そのまま利用できる。また、間隙Gの小さい領域での波
形歪みを抑制する一方、間隙Gの大きい領域での出力強
度も確保されるため、間隙Gの選択範囲が広げられ、製
造条件が大幅に緩和される。
Each magnetic domain 4 and the magnetic resistance path 6A (6B)
Is relatively inclined by a constant angle θ, the amount of detection of the horizontal component of the magnetic field detected by the magnetoresistive path 6A (6B) decreases, but the magnetic domain 4 is formed of a rare-earth magnetic material. Therefore, the output intensity (amplitude value) of the output signal does not significantly decrease. Moreover, the magnetic member 1 and the magnetic detector 2
The S / N ratio of the output signal is improved in a region where the gap G between the output signal is large. As a result, it can be used as it is as a control signal for various devices. Further, while suppressing the waveform distortion in the region where the gap G is small, the output intensity is also ensured in the region where the gap G is large, so that the selection range of the gap G is widened and the manufacturing conditions are greatly eased.

【0027】なお、上記の実施の形態では、各磁区4を
磁性部材1の幅方向に対して一定角度θだけ傾斜させ、
磁気抵抗路6A(6B)の長さ方向を運動方向と直交す
る方向(磁性部材1の幅方向)に一致させたもので説明
したが、逆に、各磁区4の幅方向を運動方向と直交する
方向に一致させ、磁気抵抗路6A(6B)の長さ方向
を、図4に示すように磁性部材1の幅方向に対して一定
角度θだけ傾斜させてもよい。この場合も、上記と同様
の効果を発揮させることができる。
In the above embodiment, each magnetic domain 4 is inclined at a fixed angle θ with respect to the width direction of the magnetic member 1,
Although the length direction of the magnetoresistive paths 6A (6B) has been described as being coincident with the direction perpendicular to the direction of motion (the width direction of the magnetic member 1), the width direction of each magnetic domain 4 is conversely perpendicular to the direction of motion. The length direction of the magnetoresistive path 6A (6B) may be inclined at a fixed angle θ with respect to the width direction of the magnetic member 1 as shown in FIG. Also in this case, the same effect as described above can be exerted.

【0028】また、上記形態のほか、磁区4と磁気抵抗
路6A(6B)の双方を異なる角度で傾斜させるといつ
た形態もとることもできる。さらに、本発明の上記構成
は、磁気式リニアエンコ―ダに限らず、円形の磁性部材
を使用する磁気式ロ―タリエンコ―ダにも適用できるこ
とはいうまでもない。
Further, in addition to the above-described embodiment, it is possible to adopt another embodiment in which both the magnetic domain 4 and the magnetoresistive path 6A (6B) are inclined at different angles. Further, it goes without saying that the above configuration of the present invention can be applied not only to the magnetic linear encoder but also to a magnetic rotary encoder using a circular magnetic member.

【0029】[0029]

【実施例】以下に、本発明の実施例を記載して、さらに
具体的に説明する。
EXAMPLES Examples of the present invention will be described below in more detail.

【0030】実施例1 各磁区4が磁性部材1の幅方向に対して一度角度θ傾斜
した磁性部材1(磁性材:Na−Fe−B系)を使用し
た。傾斜角度θは2°とした。磁区4の設定間隔λを
0.375mm、磁気抵抗路6A,6Bの長さLを1.5
mmとした。すなわち、図3において、l=L×tanθ
=0.052mmである。この例において、磁性部材1と
磁気検出体2との間隙Gを0〜0.200mmの範囲内で
変化させ、各間隙Gごとに、磁気抵抗路6A,6Bによ
る磁気検出波形を測定した。
Example 1 A magnetic member 1 (magnetic material: Na—Fe—B) in which each magnetic domain 4 was inclined at an angle θ with respect to the width direction of the magnetic member 1 was used. The inclination angle θ was 2 °. The set interval λ of the magnetic domain 4 is 0.375 mm, and the length L of the magnetic resistance paths 6A and 6B is 1.5.
mm. That is, in FIG. 3, 1 = L × tan θ
= 0.052 mm. In this example, the gap G between the magnetic member 1 and the magnetic detector 2 was changed within the range of 0 to 0.200 mm, and the magnetic detection waveforms of the magnetic resistance paths 6A and 6B were measured for each gap G.

【0031】この測定結果は、図5の(A)〜(C)、
図6の(D)〜(F)および図7の(G)〜(I)に示
されるとおりであつた。これらの各図から明らかなよう
に、間隙Gが0〜0.150mmの広い範囲で波形の歪み
が少なく、出力強度も十分である良好な特性が得られて
おり、磁性部材1と磁気検出体2との間隙Gの広い範囲
において適正な出力信号が得られるものであることがわ
かる。
The measurement results are shown in FIGS.
The results were as shown in (D) to (F) of FIG. 6 and (G) to (I) of FIG. As is clear from these figures, the gap G has a wide range of 0 to 0.150 mm, has a small waveform distortion, and has good characteristics with sufficient output intensity. It can be seen that an appropriate output signal can be obtained in a wide range of the gap G with 2.

【0032】実施例2 各磁区4が磁性部材1の幅方向に対して一定角度θ傾斜
した磁性部材1を使用した。傾斜角度θは3.6°、こ
の場合図3において、l=L×tanθ=0.094mm
(=λ/4)である。その他は実施例1と同様の構成と
した。この例において、磁性部材1と磁気検出体2との
間隙Gを0.05mmとして、磁気抵抗路6A,6Bによ
る磁気検出波形を測定した。
Example 2 A magnetic member 1 in which each magnetic domain 4 was inclined at a fixed angle θ with respect to the width direction of the magnetic member 1 was used. The inclination angle θ is 3.6 °. In this case, in FIG. 3, 1 = L × tan θ = 0.094 mm
(= Λ / 4). Other configurations were the same as those of the first embodiment. In this example, the gap G between the magnetic member 1 and the magnetic detector 2 was set to 0.05 mm, and the magnetic detection waveforms by the magnetic resistance paths 6A and 6B were measured.

【0033】この測定結果は、図8に示されるとおりで
あつた。同図から明らかなようにこの例では、実施例1
に比べて出力強度が少し低下しているものの、波形歪み
の少ない信号が得られるものであることわかる。また、
上記間隙Gを変えた場合でも、実施例1と同様に、0〜
0.150mmまでは波形歪みも少なく、出力強度も十分
な良好な特性が得られることがわかつた。
The measurement results are as shown in FIG. As is apparent from FIG.
It can be seen that a signal with little waveform distortion is obtained although the output intensity is slightly lower than that of. Also,
Even in the case where the gap G is changed, 0 to 0
It has been found that up to 0.150 mm, the waveform distortion is small and the output intensity is sufficiently satisfactory.

【0034】比較例1 フエライト系の磁性材で構成された多極磁石を使用し、
N極およびS極を磁石の幅方向に対して一定角度θだけ
傾斜させた。傾斜角度θは2°とした。その他の構成
は、実施例1と同様に、λ=0.375mm、L=1.5
mm、L×tanθ=0.052mmとした。この例におい
て、磁性部材と磁気検出体との間隙Gを0〜0.200
mmの範囲内で変化させて、各間隙ごとに、磁気抵抗路6
A,6Bによる磁気検出波形を測定した。
Comparative Example 1 A multi-pole magnet composed of a ferrite-based magnetic material was used.
The north and south poles were inclined by a fixed angle θ with respect to the width direction of the magnet. The inclination angle θ was 2 °. Other configurations are the same as in Embodiment 1, λ = 0.375 mm, L = 1.5
mm, L × tan θ = 0.052 mm. In this example, the gap G between the magnetic member and the magnetic detector is set to 0 to 0.200.
mm, the magnetic resistance path 6
The magnetic detection waveforms of A and 6B were measured.

【0035】この測定結果は、図9の(A)〜(C)、
図10の(D)〜(F)および図11の(G)〜(I)
に示されるとおりであつた。これらの結果から、傾斜角
度θを設定すると、間隙Gが小さい領域での波形歪みは
改善されるが、フエライト系磁性材からなる多極磁石を
用いているため、間隙Gが0.100mm以上になると出
力強度が大幅に低下し、S/N比の劣化が大きくなるこ
とがわかる。
The measurement results are shown in FIGS. 9A to 9C,
(D) to (F) in FIG. 10 and (G) to (I) in FIG.
The results were as shown in FIG. From these results, when the inclination angle θ is set, the waveform distortion in the region where the gap G is small is improved, but the gap G is set to 0.100 mm or more because the multipolar magnet made of the ferrite magnetic material is used. It can be seen that when this happens, the output intensity drops significantly and the S / N ratio deteriorates significantly.

【0036】比較例2 フエライト系の磁性材で構成された多極磁石を使用し、
N極およびS極の傾斜角度θは0°とした。その他の構
成は実施例1と同様とした。この例において、磁性部材
と磁気検出体との間隙Gを0〜0.200mmまで変化さ
せて、各間隙Gごとに、磁気抵抗路6A,6Bによる磁
気検出波形を測定した。
Comparative Example 2 A multi-pole magnet made of a ferrite-based magnetic material was used.
The inclination angles θ of the N pole and the S pole were set to 0 °. Other configurations were the same as in the first embodiment. In this example, the gap G between the magnetic member and the magnetic sensing element was changed from 0 to 0.200 mm, and the magnetic detection waveform by the magnetoresistive paths 6A and 6B was measured for each gap G.

【0037】この測定結果は、図12の(A)〜
(C)、図13の(D)〜(F)および図14の(G)
〜(I)に示されるとおりであつた。これらの結果か
ら、この例では、傾斜角度θが0度のため、間隙Gが小
さい領域であるG=0〜0.050mmでは波形歪みが非
常に大きくなつている。すなわち、波形歪みの小さい良
好な特性が得られる間隙Gが0.075〜0.100mm
という狭い範囲に限定されてしまい、製作条件がかなり
厳しくなることがわかる。
The measurement results are shown in FIGS.
(C), (D) to (F) of FIG. 13 and (G) of FIG.
To (I). From these results, in this example, since the inclination angle θ is 0 degree, the waveform distortion becomes extremely large in a region where the gap G is small, that is, G = 0 to 0.050 mm. That is, the gap G at which good characteristics with small waveform distortion are obtained is 0.075 to 0.100 mm.
It can be seen that the production conditions are considerably strict.

【0038】[0038]

【発明の効果】以上のように、本発明では、被検出体側
に取り付けられる磁性部材として、基板の主面側に運動
方向で一定の設定間隔で単一極の複数の線形磁区を設け
たものを使用し、上記磁区と磁気検出体側の磁気抵抗素
子とを磁性部材の幅方向に対して相対的に一定の角度傾
斜させたので、磁気検出体と磁性部材との間隙が小さい
領域においての出力信号の波形歪みを是正できる。
As described above, according to the present invention, as the magnetic member attached to the object to be detected, a plurality of single-pole linear magnetic domains are provided on the main surface side of the substrate at a predetermined set interval in the direction of movement. And the magnetic domain and the magnetoresistive element on the side of the magnetic detector are inclined at a constant angle relative to the width direction of the magnetic member, so that the output in the region where the gap between the magnetic detector and the magnetic member is small is used. The waveform distortion of the signal can be corrected.

【0039】また、上記磁区を希土類の磁性材で構成し
ているので、上記間隔が大きい領域での出力強度も十分
確保されてS/N比を改善できる。その結果、複雑な電
気的処理や加工を施すことなく、制御用信号として有効
に利用できるとともに、上記間隙の設定範囲を広げられ
るため、実用上使いやすいものとなる。
Further, since the magnetic domains are made of a rare earth magnetic material, the output intensity in the region where the interval is large is sufficiently secured, and the S / N ratio can be improved. As a result, it can be effectively used as a control signal without performing complicated electrical processing and processing, and the setting range of the gap can be widened, so that it is practically easy to use.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の磁気式リニアエンコ―ダに用いられる
磁性部材を磁気検出体とともに示す外観図である。
FIG. 1 is an external view showing a magnetic member used in a magnetic linear encoder of the present invention together with a magnetic detector.

【図2】同リニアエンコ―ダの概要を示す全体の構成図
である。
FIG. 2 is an overall configuration diagram showing an outline of the linear encoder.

【図3】磁性部材の幅方向に対して一定角度傾斜させた
磁区と磁気抵抗素子との配置関係を示す平面図である。
FIG. 3 is a plan view showing an arrangement relationship between a magnetic domain inclined at a fixed angle with respect to a width direction of a magnetic member and a magnetoresistive element.

【図4】磁性部材の幅方向に対して一定角度傾斜させた
磁気抵抗素子と磁区との配置関係を示す平面図である。
FIG. 4 is a plan view showing an arrangement relationship between a magnetic resistance element and a magnetic domain that are inclined at a fixed angle with respect to a width direction of a magnetic member.

【図5】実施例1における磁気検出出力の測定結果を示
し、(A)は磁性部材と磁気検出体との間隙G=0mm、
(B)はG=0.025mm、(C)はG=0.050mm
のときの特性図である。
5A and 5B show measurement results of a magnetic detection output in Example 1; FIG. 5A shows a gap G = 0 mm between a magnetic member and a magnetic detection body;
(B) G = 0.025 mm, (C) G = 0.050 mm
It is a characteristic diagram at the time of.

【図6】実施例1の上記同様の測定結果を示し、(D)
はG=0.075mm、(E)はG=0.100mm、
(F)はG=0.125mmのときの特性図である。
FIG. 6 shows a measurement result similar to the above in Example 1, (D)
Is G = 0.075 mm, (E) is G = 0.100 mm,
(F) is a characteristic diagram when G = 0.125 mm.

【図7】実施例1の上記同様の測定結果を示し、(G)
はG=0.150mm、(H)はG=0.175mm、
(I)はG=0.200mmのときの特性図である。
FIG. 7 shows a measurement result similar to the above in Example 1, (G)
Is G = 0.150 mm, (H) is G = 0.175 mm,
(I) is a characteristic diagram when G = 0.200 mm.

【図8】実施例2における磁気検出出力の測定結果を示
す特性図である。
FIG. 8 is a characteristic diagram showing a measurement result of a magnetic detection output in Example 2.

【図9】比較例1における磁気検出出力の測定結果を示
し、(A)は磁性部材と磁気検出体との間隙G=0mm、
(B)はG=0.025mm、(C)はG=0.050mm
のときの特性図である。
9A and 9B show measurement results of a magnetic detection output in Comparative Example 1. FIG. 9A shows a gap G = 0 mm between a magnetic member and a magnetic detector.
(B) G = 0.025 mm, (C) G = 0.050 mm
It is a characteristic diagram at the time of.

【図10】比較例1の上記同様の測定結果を示し、
(D)はG=0.075mm、(E)は同=0.100m
m、(F)はG=0.125mmのときの特性図である。
FIG. 10 shows the same measurement results as described above of Comparative Example 1,
(D): G = 0.075 mm, (E): 0.100 m
m and (F) are characteristic diagrams when G = 0.125 mm.

【図11】比較例1の上記同様の測定結果を示し、
(G)はG=0.150mm、(H)はG=0.175m
m、(I)はG=0.200mmのときの特性図である。
FIG. 11 shows the same measurement results as described above of Comparative Example 1,
(G): G = 0.150 mm, (H): G = 0.175 m
m and (I) are characteristic diagrams when G = 0.200 mm.

【図12】比較例2における磁気検出出力の測定結果を
示し、(A)は磁性部材と磁気検出体との間隙G=0m
m、(B)はG=0.025mm、(C)はG=0.05
0mmのときの特性図である。
12A and 12B show measurement results of a magnetic detection output in Comparative Example 2, and FIG. 12A shows a gap G = 0 m between a magnetic member and a magnetic detection body.
m, (B) G = 0.025 mm, (C) G = 0.05
It is a characteristic diagram at the time of 0 mm.

【図13】比較例2の上記同様の測定結果を示し、
(D)はG=0.075mm、(E)はG=0.100m
m、(F)はG=0.125mmのときの特性図である。
FIG. 13 shows the same measurement results as described above of Comparative Example 2,
(D) G = 0.075 mm, (E) G = 0.100 m
m and (F) are characteristic diagrams when G = 0.125 mm.

【図14】比較例2の上記同様の測定結果を示し、
(G)はG=0.150mm、(H)はG=0.175m
m、(I)はG=0.200mmのときの特性図である。
FIG. 14 shows the same measurement results as described above of Comparative Example 2,
(G): G = 0.150 mm, (H): G = 0.175 m
m and (I) are characteristic diagrams when G = 0.200 mm.

【図15】従来一般の磁気式エンコ―ダの磁性部材の着
磁手段を示す斜視図である。
FIG. 15 is a perspective view showing a magnetizing means of a magnetic member of a conventional general magnetic encoder.

【図16】図15の着磁手段で得られた磁性部材を使用
した一般的な磁気式エンコ―ダの概要を示す斜視図であ
る。
16 is a perspective view showing an outline of a general magnetic encoder using a magnetic member obtained by the magnetizing means of FIG.

【図17】図16の磁気式エンコ―ダにおける磁性部材
と磁気抵抗素子との配置関係を示す平面図である。
17 is a plan view showing an arrangement relationship between a magnetic member and a magnetoresistive element in the magnetic encoder of FIG.

【図18】図16の磁気式エンコ―ダにおける磁気検出
体と磁性部材との間隙の違いによる出力信号の波形状態
を示す図である。
18 is a diagram showing a waveform state of an output signal due to a difference in a gap between a magnetic detector and a magnetic member in the magnetic encoder of FIG.

【符号の説明】[Explanation of symbols]

1 磁性部材 2 磁気検出体 3 基板 3a 基板の主面 4 磁区(磁気目盛) 6 磁気抵抗素子 6A,6B 磁気抵抗路 a 運動方向 b 幅方向 L 磁気抵抗路の長さ λ 磁区の設定間隔 θ 傾斜角度 Reference Signs List 1 magnetic member 2 magnetic detector 3 substrate 3a main surface of substrate 4 magnetic domain (magnetic scale) 6 magnetic resistance element 6A, 6B magnetic resistance path a movement direction b width direction L length of magnetic resistance path λ magnetic domain setting interval θ inclination angle

───────────────────────────────────────────────────── フロントページの続き (72)発明者 浅井 文輝 大阪府茨木市下穂積1丁目1番2号 日東 電工株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Fumiki Asai 1-2-1, Shimohozumi, Ibaraki-shi, Osaka Nitto Denko Corporation

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 被検出体側に取り付けられる磁性部材
と、この磁性部材に対して相対運動可能な位置に配設さ
れる磁気検出体とを備え、上記被検出体の回転または直
線運動量を磁気的に検出する磁気式エンコ―ダにおい
て、上記磁性部材は、基板とこの基板の主面側に磁気目
盛として運動方向で一定の設定間隔で設けられてかつ一
定方向に磁化された単一極の複数の磁区とからなり、各
磁区は希土類の磁性材で構成されるとともに、運動方向
で所定の幅を有するように線形に形成され、上記磁気検
出体は、上記磁性部材の主面に平行でかつ運動方向と交
差する方向に延びる磁気抵抗路からなる磁気抵抗素子を
有し、上記磁区と磁気抵抗素子とが磁性部材の幅方向に
対して相対的に一定角度傾斜して設定されていることを
特徴とする磁気式エンコ―ダ。
A magnetic member attached to a detection object side; and a magnetic detection body disposed at a position capable of relatively moving with respect to the magnetic member. In the magnetic encoder described above, the magnetic member comprises a substrate and a plurality of single poles provided on the main surface side of the substrate as magnetic graduations at fixed intervals in the direction of movement and magnetized in a constant direction. Each magnetic domain is composed of a rare earth magnetic material, and is formed linearly so as to have a predetermined width in the direction of movement, and the magnetic detector is parallel to the main surface of the magnetic member and The magnetic domain and the magnetoresistive element having a magnetoresistive path extending in a direction intersecting the direction of movement, wherein the magnetic domains and the magnetoresistive element are set to be inclined at a constant angle relative to the width direction of the magnetic member. Characteristic magnetic encoder -Da.
【請求項2】 磁区と磁気抵抗素子との相対的傾斜角度
(θ)は、0<θ≦tan-1(λ/4L)(λは磁区の
設定間隔、Lは磁気抵抗路の長さである)を満たす関係
に設定されている請求項1に記載の磁気式エンコ―ダ。
2. The relative inclination angle (θ) between the magnetic domain and the magnetoresistive element is 0 <θ ≦ tan −1 (λ / 4L) (λ is the set interval of the magnetic domain, and L is the length of the magnetoresistive path. 2. The magnetic encoder according to claim 1, wherein the relationship is satisfied.
【請求項3】 磁区は、その幅方向が運動方向と直交す
る方向と一致するように配設されている請求項1に記載
の磁気式エンコ―ダ。
3. The magnetic encoder according to claim 1, wherein the magnetic domains are arranged such that a width direction thereof coincides with a direction orthogonal to a direction of movement.
【請求項4】 磁気抵抗路は、その長さ方向が運動方向
と直交する方向と一致するように配設されている請求項
1に記載の磁気式エンコ―ダ。
4. The magnetic encoder according to claim 1, wherein the magnetoresistive path is disposed such that its length direction coincides with a direction orthogonal to the direction of movement.
JP1072198A 1998-01-22 1998-01-22 Magnetic type encoder Pending JPH11213540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1072198A JPH11213540A (en) 1998-01-22 1998-01-22 Magnetic type encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1072198A JPH11213540A (en) 1998-01-22 1998-01-22 Magnetic type encoder

Publications (1)

Publication Number Publication Date
JPH11213540A true JPH11213540A (en) 1999-08-06

Family

ID=11758162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1072198A Pending JPH11213540A (en) 1998-01-22 1998-01-22 Magnetic type encoder

Country Status (1)

Country Link
JP (1) JPH11213540A (en)

Similar Documents

Publication Publication Date Title
KR101376243B1 (en) Magnet and magnetic detection apparatus using the same
US20060103374A1 (en) Magnetic position detecting apparatus
JPH11213540A (en) Magnetic type encoder
JPH0870148A (en) Magnetoresistance element
JPH06229708A (en) Noncontact linear displacement sensor
US5117319A (en) Magnetic movement sensing device
JPH10206104A (en) Position detecting apparatus
JP2007093532A (en) Magnetic sensor device
JP2005300246A (en) Movable body detector
JPH0710245Y2 (en) Magnetic sensor
JP2008249370A (en) Magnetic material detection sensor and magnetic material detector
JP2001174286A (en) Magnetic encoder
JPS58100217A (en) Magnetoresistance effect head
JP2003257738A (en) Permanent magnet, its manufacturing method, and position sensor
JP2546233B2 (en) Origin detection unit of magnetic head for magnetic encoder
JPH09269205A (en) Magnetic rotation sensor
JPH10227807A (en) Rotation sensor
JPH10213453A (en) Magnetic encoder
JPS59142417A (en) Magnetism detecting device
JP2546281B2 (en) Origin detection part of magnetic head for magnetic encoder
JP3047567B2 (en) Orientation sensor
JPH0473087B2 (en)
JPH06140685A (en) Noncontact type potentiometer
JPS6235204A (en) Position detecting device using magneto-resistance element
JP4945886B2 (en) Position detection sensor