JPH11207442A - Mold in continuous casting equipment and casting method using it - Google Patents

Mold in continuous casting equipment and casting method using it

Info

Publication number
JPH11207442A
JPH11207442A JP2400798A JP2400798A JPH11207442A JP H11207442 A JPH11207442 A JP H11207442A JP 2400798 A JP2400798 A JP 2400798A JP 2400798 A JP2400798 A JP 2400798A JP H11207442 A JPH11207442 A JP H11207442A
Authority
JP
Japan
Prior art keywords
mold
copper plate
cooling
cooling water
water passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2400798A
Other languages
Japanese (ja)
Inventor
Takeshi Arakami
剛 新上
Masahiro Ikeda
正裕 池田
Toshihiko Murakami
敏彦 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd, Sumitomo Metal Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2400798A priority Critical patent/JPH11207442A/en
Publication of JPH11207442A publication Critical patent/JPH11207442A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a mold which obtains the optimum cooling pattern according to various kinds of steel in one mold, and a casting method using this mold. SOLUTION: A cooling water passage 10 formed in the vertical direction in the cross section of copper plate 5 constituting the mold in a continuous casting equipment, is constituted of an upper cooling water passage 10a near the upper part of the mold and a lower cooling water passage 10b at the lower part from the neighborhood of the upper part of the mold. The distance of the upper cooling water passage 10a from the copper plate surface 5a is made further than the distance of the lower cooling water passage 10b from the copper plate surface 5a, and the cross sectional area of the upper cooling passage 10a is made larger than the cross sectional area of the lower cooling passage 10b so as to slowly cool the upper part of the mold and intensely cool the lower part of the mold. Therefore, the combination of the slow cooling and the intense cooling, or the intense cooling to the whole mold can freely be selected by vertically displacing the molten metal surface level.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、連続鋳造設備の鋳
型およびそれを用いた鋳造方法に関する。鋼を連続鋳造
した場合の鋳片品質は鋳型による冷却の強さに大きく影
響を受けることが知られている。鋳片の表面疵を防止す
ると共に、鋳造速度を向上するためには鋼種によって冷
却の強さを変えればよいのであるが、本発明は、そのよ
うな目的に適した鋳型および鋳造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mold for a continuous casting facility and a casting method using the same. It is known that the slab quality when steel is continuously cast is greatly affected by the strength of cooling by a mold. In order to prevent the surface flaw of the slab and improve the casting speed, the cooling strength may be changed depending on the type of steel. The present invention relates to a mold and a casting method suitable for such purpose.

【0002】[0002]

【従来の技術】鋼種によって冷却の強さを変えるには、
鋼種毎に鋳型を交換すれば可能であるが、それは生産性
が非常に悪い。しかし、一つの鋳型で種々の鋼種に対応
した最適な冷却方法を実現できれば生産性が向上する。
そのような従来技術として、実公平5−30839号公
報記載の技術がある。
2. Description of the Related Art To change the cooling strength depending on the type of steel,
This is possible if the mold is changed for each type of steel, but this is very poor in productivity. However, productivity can be improved if one mold can realize an optimal cooling method corresponding to various steel types.
As such a conventional technique, there is a technique described in Japanese Utility Model Publication No. 5-30839.

【0003】この従来技術を図5に基づき説明する。5
2は銅板で、その断面内に貫通孔53を上下に形成し、
その内部に棒状物58を挿入し、貫通孔53と棒状物5
8の間に冷却水路54を形成している。この棒状物58
は中央部の直径が上下両端部より大きくなっており、冷
却水路54の下部では冷却水の流速が遅く、中央部で早
く、上部で遅くなる。したがって、鋳型の上下方向中央
部では冷却水の流速が早いことから銅板のみの冷却効果
をみると中央部が大きくなっている。
[0003] This prior art will be described with reference to FIG. 5
Reference numeral 2 denotes a copper plate having through-holes 53 vertically formed in the cross section thereof,
The rod 58 is inserted into the inside thereof, and the through hole 53 and the rod 5 are inserted.
8, a cooling water passage 54 is formed. This stick 58
The diameter of the central part is larger than that of the upper and lower ends, and the flow rate of the cooling water is lower at the lower part of the cooling water passage 54, faster at the central part, and slower at the upper part. Therefore, since the flow rate of the cooling water is high at the central part in the vertical direction of the mold, the central part is large in view of the cooling effect of only the copper plate.

【0004】[0004]

【発明が解決しようとする課題】しかし、前記従来技術
が上記の構成により中央部の冷却効果を上下部より大き
くしたのは、中央部に電磁撹拌装置51を設けているの
で中央部が高温になりがちなためであり、この部分を強
冷することによって全体的に均一な冷却効果が得られる
ようになっている。したがって、この鋳型によって、冷
却の強さを鋼種によって変えることはできない。
However, the above-mentioned prior art has made the cooling effect of the central portion larger than that of the upper and lower portions by the above configuration because the electromagnetic stirring device 51 is provided at the central portion, so that the central portion has a high temperature. This is because this portion tends to be hardly cooled, so that a uniform cooling effect can be obtained as a whole. Therefore, the strength of cooling cannot be changed depending on the type of steel by using this mold.

【0005】本発明はかかる事情に鑑み、一つの鋳型に
よって種々の鋼種に応じた最適な冷却パターンが得られ
る鋳型と、それを用いた鋳造方法を提供することを目的
とする。
[0005] In view of such circumstances, an object of the present invention is to provide a mold in which an optimum cooling pattern corresponding to various steel types can be obtained by one mold, and a casting method using the same.

【0006】[0006]

【課題を解決するための手段】請求項1の鋳型は、連続
鋳造設備の鋳型を構成する銅板の断面内に上下方向に形
成された冷却水路を鋳型上部付近の上部冷却水路と鋳型
上部付近より下方の下部冷却水路とから構成し、上部冷
却水路の銅板表面からの距離を下部冷却水路の銅板表面
からの距離よりも遠くし、上部冷却水路の断面積を下部
冷却水路の断面積より大きくしたことを特徴とする。請
求項2の鋳型は、前記銅板の裏面側から切削形成したス
リットと、該スリット内に裏面側から挿入されるスペー
サによって、スリット内表面とスペーサ内表面との間に
冷却水路が形成されており、前記スリットの上部内表面
と前記スペーサの上部内表面を銅板表面から遠い位置に
形成し、かつ両上部内表面間の間隔を広くし、前記スリ
ットの下部内表面と前記スペーサの下部内表面を銅板表
面から近い位置に形成し、かつ両下部表面間の間隔を狭
くしたことを特徴とする。請求項3の鋳型は、前記銅板
内に上下方向に貫通孔を形成し、該貫通孔の下部に棒状
のスペーサを挿入することにより貫通孔の下部とスペー
サとの間に下部冷却水路を構成しており、スペーサが挿
入されていない上部貫通孔内の上部冷却水路の断面積が
下部貫通孔とスペーサの間の下部冷却水路の断面積より
大きくなっており、上部冷却水路は下部冷却水路の銅板
表面に近い部位より銅板表面から遠く離れていることを
特徴とする。請求項4の鋳造方法は、請求項1、2また
は3記載の鋳型を用い、鋳型上部を緩冷却し、鋳型下部
を強冷却するようにし、鋼種によって鋳型内の湯面レベ
ルを鋳型上部付近と鋳型上部より下方の間で上下に変更
し、鋳型内の溶鋼を緩冷却と強冷却の組合せによる冷
却、または強冷却のみによる冷却を選択できるようにし
たことを特徴とする。
According to a first aspect of the present invention, there is provided a mold, wherein a cooling water passage formed vertically in a cross section of a copper plate constituting a mold of a continuous casting facility is formed from an upper cooling water passage near an upper portion of the mold and an upper portion near the upper portion of the mold. The lower cooling channel is composed of a lower cooling channel, the distance from the copper plate surface of the upper cooling channel is longer than the distance from the copper plate surface of the lower cooling channel, and the cross-sectional area of the upper cooling channel is larger than the cross-sectional area of the lower cooling channel. It is characterized by the following. In the mold of claim 2, a cooling water passage is formed between the inner surface of the slit and the inner surface of the spacer by a slit cut from the back side of the copper plate and a spacer inserted into the slit from the back side. Forming the upper inner surface of the slit and the upper inner surface of the spacer at a position far from the surface of the copper plate, and increasing the distance between the upper inner surfaces, to reduce the lower inner surface of the slit and the lower inner surface of the spacer. It is characterized in that it is formed at a position close to the surface of the copper plate and the distance between both lower surfaces is reduced. The mold according to claim 3 forms a lower cooling water passage between the lower portion of the through hole and the spacer by forming a through hole in the copper plate in a vertical direction and inserting a rod-shaped spacer below the through hole. The cross-sectional area of the upper cooling water passage in the upper through hole where the spacer is not inserted is larger than the cross-sectional area of the lower cooling water passage between the lower through hole and the spacer, and the upper cooling water passage is a copper plate of the lower cooling water passage. It is characterized by being farther from the surface of the copper plate than a portion closer to the surface. The casting method according to claim 4 uses the mold according to claim 1, 2 or 3 to slowly cool the upper part of the mold and to strongly cool the lower part of the mold. It is characterized in that the molten steel in the mold can be selected from cooling by a combination of slow cooling and strong cooling, or cooling only by strong cooling, by changing the temperature of the molten steel in the mold up and down below the upper part of the mold.

【0007】請求項1の発明によれば、上部冷却水路は
銅板表面から遠い位置にあり断面積が大きいので冷却水
の流速が遅いことから冷却効果が弱く、下部冷却水路は
銅板表面に近く断面積が小さいので冷却水の流速が早い
ことから冷却効果が高くなる。よって、鋳型上部付近は
緩冷却となり、鋳型上部より下方は強冷却とすることが
できる。請求項2の発明では、スペーサとスリットによ
って、上部冷却水路と下部冷却水路の銅板表面からの距
離と断面積を構成しており、かかる構成により請求項1
の発明と同様に鋳型上部付近を緩冷却し、鋳型上部より
下方を強冷却することができる。請求項3の発明では、
貫通孔とスペーサによって、上部冷却水路と下部冷却水
路の銅板表面からの距離と断面積を構成しており、かか
る構成により請求項1の発明と同様に鋳型上部付近を緩
冷却し、鋳型上部より下方を強冷却することができる。
請求項4の発明によれば、鋳型内の湯面レベルを上下さ
せることにより、鋳型上部の緩冷却と鋳型上部より下方
の強冷却を組み合わせた鋳造や鋳型銅板全体を強冷却す
る鋳造が可能であり、低炭素鋼、中炭素鋼および高炭素
鋼のそれぞれに適した冷却パターンを選択でき、それに
より高品質の鋼を一つの鋳型で鋳造することができる。
According to the first aspect of the present invention, since the upper cooling channel is located far from the copper plate surface and has a large cross-sectional area, the flow rate of the cooling water is slow, so that the cooling effect is weak, and the lower cooling channel is cut close to the copper plate surface. Since the area is small, the flow rate of the cooling water is high, so that the cooling effect is high. Therefore, the vicinity of the upper part of the mold is cooled slowly, and the part below the upper part of the mold can be cooled strongly. According to the second aspect of the present invention, the distance and the sectional area of the upper cooling water channel and the lower cooling water channel from the surface of the copper plate are configured by the spacer and the slit.
In the same manner as in the invention described above, the vicinity of the upper part of the mold can be slowly cooled and the part below the upper part of the mold can be strongly cooled. In the invention of claim 3,
The through holes and the spacers define the distance and cross-sectional area of the upper cooling water channel and the lower cooling water channel from the surface of the copper plate. With this configuration, the vicinity of the upper part of the mold is slowly cooled as in the first aspect of the present invention. The lower part can be strongly cooled.
According to the invention of claim 4, by raising and lowering the level of the molten metal in the mold, casting combining slow cooling of the upper part of the mold and strong cooling below the upper part of the mold and casting of strongly cooling the entire mold copper plate can be performed. Yes, a cooling pattern suitable for each of low carbon steel, medium carbon steel and high carbon steel can be selected, so that high quality steel can be cast in one mold.

【0008】[0008]

【発明の実施の形態】つぎに、本発明の実施形態を図面
に基づき説明する。図1の(a) 図は請求項1の発明の一
実施形態に係る鋳型銅板の断面図、(b) 図は(a) 図のb
矢視断面図、図2の(a) 図は請求項2の発明の一実施形
態に係る鋳型銅板の断面図、(b) 図は(a) 図のb矢視断
面図、図3は請求項2の発明の他の実施形態に係る鋳型
銅板の断面図、図4は鋳型の斜視図である。
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1A is a cross-sectional view of a mold copper plate according to an embodiment of the present invention, and FIG.
FIG. 2A is a cross-sectional view of a mold copper plate according to an embodiment of the present invention, FIG. 2B is a cross-sectional view of FIG. Item 2 is a sectional view of a mold copper plate according to another embodiment of the invention, and FIG. 4 is a perspective view of the mold.

【0009】まず、図4に基づき、鋳型の基本構造を説
明しておく。1、2は長辺フレームであり、この長辺フ
レーム1、2の間に短辺フレーム3、4が挟まれてい
る。各フレーム1〜4の内面には銅板5が貼り付けられ
ており、この銅板5が鋳型を構成している。前記各フレ
ーム1〜4は水箱であって、下部の給水パイプ6から水
を入れ、上部の給水パイプ7から排水し、常時、冷却水
を循環させて銅板5を冷却するようにしている。
First, the basic structure of the mold will be described with reference to FIG. Reference numerals 1 and 2 denote long side frames, and short side frames 3 and 4 are sandwiched between the long side frames 1 and 2. A copper plate 5 is adhered to the inner surface of each of the frames 1 to 4, and this copper plate 5 constitutes a mold. Each of the frames 1 to 4 is a water box, in which water is supplied from a lower water supply pipe 6, drained from an upper water supply pipe 7, and cooling water is constantly circulated to cool the copper plate 5.

【0010】つぎに、図1に基づき、請求項1の発明の
一実施形態を説明する。5は鋳型銅板であり、Sは溶鋼
である。溶鋼Sの上面であるメニスカスは通常鋳込みの
鋳型上部付近にある状態を示している。前記銅板5に
は、その裏面側からスリット11が切削形成されてお
り、このスリット11にスペーサ12が挿入されて、ス
リット11とスペーサ12の間に冷却水路10が形成さ
れている。また、スペーサ12の上下高さはスリット1
1の上下高さより短く、冷却水路10の下端と上端に下
側入口13と上側出口14が設けられている。
Next, an embodiment of the present invention will be described with reference to FIG. 5 is a mold copper plate, and S is molten steel. The meniscus, which is the upper surface of the molten steel S, is in a state near the upper part of the normally cast mold. A slit 11 is cut from the back side of the copper plate 5, and a spacer 12 is inserted into the slit 11, and a cooling water passage 10 is formed between the slit 11 and the spacer 12. The vertical height of the spacer 12 is the same as that of the slit 1.
1, a lower inlet 13 and an upper outlet 14 are provided at a lower end and an upper end of the cooling water passage 10, respectively.

【0011】スリット11の鋳型上部付近は銅板表面5
aから遠く離れ、下部は銅板表面5aに接近して位置
し、途中は傾斜して接続している。また、スペーサ12
の上部は銅板表面5aから遠く離れ、下部は銅板表面5
aに接近して位置し、途中は傾斜して接続している。こ
の結果、上部冷却水路10a の銅板表面5aからの距離D
1は、下部冷却水路10b の銅板表面5aからの距離D2
より大きくなっているので、上部冷却水路10a は下部冷
却水路10b より冷却能力が低くなっている。
In the vicinity of the upper part of the mold of the slit 11, the copper plate surface 5
The lower part is located farther from the copper plate surface 5a, and the lower part is inclined and connected in the middle. The spacer 12
The upper part is far away from the copper plate surface 5a, and the lower part is the copper plate surface 5a.
It is located close to "a" and is connected at an angle in the middle. As a result, the distance D of the upper cooling water passage 10a from the copper plate surface 5a is increased.
1 is a distance D2 from the copper plate surface 5a of the lower cooling water passage 10b.
Since it is larger, the cooling capacity of the upper cooling channel 10a is lower than that of the lower cooling channel 10b.

【0012】前記スリット11の上部内表面11a と前記
スペーサ12の上部内表面12a とで画定される断面積A
1は、前記スリット11の下部内表面11b と前記スペー
サ12の下部内表面12b とで画定される断面積A2より
広くなっている。このため、上部冷却水路10a より下部
冷却水路10b における冷却水の流速が早くなるので、上
部冷却水路10a は下部冷却水路10b より冷却能力が低く
なっている。
A sectional area A defined by the upper inner surface 11a of the slit 11 and the upper inner surface 12a of the spacer 12
1 is wider than the cross-sectional area A2 defined by the lower inner surface 11b of the slit 11 and the lower inner surface 12b of the spacer 12. For this reason, the flow rate of the cooling water in the lower cooling water passage 10b is higher than that in the upper cooling water passage 10a, so that the cooling capacity of the upper cooling water passage 10a is lower than that of the lower cooling water passage 10b.

【0013】要するに上部冷却水路10a は銅板表面5a
からの距離と断面積によって下部冷却水路10b より冷却
能力が低くなっており、換言すれば、下部冷却水路10b
は上部冷却水路10a より冷却能力が高くなっている。こ
のため、鋳型銅板の上部は緩冷却され、鋳型銅板の上部
より下方は強冷却されるようになっている。
In short, the upper cooling water passage 10a is formed on the copper plate surface 5a.
The cooling capacity is lower than that of the lower cooling water passage 10b depending on the distance from the lower cooling water passage 10b.
Has a higher cooling capacity than the upper cooling channel 10a. For this reason, the upper part of the mold copper plate is slowly cooled, and the part below the upper part of the mold copper plate is strongly cooled.

【0014】つぎに、上記鋳型を用いた鋳造方法を説明
する。図1の鋳型では鋳型上部付近が緩冷却され、鋳型
上部より下方が強冷却される。したがって、鋳型上部に
溶鋼の湯面レベルを維持すると、鋳型内の上方の溶鋼は
緩冷却され、下方の溶鋼は強冷却されることになる。一
方、湯面レベルを下げると、鋳型内の溶鋼は全体的に強
冷却されることになる。
Next, a casting method using the above mold will be described. In the mold of FIG. 1, the vicinity of the upper portion of the mold is slowly cooled, and the portion below the upper portion of the mold is strongly cooled. Therefore, if the molten steel level is maintained at the upper part of the mold, the upper molten steel in the mold will be slowly cooled and the lower molten steel will be strongly cooled. On the other hand, when the level of the molten metal is lowered, the molten steel in the mold is strongly cooled as a whole.

【0015】そこで、例えば、中炭素鋼の表面疵を防止
するには鋳型上部付近の緩冷却が有効であり、一方、鋳
造速度を上げるには鋳片の凝固シェル厚を確保するため
に鋳型下部を強冷却しなければならない。よって、この
場合、湯面レベルを鋳型上方に維持しながら鋳造する
と、鋳型上方では緩冷却され鋳型下方では強冷却される
ので、中炭素鋼を表面疵を付けず高速鋳造することがで
きる。また、低炭素鋼や高炭素鋼は鋳型銅板全体を強冷
却することが必要になる。この場合、下部冷却水路10a
に面する位置まで湯面レベルを下げて操業すると鋳型銅
板全体が強冷却されるので、低炭素鋼や高炭素鋼の高品
質の鋳造が可能となる。
Therefore, for example, moderate cooling near the upper part of the mold is effective to prevent surface defects of medium carbon steel, while increasing the casting speed requires lowering the lower part of the mold to secure the solidified shell thickness of the slab. Must be strongly cooled. Therefore, in this case, if casting is performed while maintaining the molten metal level above the mold, moderate cooling is performed above the mold and strong cooling is performed below the mold, so that medium carbon steel can be cast at high speed without surface defects. In addition, low-carbon steel and high-carbon steel require strong cooling of the entire mold copper plate. In this case, the lower cooling water passage 10a
When the operation is performed with the level of the molten metal lowered to a position facing the surface, the entire mold copper plate is strongly cooled, so that high-quality casting of low-carbon steel or high-carbon steel becomes possible.

【0016】つぎに、図2に基づき、請求項2の発明の
一実施形態を説明する。前記銅板5には、その断面内
に、上下に貫通孔21を形成しており、この貫通孔21
は上部断面A1より下部断面A3が大きくなっており、
上下を通じて同芯の孔である。断面が大きい貫通孔21
の下部には棒状のスペーサ22が同芯に挿入されてい
る。この結果、スペーサ22の外周と貫通孔21の間に
下部冷却水路10b が形成されている。断面が小さい上部
の貫通孔21内は上部冷却水路10a である。下部冷却水
路10b 内において、断面A3から棒状のスペーサ22の
断面A4を差し引いた断面A2が、下部冷却水路10b の
真の流路断面積である。そして、上部断面A1より下部
断面A2の方が小さくなっている。このため冷却水の流
速が速くなる下部の方が冷却能力が高くなっている。ま
た、上部冷却水路10a の銅板表面5aからの距離D1
は、下部冷却水路10b におけるスペーサ22まわりの銅
板表面側から銅板表面5aまでの距離D2よりも遠くな
っている。
Next, an embodiment of the present invention will be described with reference to FIG. In the cross section of the copper plate 5, through holes 21 are formed vertically.
Is that the lower section A3 is larger than the upper section A1,
The hole is concentric through the top and bottom. Through hole 21 with large cross section
A rod-shaped spacer 22 is coaxially inserted in the lower part of the frame. As a result, a lower cooling water passage 10b is formed between the outer periphery of the spacer 22 and the through hole 21. The inside of the upper through hole 21 having a small cross section is an upper cooling water passage 10a. In the lower cooling water passage 10b, a cross section A2 obtained by subtracting the cross section A4 of the rod-shaped spacer 22 from the cross section A3 is a true flow passage cross-sectional area of the lower cooling water passage 10b. The lower section A2 is smaller than the upper section A1. For this reason, the cooling capacity is higher at the lower portion where the flow rate of the cooling water is higher. Further, the distance D1 from the copper plate surface 5a of the upper cooling water passage 10a.
Is longer than the distance D2 from the copper plate surface side around the spacer 22 in the lower cooling water passage 10b to the copper plate surface 5a.

【0017】要するに上部冷却水路10a は銅板表面5a
からの距離と断面積によって、下部冷却水路10b より冷
却能力が低くなっており、換言すれば下部冷却水路10b
は上部冷却水路10a より冷却能力が高くなっている。こ
のため、鋳型銅板の上部は緩冷却され、鋳型銅板の上部
より下方が強冷却されるようになっている。
In short, the upper cooling water passage 10a is formed on the copper plate surface 5a.
The cooling capacity is lower than that of the lower cooling water passage 10b due to the distance from the lower cooling water passage 10b.
Has a higher cooling capacity than the upper cooling channel 10a. For this reason, the upper part of the mold copper plate is slowly cooled, and the part below the upper part of the mold copper plate is strongly cooled.

【0018】つぎに、上記鋳型を用いた鋳造方法を説明
する。図2の鋳型では鋳型上部付近が緩冷却され、鋳型
下部付近が強冷却される。したがって、鋳型上部に溶鋼
の湯面レベルを維持すると、上方は緩冷却され、下方は
強冷却されることになる。一方、湯面レベルを下げる
と、全体的に強冷却されることになる。
Next, a casting method using the above mold will be described. In the mold of FIG. 2, the vicinity of the upper part of the mold is slowly cooled, and the vicinity of the lower part of the mold is strongly cooled. Therefore, when the molten steel surface level is maintained at the upper part of the mold, the upper part is slowly cooled and the lower part is strongly cooled. On the other hand, when the level of the molten metal is lowered, the whole is strongly cooled.

【0019】そこで、例えば、中炭素鋼の表面疵を防止
するにはメニスカス付近の緩冷却が有効であり、一方、
鋳造速度を上げるには鋳片の凝固シェル厚を確保するた
めに鋳型下部を強冷却しなければならない。よって、こ
の場合、湯面レベルを鋳型上方に維持しながら鋳造する
と、鋳型上方では緩冷却され鋳型下方では強冷却される
ので、中炭素鋼を表面疵を付けず高速鋳造することがで
きる。また、低炭素鋼をさらに高速鋳造するには鋳型銅
板全体を強冷却することが必要になる。この場合、下部
冷却水路10a に面する位置まで湯面レベルを下げて操業
すると鋳型銅板全体が強冷却されるので、鋳型の温度上
昇を抑制することができる。
Therefore, for example, in order to prevent surface defects of medium carbon steel, gentle cooling near the meniscus is effective.
In order to increase the casting speed, the lower part of the mold must be strongly cooled to secure the solidified shell thickness of the slab. Therefore, in this case, if casting is performed while maintaining the molten metal level above the mold, moderate cooling is performed above the mold and strong cooling is performed below the mold, so that medium carbon steel can be cast at high speed without surface defects. Further, in order to cast low-carbon steel at a higher speed, it is necessary to strongly cool the entire mold copper plate. In this case, when the operation is performed with the molten metal level lowered to the position facing the lower cooling water passage 10a, the entire mold copper plate is strongly cooled, so that the temperature rise of the mold can be suppressed.

【0020】つぎに、請求項2の発明の他の実施形態を
図3に基づいて説明する。本実施形態では、上下方向に
形成された貫通孔31の下方部分が銅板表面5aに平行
に設けられ、上方部分が上端に近づくほど銅板表面5a
から遠ざかるように形成されており、下方部分の貫通孔
31に棒状のスペーサ32を挿入したものである。上記
の構成の結果、下部冷却水路10b の流路断面積は上部冷
却水路10a の流路断面積より小さくなっている。また、
上部冷却水路10a は下部冷却水路10b との連結部から上
端に向かうにつれて、銅板表面5aより遠ざかってい
る。この実施形態においても、前記図2の実施形態と同
様に、鋳型上部に溶鋼の湯面レベルを維持すると、上方
は緩冷却され、下方は強冷却されることになる。一方、
湯面レベルを下げると、全体的に強冷却されることにな
る。
Next, another embodiment of the present invention will be described with reference to FIG. In this embodiment, the lower part of the through hole 31 formed in the up-down direction is provided in parallel with the copper plate surface 5a, and the upper part approaches the upper end to the copper plate surface 5a.
The rod-shaped spacer 32 is inserted into the through hole 31 in the lower part. As a result of the above configuration, the cross-sectional area of the lower cooling water passage 10b is smaller than the cross-sectional area of the upper cooling water passage 10a. Also,
The upper cooling water passage 10a is farther from the copper plate surface 5a as it goes from the connection with the lower cooling water passage 10b to the upper end. In this embodiment, as in the embodiment of FIG. 2, when the molten steel surface level is maintained at the upper part of the mold, the upper part is slowly cooled and the lower part is strongly cooled. on the other hand,
When the level of the molten metal is lowered, the whole is strongly cooled.

【0021】[0021]

【発明の効果】請求項1の発明によれば、上部冷却水路
は銅板表面から遠い位置にあり断面積が大きいので冷却
水の流速が遅いことから冷却効果が弱く、下部冷却水路
は銅板表面に近く断面積が小さいので冷却水の流速が早
いことから冷却効果が高くなる。よって、鋳型上部付近
は緩冷却となり、鋳型上部より下方は強冷却とすること
ができる。請求項2の発明では、スペーサとスリットに
よって、上部冷却水路と下部冷却水路の銅板表面からの
距離と断面積を構成しており、かかる構成により請求項
1の発明と同様に鋳型上部付近を緩冷却し、鋳型上部よ
り下方を強冷却することができる。請求項3の発明で
は、貫通孔とスペーサによって、上部冷却水路と下部冷
却水路の銅板表面からの距離と断面積を構成しており、
かかる構成により請求項1の発明と同様に鋳型上部付近
を緩冷却し、鋳型上部より下方を強冷却することができ
る。請求項4の発明によれば、鋳型内の湯面レベルを上
下させることにより、鋳型上部の緩冷却と鋳型上部より
下方の強冷却を組み合わせた鋳造や鋳型銅板全体を強冷
却する鋳造が可能であり、低炭素鋼、中炭素鋼および高
炭素鋼のそれぞれに適した冷却パターンを選択でき、そ
れにより高品質の鋼を一つの鋳型で鋳造することができ
る。
According to the first aspect of the present invention, the upper cooling channel is located far from the surface of the copper plate and has a large cross-sectional area, so that the cooling water flow rate is low, so that the cooling effect is weak. Since the cross-sectional area is small and the flow rate of the cooling water is high, the cooling effect is high. Therefore, the vicinity of the upper part of the mold is cooled slowly, and the part below the upper part of the mold can be cooled strongly. According to the second aspect of the present invention, the distance and the sectional area of the upper cooling water channel and the lower cooling water channel from the surface of the copper plate are configured by the spacer and the slit. It is possible to cool and strongly cool below the upper part of the mold. According to the third aspect of the present invention, the through holes and the spacers define the distance and the cross-sectional area of the upper cooling water passage and the lower cooling water passage from the copper plate surface,
With this configuration, it is possible to slowly cool the vicinity of the upper part of the mold and to strongly cool the lower part of the upper part of the mold as in the first aspect of the invention. According to the invention of claim 4, by raising and lowering the level of the molten metal in the mold, casting combining slow cooling of the upper part of the mold and strong cooling below the upper part of the mold and casting of strongly cooling the entire mold copper plate can be performed. Yes, a cooling pattern suitable for each of low carbon steel, medium carbon steel and high carbon steel can be selected, so that high quality steel can be cast in one mold.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a) 図は請求項1の発明の一実施形態に係る鋳
型銅板の断面図、(b) 図は(a)図のb矢視断面図であ
る。
1A is a cross-sectional view of a mold copper plate according to an embodiment of the first aspect of the present invention, and FIG. 1B is a cross-sectional view of FIG.

【図2】(a) 図は請求項2の発明の一実施形態に係る鋳
型銅板の断面図、(b) 図は(a)図のb矢視断面図であ
る。
2A is a cross-sectional view of a mold copper plate according to an embodiment of the second aspect of the present invention, and FIG. 2B is a cross-sectional view of FIG.

【図3】請求項2の発明の他の実施形態に係る鋳型銅板
の断面図である。
FIG. 3 is a sectional view of a mold copper plate according to another embodiment of the invention of claim 2;

【図4】本発明における鋳型の斜視図である。FIG. 4 is a perspective view of a mold according to the present invention.

【図5】従来の鋳型銅板の断面図である。FIG. 5 is a sectional view of a conventional mold copper plate.

【符号の説明】[Explanation of symbols]

5 銅板 10 冷却水路 10a 上部冷却水路 10b 下部冷却水路 11 スリット 12 スペーサ 21 貫通孔 22 スペーサ 31 貫通孔 32 スペーサ 5 Copper plate 10 Cooling water channel 10a Upper cooling water channel 10b Lower cooling water channel 11 Slit 12 Spacer 21 Through hole 22 Spacer 31 Through hole 32 Spacer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 村上 敏彦 大阪府大阪市中央区北浜4丁目5番33号 住友金属工業株式会社内 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshihiko Murakami 4-5-33 Kitahama, Chuo-ku, Osaka-shi, Osaka Sumitomo Metal Industries, Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】連続鋳造設備の鋳型を構成する銅板の断面
内に上下方向に形成された冷却水路を鋳型上部付近の上
部冷却水路と鋳型上部付近より下方の下部冷却水路とか
ら構成し、上部冷却水路の銅板表面からの距離を下部冷
却水路の銅板表面からの距離よりも遠くし、上部冷却水
路の断面積を下部冷却水路の断面積より大きくしたこと
を特徴とする連続鋳造設備の鋳型。
1. A cooling water passage formed vertically in a cross section of a copper plate constituting a mold of a continuous casting facility comprises an upper cooling water passage near an upper portion of a mold and a lower cooling water passage below a portion near an upper portion of the mold. A mold for continuous casting equipment, wherein the distance of the cooling channel from the copper plate surface is longer than the distance of the lower cooling channel from the copper plate surface, and the cross-sectional area of the upper cooling channel is larger than the cross-sectional area of the lower cooling channel.
【請求項2】前記銅板の裏面側から切削形成したスリッ
トと、該スリット内に裏面側から挿入されるスペーサに
よって、スリット内表面とスペーサ内表面との間に冷却
水路が形成されており、前記スリットの上部内表面と前
記スペーサの上部内表面を銅板表面から遠い位置に形成
し、かつ両上部内表面間の間隔を広くし、前記スリット
の下部内表面と前記スペーサの下部内表面を銅板表面か
ら近い位置に形成し、かつ両下部表面間の間隔を狭くし
たことを特徴とする請求項1記載の連続鋳造設備の鋳
型。
2. A cooling water passage is formed between the inner surface of the slit and the inner surface of the spacer by a slit cut from the back surface of the copper plate and a spacer inserted into the slit from the back surface. The upper inner surface of the slit and the upper inner surface of the spacer are formed at positions far from the surface of the copper plate, and the distance between both upper inner surfaces is increased, so that the lower inner surface of the slit and the lower inner surface of the spacer are formed on the copper plate surface. 2. A mold for a continuous casting facility according to claim 1, wherein the mold is formed at a position close to the lower surface and a distance between both lower surfaces is reduced.
【請求項3】前記銅板内に上下方向に貫通孔を形成し、
該貫通孔の下部に棒状のスペーサを挿入することにより
貫通孔の下部とスペーサとの間に下部冷却水路を構成し
ており、スペーサが挿入されていない上部貫通孔内の上
部冷却水路の断面積が下部貫通孔とスペーサの間の下部
冷却水路の断面積より大きくなっており、上部冷却水路
は下部冷却水路の銅板表面に近い部位より銅板表面から
遠く離れていることを特徴とする請求項1記載の連続鋳
造設備の鋳型。
3. A through-hole is formed vertically in said copper plate,
A lower cooling channel is formed between the lower portion of the through hole and the spacer by inserting a rod-shaped spacer below the through hole, and a cross-sectional area of the upper cooling channel in the upper through hole in which the spacer is not inserted. Is larger than the cross-sectional area of the lower cooling channel between the lower through hole and the spacer, and the upper cooling channel is farther from the copper plate surface than the portion of the lower cooling channel near the copper plate surface. The mold of the continuous casting facility as described.
【請求項4】請求項1、2または3記載の鋳型を用い、
鋳型上部を緩冷却し、鋳型下部を強冷却するようにし、
鋼種によって鋳型内の湯面レベルを鋳型上部付近と鋳型
上部より下方の間で上下に変更し、鋳型内の溶鋼を緩冷
却と強冷却の組合せによる冷却、または強冷却のみによ
る冷却を選択できるようにしたことを特徴とする鋳造方
法。
4. The method according to claim 1, 2 or 3,
Slowly cool the top of the mold, and strongly cool the bottom of the mold,
Depending on the type of steel, the level of the molten metal in the mold is changed up and down between near the upper part of the mold and below the upper part of the mold, so that the molten steel in the mold can be cooled by a combination of slow cooling and strong cooling, or cooled only by strong cooling. A casting method characterized in that:
JP2400798A 1998-01-21 1998-01-21 Mold in continuous casting equipment and casting method using it Pending JPH11207442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2400798A JPH11207442A (en) 1998-01-21 1998-01-21 Mold in continuous casting equipment and casting method using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2400798A JPH11207442A (en) 1998-01-21 1998-01-21 Mold in continuous casting equipment and casting method using it

Publications (1)

Publication Number Publication Date
JPH11207442A true JPH11207442A (en) 1999-08-03

Family

ID=12126508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2400798A Pending JPH11207442A (en) 1998-01-21 1998-01-21 Mold in continuous casting equipment and casting method using it

Country Status (1)

Country Link
JP (1) JPH11207442A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003092931A1 (en) * 2002-04-27 2003-11-13 Sms Demag Aktiengesellschaft Adjustment of heat transfer in continuous casting moulds in particular in the region of the meniscus
EP1506826A1 (en) * 2003-08-13 2005-02-16 KM Europa Metal Aktiengesellschaft Continuous casting mould
WO2010015399A1 (en) * 2008-08-06 2010-02-11 Sms Siemag Ag Strand casting mold for liquid metal, particularly for liquid steel
JP2012228722A (en) * 2011-04-27 2012-11-22 Toho Titanium Co Ltd Melting furnace for smelting metal
KR20160057169A (en) * 2014-11-13 2016-05-23 주식회사 포스코 Mold for casting
ITUB20154787A1 (en) * 2015-11-06 2017-05-06 Milorad Pavlicevic PERFECTED CRYSTALLIZER AND ADAPTANT SPEAKER AS THE CRYSTALLIZER
US9744588B2 (en) 2011-02-25 2017-08-29 Toho Titanium Co., Ltd. Melting furnace for producing metal
CN110976815A (en) * 2019-12-30 2020-04-10 中信戴卡股份有限公司 Die water cooling device and system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003092931A1 (en) * 2002-04-27 2003-11-13 Sms Demag Aktiengesellschaft Adjustment of heat transfer in continuous casting moulds in particular in the region of the meniscus
CN1318164C (en) * 2002-04-27 2007-05-30 Sms迪马格股份公司 Adjustment of heat transfer in continuous casting moulds in particular in the region of the meniscus
EP1506826A1 (en) * 2003-08-13 2005-02-16 KM Europa Metal Aktiengesellschaft Continuous casting mould
US7445036B2 (en) * 2003-08-13 2008-11-04 Km Europa Metal Ag Liquid-cooled permanent mold
KR101003058B1 (en) * 2003-08-13 2010-12-22 카엠이 저머니 아게 Liquid-cooled mold
WO2010015399A1 (en) * 2008-08-06 2010-02-11 Sms Siemag Ag Strand casting mold for liquid metal, particularly for liquid steel
US9744588B2 (en) 2011-02-25 2017-08-29 Toho Titanium Co., Ltd. Melting furnace for producing metal
JP2012228722A (en) * 2011-04-27 2012-11-22 Toho Titanium Co Ltd Melting furnace for smelting metal
KR20160057169A (en) * 2014-11-13 2016-05-23 주식회사 포스코 Mold for casting
ITUB20154787A1 (en) * 2015-11-06 2017-05-06 Milorad Pavlicevic PERFECTED CRYSTALLIZER AND ADAPTANT SPEAKER AS THE CRYSTALLIZER
CN110976815A (en) * 2019-12-30 2020-04-10 中信戴卡股份有限公司 Die water cooling device and system

Similar Documents

Publication Publication Date Title
CA2570085C (en) Permanent chill mold for the continuous casting of metals
JPH11207442A (en) Mold in continuous casting equipment and casting method using it
US5117895A (en) Continuous casting mold arrangement
JP3443109B2 (en) Assembly mold for continuous casting
US4649985A (en) Method of electromagnetic stirring a molten steel in a mold for a continuous casting
CN203235927U (en) Ingot casting device solidifying steel ingots sequentially from bottom to top
JP2008525197A (en) Magnesium billet or slab continuous casting apparatus using electromagnetic field and manufacturing method
JPH0342144A (en) Method for cooling mold for continuous casting and mold thereof
JPH0819842A (en) Method and device for continuous casting
JP4568013B2 (en) Continuous casting mold
JP2006110598A (en) Electromagnetic stirring coil
JPH10193041A (en) Mold for continuously casting molten steel
US20120199308A1 (en) Stirrer
JP3125586B2 (en) Continuous casting method using electromagnetic coil
JPH0994635A (en) Method for continuously casting steel
JP4232491B2 (en) Continuous casting mold
JPH03297541A (en) Mold for continuous casting equipment
JP2001179403A (en) Metal continuous casting mold having funnel-state tapered casting range provided with cooled long side walls and short side walls
JP3408725B2 (en) Steel continuous casting method
JP4262193B2 (en) Continuous casting mold
JPH1110285A (en) Mold for continuous casting and continuous casting method
JP2007536091A (en) Cooling continuous casting mold
KR100470661B1 (en) A Device For Supplying Molten Steel Uniformly And A Continuous Caster
JPH10296399A (en) Mold for continuously casting molten steel
JPH0259144A (en) Method for cooling mold for continuous casting