JPH0994635A - Method for continuously casting steel - Google Patents

Method for continuously casting steel

Info

Publication number
JPH0994635A
JPH0994635A JP25324295A JP25324295A JPH0994635A JP H0994635 A JPH0994635 A JP H0994635A JP 25324295 A JP25324295 A JP 25324295A JP 25324295 A JP25324295 A JP 25324295A JP H0994635 A JPH0994635 A JP H0994635A
Authority
JP
Japan
Prior art keywords
mold
meniscus
copper plate
temperature
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25324295A
Other languages
Japanese (ja)
Inventor
Toshihiko Murakami
敏彦 村上
Yoshiyuki Matoba
祥行 的場
Masakazu Koide
優和 小出
Koji Kajiwara
孝治 梶原
Koji Takatani
幸司 高谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP25324295A priority Critical patent/JPH0994635A/en
Publication of JPH0994635A publication Critical patent/JPH0994635A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the development of surface flaw on a cast slab and to improve a casting velocity by slowly cooling a mold, at the time of continuously casting particularly, a medium carbon steel. SOLUTION: The surface temp. of mold copper plates 1aa, 1ba within 200mm at the lower part from a meniscus is held to 350-550 deg.C. As the concrete means, the mold making thicker the thickness of the mold copper plates 1aa, 1ba within 200mm at the lower part from the meniscus than the thickness of the mold copper plates 1aa, 1ba at the other part, or the mold changing the material of the mold copper plates 1aa, 1ba within 200mm at the lower part from the meniscus to the material at the other part are used or the flowing velocity/temp. of mold cooling water supplied within 200mm at the lower part from the meniscus are changed to the flowing velocity/temp. of the mold cooling water at the other part.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、特に中炭素鋼を連
続鋳造するに際し、鋳型の緩冷却化を図って鋳片の表面
疵の発生を防止するとともに、鋳造速度を向上し得る鋼
の連続鋳造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention particularly relates to continuous casting of medium carbon steel, which is capable of slow cooling of the mold to prevent surface defects of the slab and improve casting speed. The present invention relates to a casting method.

【0002】[0002]

【従来の技術】鋼の連続鋳造方法において、炭素含有量
が0.07〜0.35重量%の中炭素鋼(特に亜包晶
鋼)を製造する際に発生する表面疵は、鋼種による特性
であるδ−γ変態によるものであり、変態収縮による不
均一凝固が表面疵発生の起点となっている。
2. Description of the Related Art In a continuous casting method for steel, surface flaws generated during the production of medium carbon steel (especially hypoperitectic steel) having a carbon content of 0.07 to 0.35% by weight are characteristic of steel types. This is due to the δ-γ transformation, which is the origin of the surface flaw generation due to nonuniform solidification due to transformation shrinkage.

【0003】しかし、δ−γ変態は亜包晶鋼特有の性質
であるので、変態収縮の発生を未然に防ぐことはできな
い。従って、鋳型冷却を緩冷却化し、十分に溶鋼静圧が
加わった状態で凝固シェルを形成させ、δ−γ変態によ
る収縮変化を抑える方法(特願平3−264143号)
や、また、凝固収縮量に見合う量またはそれ以上の鋳型
テーパを付与することにより、凝固収縮以上に積極的な
サポートを行い、δ−γ変態収縮時のエアーギャップを
抑制する方法などが提案されている。いずれの方法にお
いても、表面疵の発生を防止するには、鋳型内における
凝固シェルの凹凸をなくして均一化させることが重要な
ポイントである。
However, since the δ-γ transformation is a property peculiar to hypoperitectic steel, the occurrence of transformation shrinkage cannot be prevented in advance. Therefore, a method of slowing down the mold cooling and forming a solidified shell in the state where sufficient molten steel static pressure is applied to suppress the shrinkage change due to the δ-γ transformation (Japanese Patent Application No. 3-264143).
Alternatively, by providing a mold taper of an amount or more commensurate with the amount of solidification shrinkage, more active support is provided than solidification shrinkage, and a method of suppressing the air gap during δ-γ transformation shrinkage is proposed. ing. In any of the methods, in order to prevent the occurrence of surface defects, it is an important point to eliminate the unevenness of the solidified shell in the mold and make it uniform.

【0004】[0004]

【発明が解決しようとする課題】すなわち、連続鋳造に
おける中炭素鋼(亜包晶鋼)の表面疵を防止するには、
鋼種特有のδ−γ変態収縮を抑制する方法か、積極的に
サポートする方法のいずれかの方法によらなければなら
ない。
That is, in order to prevent surface defects of medium carbon steel (hyperperitectic steel) in continuous casting,
Either the method of suppressing the δ-γ transformation shrinkage peculiar to the steel type or the method of actively supporting it must be used.

【0005】近年の連続鋳造技術の開発により、中炭素
鋼材の鋳造速度は向上されているものの、更なる高速鋳
造化を実施した場合、前述した表面疵が発生するのが実
情である。中炭素鋼材の表面疵発生を防止するために、
鋳型冷却の緩冷却化が有効であるのは周知であるが、未
だ緩冷却の具体的な方法が確立されておらず、表面疵を
有効に防止できないのが現状である。
Although the casting speed of medium carbon steel has been improved by the development of continuous casting technology in recent years, when the high speed casting is further performed, the above-mentioned surface flaw is actually generated. In order to prevent the occurrence of surface defects on medium carbon steel,
It is well known that slow cooling of mold cooling is effective, but a specific method for slow cooling has not yet been established, and the current situation is that surface defects cannot be effectively prevented.

【0006】本発明は、上記した従来の問題点に鑑みて
なされたものであり、特に中炭素鋼を連続鋳造するに際
し、鋳片の表面疵を防止するとともに、鋳造速度を向上
し得る鋼の連続鋳造方法を提供することを目的としてい
る。
The present invention has been made in view of the above-mentioned conventional problems, and in particular, in the case of continuously casting medium carbon steel, it is possible to prevent the surface flaw of the slab and to improve the casting speed. It is intended to provide a continuous casting method.

【0007】[0007]

【課題を解決するための手段】上記した目的を達成する
ために、本発明の鋼の連続鋳造方法は、鋼の連続鋳造方
法において、メニスカスより下方200m以内の鋳型銅
板の表面温度を350〜550℃に保持することとして
いるのであり、その具体的手段として、メニスカスより
下方200mm以内における鋳型銅板の厚さを、他の鋳
型銅板の厚さよりも厚くした鋳型や、メニスカスより下
方200mm以内における鋳型銅板の材質を、他の部分
の鋳型銅板の材質と変更した鋳型を使用したり、また、
メニスカスより下方200mm以内に供給する鋳型冷却
水の流速及び/又は温度を、他の部分の鋳型冷却水の流
速及び/又は温度と変えたりするのである。
In order to achieve the above-mentioned object, the continuous casting method for steel according to the present invention is a continuous casting method for steel, wherein the surface temperature of the mold copper plate within 200 m below the meniscus is 350 to 550. The temperature is kept at ℃, as a concrete means, the thickness of the mold copper plate within 200 mm below the meniscus is made thicker than the thickness of other mold copper plates, and the mold copper plate within 200 mm below the meniscus. You can use a mold in which the material of is changed from the material of the mold copper plate of other parts, or
The flow velocity and / or temperature of the mold cooling water supplied within 200 mm below the meniscus is changed from the flow velocity and / or temperature of the mold cooling water in other parts.

【0008】[0008]

【発明の実施の形態】鋼の連続鋳造における、中炭素鋼
(亜包晶鋼)材の表面疵を防止するには、溶融金属が凝
固し始める初期の冷却が大きなポイントである。前述の
ように、中炭素鋼は、鋼種特有のδ−γ変態収縮といっ
た表面疵の発生を助長するような不均一凝固が起こるた
め、他の鋼種(低炭素鋼,高炭素鋼)と比較して、鋳造
速度をあまり早くできないのが現状である。その対策と
して、鋳型の緩冷却化が有効な手段であるが、未だ確立
された技術はない。
BEST MODE FOR CARRYING OUT THE INVENTION In continuous casting of steel, in order to prevent surface flaws of a medium carbon steel (hyperperitectic steel) material, a major point is to cool the molten metal at the beginning of solidification. As described above, medium carbon steel undergoes non-uniform solidification that promotes the occurrence of surface flaws such as δ-γ transformation shrinkage peculiar to steel grades, so compared with other steel grades (low carbon steel, high carbon steel). In reality, the casting speed cannot be increased so much. As a countermeasure, slow cooling of the mold is an effective means, but there is no established technique.

【0009】本発明は、鋳型冷却の緩冷却化は鋳型の鋳
込み方向全長にわたって必要ではなく、図3に示すよう
に、鋳型内熱流束が増大するメニスカスより下方200
mm以内のみ行えば良いことに着目し、メニスカスより
下方200m以内の鋳型銅板の表面温度を350〜55
0℃に保持することとしているのであり、その具体的手
段として、メニスカスより下方200mm以内における
鋳型銅板の厚さを、他の部分の鋳型銅板の厚さよりも厚
くした鋳型や、メニスカスより下方200mm以内にお
ける鋳型の材質を、他の部分の鋳型の材質と変更した鋳
型を使用したり、また、メニスカスより下方200mm
以内に供給する鋳型冷却水の流速及び/又は温度を、他
の部分の鋳型冷却水の流速及び/又は温度と変えたりす
るのである。
According to the present invention, slow cooling of the mold is not required over the entire length in the casting direction of the mold, and as shown in FIG. 3, the temperature below the meniscus at which the heat flux in the mold increases 200
Paying attention to the fact that the surface temperature of the mold copper plate within 200 m below the meniscus should be 350 to 55 mm.
The temperature is kept at 0 ° C., and as a concrete means, the thickness of the mold copper plate within 200 mm below the meniscus is made thicker than the thickness of the mold copper plate in other parts, or within 200 mm below the meniscus. Use a mold in which the material of the mold in is changed from the material of the mold of other parts, or 200 mm below the meniscus.
The flow rate and / or temperature of the mold cooling water supplied within is changed from the flow rate and / or temperature of the mold cooling water in other parts.

【0010】[0010]

【実施例】以下、本発明に係る鋼の連続鋳造方法を図1
及び図2に示す実施例に基づいて説明する。図1は本発
明に係る鋼の連続鋳造方法を実施する鋳型構造の一例を
示す分解斜視図、図2は本発明に係る鋼の連続鋳造方法
を実施する他の鋳型の短辺部分を断面して示す図であ
る。
EXAMPLE A continuous steel casting method according to the present invention will now be described with reference to FIG.
Also, description will be made based on the embodiment shown in FIG. FIG. 1 is an exploded perspective view showing an example of a mold structure for carrying out the continuous casting method for steel according to the present invention, and FIG. 2 is a sectional view of a short side portion of another mold for carrying out the continuous casting method for steel according to the present invention. FIG.

【0011】図1において、1は本発明に係る鋼の連続
鋳造方法を実施する鋳型であり、短辺側1a及び長辺側
1bともに、入り側1cから入った冷却水が短辺側1a
又は長辺側1bの冷却水路1eを流れてそれぞれの出側
1dから排出される間にそれそれ短辺側1a及び長辺側
1bの内面に配置された鋳型銅板1aa,1baを水冷
できるように構成されている。そして、この図1に示す
実施例では、鋳型上端からメニスカスより下方200m
m以内の鋳型銅板1aa,1baの厚さを、他の部分の
鋳型銅板1aa,1baの厚さよりも厚くしている。な
お、図1中の2は浸漬ノズルを示す。
In FIG. 1, reference numeral 1 denotes a mold for carrying out the continuous casting method for steel according to the present invention. Cooling water entering from the inlet side 1c is short side 1a on both the short side 1a and the long side 1b.
Alternatively, the mold copper plates 1aa and 1ba arranged on the inner surfaces of the short side 1a and the long side 1b can be water-cooled while flowing through the cooling water channel 1e on the long side 1b and being discharged from the respective outlets 1d. It is configured. In the embodiment shown in FIG. 1, 200 m below the meniscus from the upper end of the mold.
The thickness of the mold copper plates 1aa and 1ba within m is made thicker than the thickness of the mold copper plates 1aa and 1ba in other portions. In addition, 2 in FIG. 1 shows an immersion nozzle.

【0012】本発明方法は、例えば上記したように、メ
ニスカスより下方200mm以内における鋳型銅板1a
a,1baの厚さを、他の部分の鋳型銅板1aa,1b
aの厚さよりも厚く構成した鋳型1を用いることで、メ
ニスカスより下方200m以内の鋳型銅板1aa,1b
aの表面温度を350〜550℃に保持し、鋳型内熱流
束が増大するメニスカスより下方200mm以内を緩冷
却化するのである。
In the method of the present invention, for example, as described above, the mold copper plate 1a within 200 mm below the meniscus is used.
a, 1ba to the thickness of the other parts of the copper mold plate 1aa, 1b
By using the mold 1 configured to be thicker than the thickness a, the mold copper plates 1aa and 1b within 200 m below the meniscus are used.
The surface temperature of a is maintained at 350 to 550 ° C., and the temperature within 200 mm below the meniscus where the heat flux in the mold increases is gradually cooled.

【0013】例えば、鋳型銅板の厚みを24.59mm
とした場合と、19.59mmとした場合における、メ
ニスカスより45mm下方における鋳型周方向の位置の
鋳型銅板温度を、図4に示すが、これより、鋳型銅板の
厚さを19.59mmから24.59mmと5.0mm
厚くした場合には、鋳型銅板の表面温度は約130℃上
昇することが明らかである。この鋳型銅板の表面温度上
昇を、鋳型内熱流束として下記数式1を用いて比較する
と、熱流束として約11%改善されることが判る。
For example, the thickness of the mold copper plate is 24.59 mm
4 shows the temperature of the mold copper plate at a position in the mold circumferential direction 45 mm below the meniscus in the cases of 1 .59 mm and 19.59 mm, from which the thickness of the mold copper plate was changed from 19.59 mm to 24. 59mm and 5.0mm
It is clear that when the thickness is increased, the surface temperature of the copper mold plate rises by about 130 ° C. Comparing the surface temperature rise of the copper plate of this mold using the following formula 1 as the heat flux in the mold, it can be seen that the heat flux is improved by about 11%.

【0014】[0014]

【数1】Q=hT ( TS −TM ) 但し、Q :抜熱量(kcal/m2.h) hT :総括熱伝達係数(kcal/m2.h. ℃) TS :凝固温度 (℃) TM :鋳型銅板表面温度 (℃)[Formula 1] Q = h T (T S −T M ), where Q: heat removal (kcal / m 2 .h) h T : overall heat transfer coefficient (kcal / m 2 .h. ° C) T S : solidification Temperature (℃) TM : Surface temperature of mold copper plate (℃)

【0015】本発明方法は、メニスカスより下方200
m以内の鋳型銅板の表面温度を350〜550℃に保持
できればよいので、図1に示すような、メニスカスより
下方200m以内の鋳型銅板1aa,1baの厚さを、
他の部分の鋳型銅板1aa,1baの厚さよりも厚く構
成した鋳型を用いる場合だけでなく、図2に示すよう
な、従来と同様の引き抜き方向に同じ厚さを有する鋳型
銅板1aa(1ba)を用い、例えばメニスカスより下
方200mm以内に供給する鋳型冷却水の流速及び/又
は温度を、他の部分の鋳型冷却水の流速及び/又は温度
と変えることで、メニスカスより下方200m以内の鋳
型銅板1aa,1baの表面温度を350〜550℃に
保持し、鋳型内熱流束が増大するメニスカスより下方2
00mm以内を緩冷却化するのである。この場合には、
鋳型冷却水の流速及び/又は温度を変化させる部分の冷
却系統を、例えば図2に示すように、分けることは言う
までもない。
The method of the present invention uses the method 200 below the meniscus.
Since it suffices to maintain the surface temperature of the mold copper plate within 350 m at 350 to 550 ° C., the thickness of the mold copper plates 1aa and 1ba within 200 m below the meniscus as shown in FIG.
Not only when using a mold configured to be thicker than the thickness of the other parts of the mold copper plates 1aa and 1ba, a mold copper plate 1aa (1ba) having the same thickness in the same drawing direction as in the related art as shown in FIG. 2 is used. For example, by changing the flow rate and / or temperature of the mold cooling water supplied within 200 mm below the meniscus with the flow rate and / or temperature of the mold cooling water of other parts, the mold copper plate 1aa within 200 m below the meniscus, Below the meniscus where the surface temperature of 1 ba is kept at 350 to 550 ° C. and the heat flux in the mold increases 2
That is, it is slowly cooled within 00 mm. In this case,
It goes without saying that the cooling system of the part that changes the flow velocity and / or the temperature of the mold cooling water is divided as shown in FIG. 2, for example.

【0016】例えば、鋳型冷却水の流速を7.0m/s
とした場合と、9.0m/sとした場合と、13.0m
/sとした場合における、メニスカスより45mm下方
における鋳型周方向の位置の鋳型銅板温度を、図5に示
すが、これより、鋳型冷却水の流速を遅くした場合に
は、鋳型銅板の表面温度はそれにつれて上昇することが
明らかである。なお、鋳型冷却水の流速に代えて温度を
変化させた場合にも、鋳型冷却水の温度が高くなるにつ
れて鋳型銅板の表面温度は上昇することは言うまでもな
い。
For example, the mold cooling water flow rate is 7.0 m / s.
And 3.0 m / s and 13.0 m
FIG. 5 shows the mold copper plate temperature at the position in the mold circumferential direction 45 mm below the meniscus when / s was set. From this, when the flow rate of the mold cooling water was slowed, the surface temperature of the mold copper plate was It is clear that it will rise accordingly. Needless to say, even when the temperature is changed instead of the flow rate of the mold cooling water, the surface temperature of the mold copper plate rises as the temperature of the mold cooling water increases.

【0017】また、メニスカスより下方200mm以内
における鋳型銅板の材質を、例えばベリリウム銅やクロ
ムジルコン等の低熱伝導率で降伏応力の大きいものを使
用し、他の部分の鋳型銅板の材質(脱酸銅)より降伏応
力を大きく、かつ、熱伝導率を小さくすることで(図6
参照)、メニスカスより下方200m以内の鋳型銅板の
表面温度を350〜550℃に保持し、鋳型内熱流束が
増大するメニスカスより下方200mm以内を緩冷却化
してもよい。
The material of the mold copper plate within 200 mm below the meniscus is, for example, beryllium copper, chromium zircon, or the like having a low thermal conductivity and a large yield stress, and the material of the other mold copper plate (deoxidized copper). ) By increasing the yield stress and decreasing the thermal conductivity (Fig. 6).
The surface temperature of the mold copper plate within 200 m below the meniscus may be maintained at 350 to 550 ° C., and the temperature within 200 mm below the meniscus where the heat flux in the mold increases may be gradually cooled.

【0018】ちなみに、本発明方法の効果を確認するた
めに、メニスカスより下方200mmまでは、厚みが4
0mmのベリリウム銅製の鋳型銅板を、それより下方
は、厚みが35mmの脱酸銅製の鋳型銅板を使用した、
厚さ100mm,幅1000mmの鋳型に、炭素量が
0.07〜0.17重量%の中炭素鋼を供給したとこ
ろ、鋳型銅板の温度は、メニスカスより下方45mmの
位置で、480〜510℃であった。
By the way, in order to confirm the effect of the method of the present invention, the thickness is 4 up to 200 mm below the meniscus.
A mold copper plate made of 0 mm beryllium copper was used, and below that, a mold copper plate made of deoxidized copper having a thickness of 35 mm was used.
When a medium carbon steel having a carbon content of 0.07 to 0.17 wt% was supplied to a mold having a thickness of 100 mm and a width of 1000 mm, the temperature of the mold copper plate was 480 to 510 ° C. at a position 45 mm below the meniscus. there were.

【0019】そして、上記した鋳型を用いた本発明方法
によって厚さ100mm,幅1000mmの鋳片を製造
した場合の、抜熱量低減効果(熱流束改善率)と表面疵
発生率の関係を、厚みが35mmで一定の脱酸銅製の鋳
型銅板を使用した従来鋳型を用いた場合と比較して図7
に示すが、この図7より本発明方法の効果が明らかであ
る。なお、図7に示す表面疵発生率とは、表面疵(縦割
れ)総長さ(m)を鋳片長さ(m)で除した値を100
倍したものである。また、熱流束改善率とは、従来の鋳
型熱流束から本発明方法に使用する鋳型熱流束を引いた
値を従来の鋳型熱流束で除し、この除した値を100倍
したものである。
The relationship between the effect of reducing the amount of heat removed (heat flux improvement rate) and the rate of surface flaw occurrence when a slab having a thickness of 100 mm and a width of 1000 mm is manufactured by the method of the present invention using the above-described mold FIG. 7 is compared with the case where a conventional mold using a deoxidized copper mold copper plate with a constant value of 35 mm is used.
The effect of the method of the present invention is clear from FIG. The surface defect occurrence rate shown in FIG. 7 is 100, which is a value obtained by dividing the total length (m) of surface defects (vertical cracks) by the length of the slab (m).
It is doubled. The heat flux improvement rate is the value obtained by subtracting the mold heat flux used in the method of the present invention from the conventional mold heat flux, dividing the value by the conventional mold heat flux, and multiplying the divided value by 100.

【0020】図7に示すように、本発明方法によれば、
従来方法と比較して表面疵発生率が減少するので,それ
に伴って鋳造速度を向上することができる。本発明者ら
の実験によれば、鋳造速度を約20%向上させることが
できた。
According to the method of the present invention, as shown in FIG.
Since the rate of surface defects is reduced compared to the conventional method, the casting speed can be improved accordingly. According to the experiments conducted by the present inventors, the casting speed could be improved by about 20%.

【0021】[0021]

【発明の効果】以上説明したように、本発明の鋼の連続
鋳造方法は、メニスカスより下方200m以内の鋳型銅
板の表面温度を350〜550℃に保持することとして
いるのであり、その具体的手段として、メニスカスより
下方200mm以内における鋳型銅板の厚さを、他の鋳
型銅板の厚さよりも厚くした鋳型や、メニスカスより下
方200mm以内における鋳型銅板の材質を、他の部分
の鋳型銅板の材質と変更した鋳型を使用したり、また、
メニスカスより下方200mm以内に供給する鋳型冷却
水の流速及び/又は温度を、他の部分の鋳型冷却水の流
速及び/又は温度と変えたりするので、中炭素鋼(亜包
晶鋼)材の表面疵を防止する大きなポイントである溶融
金属が凝固し始める初期の冷却を効果的に緩冷却でき、
表面疵の発生を防止しつつ、鋳造速度を早くできる。
As described above, in the continuous casting method for steel according to the present invention, the surface temperature of the mold copper plate within 200 m below the meniscus is kept at 350 to 550 ° C. As a mold, the thickness of the mold copper plate within 200 mm below the meniscus is made thicker than the thickness of other mold copper plates, and the material of the mold copper plate within 200 mm below the meniscus is changed from the material of the mold copper plate of other parts. You can use the mold
Since the flow velocity and / or temperature of the mold cooling water supplied within 200 mm below the meniscus is changed with the flow velocity and / or temperature of the mold cooling water of other parts, the surface of the medium carbon steel (subperitectic steel) material It is possible to effectively cool the initial cooling when molten metal begins to solidify, which is a major point to prevent defects,
The casting speed can be increased while preventing the occurrence of surface defects.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る鋼の連続鋳造方法を実施する鋳型
構造の一例を示す分解斜視図である。
FIG. 1 is an exploded perspective view showing an example of a mold structure for carrying out a steel continuous casting method according to the present invention.

【図2】本発明に係る鋼の連続鋳造方法を実施する他の
鋳型の短辺部分を断面して示す図である。
FIG. 2 is a cross-sectional view showing a short side portion of another mold for carrying out the steel continuous casting method according to the present invention.

【図3】メニスカス近傍の熱流束状況を示す図面であ
る。
FIG. 3 is a diagram showing a heat flux state in the vicinity of a meniscus.

【図4】鋳型銅板の厚みと鋳型銅板温度の関係を示す図
である。
FIG. 4 is a diagram showing the relationship between the thickness of a mold copper plate and the mold copper plate temperature.

【図5】鋳型内冷却水の流速と鋳型銅板温度の関係を示
す図である。
FIG. 5 is a diagram showing the relationship between the flow rate of cooling water in the mold and the temperature of the mold copper plate.

【図6】(a)は鋳型銅板の材質による、鋳型銅板温度
と熱伝達率の関係を示す図、(b)は鋳型銅板の材質に
よる、鋳型銅板温度と降伏応力の関係を示す図である。
6A is a diagram showing a relationship between a mold copper plate temperature and a heat transfer coefficient depending on a material of the mold copper plate, and FIG. 6B is a diagram showing a relationship between a mold copper plate temperature and a yield stress depending on a material of the mold copper plate. .

【図7】鋳型銅板の熱流束改善率と鋳片の表面疵発生率
の関係を示す図である。
FIG. 7 is a diagram showing a relationship between a heat flux improvement rate of a mold copper plate and a surface flaw occurrence rate of a slab.

【符号の説明】[Explanation of symbols]

1 鋳型 1aa 鋳型銅板 1ba 鋳型銅板 1 mold 1aa mold copper plate 1ba mold copper plate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 梶原 孝治 大阪府大阪市中央区北浜4丁目5番33号 住友金属工業株式会社内 (72)発明者 高谷 幸司 大阪府大阪市中央区北浜4丁目5番33号 住友金属工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Koji Kajiwara 4-533 Kitahama, Chuo-ku, Osaka City, Osaka Prefecture Sumitomo Metal Industries, Ltd. (72) Inventor Koji Takatani 4-chome, Kitahama, Chuo-ku, Osaka City, Osaka Prefecture No. 33 Sumitomo Metal Industries, Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 鋼の連続鋳造方法において、メニスカス
より下方200m以内の鋳型銅板の表面温度を350〜
550℃に保持することを特徴とする鋼の連続鋳造方
法。
1. In the continuous casting method of steel, the surface temperature of the copper mold plate within 200 m below the meniscus is 350 to
A continuous casting method for steel, which is characterized by holding at 550 ° C.
【請求項2】 メニスカスより下方200mm以内にお
ける鋳型銅板の厚さを、他の鋳型銅板の厚さよりも厚く
した鋳型を使用することを特徴とする請求項1記載の鋼
の連続鋳造方法。
2. The continuous casting method for steel according to claim 1, wherein a mold in which the thickness of the copper mold plate within 200 mm below the meniscus is made thicker than the thickness of other copper mold plates is used.
【請求項3】 メニスカスより下方200mm以内にお
ける鋳型銅板の材質を、他の部分の鋳型銅板の材質と変
更した鋳型を使用することを特徴とする請求項1又は2
記載の鋼の連続鋳造方法。
3. A mold in which the material of the mold copper plate within 200 mm below the meniscus is changed from the material of the mold copper plate of the other part is used.
A method for continuously casting steel as described.
【請求項4】 メニスカスより下方200mm以内に供
給する鋳型冷却水の流速及び/又は温度を、他の部分の
鋳型冷却水の流速及び/又は温度と変えることで、メニ
スカスより下方200m以内の鋳型銅板の表面温度を3
50〜550℃に保持することを特徴とする請求項1記
載の鋼の連続鋳造方法。
4. A mold copper plate within 200 m below the meniscus by changing the flow rate and / or temperature of mold cooling water supplied within 200 mm below the meniscus with the flow velocity and / or temperature of the mold cooling water in other parts. Surface temperature of 3
The continuous casting method for steel according to claim 1, wherein the temperature is maintained at 50 to 550 ° C.
JP25324295A 1995-09-29 1995-09-29 Method for continuously casting steel Pending JPH0994635A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25324295A JPH0994635A (en) 1995-09-29 1995-09-29 Method for continuously casting steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25324295A JPH0994635A (en) 1995-09-29 1995-09-29 Method for continuously casting steel

Publications (1)

Publication Number Publication Date
JPH0994635A true JPH0994635A (en) 1997-04-08

Family

ID=17248543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25324295A Pending JPH0994635A (en) 1995-09-29 1995-09-29 Method for continuously casting steel

Country Status (1)

Country Link
JP (1) JPH0994635A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006326653A (en) * 2005-05-27 2006-12-07 Jfe Steel Kk Water-cooled mold for continuous casting
CN108393445A (en) * 2017-02-05 2018-08-14 鞍钢股份有限公司 A kind of peritectic steel mold copper plate in slab continuous casting and water-cooling method
CN111036866A (en) * 2019-12-18 2020-04-21 河北工业职业技术学院 Continuous casting slab crystallizer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006326653A (en) * 2005-05-27 2006-12-07 Jfe Steel Kk Water-cooled mold for continuous casting
CN108393445A (en) * 2017-02-05 2018-08-14 鞍钢股份有限公司 A kind of peritectic steel mold copper plate in slab continuous casting and water-cooling method
CN111036866A (en) * 2019-12-18 2020-04-21 河北工业职业技术学院 Continuous casting slab crystallizer

Similar Documents

Publication Publication Date Title
US5515908A (en) Method and apparatus for twin belt casting of strip
JP4553901B2 (en) Nonferrous metal and light metal belt casting method and apparatus therefor
JP4337565B2 (en) Steel slab continuous casting method
JPH0994635A (en) Method for continuously casting steel
EP0191586B1 (en) Electromagnetic levitation casting
JP3089608B2 (en) Continuous casting method of beam blank
JPH11207442A (en) Mold in continuous casting equipment and casting method using it
JP3617295B2 (en) Control method of secondary cooling zone in continuous casting
JP3022211B2 (en) Mold for continuous casting of round billet slab and continuous casting method using the mold
JPS5838640A (en) Continuous casting device for thin metal sheet
JPH1058093A (en) Method for continuously casting steel
JP3886774B2 (en) Continuous casting mold considering slab casting radius change due to shrinkage and continuous casting equipment using the same
JP3267545B2 (en) Continuous casting method
JPH09271903A (en) Mold for continuously casing steel
KR200188747Y1 (en) Device of continuous thin slab casting for twin roll type
JPH0347660A (en) Method for preventing longitudinal crack in cast slab in high speed casting
JPH0646598Y2 (en) Immersion nozzle for continuous casting of thin metal strip
JPH1110285A (en) Mold for continuous casting and continuous casting method
JPH07246448A (en) Method for preventing pin hole defect in extra low carbon steel
JPH11179496A (en) Divided flow plate for continuously casting thin sheet and method for continuously casting thin sheet
JPH0519165Y2 (en)
JPH0259144A (en) Method for cooling mold for continuous casting
JPH01299744A (en) Method for preventing longitudinal crack on surface of continuous cast slab
JPH03264143A (en) Continuous casting method and mold thereof
JP3398608B2 (en) Continuous casting method and mold for continuous casting