JP3408725B2 - Steel continuous casting method - Google Patents

Steel continuous casting method

Info

Publication number
JP3408725B2
JP3408725B2 JP22790397A JP22790397A JP3408725B2 JP 3408725 B2 JP3408725 B2 JP 3408725B2 JP 22790397 A JP22790397 A JP 22790397A JP 22790397 A JP22790397 A JP 22790397A JP 3408725 B2 JP3408725 B2 JP 3408725B2
Authority
JP
Japan
Prior art keywords
mold
slide valve
immersion nozzle
flow
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22790397A
Other languages
Japanese (ja)
Other versions
JPH1157955A (en
Inventor
政彦 木村
望 田村
敏胤 松川
哲仁 廣田
寛 野村
哲夫 持田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP22790397A priority Critical patent/JP3408725B2/en
Publication of JPH1157955A publication Critical patent/JPH1157955A/en
Application granted granted Critical
Publication of JP3408725B2 publication Critical patent/JP3408725B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、鋼の連続鋳造方法
に関し、より具体的には、連続鋳造用鋳型内の溶湯(溶
鋼)の偏流を効果的に抑制する連続鋳造方法に関する。 【0002】 【従来の技術】例えば図に示すように、連続鋳造設備
においては、取鍋1の溶鋼がタンディッシュ2を介して
鋳型5内に供給されるが、タンディッシュ2から鋳型5
内への供給は、中間に設けたスライドバルブ3の開閉に
より流量を調整し、浸漬ノズル4から注入するのが一般
的である。 【0003】スライドバルブは、2層式のものと3層式
のものが広く知られている。2層式スライドバルブで
は、開閉の際に浸漬ノズルが鋳型内で移動する構造を強
いられるため、結果としてノズル軸心が鋳型内の中心か
ら外れること(「ノズルシフト」と略称)により、吐出
流が非対称になる問題がある。また、流量調整の際に浸
漬ノズル内での流れが非対称となることにより生じる鋳
型内偏流の問題がある。例えばスラブ連鋳機において2
孔型の浸漬ノズルと2層式スライドバルブとを用いる場
合、図に示すように、浸漬ノズル4はノズル吐出孔
(吐出孔)7、7を対向する鋳型短辺銅板6、6に向け
て配設され、スライドバルブ3は鋳型長辺方向(鋳型短
辺直角方向)に移動するように配設されるのが一般的で
ある。なお、矢印11はスライドバルブ移動方向である。
このため、流量調整の際に浸漬ノズル4内の流速極大流
線9が一方の鋳型短辺銅板6側に偏り、吐出流が対向す
る鋳型短辺銅板6、6の一方の側に偏る結果、鋳型内偏
流が発生する。 【0004】この鋳型内偏流は、鋳型内溶鋼温度の局部
的上昇、鋳片凝固シェルの不均一生成、介在物の巻き込
みを助長し、その結果、鋳片表面割れ、介在物性欠陥、
結晶構造の変化による鋳片品質低下の問題、ならびに、
局部的な高熱負荷による鋳型寿命低下の問題を引き起こ
す。このような鋳型内偏流を防止する方法として、特開
平7−266010号公報には、左右の吐出流速がバランスす
るように吐出溶鋼に電流の向きと大きさを変えて通電し
吐出孔通過抵抗を制御する方法が提案されている。ま
た、特開平4−105756号公報には、鋳型長辺壁の幅方向
温度分布より溶鋼偏流発生の有無を検知し、この温度分
布が幅方向で左右対称になるように、浸漬ノズルを通過
する溶鋼にアルゴンガスを流量調節して注入する方法が
提案されている。 【0005】 【発明が解決しようとする課題】一方、3層式スライド
バルブでは、開閉の際に中間プレートのみ移動する構造
であるため、ノズルシフトは生じないからこれに起因す
る吐出流非対称化の問題が無い点で、2層式より優れて
いる。しかしながら、本発明者らの検討によれば、3層
式スライドバルブで溶鋼供給量を調節する場合にも、2
層式の場合と形態は異なるものの、鋳型内偏流が発生し
て、この偏流が鋳片品質や鋳型銅板寿命に悪影響を及ぼ
すことが判った。 【0006】すなわち、3層式では、図に示すよう
に、2孔型の浸漬ノズル4の吐出孔7、7を対向する鋳
型短辺銅板6、6に向けるのは2層式と同様であるが、
スライドバルブ3(この場合、中間プレート)は、2層
式の場合との水平面内位相差90°の方向(鋳型短辺方向
(鋳型長辺直角方向)に平行)に移動するように配設さ
れるのが一般的である。このため、流量調整の際に浸漬
ノズル4断面内の流速極大流線9が一方の鋳型長辺銅板
8側に偏り、このノズル内流路偏倚が吐出孔7、7から
の吐出流を鋳型短辺対向方向から鋳型長辺対向方向側に
或る角度だけ振るように作用し、その結果、吐出流が浸
漬ノズル4を挟む鋳型長辺銅板8、8の一方の側に偏る
結果、鋳型内偏流が発生する。 【0007】3層式スライドバルブによる上記偏流は、
吐出流の変向によって発生するから、特定方向の吐出流
速を左右でバランスさせる前記特開平7−266010号公報
の方法では防止することができない。また、前記特開平
4−105756号公報の方法は、浸漬ノズル内の流れを直に
対称形に戻すように制御できる点で、アルゴンガス注入
方向を考慮すれば3層式の場合でも鋳型内偏流を有効に
防止しうると思われるが、注入されたアルゴンガスが気
泡性の鋳片欠陥をもたらす欠点があって工業的に有利な
方法とは言いがたい。 【0008】このように、従来の鋳型内偏流防止技術
は、3層式スライドバルブによる鋳型内偏流を有利に防
止できる水準に達していない。そこで、本発明は、3層
式スライドバルブを用いて鋳型内への溶鋼供給量を制御
する際に、鋳型内での偏流発生を有利に防止できる鋼の
連続鋳造方法を提供することを目的とする。 【0009】 【課題を解決するための手段】本発明は、タンディッシ
ュ内に保持した溶鋼を該タンディッシュ底部に設けた3
層のプレートで形成したスライドバルブと該スライドバ
ルブに連設した浸漬ノズルを介して鋳型内に供給する鋼
の連続鋳造方法において、前記3層のプレートのうちの
中間プレートが鋳型の短辺に平行な方向に移動するよう
前記スライドバルブを配すると共に、前記浸漬ノズルと
して、スライドバルブの流量調整部での溶鋼流れの偏り
に起因するノズル吐出流の偏りに対し反対方向の吐出孔
角度をもつ吐出孔を設けた2孔型浸漬ノズルを使用する
ことを特徴とする鋼の連続鋳造方法である。 【0010】 【発明の実施の形態】図1は、2孔型浸漬ノズル吐出孔
部分の横断面図であり、(a)は従来例、(b)は本発
明例を示し、X方向は鋳型長辺方向、Y方向は鋳型短辺
方向である。2孔型の従来の浸漬ノズル4は、図1
(a)に示すように、吐出孔7、7の吐出流誘導方向が
X方向に平行(すなわち吐出孔角度は不設)であり、こ
のため、3層式スライドバルブ流量調整部(中間プレー
ト)のY方向移動(図(a)参照)により浸漬ノズル
4内の溶鋼流れ(鉛直下向き)の流速極大流線9がノズ
ル中心からY方向の一方側に偏り、この偏りに引きずら
れて吐出流がY方向の他方側に偏る結果、鋳型内で偏流
が発生する。 【0011】これに対し、本発明では、図1(b)に示
すように、吐出孔7、7に従来のノズル吐出流の偏りに
対し反対方向の吐出孔角度10をもたせた。これにより、
吐出流を、従来の偏りが修正される向きに誘導し、Y方
向の正負いずれの側にも偏らない流れとして吐出孔7、
7から鋳型内に流出させることができるようになり、鋳
型内偏流が効果的に解消される。 【0012】 【0013】 【0014】吐出孔角度は、スループット、鋳片幅等の
操業条件に対応して最適な値を選定することが望ましい
が、一般の連鋳機においては5°〜20°の範囲内が好適
である。このように構成した本発明によれば、図に例
示するように、連鋳鋳型内溶鋼流のY方向(鋳型短辺方
向)の対称性が著しく改善され、偏流が大幅に軽減され
るのでこの偏流に起因する前記従来の諸問題が解消され
る。また、本発明は、所定の吐出孔角度を設定した浸漬
ノズルを使用する方法であるから、実施に際し設備コス
トアップを伴わず、前記従来のアルゴンガス注入法に付
随するような鋳片品質への悪影響もないから工業的に有
利である。 【0015】 【実施例】スラブ連鋳機により、3層式スライドバルブ
の中間プレートをY方向(鋳型短辺方向)に移動して溶
鋼供給量を調節しながら、SUS304相当の溶鋼を鋳
造速度0.8 〜1.5m/minで連続鋳造する際に、X方向(鋳
型長辺方向)に対して吐出孔角度10°で傾斜させた吐出
孔をもつ2孔型浸漬ノズルを使用して本発明を実施し
た。 【0016】その結果、吐出孔角度を設けない浸漬ノズ
ルを使用する従来法実施時には約15%で推移していた鋳
片の表面欠陥発生率が半減した。また、従来法では偏流
による影響で鋳片のある一面に欠陥が集中する問題があ
ったが、この問題も解消された。さらに、偏流側(流速
の大きい側)の鋳型水冷銅板への局部的な高熱負荷が軽
減され、従来約300 チャージであった銅板寿命が約450
チャージへと大幅に延長した。 【0017】 【発明の効果】かくして本発明によれば、3層式スライ
ドバルブとこれに連設した浸漬ノズルを用いて連鋳鋳型
内に溶鋼を偏りなく供給することが可能となり、鋳片品
質の向上と鋳型水冷銅板の長寿命化とを同時に達成でき
るという格段の効果を奏する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous casting method for steel, and more particularly, to a method for effectively reducing the drift of molten metal (molten steel) in a continuous casting mold. It relates to a continuous casting method to suppress. 2. Description of the Related Art As shown in FIG. 3 , for example, in a continuous casting facility, molten steel in a ladle 1 is supplied into a mold 5 via a tundish 2.
In general, the inside is supplied by adjusting the flow rate by opening and closing a slide valve 3 provided in the middle, and injecting the water from an immersion nozzle 4. [0003] Two-layer slide valves and three-layer slide valves are widely known. In a two-layer slide valve, the immersion nozzle is forced to move within the mold when opening and closing, and as a result, the nozzle axis deviates from the center of the mold (abbreviated as “nozzle shift”), so that the discharge flow is reduced. Is asymmetric. In addition, there is a problem of drift in the mold caused by asymmetric flow in the immersion nozzle when adjusting the flow rate. For example, in a slab caster,
In the case of using a hole-type immersion nozzle and a two-layer slide valve, as shown in FIG. 4 , the immersion nozzle 4 has nozzle discharge holes (discharge holes) 7 facing the short side copper plates 6, 6 of the mold facing each other. In general, the slide valve 3 is disposed so as to move in the long side direction of the mold (perpendicular to the short side of the mold). Note that the arrow 11 is the slide valve moving direction.
For this reason, at the time of flow rate adjustment, the flow velocity maximum streamline 9 in the immersion nozzle 4 is biased to one mold short side copper plate 6 side, and the discharge flow is biased to one side of the opposite mold short side copper plate 6, Deviation in the mold occurs. [0004] This drift in the mold promotes a local rise in the temperature of the molten steel in the mold, non-uniform formation of a solidified shell of the slab, and entrainment of inclusions.
The problem of slab quality deterioration due to change in crystal structure, and
This causes a problem of shortening the mold life due to a local high heat load. As a method for preventing such drift in the mold, Japanese Patent Application Laid-Open No. Hei 7-266010 discloses a method of changing the direction and magnitude of the current to discharge molten steel so as to balance the discharge flow rates on the left and right sides, thereby reducing discharge hole passage resistance. Control methods have been proposed. Japanese Patent Application Laid-Open No. 4-105756 discloses that the presence or absence of molten steel drift is detected from the temperature distribution in the width direction of the long side wall of the mold, and the temperature is passed through the immersion nozzle so that the temperature distribution is symmetrical in the width direction. A method has been proposed in which argon gas is injected into molten steel by adjusting the flow rate. On the other hand, since the three-layer slide valve has a structure in which only the intermediate plate is moved at the time of opening and closing, no nozzle shift occurs. It is superior to the two-layer type in that there is no problem. However, according to the study of the present inventors, even when the supply amount of molten steel is adjusted by using a three-layer slide valve, two-stage slide valve is required.
Although the form is different from the case of the layer type, it has been found that the drift in the mold occurs, and this drift adversely affects the quality of the slab and the life of the mold copper plate. That is, in the three-layer type, as shown in FIG. 5 , directing the discharge holes 7, 7 of the two-hole immersion nozzle 4 to the opposed short side copper plates 6, 6 is the same as in the two-layer type. There is
The slide valve 3 (in this case, the intermediate plate) is disposed so as to move in the direction of 90 ° in the horizontal plane (parallel to the direction of the short side of the mold (perpendicular to the long side of the mold)) of the two-layer type. It is common to use For this reason, when adjusting the flow rate, the flow velocity maximum streamline 9 in the cross section of the immersion nozzle 4 is deviated toward one of the copper plates 8 on the long side of the mold, and this flow deviation in the nozzle reduces the discharge flow from the discharge holes 7, 7 Acts so as to swing by a certain angle from the side-facing direction to the mold long-side facing direction, and as a result, the discharge flow is biased to one side of the mold long-side copper plates 8, 8 sandwiching the immersion nozzle 4, resulting in a drift in the mold. Occurs. The above-mentioned drift due to the three-layer slide valve is as follows.
Since it is caused by the change of the discharge flow, it cannot be prevented by the method of Japanese Patent Application Laid-Open No. Hei 7-266010 in which the discharge flow velocity in a specific direction is balanced between left and right. Further, the method disclosed in Japanese Patent Application Laid-Open No. 4-105756 can control the flow in the immersion nozzle to return directly to a symmetrical shape. However, it is difficult to say that this method is industrially advantageous because the injected argon gas has a drawback of causing cellular slab defects. As described above, the conventional technique for preventing drift in the mold has not reached a level at which the drift in the mold by the three-layer slide valve can be advantageously prevented. Accordingly, an object of the present invention is to provide a continuous casting method of steel that can advantageously prevent the occurrence of drift in a mold when controlling the supply amount of molten steel into the mold using a three-layer slide valve. I do. According to the present invention, there is provided a steel plate having a molten steel held in a tundish provided at the bottom of the tundish.
In a continuous casting method of steel supplied into a mold through a slide valve formed of a plate of layers and an immersion nozzle connected to the slide valve, an intermediate plate among the three layers of plates is parallel to a short side of the mold. The slide valve is disposed so as to move in a different direction, and the immersion nozzle has a discharge hole angle in the opposite direction to the deviation of the nozzle discharge flow caused by the deviation of the molten steel flow in the flow control part of the slide valve. A continuous casting method for steel, characterized by using a two-hole immersion nozzle provided with holes . FIG. 1 is a cross-sectional view of a discharge hole portion of a two-hole immersion nozzle. FIG. 1A shows a conventional example, FIG. The long side direction and the Y direction are the short side directions of the mold. The conventional two-hole type immersion nozzle 4 is shown in FIG.
As shown in (a), the discharge flow guiding directions of the discharge holes 7, 7 are parallel to the X direction (that is, the discharge hole angle is not provided), and therefore, the three-layer slide valve flow rate adjusting section (intermediate plate) (See FIG. 5 (a)), the flow velocity maximum streamline 9 of the molten steel flow (vertically downward) in the immersion nozzle 4 is deviated from the nozzle center to one side in the Y direction, and the discharge flow is dragged by this deviation. Is biased to the other side in the Y direction, resulting in a drift in the mold. On the other hand, in the present invention, as shown in FIG. 1 (b), the discharge holes 7, 7 are provided with a discharge hole angle 10 in a direction opposite to the bias of the conventional nozzle discharge flow. This allows
The discharge flow is guided in a direction in which the conventional bias is corrected, and is discharged as a flow that is not biased to either the positive or negative side in the Y direction.
7 can flow out into the mold, and the drift in the mold can be effectively eliminated. It is desirable to select an optimum value for the discharge hole angle in accordance with operating conditions such as throughput and slab width, but in a general continuous casting machine, it is 5 ° to 20 °. Is preferably within the range. According to the present invention thus configured, as illustrated in FIG. 2 , the symmetry of the molten steel flow in the continuous casting mold in the Y direction (short side direction of the mold) is significantly improved, and the drift is greatly reduced. The above-mentioned conventional problems caused by this drift are eliminated. Further, since the present invention is a method using an immersion nozzle in which a predetermined discharge hole angle is set, it does not involve an increase in equipment cost during implementation, and achieves a slab quality similar to that of the conventional argon gas injection method. There is no adverse effect, which is industrially advantageous. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A molten steel equivalent to SUS304 is cast at a casting speed of 0.8 while moving an intermediate plate of a three-layer slide valve in the Y direction (short side direction of a mold) by a slab continuous caster to adjust a molten steel supply amount. The present invention was carried out using a two-hole immersion nozzle having a discharge hole inclined at a discharge hole angle of 10 ° with respect to the X direction (the direction of the long side of the mold) during continuous casting at ~ 1.5 m / min. . As a result, the rate of occurrence of surface defects of the slab, which had been about 15% when the conventional method using an immersion nozzle having no discharge hole angle, was reduced by half. Further, in the conventional method, there was a problem that defects were concentrated on one surface of the slab due to the influence of the drift, but this problem was also solved. Furthermore, the localized high heat load on the mold water-cooled copper plate on the deviated side (the side with the higher flow velocity) is reduced, and the life of the copper plate, which was about 300 charges before, is reduced to about 450
Significantly extended to charge. As described above, according to the present invention, molten steel can be evenly supplied into a continuous casting mold by using a three-layer slide valve and an immersion nozzle connected to the slide valve. And the life of the mold water-cooled copper plate can be increased at the same time.

【図面の簡単な説明】 【図1】2孔型浸漬ノズル吐出孔部分の横断面図であ
り、(a)は従来例、(b)は本発明例である。 【図2】連鋳鋳型内溶鋼流の(a)は本発明例、(b)
は従来例を示す模式図である。 【図3】一般的な連続鋳造設備の一例を示す模式図であ
る。 【図4】2層式スライドバルブによる偏流の説明図であ
る。 【図5】3層式スライドバルブによる偏流の説明図であ
る。 【符号の説明】 1 取鍋 2 タンディッシュ 3 スライドバルブ 4 浸漬ノズル 5 鋳型 6 鋳型短辺銅板 7 ノズル吐出孔(吐出孔) 8 鋳型長辺銅板 9 流速極大流線 10 吐出孔角度 11 スライドバルブ移動方向
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view of a discharge hole portion of a two-hole immersion nozzle, where (a) is a conventional example and (b) is an example of the present invention. FIG. 2 (a) is the example of the present invention, and FIG. 2 (b) is the molten steel flow in the continuous casting mold.
Is a schematic view showing a conventional example. FIG. 3 is a schematic diagram showing an example of a general continuous casting facility. FIG. 4 is an explanatory diagram of a drift caused by a two-layer slide valve. FIG. 5 is an explanatory diagram of a drift caused by a three-layer slide valve. [Description of Signs] 1 Ladle 2 Tundish 3 Slide valve 4 Immersion nozzle 5 Mold 6 Mold short side copper plate 7 Nozzle discharge hole (discharge hole) 8 Mold long side copper plate 9 Flow velocity maximum streamline 10 Discharge hole angle 11 Slide valve movement direction

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松川 敏胤 千葉県千葉市中央区川崎町1番地 川崎 製鉄株式会社 千葉製鉄所内 (72)発明者 廣田 哲仁 千葉県千葉市中央区川崎町1番地 川崎 製鉄株式会社 千葉製鉄所内 (72)発明者 野村 寛 千葉県千葉市中央区川崎町1番地 川崎 製鉄株式会社 千葉製鉄所内 (72)発明者 持田 哲夫 千葉県千葉市中央区川崎町1番地 川崎 製鉄株式会社 技術研究所内   ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Toshitani Matsukawa               1 Kawasaki-cho, Chuo-ku, Chiba City, Chiba Prefecture Kawasaki               Inside Steel Works Chiba Works (72) Inventor Tetsuhito Hirota               1 Kawasaki-cho, Chuo-ku, Chiba City, Chiba Prefecture Kawasaki               Inside Steel Works Chiba Works (72) Inventor Hiroshi Nomura               1 Kawasaki-cho, Chuo-ku, Chiba City, Chiba Prefecture Kawasaki               Inside Steel Works Chiba Works (72) Inventor Tetsuo Mochida               1 Kawasaki-cho, Chuo-ku, Chiba City, Chiba Prefecture Kawasaki               Steel Works Co., Ltd.

Claims (1)

(57)【特許請求の範囲】 【請求項1】 タンディッシュ内に保持した溶鋼を該タ
ンディッシュ底部に設けた3層のプレートで形成したス
ライドバルブと該スライドバルブに連設した浸漬ノズル
を介して鋳型内に供給する鋼の連続鋳造方法において、
前記3層のプレートのうちの中間プレートが鋳型の短辺
に平行な方向に移動するよう前記スライドバルブを配す
ると共に、前記浸漬ノズルとして、スライドバルブの流
量調整部での溶鋼流れの偏りに起因するノズル吐出流の
偏りに対し反対方向の吐出孔角度をもつ吐出孔を設けた
2孔型浸漬ノズルを使用することを特徴とする鋼の連続
鋳造方法。
(57) [Claims 1] A slide valve formed of three layers of plates of molten steel held in a tundish provided at the bottom of the tundish and an immersion nozzle connected to the slide valve. In the continuous casting method of steel supplied into the mold by
The slide valve is arranged so that the intermediate plate of the three-layer plates moves in a direction parallel to the short side of the mold, and the immersion nozzle is caused by the deviation of the flow of molten steel in the flow control section of the slide valve. Discharge holes with discharge hole angles in the opposite direction to the deviation of the nozzle discharge flow
A continuous casting method for steel, comprising using a two-hole immersion nozzle.
JP22790397A 1997-08-25 1997-08-25 Steel continuous casting method Expired - Lifetime JP3408725B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22790397A JP3408725B2 (en) 1997-08-25 1997-08-25 Steel continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22790397A JP3408725B2 (en) 1997-08-25 1997-08-25 Steel continuous casting method

Publications (2)

Publication Number Publication Date
JPH1157955A JPH1157955A (en) 1999-03-02
JP3408725B2 true JP3408725B2 (en) 2003-05-19

Family

ID=16868119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22790397A Expired - Lifetime JP3408725B2 (en) 1997-08-25 1997-08-25 Steel continuous casting method

Country Status (1)

Country Link
JP (1) JP3408725B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1176918C (en) * 1994-04-06 2004-11-24 盐野义制药株式会社 Alpha-substituted benzene acetic acid its preparation and farm pesticide containing said compound
JP4549112B2 (en) * 2004-06-17 2010-09-22 株式会社神戸製鋼所 Continuous casting method

Also Published As

Publication number Publication date
JPH1157955A (en) 1999-03-02

Similar Documents

Publication Publication Date Title
KR920004969B1 (en) Pouring device for dual-roll type continuous casting machines
KR920003684B1 (en) Pouring device for dualroll type continuous casting machine
JP3408725B2 (en) Steel continuous casting method
CN109794589A (en) A kind of process control method preventing CSP continuous casting billet lobe defect
KR100518329B1 (en) A device for controlling the gas flow in twin roll strip caster
JPH0342144A (en) Method for cooling mold for continuous casting and mold thereof
JPS6114059A (en) Control device for molten metal level of twin belt caster
JPH0577007A (en) Method for continuously casting steel slab using static magnetic field
JPH03297541A (en) Mold for continuous casting equipment
JPS63177945A (en) Continuous casting apparatus for thin cast slab
JPH0471759A (en) Method for controlling fluidity of molten metal
JP2859764B2 (en) Continuous casting method of steel slab using static magnetic field
JPH05146858A (en) Method for adjusting discharging quantity of molten steel by using nozzle gas in beam blank continuous casting
JPH02142652A (en) Continuous casting method
KR20030054625A (en) Submerged entry nozzle for reducing nozzle clogging
JPH05276Y2 (en)
JPH06126409A (en) Method for supplying molten steel into slab continuous casting mold
JPH05277678A (en) Sliding gate for continuous casting
KR101408227B1 (en) Continuous casting apparatus and continuous casting method
KR101008454B1 (en) Submerged nozzle preventable jet vorticity
JPH0361534B2 (en)
JPS61154740A (en) Continuous casting machine for thin ingot
JPH02268950A (en) Method for controlling channeling flow of molten steel in continuous casting mold
JP2925374B2 (en) Continuous casting method of steel slab by static magnetic field
KR20010063509A (en) continuously casting method for preventing the clogging between upper nozzle and submerged entry nozzle

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090314

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100314

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100314

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 10