JPH02268950A - Method for controlling channeling flow of molten steel in continuous casting mold - Google Patents

Method for controlling channeling flow of molten steel in continuous casting mold

Info

Publication number
JPH02268950A
JPH02268950A JP8679189A JP8679189A JPH02268950A JP H02268950 A JPH02268950 A JP H02268950A JP 8679189 A JP8679189 A JP 8679189A JP 8679189 A JP8679189 A JP 8679189A JP H02268950 A JPH02268950 A JP H02268950A
Authority
JP
Japan
Prior art keywords
molten steel
mold
nozzle
immersion nozzle
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8679189A
Other languages
Japanese (ja)
Inventor
Hirosato Yamane
弘郷 山根
Yoshikazu Kurose
黒瀬 芳和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP8679189A priority Critical patent/JPH02268950A/en
Publication of JPH02268950A publication Critical patent/JPH02268950A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To attain stable manufacture of a cast strip without any defect by supporting a submerged nozzle fitted to lower part in a tundish as possible to incline toward right and left sides through a fulcrum at the upper end part and controlling the inclining angle of the above nozzle so as to suppress channeling flow in a mold. CONSTITUTION:Temps. detected with plural thermocouples 9 embedded into the right and left inner walls in the mold 2 are monitored with a temp. monitoring device 10. When the temp. difference detected with the thermocouples 9 at the right and left sides exceeds the prescribed value, it is decided that the channeling flow develops. At the time of being decided, command is transmitted to a submerged nozzle inclining control device 16 from the monitoring device 10, and by driving the hydraulic cylinder 12, the submerged nozzle 14 is inclined. By repeating the above operation until the temp. difference of the right and left inner walls in the mold 2 becomes less than the prescribed value, the main flow 6a of the molten steel is equally distributed into discharge holes 5 at right and left sides to suppress the channeling flow of the molten steel 6. Further, in the case of using an eddy current type molten metal surface meter 17, when difference of the molten steel levels according to the development of rising 6b of the molten steel surface exceeds the prescribed value, it is decided that the channeling flow develops, the channeling flow is suppressed with the operation followed to the above.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明はスライディングノズルを介してタンディツシュ
に取付けられた浸漬ノズルから鋳型内に注入された溶鋼
の偏流を抑制することができる連続鋳造鋳型内の溶鋼偏
流制御方法に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention is directed to a continuous casting mold in which the drift of molten steel injected into the mold from a submerged nozzle attached to a tundish via a sliding nozzle can be suppressed. This invention relates to a molten steel drift control method.

〈従来の技術〉 従来より連続鋳造において、第5図に示すようにタンデ
ィツシュlから鋳型2への溶鋼注入量制御はタンディツ
シュ1の下部に設けたスライディングノズル3により行
われており、浸漬ノズル4の下部側壁に設けた左右一対
の吐出孔5を介して鋳型2内へ注入される熔!116の
流速が左右で異なる偏流が生じることがある。1日はス
ライディングノズル3の開度を制御する油圧シリンダを
示す。
<Prior art> Conventionally, in continuous casting, as shown in FIG. The melt is injected into the mold 2 through a pair of left and right discharge holes 5 provided in the lower side wall! A polarized flow may occur in which the flow velocity of 116 differs between the left and right sides. 1 shows a hydraulic cylinder that controls the opening degree of the sliding nozzle 3.

このような偏流が生じるのは、溶鋼6の注入量を制?■
するためスライディングノズル3の開度を絞った状態で
注入することになるため、その構造上どうしても浸漬ノ
ズル4内を落下する溶鋼主流動6aが左右で不均一とな
り、その影響で左右の吐出孔5から鋳型2内に注入され
る1116の一方の流速が大きく他方の流速が小さくな
るからである。
Is this drifting caused by controlling the injection amount of molten steel 6? ■
Therefore, since the opening of the sliding nozzle 3 is narrowed, the main flow 6a of molten steel falling through the immersion nozzle 4 becomes uneven on the left and right sides due to its structure. This is because the flow rate of one side of the 1116 injected into the mold 2 is high and the flow rate of the other side is low.

更に浸漬ノズル4の吐出孔5にアルミナ等が付着成長し
、吐出孔5の開口面積が左右でアンバランスを生じ偏流
を助長する場合が多い。
Furthermore, alumina or the like adheres to and grows in the discharge hole 5 of the immersion nozzle 4, and the opening area of the discharge hole 5 becomes unbalanced between the left and right sides, which often promotes uneven flow.

前述のように浸漬ノズル4の吐出孔5から注入される溶
鋼流速が大きい側では鋳型2の内壁面への衝突力が大き
く、溶鋼は内壁面に沿って上方および下方に勢いよく分
流することになる。かくして上昇流は鋳型2内の場面に
盛り上がり6bを生起して湯面上のパウダ7が鋳型2の
内壁面に供給されるのを阻害して供給不足となり凝固シ
ェル8の形成が不均一となり、鋳造される鋳片の場しわ
や割れ発生の原因になる。また下陣流は溶鋼6の深くま
で達するので非金属介在物の浮上を妨げ鋳片の非金属介
在物性欠陥をもたらす原因となる。
As mentioned above, on the side where the flow velocity of the molten steel injected from the discharge hole 5 of the immersion nozzle 4 is high, the collision force against the inner wall surface of the mold 2 is large, and the molten steel is divided upward and downward along the inner wall surface with great force. Become. In this way, the upward flow causes a bulge 6b in the mold 2, which prevents the powder 7 on the molten metal surface from being supplied to the inner wall surface of the mold 2, resulting in insufficient supply and uneven formation of the solidified shell 8. This causes wrinkles and cracks in the cast slab. Further, since the lower flow reaches deep into the molten steel 6, it prevents nonmetallic inclusions from floating and causes nonmetallic inclusion defects in the slab.

一方、吐出孔5からの溶鋼吐出流速が小さい側あるいは
溶鋼吐出流量が急変する場合には吐出孔5内の溶鋼流に
よどみ部が発生し易くアルミナ等の脱酸生成物の付着に
よりノズル閉塞を起こし多連々鋳造の実施を困難とし生
産性を害するばかりでなく耐火物コストの増加を伴う。
On the other hand, when the flow rate of molten steel discharged from the discharge hole 5 is low or when the flow rate of molten steel discharged suddenly changes, stagnation is likely to occur in the flow of molten steel in the discharge hole 5, and the nozzle may be clogged due to the adhesion of deoxidation products such as alumina. This makes it difficult to carry out multiple series castings, which not only impairs productivity but also increases the cost of refractories.

このようにして−旦偏流が生じるとこれを解消すること
は仲々困難であり、偏流の程度が激しくなると、鋳型2
内で形成された凝固シェル8の再熔解によるブレークア
ウト等の操業トラブルや、鋳型2内の場面変動等による
鋳片表面欠陥が発生しやすく最悪の場合、鋳造を中止せ
ざるを得なくなる。
In this way, once the drifting occurs, it is very difficult to eliminate it, and when the drift becomes severe, the mold 2
Operational troubles such as breakouts due to re-melting of the solidified shell 8 formed within the mold 2 and defects on the slab surface due to changes in the scene within the mold 2 are likely to occur, and in the worst case, casting will have to be stopped.

上記のようにイマージッンノズル4に生じた偏流により
左右の吐出孔5からの溶鋼吐出流速に大小の差が生じる
と連続鋳造の操業に支障があるばかりでなく鋳片の品質
悪化を招き好ましくない。
As mentioned above, if there is a difference in the flow velocity of molten steel discharged from the left and right discharge holes 5 due to the drifting flow generated in the Imagin nozzle 4, this will not only hinder the continuous casting operation but also cause deterioration of the quality of the slab. do not have.

そこで、連続鋳造におけるスライディングゲートによる
溶鋼の絞り注入において、イマージョンノズル内の溶鋼
偏流を防止すべく実開昭56−95465号公報にはイ
マージッンノズルの外周に電[11s!拌装置を付設し
て溶鋼流の偏流に対して逆方向の撹拌力を付与して偏流
を相殺する技術が開示されている。
Therefore, in order to prevent the molten steel from drifting in the immersion nozzle during squeeze injection of molten steel using a sliding gate in continuous casting, Japanese Utility Model Publication No. 56-95465 proposes that an electric current [11s! A technique has been disclosed in which a stirring device is attached to apply a stirring force in the opposite direction to the drift of the molten steel flow to offset the drift.

しかるに上記公報に開示されている従来技術はイマージ
ョンノズルの耐火物を通して流下する溶鋼を電&11撹
拌するため装置が大掛かりとなり設備費が掛かる。また
鋳型内溶鋼のメニスカスからの熱輻射に対処する防護手
段が必要であり、工程的な連続使用は非常に困難である
と共に電力消費量の増加にもつながるという問題点があ
る。
However, in the prior art disclosed in the above-mentioned publication, the molten steel flowing down through the refractory of the immersion nozzle is agitated by electric current, so the device is large-scale and equipment costs are high. Further, a protective means is required to deal with heat radiation from the meniscus of the molten steel in the mold, and there are problems in that continuous use in the process is extremely difficult and leads to an increase in power consumption.

また特開昭63−295056号公報には、浸漬ノズル
内に鉛直方向に板状部材を設け、内孔を区切ることによ
って吐出流の均等化を図るものが提案されているが、板
状部材の溶損が著しく寿命が短いという欠点がある反面
では板状部材に付着物が成長し易く閉塞を生じ易いとい
う欠点を有している。
Furthermore, Japanese Patent Application Laid-Open No. 63-295056 proposes a method in which a plate-like member is provided vertically inside a submerged nozzle and the inner hole is partitioned to equalize the discharge flow. On the one hand, it has the disadvantage that it is prone to melting damage and has a short lifespan, but on the other hand, it also has the disadvantage that deposits tend to grow on the plate-shaped member, which tends to cause blockage.

〈発明が解決しようとする課題〉 本発明は上記従来技術の問題点を解消し、タンディツシ
ュの下部に設けたスライディングノズルの開度を制御し
、浸漬ノズル下端部側壁に設けた左右一対の吐出孔を介
してモールド内に溶鋼を注入するに際し、左右の吐出口
より注入される溶鋼流速をバランスさせることができる
連続鋳造におけるモールド内への溶鋼注入方法を提供す
ることを目的とするものである。
<Problems to be Solved by the Invention> The present invention solves the above-mentioned problems of the prior art, controls the opening degree of the sliding nozzle provided at the bottom of the tundish, and provides a pair of left and right discharge holes provided on the side wall of the lower end of the immersion nozzle. It is an object of the present invention to provide a method for injecting molten steel into a mold in continuous casting, which can balance the flow rate of molten steel injected from the left and right discharge ports when injecting molten steel into the mold via the molten steel.

〈課題を解決するための手段〉 上記目的を達成するための本発明の連vE鋳造鋳型内の
溶鋼偏流制御方法は、スライディングノズルを介してタ
ンディツシュに取付けられた浸漬ノズルを上端部の支点
を介して左右にIIJI動可能に支持せしめ、上記浸漬
ノズルの傾動角度を鋳型内の偏流を抑制するように制御
することを特徴とするものである。
<Means for Solving the Problems> To achieve the above object, the present invention provides a method for controlling the drift of molten steel in a continuous vE casting mold, in which an immersion nozzle attached to a tundish via a sliding nozzle is connected via a fulcrum at the upper end. The immersion nozzle is supported so as to be movable left and right, and the tilting angle of the immersion nozzle is controlled so as to suppress drifting of flow within the mold.

鋳型内の偏流はたとえば浸漬ノズルの左右の鋳型短辺の
温度差、あるいは鋳型内の溶鋼レベル差により検知でき
る。
The drift in the mold can be detected, for example, by the temperature difference between the short sides of the mold on the left and right sides of the immersion nozzle, or by the difference in the level of molten steel in the mold.

く作用〉 上述のように本発明では浸漬ノズルの左右の鋳型内溶鋼
レベル差あるいは左右の鋳型内壁温度差を抑制するよう
に上端部の支点を介して浸漬ノズルを左右に1頃動させ
るので、スライディングノズルを通して注入される溶鋼
の主流動が浸漬ノズルの内孔中心部を流下する。このた
め溶鋼主流動が左右の吐出孔に均等に分配され、鋳型内
に注入された溶鋼の偏流が抑制される。
As described above, in the present invention, the immersion nozzle is moved from side to side by one turn via the fulcrum at the upper end so as to suppress the difference in the level of molten steel in the mold between the left and right sides of the immersion nozzle or the difference in the temperature between the inner walls of the mold between the left and right sides. The main flow of molten steel injected through the sliding nozzle flows down the center of the inner hole of the submerged nozzle. Therefore, the main flow of molten steel is evenly distributed to the left and right discharge holes, and drifting of the molten steel injected into the mold is suppressed.

〈実施例〉 以下本発明の実施例を第1図および第2図に基いて説明
する。なお、図中で前述第5図のものと同じものは同一
符号を付して説明の闇路化を図ることにする。
<Example> Hereinafter, an example of the present invention will be described based on FIGS. 1 and 2. Components in the figure that are the same as those in FIG. 5 are given the same reference numerals to simplify the explanation.

鋳型2の浸漬ノズル4を境とする左右の短辺内壁には熱
電対9を埋設してあり、熱電対9によって検出された温
度は温度監視装置10により監視され、鋳型2の左右内
壁の温度差すなわち抜熱アンバランスにより左右の吐出
孔5から注入された溶w46の不均一流動つまり偏流が
検知される。偏流により流速の大きい短辺側内壁は他方
に比べて新しい溶鋼流が多くなることから温度測定値が
高くなる。
Thermocouples 9 are embedded in the inner walls of the left and right short sides bordering the immersion nozzle 4 of the mold 2. The temperature detected by the thermocouples 9 is monitored by a temperature monitoring device 10, and the temperature of the left and right inner walls of the mold 2 is monitored. Due to the difference, that is, the heat removal imbalance, non-uniform flow, that is, drift, of the melt w46 injected from the left and right discharge holes 5 is detected. The temperature measurement value becomes higher on the short side inner wall where the flow velocity is higher due to the drift because there is more fresh molten steel flow than on the other side.

浸漬ノズル4は上端部の支点に設けた支持軸11を介し
て左右に1頃動可能に支持されている。すなわち浸漬ノ
ズル4は保持部4aと互いに凹凸円弧接触により摺動面
を形成している。
The immersion nozzle 4 is supported so as to be movable left and right by a support shaft 11 provided at a fulcrum at the upper end. That is, the immersion nozzle 4 and the holding portion 4a form a sliding surface through concave and convex arc contact with each other.

浸漬ノズル4の上端部には油圧シリンダ12が連結され
ており、浸漬ノズル4はftTa1l弁13を切換える
ことによって油圧シリンダ12を作動し浸漬ノズル4の
傾動角度が調整されるようになっている。
A hydraulic cylinder 12 is connected to the upper end of the immersed nozzle 4, and the immersed nozzle 4 operates the hydraulic cylinder 12 by switching the ftTa1l valve 13 to adjust the tilt angle of the immersed nozzle 4.

14は油タンクであり、油タンク14から油圧ポンプ1
5を介して油圧シリンダ12に油圧を付与するようにな
っている。
14 is an oil tank, and the hydraulic pump 1 is connected from the oil tank 14.
Hydraulic pressure is applied to the hydraulic cylinder 12 via 5.

浸漬ノズル(IJ′Ivj制御n装置16は熱電対9の
検出温度条件に基づく温度監視装置IOの指令によって
電磁弁13を切換えて油圧シリンダ12を作動し、浸漬
ノズル4の傾動角度を制御uする。
The immersion nozzle (IJ'Ivj control device 16 controls the tilting angle of the immersion nozzle 4 by switching the solenoid valve 13 and operating the hydraulic cylinder 12 in response to a command from the temperature monitoring device IO based on the temperature condition detected by the thermocouple 9. .

前述の場合、鋳型2の内壁に熱電対9を埋設して浸漬ノ
ズル4の吐出孔5から注入された溶鋼の偏流を検出する
ものについて説明したが第1図に符号17として点線で
示す渦流式湯面計を鋳型2の内壁近傍の場面上方に配設
し、吐出孔から注入される溶鋼の偏流によって生起され
る場面の盛り上り6bを検出し、これに基いて浸漬ノズ
ル4を(引動するようにすることもできる。
In the above case, the thermocouple 9 was embedded in the inner wall of the mold 2 to detect the drift of the molten steel injected from the discharge hole 5 of the immersion nozzle 4. A hot water level gauge is disposed above the surface near the inner wall of the mold 2 to detect the swell 6b of the surface caused by the drift of the molten steel injected from the discharge hole, and based on this, the immersion nozzle 4 is moved. You can also do it like this.

次に本発明の作用について説明すると、鋳型2の左右内
壁にそれぞれ埋設した複数の熱電対9によって検出され
た温度が温度監視装置により監視される。第1図に示す
ように浸漬ノズル4が垂直状態になっている場合には、
スライディングノズル3の開度が絞り状態で注入される
ため浸漬ノズル4内を落下する溶鋼主流動6aが左右不
均一となり、その影響で左右の吐出孔5から鋳型2内に
注入された溶鋼6が偏流し、一方の流速が大きく、他方
の流速が小さくなるのは避けられない。
Next, the operation of the present invention will be described. The temperature detected by a plurality of thermocouples 9 embedded in the left and right inner walls of the mold 2 is monitored by a temperature monitoring device. When the submerged nozzle 4 is in a vertical position as shown in FIG.
Since the opening of the sliding nozzle 3 is injected in a constricted state, the main flow 6a of molten steel falling in the immersion nozzle 4 becomes uneven on the left and right, and as a result, the molten steel 6 injected into the mold 2 from the left and right discharge holes 5 is It is unavoidable that the flow is biased, with one side having a high flow rate and the other side having a low flow rate.

そこで本発明ではこのような鋳型2内の溶鋼偏流を温度
監視装置10により監視し、左右の熱電対9が検出した
温度の差が所定のしきい値を超過したときには偏流発生
と判定する。かくして偏流発生と判定したら温度監視装
置10から浸漬ノズル傾動制御装置16に1旨令を発し
、電磁弁13を切換えて油圧シリンダ12を作動し、第
2図に示すように浸漬ノズル4を1頃動させる。θは浸
漬ノズル4の傾動角度を示す。
Therefore, in the present invention, such drifting of molten steel in the mold 2 is monitored by the temperature monitoring device 10, and when the difference in temperature detected by the left and right thermocouples 9 exceeds a predetermined threshold, it is determined that drifting has occurred. When it is determined that a drift has occurred, the temperature monitoring device 10 issues a command to the submerged nozzle tilting control device 16, switches the solenoid valve 13, operates the hydraulic cylinder 12, and moves the submerged nozzle 4 around 1 as shown in FIG. make it move. θ indicates the tilt angle of the immersion nozzle 4.

上述のような操作を一定タイミングを置いて鋳型2の左
右内壁の検出温度差がしきい値以下になるまで操り返す
と浸漬ノズル2内を落下する溶鋼主流動6aが内孔中心
部を流下するようになり、溶鋼主流動6aが左右の吐出
孔5に均等に分配され、鋳型2内に注入された溶86の
偏流が抑制される。
When the above-mentioned operation is repeated at a certain timing until the detected temperature difference between the left and right inner walls of the mold 2 becomes below the threshold value, the main flow of molten steel 6a falling in the immersion nozzle 2 flows down the center of the inner hole. As a result, the main flow of molten steel 6a is evenly distributed to the left and right discharge holes 5, and the drift of the molten steel 86 injected into the mold 2 is suppressed.

一方、鋳型2の湯°面上方に配設された渦流式湯面計1
7を用いる場合には、場面の盛り上がり6b発生に伴う
左右の渦流式湯面計17によって検出される場面レベル
差が所定のしきい値を超過したときには偏流発生と判定
し、前述の場合に準じて浸漬ノズル4の(填料角度を制
御して、場面レベル差が所定のしきい値以下になるまで
順次浸漬ノズル4の(引動角度θを制御して左右の吐出
孔5から注入される溶鋼の流速均一化を図る。
On the other hand, a vortex level gauge 1 is installed above the hot water surface of the mold 2.
7, when the scene level difference detected by the left and right eddy current type water level gauges 17 due to the occurrence of the scene swell 6b exceeds a predetermined threshold, it is determined that a drift has occurred, and according to the above case. The filling angle of the immersion nozzle 4 is controlled, and the molten steel injected from the left and right discharge holes 5 is Aim to equalize the flow rate.

第3図は浸漬ノズルの傾動角度(θ)と溶鋼注入流の偏
流指数の関係を経時的に示したものであり、浸漬ノズル
の傾動角度を左右に傾動制jルすることによって偏流!
階数を応答性よく制jOできることがわかる。
Figure 3 shows the relationship between the tilting angle (θ) of the immersed nozzle and the drift index of the molten steel injection flow over time.
It can be seen that the number of floors can be controlled with good responsiveness.

また第4図は浸漬ノズルを傾動しない従来法および浸漬
ノズルを傾動する本発明法の偏流指数の大小および介在
物の大小の各頻度をそれぞれ比較して示したものである
0本発明法によれば従来法に比べて偏流指数を大幅に低
減できるばかりでなく鋳片の介在物の低下効果が大きい
ことがわかる。
Furthermore, Figure 4 shows a comparison of the magnitude of the drift index and the frequency of inclusions in the conventional method in which the immersion nozzle is not tilted and in the present invention method in which the immersion nozzle is tilted. It can be seen that not only can the drift index be significantly reduced compared to the conventional method, but also the effect of reducing inclusions in the slab is large.

なお、偏流の検知方法を鋳型壁面温度の検出及び浸漬ノ
ズルの左右の溶鋼レベルを検出することで説明したが、
例えば浸漬ノズルの左右の溶鋼表面温度の差から求めて
も良く、要は鋳型内の偏流を検知できる手段であればど
のような手段であっても適用可能である。
The method for detecting drifting was explained by detecting the mold wall temperature and the molten steel level on the left and right sides of the immersion nozzle.
For example, it may be determined from the difference in surface temperature of the molten steel on the left and right sides of the immersion nozzle.In short, any means that can detect the drift in the mold can be used.

〈発明の効果〉 以上説明したように本発明によれば、タンディツシュの
下部に設けたスライディングノズルの絞り注入により浸
漬ノズルの吐出孔を介して鋳型に注入された溶鋼の偏流
を容易に防止することができる。その結果、浸漬ノズル
のノズル詰りか半減して多連々鋳造の実施を可能とする
ばかりでなく欠陥のない鋳片を安定して製造することが
できる。
<Effects of the Invention> As explained above, according to the present invention, drifting of the molten steel injected into the mold through the discharge hole of the immersion nozzle can be easily prevented by restricting injection through the sliding nozzle provided at the lower part of the tundish. I can do it. As a result, not only can the number of nozzle clogging of the immersion nozzle be halved, making it possible to carry out multiple castings, but also it is possible to stably produce slabs without defects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す縦断面図、第2図は本発
明の実施状況を示す部分縦断面図、第3図は偏流指数と
傾動角度の対応関係を示すグラフ、第4図は偏流指数お
よび介在物の各頻度を従来法と本発明法について比較し
たグラフ、第5図は従来例を示す部分縦断面図である。 l・・・タンディッ 3・・・スライディ 5・・・吐出孔、 7・・・パウダ、 9・・・熱電対、 シェ、 ングノ 2・・・鋳型、 ズル、4・・・浸漬ノズル、 6・・・溶鋼、 8・・・凝固シェル、 lO・・・温度監視装置、 11・・・支持軸、     12・・・油圧シリンダ
、13・・・電磁弁、      14・・・油タンク
、15・・・油圧ポンプ、16・・・浸漬ノズル傾動制
御7g装置、17・・・渦流式場面針、  1日・・・
油圧シリンダ。
Fig. 1 is a longitudinal cross-sectional view showing an embodiment of the present invention, Fig. 2 is a partial longitudinal cross-sectional view showing the implementation status of the present invention, Fig. 3 is a graph showing the correspondence between the drift index and the tilt angle, and Fig. 4 5 is a graph comparing the drift index and the frequency of inclusions between the conventional method and the method of the present invention, and FIG. 5 is a partial longitudinal sectional view showing the conventional example. l... Tandy 3... Slidey 5... Discharge hole, 7... Powder, 9... Thermocouple, Sheet, Gunno 2... Mold, Zulu, 4... Immersion nozzle, 6. ... Molten steel, 8... Solidified shell, lO... Temperature monitoring device, 11... Support shaft, 12... Hydraulic cylinder, 13... Solenoid valve, 14... Oil tank, 15...・Hydraulic pump, 16... Immersion nozzle tilting control 7g device, 17... Whirlpool type scene needle, 1 day...
hydraulic cylinder.

Claims (1)

【特許請求の範囲】 1、スライディングノズルを介してタンディッシュに取
付けられた浸漬ノズルから鋳型内に溶鋼を注入するに際
し、前記浸漬ノズルを上端部の支点を介して左右に傾動
可能に支持せしめ、該浸漬ノズルの傾動角度を鋳型内の
偏流を抑制するように制御することを特徴とする連続鋳
造鋳型内の溶鋼偏流制御方法。 2、スライディングノズルを介してタンディッシュに取
付けられた浸漬ノズルから鋳型内に溶鋼を注入するに際
し、上記浸漬ノズルの吐出孔に対向する左右の鋳型内壁
温度を検出し、かつ上記浸漬ノズルを上端部の支点を介
して左右に傾動可能に支持せしめ、上記浸漬ノズルの傾
動角度を鋳型内壁の温度差を抑制するように制御するこ
とを特徴とする連続鋳造鋳型内の溶鋼偏流制御方法。 3、浸漬ノズルの左右の鋳型内壁温度を検出する代りに
浸漬ノズルの左右の鋳型内溶鋼レベルを検出し、上記浸
漬ノズルの傾動角度を鋳型内溶鋼レベル差を抑制するよ
うに制御する請求項1記載の方法。
[Scope of Claims] 1. When injecting molten steel into a mold from a submerged nozzle attached to a tundish via a sliding nozzle, the submerged nozzle is supported so as to be tiltable left and right via a fulcrum at the upper end; A method for controlling drifting of molten steel in a continuous casting mold, comprising controlling the tilt angle of the immersion nozzle so as to suppress drifting of the flow in the mold. 2. When injecting molten steel into the mold from the immersion nozzle attached to the tundish via the sliding nozzle, detect the temperature of the inner walls of the left and right molds facing the discharge hole of the immersion nozzle, and insert the immersion nozzle into the upper end. A method for controlling drifting of molten steel in a continuous casting mold, characterized in that the immersion nozzle is supported so as to be tiltable left and right via a fulcrum, and the tilting angle of the immersion nozzle is controlled so as to suppress a temperature difference between the inner walls of the mold. 3. Instead of detecting the inner wall temperature of the mold on the left and right sides of the immersion nozzle, the level of molten steel in the molds on the left and right sides of the immersion nozzle is detected, and the tilt angle of the immersion nozzle is controlled so as to suppress the difference in the level of molten steel in the mold. Method described.
JP8679189A 1989-04-07 1989-04-07 Method for controlling channeling flow of molten steel in continuous casting mold Pending JPH02268950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8679189A JPH02268950A (en) 1989-04-07 1989-04-07 Method for controlling channeling flow of molten steel in continuous casting mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8679189A JPH02268950A (en) 1989-04-07 1989-04-07 Method for controlling channeling flow of molten steel in continuous casting mold

Publications (1)

Publication Number Publication Date
JPH02268950A true JPH02268950A (en) 1990-11-02

Family

ID=13896597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8679189A Pending JPH02268950A (en) 1989-04-07 1989-04-07 Method for controlling channeling flow of molten steel in continuous casting mold

Country Status (1)

Country Link
JP (1) JPH02268950A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1085913A (en) * 1996-09-12 1998-04-07 Shinagawa Refract Co Ltd Device for exchanging immersion nozzle
JP2011079060A (en) * 2002-11-29 2011-04-21 Abb Ab Control system and method of casting machine for metal
WO2018034164A1 (en) * 2016-08-18 2018-02-22 昭和電工株式会社 Vertical-type continuous casting method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1085913A (en) * 1996-09-12 1998-04-07 Shinagawa Refract Co Ltd Device for exchanging immersion nozzle
JP2011079060A (en) * 2002-11-29 2011-04-21 Abb Ab Control system and method of casting machine for metal
JP2014147976A (en) * 2002-11-29 2014-08-21 Abb Ab Control system, device and method for controlling flow of liquid metal in metal casting machine
WO2018034164A1 (en) * 2016-08-18 2018-02-22 昭和電工株式会社 Vertical-type continuous casting method

Similar Documents

Publication Publication Date Title
KR19990081870A (en) Melt supply device of continuous casting device
Thomas Fluid flow in the mold
KR960006041B1 (en) Twin-roll type continuous casting machine
RU2142863C1 (en) Plate mould for production of copper ingots
JPH02268950A (en) Method for controlling channeling flow of molten steel in continuous casting mold
JPH035052A (en) Method for controlling drift of molten steel in mold for continuous casting
JPH01262050A (en) Detection of leaning flow of molten steel in mold at continuous casting of steel and method for continuous casting steel
KR100810735B1 (en) Mold flux melting pot
JPH05104212A (en) Tundish with molten steel heating device
JP3252768B2 (en) Flow control method of molten steel in continuous casting mold
JPH0819842A (en) Method and device for continuous casting
JPH0342144A (en) Method for cooling mold for continuous casting and mold thereof
JPS5874257A (en) Method and device for charging of molten metal in continuous casting
JPH1177265A (en) Method for controlling fluid of molten steel in mold for continuous casting
JPH0484650A (en) Method for restraining drift of molten steel in continuous casting mold
KR101518630B1 (en) Mold for continuous casting and cooling method of molten steel using the same
KR101974335B1 (en) Nozzle inlet adhered materials removal device and cleaning method using it
KR102033642B1 (en) Processing apparatus for molten material
JPH05237619A (en) Method for restraining drift flow of molten steel in continuous casting mold
JPS5835050A (en) Tundish for continuous casting having heating function for molten metal
JP3470537B2 (en) Inclusion removal method in tundish for continuous casting
JPH0377754A (en) Method for preventing drift stream of molten steel poured into continuous casting mold
JPH0289544A (en) Method for controlling molten steel flow in mold in continuous casting
JPH10193056A (en) Method for removing inclusion in continuous casting tundish
JPH02147153A (en) Method for pouring molten steel into mold in continuous casting