JPH11204337A - Planar coil and planar transformer - Google Patents

Planar coil and planar transformer

Info

Publication number
JPH11204337A
JPH11204337A JP10003853A JP385398A JPH11204337A JP H11204337 A JPH11204337 A JP H11204337A JP 10003853 A JP10003853 A JP 10003853A JP 385398 A JP385398 A JP 385398A JP H11204337 A JPH11204337 A JP H11204337A
Authority
JP
Japan
Prior art keywords
coil
planar
thickness
coil conductor
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10003853A
Other languages
Japanese (ja)
Other versions
JP4046827B2 (en
Inventor
Takashi Kajino
隆 楫野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP00385398A priority Critical patent/JP4046827B2/en
Priority to US09/228,971 priority patent/US6600404B1/en
Publication of JPH11204337A publication Critical patent/JPH11204337A/en
Application granted granted Critical
Publication of JP4046827B2 publication Critical patent/JP4046827B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coils Of Transformers For General Uses (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a compact and high-performance planar coil with a small DC resistance and a high-performance transformer by making a coil conductor large in larger thickness and making each lines constituting the coil conductor small in interval. SOLUTION: A plurality of coil conductor lines 3, 3' and 3" with a thickness of 50 to 400 μm are provided on one surface or both surfaces of an insulation substrate 1 with an aspect ratio (H/G) of 1 or more in the cap part, and a planar coil is covered with a metallic plating thin-film layer 2 on its surface as desired. The coil conductor lines 3, 3' and 3" have a mushroom-like cross section, where a width L of a head part thereof is two times or more than that a width 1 of a neck part, 1.5 times or less than a height H of the head part and two times or more than a minimum distance G between the coil conductor lines 3, 3' and 3". The planar coil is stacked in plural number via an insulation film interposed, and the entire body is made tight by a thin ferromagnetic core, to form a planar transformer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、平面コイル及び平
面トランス、特に10W以下の小さいパワーで作動する
平面コイル及び平面トランスに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a planar coil and a planar transformer, and more particularly to a planar coil and a planar transformer operating with a small power of 10 W or less.

【0002】[0002]

【従来の技術】平面コイルは、デジタルオーディオディ
スクの二軸アクチエータや人工衛星などの電源用又は信
号用として広く用いられている。ところで、最近、平面
コイルの精密部品用としての需要が高まるに従い、幅が
細く、かつ厚さの大きい、いわゆるハイアスペクト導体
パターンを狭い間隔で複数個並列的に形成させたものが
要求されるようになってきた。これまで、このような平
面コイルは、絶縁基板上に、導体薄膜を被着し、その上
にネガ型ホトレジスト層を施し、常法に従いレジストパ
ターンを形成させたのち、エッチング処理して、導体薄
膜の露出部分を食刻し、次いでレジストパターンを除去
することによって製造されている。
2. Description of the Related Art A planar coil is widely used as a power source or a signal source for a two-axis actuator of a digital audio disk or an artificial satellite. By the way, recently, as the demand for precision parts for planar coils has increased, it has been demanded that a plurality of so-called high-aspect conductor patterns having a narrow width and a large thickness, formed in parallel at a narrow interval, are required. It has become Heretofore, such a planar coil has been formed by applying a conductive thin film on an insulating substrate, applying a negative photoresist layer thereon, forming a resist pattern according to a conventional method, and etching the conductive thin film. Is etched, and then the resist pattern is removed.

【0003】しかしながら、このようにして得られる平
面コイルは、導体薄膜のエッチングに際し、エッチング
液がレジストパターンで被覆されている部分にも入り込
み、その部分の導体までも溶解除去してしまう結果、残
存する導体の断面が台形となり、コイルパターン間の間
隔が大幅に増大したものになるのを免れない。
[0003] However, in the planar coil obtained in this manner, when the conductor thin film is etched, the etchant enters the portion covered with the resist pattern, and the conductor in that portion is also dissolved and removed. The cross section of the conductor is trapezoidal, and the interval between the coil patterns is inevitably increased.

【0004】このような欠点を改善するために、前記の
絶縁基板と導体薄膜との電気抵抗の差を利用して、導体
薄膜へ選択的に厚いめっきを施す方法が提案されたが
(特開昭58−12315号公報)、めっき下地膜が薄
く、特にスパイラルパターンを形成する場合などに下地
の配線抵抗が増大し、めっき電流を大きくすることがで
きない上、めっきの成長速度に異方性がないため導体パ
ターンの厚さを大きくすることができない。
In order to improve such a drawback, a method has been proposed in which a thick conductive film is selectively applied to a conductive thin film by utilizing the difference in electric resistance between the insulating substrate and the conductive thin film (Japanese Patent Application Laid-Open No. H11-163873). Japanese Patent Application Laid-Open No. 58-12315), the plating underlayer is thin, especially when a spiral pattern is formed, the wiring resistance of the underlayer increases, the plating current cannot be increased, and the plating growth rate has anisotropy. Therefore, the thickness of the conductor pattern cannot be increased.

【0005】そのほか、絶縁基板全面に金属薄膜を設
け、この上に厚いレジストパターンを形成させたのち、
パターンめっきでハイアスペクト導体を形成させ、レジ
ストを除去したのち、イオンミリングなどのドライエッ
チングで、線間の金属薄膜を除去する方法なども知られ
ているが、レジストの厚さは、せいぜい50μmが限度
であるので、導体パターンの厚さとしては、40μm程
度が得られるにすぎない。このように従来の平面コイル
は、コイル導体の層厚自体を厚くすることが困難である
上、エッチングにより導体パターンを形成するので、コ
イル導体を構成する各線条間の間隔はコイル導体の層厚
の2倍程度が限度であるため、コイル導体部の空間的な
意味での占積率が低く、直流抵抗が大きくなるのを免れ
ず、良好な電気特性を得ることができない。
In addition, after a metal thin film is provided on the entire surface of an insulating substrate and a thick resist pattern is formed thereon,
It is also known to form a high-aspect conductor by pattern plating, remove the resist, and then remove the metal thin film between the lines by dry etching such as ion milling. However, the thickness of the resist is at most 50 μm. Since this is the limit, the thickness of the conductor pattern is only about 40 μm. As described above, in the conventional planar coil, it is difficult to increase the layer thickness of the coil conductor itself, and since the conductor pattern is formed by etching, the interval between the filaments constituting the coil conductor is limited by the layer thickness of the coil conductor. Since the limit is about twice as large as the above, the space factor of the coil conductor portion in the spatial sense is low, the DC resistance is inevitably increased, and good electrical characteristics cannot be obtained.

【0006】[0006]

【発明が解決しようとする課題】本発明は、コイル導体
の層厚を大きくするとともに、コイル導体を構成する各
線条の間隔を狭くして、小型で直流抵抗の小さい高性能
平面コイル及びそれを用いた高性能トランスを提供する
ことを目的としてなされたものである。
SUMMARY OF THE INVENTION The present invention relates to a high-performance flat coil having a small DC resistance and a small DC resistance by increasing the layer thickness of the coil conductor and narrowing the distance between the wires forming the coil conductor. The purpose is to provide a high-performance transformer used.

【0007】[0007]

【課題を解決するための手段】本発明者は、高性能平面
コイルを得るために、鋭意研究を重ねた結果、コイル導
体の各線条を異方性成長させて、マッシュルーム状断面
に形成することにより、コイル導体の高さを50μm以
上に、かつ各線条間の間隔を20μm以下で形成させう
ること、したがって、見掛け上の占積率を増大して電気
特性を向上させうることを見出し、この知見に基づいて
本発明をなすに至った。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies in order to obtain a high-performance planar coil. As a result, it has been found that each filament of the coil conductor is grown anisotropically to form a mushroom-shaped cross section. By this, it was found that the height of the coil conductor can be formed at 50 μm or more and the interval between the filaments can be formed at 20 μm or less, and therefore, the apparent space factor can be increased to improve the electrical characteristics. The present invention has been made based on the findings.

【0008】すなわち、本発明は、絶縁基板の片面又は
両面に厚さ50〜400μmの複数のコイル導体線条を
ギャップ部のアスペクト比(H/G)1以上で設け、か
つ所望によりその表面が金属めっき薄膜層で被覆されて
いる平面コイルにおいて、該コイル導体線条がマッシュ
ルーム状断面を有し、その断面の頭部の幅(L)が首部
の幅(l)の2倍以上、頭部の高さ(H)の1.5倍以
下及び各コイル導体線条間の最小間隔(G)の2倍以上
であることを特徴とする平面コイル、及びその平面コイ
ルを、絶縁性フィルムを介して複数個積層し、全体を薄
型強磁性体コアで挟着して構成された平面トランスを提
供するものである。
That is, according to the present invention, a plurality of coil conductor wires having a thickness of 50 to 400 μm are provided on one or both surfaces of an insulating substrate at an aspect ratio (H / G) of a gap portion of 1 or more, and the surface thereof is optionally formed. In a planar coil covered with a metal plating thin film layer, the coil conductor has a mushroom-shaped cross section, and the head width (L) of the cross section is twice or more the neck width (l), A planar coil, wherein the planar coil is 1.5 times or less the height (H) and at least twice the minimum distance (G) between the coil conductors, and the planar coil is interposed by an insulating film. And a flat transformer formed by stacking a plurality of thin ferromagnetic cores and sandwiching the whole with a thin ferromagnetic core.

【0009】[0009]

【発明の実施の形態】次に、添付図面に従って、本発明
をさらに詳細に説明する。図1は、本発明の平面コイル
の部分断面拡大図であって、絶縁基板1の上に金属薄膜
層2を介してコイル導体線条3,3′,3″…が並列的
に設けられている。この各線条は頭部4と首部5からな
るマッシュルーム状断面を有し、その頭部の幅(L)は
首部の幅(l)の2倍以上、好ましくは2〜5倍、頭部
の高さ(H)の1.5倍以下、好ましくは0.5〜1.
5倍、各コイル導体線条間の最小間隔(G)の2倍以
上、好ましくは4〜10倍であることが必要である。
Next, the present invention will be described in more detail with reference to the accompanying drawings. FIG. 1 is an enlarged partial cross-sectional view of a planar coil according to the present invention, in which coil conductor wires 3, 3 ', 3 "... Are provided in parallel on an insulating substrate 1 via a metal thin film layer 2. Each of the filaments has a mushroom-shaped cross section composed of a head 4 and a neck 5, and the width (L) of the head is twice or more, preferably 2 to 5 times, the width (l) of the neck. 1.5 times or less of the height (H), preferably 0.5 to 1.
It is necessary to be 5 times, more than 2 times, preferably 4 to 10 times, the minimum distance (G) between the coil conductor wires.

【0010】図2は、本発明の平面コイルを製造する方
法の1例であって、先ず円板状絶縁基板1上にスルーホ
ール7を穿設し、次いで該基板上に金属めっき薄膜層2
を設け、さらにホトレジストパターン層6を形成した構
造体を形成する(イ)。次に、上記の金属めっき薄膜層
2が露出している部分を中心として、好ましくはこれと
同じ金属を光沢電気めっきすることにより、マッシュル
ーム状断面をもつ線条3,3′,3″…を並列的に形成
させる(ロ)。次いで、残存してるレジストを剥離した
のち(ハ)、選択的なエッチング処理を施して、各線条
間の金属めっき薄膜層のみを除去する(ニ)。この場
合、所望ならば、ハイアスペクトめっきの後で、保護用
金属をめっきして、コイル導体線条の表面を被覆する。
FIG. 2 shows an example of a method of manufacturing a planar coil according to the present invention. First, a through hole 7 is formed on a disc-shaped insulating substrate 1 and then a metal plating thin film layer 2 is formed on the substrate.
Is formed, and a structure having the photoresist pattern layer 6 formed thereon is formed (a). Next, the same metal as this is preferably subjected to bright electroplating with a focus on a portion where the metal plating thin film layer 2 is exposed, so that the filaments 3, 3 ', 3 "having a mushroom-shaped cross section are formed. Next, after the remaining resist is stripped (c), selective etching is performed to remove only the metal plating thin film layer between the lines (d). After the high aspect plating, if desired, a protective metal is plated to cover the surface of the coil conductor wire.

【0011】このように、ホトレジスト層が除去され、
コイルパターン状に金属めっき薄膜層が露出した部分を
中心に光沢電気めっきを行う場合、めっき条件を適切に
すれば、高さ方向の成長速度が幅方向の成長速度に比べ
て大きくなり、めっき部分が膨成して1回の処理でもマ
ッシュルーム状の、直流抵抗の小さいコイル導体線条が
形成される。
Thus, the photoresist layer is removed,
When performing bright electroplating centering on the part where the metal plating thin film layer is exposed in the coil pattern, if the plating conditions are appropriate, the growth rate in the height direction will be greater than the growth rate in the width direction, and Expands to form a mushroom-shaped coil conductor strip having a small DC resistance even in a single treatment.

【0012】この際のめっき条件は、めっき浴の組成、
めっき槽の形状、浴の撹拌条件に依存するが、予備的試
験を繰り返すことにより容易に最適条件を選定すること
ができる。この際の電流密度については、限界電流密度
の70%以上で異方性成長を行わせる。
In this case, the plating conditions include the composition of the plating bath,
Although it depends on the shape of the plating tank and the stirring conditions of the bath, the optimum conditions can be easily selected by repeating preliminary tests. Regarding the current density at this time, anisotropic growth is performed at 70% or more of the limit current density.

【0013】また、この際のコイル導体の各線条の首部
の幅は、まずレジストパターン上の露出している金属薄
膜の幅をレジストの解像度及びコイル導体を形成したと
きの強度を考慮して最小に選び、このパターンでのめっ
き条件を検討して、もっともアスペクト比の大きい条件
に設定し、所定の膜厚まで成長させたのち、各線条間の
間隔の最小値を測定し、これに設計値を減じた値だけレ
ジストパターン上の露出している金属薄膜の幅を増加す
ることによって調整する。
At this time, the width of the neck portion of each wire of the coil conductor is first determined by taking the width of the exposed metal thin film on the resist pattern into consideration in consideration of the resolution of the resist and the strength when the coil conductor is formed. After examining the plating conditions for this pattern, setting the conditions with the largest aspect ratio, and growing it to a predetermined thickness, measure the minimum value of the interval between the filaments, Is adjusted by increasing the width of the exposed metal thin film on the resist pattern by a value obtained by subtracting.

【0014】なお、この際のめっき浴としては、抵抗の
低い金属の光沢めっき浴であればよく、特に制限はない
が、無光沢めっき浴の場合は、コイル導体の線条間の間
隔が狭くなると線条間でショートするので用いることは
できない。
The plating bath at this time is not particularly limited as long as it is a bright plating bath of a metal having a low resistance. In the case of a matte plating bath, the interval between the filaments of the coil conductor is narrow. If this happens, it will not be possible to use it because it will cause a short between the filaments.

【0015】本発明の平面コイルにおいて、アスペクト
比の大きいものが得られる理由としては次のことが考え
られる。すなわち、スルーホールめっきにおいて、孔の
アスペクト比が大きい場合は孔内の膜厚が外部の膜厚よ
り小さくなり、この傾向はアスペクト比が大きいほど顕
著になるが、本発明において、コイル導体パターンを光
沢めっきにより形成される場合も、これと類似した現像
が起り、最初の間はめっきが等方的に成長するが、膜厚
が大きくなるに従って、溝部のアスペクトが大きくなり
異方的な成長が行われ、頭部が形成されることにより、
次第にこの傾向が助長されてアスペクト比が益々増大す
る。図3は、本発明の平面コイルの1例を示す平面図で
あって、この図においては、コイルパターンが円形スパ
イラル状に形成されているが、このコイルパターンの形
状としては、これ以外に角形スパイラル状、折れ線状な
ど従来の平面コイルで用いられている任意の形状をとる
ことができる。このようにして得た平面コイルは、薄型
強磁性体コアに挟着して用いることもできる。この薄型
強磁性体コアとしては、例えば厚さ1.2mmのNiZ
n系フェライトなどが用いられる。
The following can be considered as a reason why a coil having a large aspect ratio can be obtained in the planar coil of the present invention. That is, in the through-hole plating, when the aspect ratio of the hole is large, the film thickness in the hole becomes smaller than the external film thickness, and this tendency becomes more remarkable as the aspect ratio becomes larger. Even when formed by bright plating, similar development occurs, and plating grows isotropically at first, but as the film thickness increases, the aspect of the groove increases and anisotropic growth occurs. It is performed, and the head is formed,
This tendency is gradually promoted, and the aspect ratio is further increased. FIG. 3 is a plan view showing an example of the planar coil of the present invention. In this figure, the coil pattern is formed in a circular spiral shape. Any shape used in a conventional planar coil such as a spiral shape or a polygonal line shape can be adopted. The planar coil thus obtained can be used while being sandwiched between thin ferromagnetic cores. As this thin ferromagnetic core, for example, NiZ having a thickness of 1.2 mm is used.
An n-type ferrite or the like is used.

【0016】次に、本発明の平面コイルを絶縁性フィル
ムを介して複数個積層し、全体を薄型強磁性体コアで挟
着すれば、非常に電気特性の優れた平面トランスを得る
ことができる。この際の絶縁性フィルムとしては、厚さ
0.05mmのポリエステルフィルムのようなプラスチ
ックフィルムが適当であり、薄型強磁性体コアとしては
前記したものと同じものを用いることができる。
Next, by stacking a plurality of the planar coils of the present invention via an insulating film and sandwiching the whole with a thin ferromagnetic core, a planar transformer having extremely excellent electric characteristics can be obtained. . In this case, a plastic film such as a polyester film having a thickness of 0.05 mm is suitable as the insulating film, and the same thin film ferromagnetic core as described above can be used.

【0017】[0017]

【実施例】次に実施例により本発明をさらに詳細に説明
する。
Next, the present invention will be described in more detail by way of examples.

【0018】実施例1 3インチ基板に284個のコイルを製造するため、以下
の処理を行った。すなわちアンクラッドFR4基板(厚
さ100μm)の所定の位置に、直径0.2mmのスル
ーホールを開け、無電解銅めっき液でその両面に1μm
の厚さの銅層を形成した。その上にポジ型ホトレジスト
を乾燥膜厚で5μmになるようにスピンコートした。次
いで、スルーホール周囲のレジストを除去すると同時
に、コイル部を形成するために、レジストパターン幅9
0μm、レジストパターン間隔(露出する導体の線幅)
20μmのパターンをホトリソグラフィー法により形成
した。ここでスルーホールは両面の銅層の接続のために
用いている。コイル部となるレジスト除去部のパターン
は円形スパイラル状で、最内周の半径は0.9mmで巻
数は11.5回である。これを光沢硫酸銅めっき浴でめ
っきした。めっき液の硫酸銅の濃度は70g/lであ
り、液温度は25℃である。小孔の開いているパイプを
カソードの付近に設置して、ここからめっき液を20m
m/秒で噴出させ、電流密度2.5A/dm2で膜厚が
150μmになるまでめっきした。このときの導体間隔
は10μmであった。次に、レジストを剥離し、下地銅
膜をイオンミリングでエッチングしてコイル導体部を形
成したのち、単一の平面コイルにカットした。このよう
にして得た284個の平面コイルは、それぞれ外形寸法
が3.1×3.1×0.4mmであり、コイル導体層の
厚さ(H)が150μm、コイル導体線条間の間隔
(G)が10μm、頭部の幅(L)が100μm、首部
の幅(l)が20μm、L/l比が5、L/H比が0.
67、L/G比が5であった。また、このものの電気特
性は、直流抵抗0.1Ω、インダクタンス値0.37μ
Hであった。比較のために、同じパターンのコイルを通
常のプリント配線板の製法によって、36μmの銅箔を
両面に貼った100μm厚のFR4基板を用いて作成し
た。ファインパターンであるために、歩留まりは大幅に
減少したが、良品の電気的特性を測定すると、直流抵抗
1.1Ω、インダクタンス値0.37μHであった。な
お、外形寸法は3.1×3.1×0.2mmである。こ
のことから、本発明の平面コイルは、通常のプリント配
線板の製法で作成したものに比べて直流抵抗を1/10
以下にできることが分かる。
Example 1 The following process was performed to manufacture 284 coils on a 3-inch substrate. That is, a through hole having a diameter of 0.2 mm was formed at a predetermined position on an unclad FR4 substrate (thickness: 100 μm), and 1 μm was formed on both surfaces thereof using an electroless copper plating solution.
The thickness of the copper layer was formed. A positive photoresist was spin-coated thereon to a dry film thickness of 5 μm. Next, at the same time as removing the resist around the through hole and forming the coil portion, the resist pattern width 9 was used.
0 μm, resist pattern interval (line width of exposed conductor)
A 20 μm pattern was formed by photolithography. Here, the through holes are used to connect the copper layers on both sides. The pattern of the resist removal portion serving as the coil portion is a circular spiral shape, the innermost radius is 0.9 mm, and the number of turns is 11.5. This was plated in a bright copper sulfate plating bath. The concentration of copper sulfate in the plating solution is 70 g / l, and the temperature of the solution is 25 ° C. Place a pipe with a small hole near the cathode, and apply plating solution 20m from here
The plating was performed at a current density of 2.5 A / dm 2 until the film thickness reached 150 μm. The conductor spacing at this time was 10 μm. Next, the resist was peeled off, the underlying copper film was etched by ion milling to form a coil conductor, and then cut into a single planar coil. The 284 planar coils thus obtained each have an outer dimension of 3.1 × 3.1 × 0.4 mm, a thickness (H) of the coil conductor layer of 150 μm, and an interval between the coil conductor wires. (G) is 10 μm, head width (L) is 100 μm, neck width (l) is 20 μm, L / l ratio is 5, L / H ratio is 0.
67, L / G ratio was 5. The electrical characteristics of this device are DC resistance 0.1Ω, inductance value 0.37μ.
H. For comparison, a coil having the same pattern was formed by a normal method of manufacturing a printed wiring board using a FR4 substrate having a thickness of 100 μm and a copper foil of 36 μm attached to both sides. Although the yield was greatly reduced due to the fine pattern, the DC characteristics were 1.1 Ω and the inductance value was 0.37 μH when the electrical characteristics of good products were measured. The external dimensions are 3.1 × 3.1 × 0.2 mm. From this, the planar coil of the present invention has a DC resistance that is 1/10 that of a coil manufactured by a normal printed wiring board manufacturing method.
It can be seen that the following can be done.

【0019】比較例 実施例1で導体の断面形状の首の幅が頭の幅と同じコイ
ルをパターンめっき法により形成した。すなわち、実施
例1と同じ手法で同一基板上に下地銅膜を形成し、コイ
ル導体線条のギャップ位置に厚さ35μm、幅10μm
のレジストパターンを形成し、これに実施例と同一条件
で厚さ30μmのめっきを施した。これを5回繰り返
し、レジストを剥離してイオンミリングで導体間の下地
銅膜をエッチングして、実施例1で首の幅が頭の幅と同
じ断面形状のコイルを片面に形成した。この時の基板の
反りは1.2mmであった。一方、実施例1と同じ手法
で片面のみにコイルを形成し、基板の反りを測定すると
0.25mmであった。首を細くすることで基板の反り
量が1/5に減少しているのが分かる。
COMPARATIVE EXAMPLE In Example 1, a coil having a conductor having the same cross-sectional neck width as the head width was formed by pattern plating. That is, an underlying copper film was formed on the same substrate in the same manner as in Example 1, and a thickness of 35 μm and a width of 10 μm
Was formed, and a 30 μm-thick plating was applied to the resist pattern under the same conditions as in the example. This was repeated five times, the resist was peeled off, and the underlying copper film between the conductors was etched by ion milling to form a coil having a cross-section having the same neck width as that of the head in Example 1 on one side. At this time, the warpage of the substrate was 1.2 mm. On the other hand, a coil was formed only on one side by the same method as in Example 1, and the warpage of the substrate was measured to be 0.25 mm. It can be seen that the amount of warpage of the substrate is reduced to 1/5 by making the neck thinner.

【0020】実施例2 実施例1で用いたものと同じアンクラッドFR4基板の
所定の位置に、直径0.2mmのスルーホールを設け、
無電解銅めっき液でその両面に1μmの厚さの銅層を形
成した。その上にポジ型ホトレジストを乾燥膜厚で5μ
mになるようにスピンコートし、レジストパターン幅1
10μm、レジストパターン間隔(露出する導体の線
幅)20μmのパターンをホトリソグラフィー法により
形成した。ここでスルーホールは両面の銅層の接続のた
めに用いている。コイル部となるレジスト除去部のパタ
ーンは円形スパイラル状で、最内周の半径は0.9mm
で巻数は11.5回である。これを光沢硫酸銅めっき浴
でめっきした。めっき液の硫酸銅の濃度は70g/lで
あり、液温度は25℃である。小孔の開いているパイプ
をカソードの付近に設置して、ここからめっき液を20
mm/秒で噴出させ、電流密度2.5A/dm2で膜厚
が200μmになるまでめっきした。このときの導体間
隔は10μmであった。実施例1に比べて、頭部の長さ
(L)が10μm長くなっているので、導体高さが大き
く取れる。次に、レジストを剥離し、下地銅膜をイオン
ミリングでエッチングしてコイル導体部を形成したの
ち、単一の平面コイルにカットした。このようにして得
た284個の平面コイルは、それぞれ外形寸法が3.1
×3.1×0.4mmであり、コイル導体層の厚さ
(H)が200μm、コイル導体線条間の間隔(G)が
10μm、頭部の幅(L)が100μm、首部の幅
(l)が20μm、L/l比が5、L/H比が0.5、
L/G比が10であった。また、このものの電気特性
は、直流抵抗0.06Ω、インダクタンス値0.36μ
Hであった。比較のために、同じパターンのコイルを通
常のプリント配線板の製法によって、36μmの銅箔を
両面に貼った100μm厚のFR4基板を用いて作成し
た。ファインパターンであるために、歩留まりは大幅に
減少したが、良品の電気的特性を測定すると、直流抵抗
0.9Ω、インダクタンス値0.37μHであった。な
お、外形寸法は3.1×3.1×0.2mmである。こ
のことから、本発明の平面コイルは、通常のプリント配
線板の製法で作成したものに比べて直流抵抗を1/10
以下にできることが分かる。
Example 2 A through hole having a diameter of 0.2 mm was provided at a predetermined position on the same unclad FR4 substrate as used in Example 1,
A copper layer having a thickness of 1 μm was formed on both surfaces with an electroless copper plating solution. On top of that, a positive photoresist is dried at a thickness of 5 μm.
m, and spin the resist pattern width 1
A pattern with a resist pattern interval of 10 μm and a line width of the resist pattern (line width of the exposed conductor) of 20 μm was formed by photolithography. Here, the through holes are used to connect the copper layers on both sides. The pattern of the resist removal part that becomes the coil part is a circular spiral shape, and the innermost radius is 0.9 mm.
And the number of turns is 11.5. This was plated in a bright copper sulfate plating bath. The concentration of copper sulfate in the plating solution is 70 g / l, and the temperature of the solution is 25 ° C. Place a pipe with a small hole near the cathode, and apply plating solution from here
The plating was performed at a current density of 2.5 A / dm 2 until the film thickness reached 200 μm. The conductor spacing at this time was 10 μm. Since the length (L) of the head is 10 μm longer than in the first embodiment, a large conductor height can be obtained. Next, the resist was peeled off, the underlying copper film was etched by ion milling to form a coil conductor, and then cut into a single planar coil. Each of the 284 planar coils thus obtained has an outer dimension of 3.1.
× 3.1 × 0.4 mm, the thickness (H) of the coil conductor layer is 200 μm, the interval (G) between the coil conductor wires is 10 μm, the width of the head (L) is 100 μm, and the width of the neck ( l) is 20 μm, L / l ratio is 5, L / H ratio is 0.5,
The L / G ratio was 10. In addition, the electrical characteristics of this device are DC resistance 0.06Ω, inductance value 0.36μ.
H. For comparison, a coil having the same pattern was formed by a normal method of manufacturing a printed wiring board using a FR4 substrate having a thickness of 100 μm and a copper foil of 36 μm attached to both sides. Although the yield was greatly reduced due to the fine pattern, the DC characteristics were 0.9Ω and the inductance value was 0.37 μH when the electrical characteristics of good products were measured. The external dimensions are 3.1 × 3.1 × 0.2 mm. From this, the planar coil of the present invention has a DC resistance that is 1/10 that of a coil manufactured by a normal printed wiring board manufacturing method.
It can be seen that the following can be done.

【0021】実施例3 実施例1で用いたものと同じアンクラッドFR4基板の
所定の位置に、直径0.2mmのスルーホールを設け、
無電解銅めっき液でその両面に1μmの厚さの銅層を形
成した。その上にポジ型ホトレジストを乾燥膜厚で5μ
mになるようにスピンコートし、レジストパターン幅9
0μm、レジストパターン間隔(露出する導体の線幅)
20μmのパターンをホトリソグラフィー法により形成
した。ここでスルーホールは両面の銅層の接続のために
用いている。コイル部となるレジスト除去部のパターン
は円形スパイラル状で、最内周の半径は0.9mmで巻
数は11.5回である。これを光沢高速硫酸銅めっき浴
でめっきした。めっき液の硫酸銅の濃度は110g/l
であり、液温度は35℃である。小孔の開いているパイ
プをカソードの付近に設置して、ここからめっき液を5
0mm/秒で噴出させ、電流密度9A/dm2で膜厚が
150μmになるまでめっきした。このときの導体間隔
は10μmであった。次に、レジストを剥離し、下地銅
膜をイオンミリングでエッチングしてコイル導体部を形
成した。このようにして得た平面コイルは、外形寸法が
3.1×3.1×0.4mmであり、コイル導体層の厚
さ(H)が150μm、コイル導体線条間の間隔(G)
が10μm、頭部の幅(L)が100μm、首部の幅
(l)が20μm、L/l比が5、L/H比が0.6
7、L/G比が5であった。また、このものの電気特性
は、直流抵抗0.1Ω、インダクタンス値0.37μH
であった。比較のために、同じパターンのコイルを通常
のプリント配線板の製法によって、36μmの銅箔を両
面に貼った100μm厚のFR4基板を用いて作成し
た。ファインパターンであるために、歩留まりは大幅に
減少したが、良品の電気的特性を測定すると、直流抵抗
1.1Ω、インダクタンス値0.37μHであった。な
お、外形寸法は3.1×3.1×0.2mmである。こ
のことから、本発明の平面コイルは、通常のプリント配
線板の製法で作成したものに比べて直流抵抗を1/10
以下にできることが分かる。
Example 3 A through hole having a diameter of 0.2 mm was provided at a predetermined position on the same unclad FR4 substrate as used in Example 1,
A copper layer having a thickness of 1 μm was formed on both surfaces with an electroless copper plating solution. On top of that, a positive photoresist is dried at a thickness of 5 μm.
m and a resist pattern width of 9
0 μm, resist pattern interval (line width of exposed conductor)
A 20 μm pattern was formed by photolithography. Here, the through holes are used to connect the copper layers on both sides. The pattern of the resist removal portion serving as the coil portion is a circular spiral shape, the innermost radius is 0.9 mm, and the number of turns is 11.5. This was plated in a bright high-speed copper sulfate plating bath. The concentration of copper sulfate in the plating solution is 110 g / l
And the liquid temperature is 35 ° C. Place a pipe with a small hole near the cathode, and apply 5 parts of plating solution from here.
It was jetted at 0 mm / sec and plated at a current density of 9 A / dm 2 until the film thickness became 150 μm. The conductor spacing at this time was 10 μm. Next, the resist was removed, and the underlying copper film was etched by ion milling to form a coil conductor. The planar coil thus obtained has an outer dimension of 3.1 × 3.1 × 0.4 mm, a thickness (H) of the coil conductor layer of 150 μm, and a gap (G) between the coil conductor wires.
Is 10 μm, the head width (L) is 100 μm, the neck width (l) is 20 μm, the L / l ratio is 5, and the L / H ratio is 0.6.
7, L / G ratio was 5. The electrical characteristics of this device are DC resistance 0.1Ω, inductance value 0.37μH
Met. For comparison, a coil having the same pattern was formed by a normal method of manufacturing a printed wiring board using a FR4 substrate having a thickness of 100 μm and a copper foil of 36 μm attached to both sides. Although the yield was greatly reduced due to the fine pattern, the DC characteristics were 1.1 Ω and the inductance value was 0.37 μH when the electrical characteristics of good products were measured. The external dimensions are 3.1 × 3.1 × 0.2 mm. From this, the planar coil of the present invention has a DC resistance that is 1/10 that of a coil manufactured by a normal printed wiring board manufacturing method.
It can be seen that the following can be done.

【0022】実施例4 直径3インチ、厚さ350μm、比透磁率800のNi
Zn系フェライト基板に、無電解銅めっき液でその両面
に1μmの厚さの銅層を形成した。その上にポジ型ホト
レジストを乾燥膜厚で5μmになるようにスピンコート
し、レジストパターン幅90μm、レジストパターン間
隔(露出する導体の線幅)20μmのパターンをホトリ
ソグラフィー法により形成した。コイル部となるレジス
ト除去部のパターンは円形スパイラル状で、最内周の半
径は0.9mmで巻数は5.75回である。これを光沢
硫酸銅めっき浴でめっきした。めっき液の硫酸銅の濃度
を70g/l、液温度を25℃として、実施例1と同様
にして、電流密度2.5A/dm2で膜厚が150μm
になるまでめっきした。このときの導体間隔は10μm
であった。次に、レジストを剥離し、下地銅膜をイオン
ミリングでエッチングしてコイル導体部を形成した。さ
らにこの上にカーテンコート法で感光性エポキシ樹脂を
ギャップ部も含めて塗布し、仮硬化後、所定の位置に、
慣用のホトリソグラフィー法によりコンタクトホールを
形成し、本硬化した。次いで前記の感光性エポキシ樹脂
を絶縁基板として、前記と同じ方法を繰り返し、第二の
コイル層を形成し積層平面コイル集合体を製造した。こ
の集合体を分割して得た1個の平面コイルは、外形寸法
が3.1×3.1×0.7mmであり、コイル導体層の
厚さ(H)が150μm、コイル導体線条間の間隔
(G)が10μm、頭部の幅(L)が100μm、首部
の幅(l)が20μm、L/l比が5、L/H比が0.
67、L/G比が5であった。また、このものの電気特
性は、直流抵抗0.1Ω、インダクタンス値0.6μH
であった。このものは、実施例1の平面コイルに比べて
インダクタンス値が約50%増加している。
Example 4 Ni having a diameter of 3 inches, a thickness of 350 μm, and a relative magnetic permeability of 800
A 1 μm thick copper layer was formed on both surfaces of a Zn-based ferrite substrate using an electroless copper plating solution. A positive photoresist was spin-coated thereon to a dry film thickness of 5 μm, and a pattern having a resist pattern width of 90 μm and a resist pattern interval (line width of exposed conductor) of 20 μm was formed by photolithography. The pattern of the resist removal portion serving as the coil portion is a circular spiral shape, the innermost radius is 0.9 mm, and the number of turns is 5.75. This was plated in a bright copper sulfate plating bath. The concentration of copper sulfate in the plating solution was 70 g / l, the solution temperature was 25 ° C., and the current density was 2.5 A / dm 2 and the film thickness was 150 μm as in Example 1.
Until plating. The conductor spacing at this time is 10 μm
Met. Next, the resist was removed, and the underlying copper film was etched by ion milling to form a coil conductor. Furthermore, a photosensitive epoxy resin including a gap portion is applied thereon by a curtain coating method, and after a temporary curing, at a predetermined position,
A contact hole was formed by a conventional photolithography method, and this was hardened. Next, the same method as described above was repeated using the photosensitive epoxy resin as an insulating substrate to form a second coil layer, thereby producing a laminated planar coil assembly. One planar coil obtained by dividing this assembly has an outer dimension of 3.1 × 3.1 × 0.7 mm, a thickness (H) of the coil conductor layer of 150 μm, and a space between the coil conductor wires. Are 10 μm, the head width (L) is 100 μm, the neck width (l) is 20 μm, the L / l ratio is 5, and the L / H ratio is 0.1 μm.
67, L / G ratio was 5. The electrical characteristics of this device are DC resistance 0.1Ω, inductance value 0.6μH
Met. This has an inductance value increased by about 50% as compared with the planar coil of the first embodiment.

【0023】実施例5 直径3インチ、厚さ300μmのNiZn系複合フェラ
イト基板(フェライト粉末70容量%及びエポキシ樹脂
30容量%)に、無電解銅めっき液で1μmの厚さの銅
層を形成した。その上にポジ型ホトレジストを乾燥膜厚
で5μmになるようにスピンコートし、レジストパター
ン幅90μm、レジストパターン間隔(露出する導体の
線幅)20μmのパターンをホトリソグラフィー法によ
り形成した。コイル部となるレジスト除去部のパターン
は円形スパイラル状で、最内周の半径は0.9mmで巻
数は5.75回である。これを光沢硫酸銅めっき浴でめ
っきした。めっき液の硫酸銅の濃度を70g/l、液温
度を25℃として、実施例1と同様にして、電流密度
2.5A/dm2で膜厚が150μmになるまでめっき
した。このときの導体間隔は10μmであった。次に、
レジストを剥離し、下地銅膜をイオンミリングでエッチ
ングしてコイル導体部を形成した。さらにこの上にカー
テンコート法で感光性エポキシ樹脂をギャップ部も含め
て塗布し、仮硬化後、所定の位置に、慣用のホトリソグ
ラフィー法によりコンタクトホールを形成し、本硬化し
た。次いで前記の感光性エポキシ樹脂を絶縁基板とし
て、前記と同じ方法を繰り返し、第二のコイル層を形成
し積層平面コイル集合体を製造した。この集合体を分割
して得た1個の平面コイルは、外形寸法が3.1×3.
1×0.6mmであり、コイル導体層の厚さ(H)が1
50μm、コイル導体線条間の間隔(G)が10μm、
頭部の幅(L)が100μm、首部の幅(l)が20μ
m、L/l比が5、L/H比が0.67、L/G比が1
0であった。また、このものの電気特性は、直流抵抗
0.1Ω、インダクタンス値0.48μHであった。こ
のものは、実施例1の平面コイルに比べてインダクタン
ス値が約30%増加している。
Example 5 A 1 μm thick copper layer was formed on a 3 inch diameter, 300 μm thick NiZn-based composite ferrite substrate (70 volume% ferrite powder and 30 volume% epoxy resin) with an electroless copper plating solution. . A positive photoresist was spin-coated thereon to a dry film thickness of 5 μm, and a pattern having a resist pattern width of 90 μm and a resist pattern interval (line width of exposed conductor) of 20 μm was formed by photolithography. The pattern of the resist removal portion serving as the coil portion is a circular spiral shape, the innermost radius is 0.9 mm, and the number of turns is 5.75. This was plated in a bright copper sulfate plating bath. The plating was performed at a current density of 2.5 A / dm 2 and a film thickness of 150 μm in the same manner as in Example 1 except that the concentration of copper sulfate in the plating solution was 70 g / l and the solution temperature was 25 ° C. The conductor spacing at this time was 10 μm. next,
The resist was removed, and the underlying copper film was etched by ion milling to form a coil conductor. Further, a photosensitive epoxy resin including a gap portion was applied thereon by a curtain coating method, and after provisional curing, a contact hole was formed at a predetermined position by a conventional photolithography method, followed by main curing. Next, the same method as described above was repeated using the photosensitive epoxy resin as an insulating substrate to form a second coil layer, thereby producing a laminated planar coil assembly. One planar coil obtained by dividing this assembly has an outer dimension of 3.1 × 3.
1 × 0.6 mm, and the thickness (H) of the coil conductor layer is 1
50 μm, the interval (G) between the coil conductors is 10 μm,
Head width (L) is 100 μm, neck width (l) is 20 μm
m, L / l ratio is 5, L / H ratio is 0.67, L / G ratio is 1
It was 0. The electrical characteristics of this product were a DC resistance of 0.1Ω and an inductance value of 0.48 μH. This has an inductance value increased by about 30% as compared with the planar coil of the first embodiment.

【0024】実施例6 実施例1で作成したコイルの中央部に穿孔し、外形寸法
が3.2×3.2×1.3mmのNiZn系EI型フェ
ライトコアで挟着し、平面コイルを形成した。この時の
インダクタンス値は11μHであり、インダクタンス値
が約30倍に増大している。
Example 6 A hole was formed in the center of the coil prepared in Example 1, and the coil was sandwiched between NiZn-based EI type ferrite cores having an outer dimension of 3.2 × 3.2 × 1.3 mm to form a planar coil. did. At this time, the inductance value is 11 μH, and the inductance value is increased about 30 times.

【0025】実施例7 実施例1で用いたものと同じアンクラッドFR4基板の
所定の位置に、直径0.2mmのスルーホールを設け、
無電解銅めっき液でその両面に1μmの厚さの銅層を形
成した。その上にポジ型ホトレジストを乾燥膜厚で5μ
mになるようにスピンコートし、レジストパターン幅2
00μm、レジストパターン間隔(露出する導体の線
幅)20μmのパターンをホトリソグラフィー法により
形成した。ここでスルーホールは両面の銅層の接続のた
めに用いている。コイル部となるレジスト除去部のパタ
ーンは円形スパイラル状で、最内周の半径は0.9mm
で巻数は6回である。これを光沢硫酸銅めっき浴でめっ
きした。めっき液の硫酸銅の濃度を70g/l、液温度
を25℃として、液撹拌はカソードロックを3mm/秒
の速さでストローク100mm、電流密度2.5A/d
2で膜厚が150μmになるまでめっきした。このと
きの導体間隔は10μmであった。次に、レジストを剥
離し、下地銅膜をイオンミリングでエッチングしてコイ
ル導体部を形成した。外形寸法は3.1×3.1×0.
4mmであり、電気特性は、直流抵抗0.05Ωであっ
た。これを絶縁性フィルムを介して実施例1で得た平面
コイルの中央部を穿孔してから積層し、全体を外形寸法
3.2×3.2×1.7mmのNiZn系EI型フェラ
イトコアで挟着して、平面トランスを形成した。結合係
数は、周波数500kHzで測定して0.95であっ
た。
Example 7 A through hole having a diameter of 0.2 mm was provided at a predetermined position on the same unclad FR4 substrate as used in Example 1,
A copper layer having a thickness of 1 μm was formed on both surfaces with an electroless copper plating solution. On top of that, a positive photoresist is dried at a thickness of 5 μm.
m, and spin the resist pattern width 2
A pattern of 00 μm and a resist pattern interval (line width of exposed conductor) of 20 μm was formed by photolithography. Here, the through holes are used to connect the copper layers on both sides. The pattern of the resist removal part that becomes the coil part is a circular spiral shape, and the innermost radius is 0.9 mm.
The number of turns is six. This was plated in a bright copper sulfate plating bath. The concentration of copper sulfate in the plating solution was 70 g / l, the temperature of the solution was 25 ° C., and the solution was stirred at a speed of 3 mm / sec with a stroke of 100 mm and a current density of 2.5 A / d.
The plating was performed until the film thickness became 150 μm at m 2 . The conductor spacing at this time was 10 μm. Next, the resist was removed, and the underlying copper film was etched by ion milling to form a coil conductor. The external dimensions are 3.1 x 3.1 x 0.
4 mm, and the electrical characteristics were a direct current resistance of 0.05Ω. This was perforated at the center of the planar coil obtained in Example 1 through an insulating film, and then laminated. The whole was coated with a NiZn-based EI type ferrite core having an outer dimension of 3.2 × 3.2 × 1.7 mm. A flat transformer was formed by clamping. The coupling coefficient was 0.95 measured at a frequency of 500 kHz.

【0026】参考例 コイル導体線条の頭部の幅(L)が110μmのもの
(A)と170μmのもの(B)について、導体線条の
間隔(G)を10μmとして同定してめっきを行い、
(L−l)/2、すなわちマッシュルーム断面のひさし
の長さを変えて、導体の厚さ(H)の変化を測定し、そ
の結果をグラフとして図4に示す。なお、このグラフに
は参考のために等方成長の場合の結果をCとして示し
た。このことより、オーバーハング部のひさしの長さを
大きくすることで、横方向へのめっきの成長速度が抑制
される結果、導体間隔を一定にしたままで、導体の厚さ
を大きくすることができ、直流抵抗の小さい平面コイル
が得られることが分かる。また、ひさしの長さを大きく
するほど導体の厚さを大きくしうることが分かる。
REFERENCE EXAMPLE For the coil conductor wire having a head width (L) of 110 μm (A) and 170 μm (B), plating was performed by identifying the conductor wire spacing (G) as 10 μm. ,
(L-1) / 2, that is, the change in the thickness (H) of the conductor was measured by changing the length of the eaves of the mushroom cross section, and the results are shown as a graph in FIG. In this graph, the result of isotropic growth is shown as C for reference. As a result, by increasing the length of the eaves of the overhang portion, the growth rate of the plating in the lateral direction is suppressed.As a result, it is possible to increase the thickness of the conductor while keeping the conductor interval constant. It can be seen that a planar coil having a small DC resistance can be obtained. Also, it is understood that the thickness of the conductor can be increased as the length of the eaves is increased.

【0027】[0027]

【発明の効果】本発明の平面コイルは、コイル導体線条
間の間隔を小さくしたまま、導体の厚さを大きくするこ
とができるので、直流抵抗を小さくすることができ、こ
れを用いて平面トランスを構成すると、特に10W以下
の小パワーにおいて優れた電気特性を示すものになると
いう利点がある。
According to the planar coil of the present invention, the thickness of the conductor can be increased while keeping the interval between the coil conductors small, so that the DC resistance can be reduced. When the transformer is configured, there is an advantage that excellent electrical characteristics are obtained particularly at a small power of 10 W or less.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の平面コイルの部分断面図。FIG. 1 is a partial cross-sectional view of a planar coil of the present invention.

【図2】 本発明の平面コイルを製造する方法の1例の
工程図。
FIG. 2 is a process chart of an example of a method for manufacturing a planar coil according to the present invention.

【図3】 本発明の平面コイルの形状の1例を示す平面
図。
FIG. 3 is a plan view showing an example of the shape of the planar coil of the present invention.

【図4】 本発明の平面コイルにおけるひさし長さと導
体高さとの関係を示すグラフ。
FIG. 4 is a graph showing the relationship between the eave length and the conductor height in the planar coil of the present invention.

【符号の説明】[Explanation of symbols]

1 絶縁基板 2 金属薄膜層 3,3′,3″ コイル導体線条 6 ホトレジストパターン層 7 スルーホール REFERENCE SIGNS LIST 1 insulating substrate 2 metal thin film layer 3, 3 ′, 3 ″ coil conductor wire 6 photoresist pattern layer 7 through hole

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 絶縁基板の片面又は両面に厚さ50〜4
00μmの複数のコイル導体線条をギャップ部のアスペ
クト比(H/G)1以上で設けた平面コイルにおいて、
該コイル導体線条がマッシュルーム状断面を有し、その
断面の頭部の幅(L)が首部の幅(l)の2倍以上、頭
部の高さ(H)の1.5倍以下及び各コイル導体線条間
の最小間隔(G)の2倍以上であることを特徴とする平
面コイル。
1. A thickness of 50 to 4 on one or both sides of an insulating substrate.
In a planar coil in which a plurality of coil conductors of 00 μm are provided with an aspect ratio (H / G) of a gap portion of 1 or more,
The coil conductor wire has a mushroom-shaped cross section, and the head width (L) of the cross section is twice or more the neck width (l), 1.5 times or less the head height (H), and A planar coil characterized by being at least twice as long as the minimum distance (G) between each coil conductor wire.
【請求項2】 コイル導体線条が保護用金属めっき薄膜
層で被覆されている請求項1記載の平面コイル。
2. The planar coil according to claim 1, wherein the coil conductor wire is covered with a protective metal plating thin film layer.
【請求項3】 請求項1又は2の平面コイルを、絶縁性
フィルムを介して複数個積層し、全体を薄型強磁性体コ
アで挟着して構成された平面トランス。
3. A planar transformer comprising a plurality of the planar coils according to claim 1 or 2 laminated via an insulating film and entirely sandwiched between thin ferromagnetic cores.
JP00385398A 1998-01-12 1998-01-12 Planar coil and planar transformer Expired - Fee Related JP4046827B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP00385398A JP4046827B2 (en) 1998-01-12 1998-01-12 Planar coil and planar transformer
US09/228,971 US6600404B1 (en) 1998-01-12 1999-01-12 Planar coil and planar transformer, and process of fabricating a high-aspect conductive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00385398A JP4046827B2 (en) 1998-01-12 1998-01-12 Planar coil and planar transformer

Publications (2)

Publication Number Publication Date
JPH11204337A true JPH11204337A (en) 1999-07-30
JP4046827B2 JP4046827B2 (en) 2008-02-13

Family

ID=11568751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00385398A Expired - Fee Related JP4046827B2 (en) 1998-01-12 1998-01-12 Planar coil and planar transformer

Country Status (1)

Country Link
JP (1) JP4046827B2 (en)

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102217A (en) * 1999-09-30 2001-04-13 Tdk Corp Coil device
US7394341B2 (en) 2003-12-26 2008-07-01 Matsushita Electric Industrial Co., Ltd. Coil electric conductor, laminated coil conductor, production method of the same and electronic component using the same
WO2009054289A1 (en) * 2007-10-24 2009-04-30 Sony Chemical & Information Device Corporation Antenna circuit, method for reducing resistance of antenna circuit, and transponder
JP2012248629A (en) * 2011-05-26 2012-12-13 Tdk Corp Coil component and manufacturing method of the same
CN103695972A (en) * 2012-09-27 2014-04-02 Tdk株式会社 Method for anisotropic plating and thin-film coil
KR20150134014A (en) 2014-05-21 2015-12-01 삼성전기주식회사 Chip electronic component and board having the same mounted thereon
KR20150134858A (en) 2014-05-23 2015-12-02 삼성전기주식회사 Chip electronic component and board having the same mounted thereon
JP2016009854A (en) * 2014-06-26 2016-01-18 住友電工プリントサーキット株式会社 Printed wiring board, electronic component, and method for manufacturing printed wiring board
KR20160019266A (en) 2014-08-11 2016-02-19 삼성전기주식회사 Chip electronic component and board having the same mounted thereon
WO2016056426A1 (en) * 2014-10-09 2016-04-14 株式会社村田製作所 Inductor component
US9331009B2 (en) 2014-05-08 2016-05-03 Samsung Electro-Mechanics Co., Ltd. Chip electronic component and method of manufacturing the same
KR20160069265A (en) 2014-12-08 2016-06-16 삼성전기주식회사 Chip electronic component and board having the same mounted thereon
WO2016147993A1 (en) * 2015-03-13 2016-09-22 住友電工プリントサーキット株式会社 Planar coil element and method for manufacturing planar coil element
KR20160136048A (en) 2015-05-19 2016-11-29 삼성전기주식회사 Chip electronic component and board having the same mounted thereon
CN106205972A (en) * 2014-09-18 2016-12-07 三星电机株式会社 Chip electronic assembly
US9875837B2 (en) 2015-04-16 2018-01-23 Samsung Electro-Mechanics Co., Ltd. Coil electronic component
KR20180049738A (en) * 2016-11-03 2018-05-11 삼성전기주식회사 Coil Electronic Component
KR20180107024A (en) 2018-07-04 2018-10-01 삼성전기주식회사 Coil component
KR20180131940A (en) 2017-06-01 2018-12-11 삼성전기주식회사 Coil component
KR20180135778A (en) 2017-06-13 2018-12-21 삼성전기주식회사 Coil component
KR20190004914A (en) 2017-07-05 2019-01-15 삼성전기주식회사 Thin film type inductor
KR20190004915A (en) 2017-07-05 2019-01-15 삼성전기주식회사 Thin film type inductor
KR20190011519A (en) 2017-07-25 2019-02-07 삼성전기주식회사 Inductor and method for manufacturing the same
KR20190035262A (en) 2017-09-26 2019-04-03 삼성전기주식회사 Coil component
KR20190035435A (en) 2017-09-26 2019-04-03 삼성전기주식회사 Coil electronic component
KR20190067513A (en) 2017-12-07 2019-06-17 삼성전기주식회사 Thin type coil component
KR20190074465A (en) 2017-12-20 2019-06-28 삼성전기주식회사 Coil electronic component
KR20190082736A (en) 2019-07-03 2019-07-10 삼성전기주식회사 Coil component
KR20190108541A (en) 2019-09-11 2019-09-24 삼성전기주식회사 Chip electronic component and board having the same mounted thereon
KR20190110326A (en) 2018-03-20 2019-09-30 삼성전기주식회사 Inductor and method for manufacturing the same
KR20190123848A (en) 2018-04-25 2019-11-04 삼성전기주식회사 Inductor
US10553338B2 (en) 2014-10-14 2020-02-04 Samsung Electro-Mechanics Co., Ltd. Chip electronic component and board having the same
KR20200038220A (en) 2020-04-01 2020-04-10 삼성전기주식회사 Coil component
CN111448678A (en) * 2017-12-08 2020-07-24 日本电产理德股份有限公司 Method for manufacturing MI element and MI element
US10818426B2 (en) 2017-08-23 2020-10-27 Samsung Electro-Mechanics Co., Ltd. Inductor
US10847308B2 (en) 2017-06-01 2020-11-24 Samsung Electro-Mechanics Co., Ltd. Coil component
US10861637B2 (en) 2017-03-16 2020-12-08 Samsung Electro-Mechanics Co., Ltd. Coil component
JP2021002677A (en) * 2019-03-04 2021-01-07 株式会社プリケン Coil device
US10892086B2 (en) 2017-09-26 2021-01-12 Samsung Electro-Mechanics Co., Ltd. Coil electronic component
US11133126B2 (en) 2017-09-22 2021-09-28 Samsung Electro-Mechanics Co., Ltd. Coil component
US11276520B2 (en) 2014-09-22 2022-03-15 Samsung Electro-Mechanics Co., Ltd. Multilayer seed pattern inductor, manufacturing method thereof, and board having the same
US11942257B2 (en) 2017-09-15 2024-03-26 Samsung Electro-Mechanics Co., Ltd. Coil electronic component

Cited By (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102217A (en) * 1999-09-30 2001-04-13 Tdk Corp Coil device
US7394341B2 (en) 2003-12-26 2008-07-01 Matsushita Electric Industrial Co., Ltd. Coil electric conductor, laminated coil conductor, production method of the same and electronic component using the same
WO2009054289A1 (en) * 2007-10-24 2009-04-30 Sony Chemical & Information Device Corporation Antenna circuit, method for reducing resistance of antenna circuit, and transponder
US8665167B2 (en) 2007-10-24 2014-03-04 Dexerials Corporation Antenna circuit, method for reducing resistance of antenna circuit, and transponder
JP2012248629A (en) * 2011-05-26 2012-12-13 Tdk Corp Coil component and manufacturing method of the same
CN103695972A (en) * 2012-09-27 2014-04-02 Tdk株式会社 Method for anisotropic plating and thin-film coil
US9331009B2 (en) 2014-05-08 2016-05-03 Samsung Electro-Mechanics Co., Ltd. Chip electronic component and method of manufacturing the same
KR20150134014A (en) 2014-05-21 2015-12-01 삼성전기주식회사 Chip electronic component and board having the same mounted thereon
US10109409B2 (en) 2014-05-21 2018-10-23 Samsung Electro-Mechanics Co., Ltd. Chip electronic component and board for mounting thereof
KR20150134858A (en) 2014-05-23 2015-12-02 삼성전기주식회사 Chip electronic component and board having the same mounted thereon
JP2016009854A (en) * 2014-06-26 2016-01-18 住友電工プリントサーキット株式会社 Printed wiring board, electronic component, and method for manufacturing printed wiring board
KR20160019266A (en) 2014-08-11 2016-02-19 삼성전기주식회사 Chip electronic component and board having the same mounted thereon
US10910145B2 (en) 2014-09-18 2021-02-02 Samsung Electro-Mechanics Co., Ltd. Chip electronic component
CN106205972A (en) * 2014-09-18 2016-12-07 三星电机株式会社 Chip electronic assembly
CN106205972B (en) * 2014-09-18 2019-02-12 三星电机株式会社 Chip electronic component
US11276520B2 (en) 2014-09-22 2022-03-15 Samsung Electro-Mechanics Co., Ltd. Multilayer seed pattern inductor, manufacturing method thereof, and board having the same
WO2016056426A1 (en) * 2014-10-09 2016-04-14 株式会社村田製作所 Inductor component
US10734156B2 (en) 2014-10-09 2020-08-04 Murata Manufacturing Co., Ltd. Inductor component
US12062476B2 (en) 2014-10-14 2024-08-13 Samsung Electro-Mechanics Co., Ltd. Chip electronic component and board having the same
US10553338B2 (en) 2014-10-14 2020-02-04 Samsung Electro-Mechanics Co., Ltd. Chip electronic component and board having the same
US11626233B2 (en) 2014-10-14 2023-04-11 Samsung Electro-Mechanics Co., Ltd. Chip electronic component and board having the same
US11469030B2 (en) 2014-10-14 2022-10-11 Samsung Electro-Mechanics Co., Ltd. Chip electronic component and board having the same
KR20160069265A (en) 2014-12-08 2016-06-16 삼성전기주식회사 Chip electronic component and board having the same mounted thereon
US9953753B2 (en) 2014-12-08 2018-04-24 Samsung Electro-Mechanics Co., Ltd. Electronic component
JPWO2016147993A1 (en) * 2015-03-13 2017-12-21 住友電工プリントサーキット株式会社 Planar coil element and method of manufacturing planar coil element
CN112164546A (en) * 2015-03-13 2021-01-01 住友电工印刷电路株式会社 Planar coil component and method for manufacturing planar coil component
WO2016147993A1 (en) * 2015-03-13 2016-09-22 住友電工プリントサーキット株式会社 Planar coil element and method for manufacturing planar coil element
US11083092B2 (en) 2015-03-13 2021-08-03 Sumitomo Electric Printed Circuits, Inc. Planar coil element and method for producing planar coil element
US11785724B2 (en) 2015-03-13 2023-10-10 Sumitomo Electric Printed Circuits, Inc. Planar coil element and method for producing planar coil element
US9875837B2 (en) 2015-04-16 2018-01-23 Samsung Electro-Mechanics Co., Ltd. Coil electronic component
KR20160136048A (en) 2015-05-19 2016-11-29 삼성전기주식회사 Chip electronic component and board having the same mounted thereon
US10319515B2 (en) 2015-05-19 2019-06-11 Samsung Electro-Mechanics Co., Ltd. Chip electronic component
KR20180049738A (en) * 2016-11-03 2018-05-11 삼성전기주식회사 Coil Electronic Component
US10861637B2 (en) 2017-03-16 2020-12-08 Samsung Electro-Mechanics Co., Ltd. Coil component
KR20180131940A (en) 2017-06-01 2018-12-11 삼성전기주식회사 Coil component
US10847308B2 (en) 2017-06-01 2020-11-24 Samsung Electro-Mechanics Co., Ltd. Coil component
US11205539B2 (en) 2017-06-13 2021-12-21 Samsung Electro-Mechanics Co., Ltd. Coil component
KR20180135778A (en) 2017-06-13 2018-12-21 삼성전기주식회사 Coil component
KR20190004915A (en) 2017-07-05 2019-01-15 삼성전기주식회사 Thin film type inductor
KR20190004914A (en) 2017-07-05 2019-01-15 삼성전기주식회사 Thin film type inductor
US10699839B2 (en) 2017-07-05 2020-06-30 Samsung Electro-Mechanics Co., Ltd. Thin film-type inductor
US10741321B2 (en) 2017-07-05 2020-08-11 Samsung Electro-Mechanics Co., Ltd. Thin film type inductor
US10916366B2 (en) 2017-07-25 2021-02-09 Samsung Electro-Mechanics Co., Ltd. Inductor and method of manufacturing the same
KR20190011519A (en) 2017-07-25 2019-02-07 삼성전기주식회사 Inductor and method for manufacturing the same
US10818426B2 (en) 2017-08-23 2020-10-27 Samsung Electro-Mechanics Co., Ltd. Inductor
US11942257B2 (en) 2017-09-15 2024-03-26 Samsung Electro-Mechanics Co., Ltd. Coil electronic component
US11133126B2 (en) 2017-09-22 2021-09-28 Samsung Electro-Mechanics Co., Ltd. Coil component
US10892086B2 (en) 2017-09-26 2021-01-12 Samsung Electro-Mechanics Co., Ltd. Coil electronic component
KR20190035262A (en) 2017-09-26 2019-04-03 삼성전기주식회사 Coil component
KR20190035435A (en) 2017-09-26 2019-04-03 삼성전기주식회사 Coil electronic component
US11424058B2 (en) 2017-09-26 2022-08-23 Samsung Electro-Mechanics Co., Ltd. Coil component
KR20190067513A (en) 2017-12-07 2019-06-17 삼성전기주식회사 Thin type coil component
US10840006B2 (en) 2017-12-07 2020-11-17 Samsung Electro-Mechanics Co., Ltd. Thin film coil component
CN111448678A (en) * 2017-12-08 2020-07-24 日本电产理德股份有限公司 Method for manufacturing MI element and MI element
JPWO2019111744A1 (en) * 2017-12-08 2021-04-30 日本電産リード株式会社 MI element manufacturing method and MI element
US11282634B2 (en) 2017-12-20 2022-03-22 Samsung Electro-Mechanics Co., Ltd. Coil electronic component
KR20190074465A (en) 2017-12-20 2019-06-28 삼성전기주식회사 Coil electronic component
KR20230038692A (en) 2017-12-20 2023-03-21 삼성전기주식회사 Coil electronic component
US11087916B2 (en) 2018-03-20 2021-08-10 Samsung Electro-Mechanics Co., Ltd. Inductor and method of manufacturing the same
KR20190110326A (en) 2018-03-20 2019-09-30 삼성전기주식회사 Inductor and method for manufacturing the same
US11495395B2 (en) 2018-04-25 2022-11-08 Samsung Electro-Mechanics Co., Ltd. Inductor
KR20230114252A (en) 2018-04-25 2023-08-01 삼성전기주식회사 Inductor
KR20190123848A (en) 2018-04-25 2019-11-04 삼성전기주식회사 Inductor
KR20240067845A (en) 2018-04-25 2024-05-17 삼성전기주식회사 Inductor
KR20180107024A (en) 2018-07-04 2018-10-01 삼성전기주식회사 Coil component
JP2021002677A (en) * 2019-03-04 2021-01-07 株式会社プリケン Coil device
KR20190082736A (en) 2019-07-03 2019-07-10 삼성전기주식회사 Coil component
KR20190108541A (en) 2019-09-11 2019-09-24 삼성전기주식회사 Chip electronic component and board having the same mounted thereon
KR20200038220A (en) 2020-04-01 2020-04-10 삼성전기주식회사 Coil component

Also Published As

Publication number Publication date
JP4046827B2 (en) 2008-02-13

Similar Documents

Publication Publication Date Title
JP4046827B2 (en) Planar coil and planar transformer
US6600404B1 (en) Planar coil and planar transformer, and process of fabricating a high-aspect conductive device
KR100665114B1 (en) Method for manufacturing planar magnetic inductor
US5738931A (en) Electronic device and magnetic device
US4539616A (en) Thin film magnetic head and fabricating method thereof
JPH0916908A (en) Thin-film magnetic core coil assembly
US4239587A (en) Method of manufacturing a thin-film magnetic head with a nickel-iron pattern having inclined edges
EP0185770A1 (en) Film type coil and method of manufacturing same
JPS61124117A (en) Manufacture of printed coil
CN101354947A (en) Magnetic element and manufacturing method thereof
JP4260913B2 (en) Manufacturing method of high aspect conductor device
JP2004253430A (en) Method for manufacturing planar coil
JP2004342645A (en) Method for manufacturing planar coil
JP2747099B2 (en) Thin film magnetic head
JPS63283004A (en) Flat surface inductor and manufacture thereof
JP2535819B2 (en) Method of manufacturing thin film magnetic head
JPS60161606A (en) Manufacture of printed coil
JPS60167307A (en) Manufacture of printed coil
JP3544758B2 (en) Electronic and magnetic components
JPH06150253A (en) Thin-film magnetic head and its manufacture
JPH06176318A (en) Coil formation of thin-film magnetic head
JPS60161605A (en) Manufacture of printed coil
JPS61178711A (en) Thin film magnetic head
CN115775672A (en) Miniature inductance coil and preparation method thereof
JPH09219947A (en) Flat coil

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040929

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees