US10910145B2 - Chip electronic component - Google Patents

Chip electronic component Download PDF

Info

Publication number
US10910145B2
US10910145B2 US16/677,101 US201916677101A US10910145B2 US 10910145 B2 US10910145 B2 US 10910145B2 US 201916677101 A US201916677101 A US 201916677101A US 10910145 B2 US10910145 B2 US 10910145B2
Authority
US
United States
Prior art keywords
coil pattern
pattern part
coil
electronic component
chip electronic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US16/677,101
Other versions
US20200075228A1 (en
Inventor
Dong Jin JEONG
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electro Mechanics Co Ltd
Original Assignee
Samsung Electro Mechanics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electro Mechanics Co Ltd filed Critical Samsung Electro Mechanics Co Ltd
Priority to US16/677,101 priority Critical patent/US10910145B2/en
Assigned to SAMSUNG ELECTRO-MECHANICS CO., LTD. reassignment SAMSUNG ELECTRO-MECHANICS CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JEONG, DONG JIN
Publication of US20200075228A1 publication Critical patent/US20200075228A1/en
Application granted granted Critical
Publication of US10910145B2 publication Critical patent/US10910145B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances
    • H01F27/292Surface mounted devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0013Printed inductances with stacked layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F2017/048Fixed inductances of the signal type  with magnetic core with encapsulating core, e.g. made of resin and magnetic powder

Definitions

  • the present disclosure relates to a chip electronic component.
  • An inductor, a chip electronic component is a representative passive element configuring an electronic circuit, together with a resistor and a capacitor to remove noise.
  • a thin film type inductor is manufactured by forming an internal coil part by plating, forming a magnetic body by curing a magnetic power-resin composite obtained by mixing a magnetic power and a resin with each other, and then forming external electrodes on outer surfaces of the magnetic body.
  • Patent Document 1 Japanese Patent Laid-Open Publication No. 2006-278479
  • An aspect of the present disclosure may provide a chip electronic component having a structure in which the generation of short-circuits between coil pattern portions is prevented and a high aspect ratio (AR) by increasing a thickness of the coil pattern portion in comparison with a width thereof is realized.
  • AR aspect ratio
  • a chip electronic component may include: a magnetic body in which an internal coil part is embedded, wherein the internal coil part includes: a first coil pattern part; and a second coil pattern part formed on the first coil pattern part, wherein when a minimum interval between adjacent coil pattern portions in the first coil pattern part is defined as a, and a maximum thickness of each coil pattern portion in the first coil pattern part is defined as b, a ⁇ 15 ⁇ m and b/a ⁇ 7 are satisfied.
  • FIG. 1 is a schematic perspective view showing a chip electronic component including an internal coil part according to an exemplary embodiment of the present disclosure
  • FIG. 2 is a cross-sectional view taken along line I-I′ of FIG. 1 ;
  • FIG. 3 is an enlarged schematic view of an example of part ‘A’ of FIG. 2 ;
  • FIG. 4 is an enlarged schematic view of another example of part ‘A’ of FIG. 2 .
  • FIG. 1 is a schematic perspective view showing a chip electronic component including an internal coil part according to an exemplary embodiment of the present disclosure.
  • a thin film type inductor used in a power line of a power supply circuit is disclosed.
  • the chip electronic component 100 may include a magnetic body 50 , internal coil parts 41 and 42 embedded in the magnetic body 50 , and first and second external electrodes 81 and 82 disposed on an outer portion of the magnetic body 50 to thereby be electrically connected to the internal coil parts 41 and 42 .
  • a ‘length’ direction refers to an ‘L’ direction of FIG. 1
  • a ‘width’ direction refers to a ‘W’ direction of FIG. 1
  • a ‘thickness’ direction refers to a ‘T’ direction of FIG. 1 .
  • the magnetic body 50 may form the exterior of the chip electronic component 100 and may be formed of any material capable of exhibiting magnetic properties.
  • the magnetic body 50 may be formed by filling ferrite or magnetic metal powder.
  • Mn—Zn based ferrite Ni—Zn based ferrite, Ni—Zn—Cu based ferrite, Mn—Mg based ferrite, Ba based ferrite, Li based ferrite, or the like, may be used.
  • the magnetic metal powder may contain one or more selected from the group consisting of Fe, Si, Cr, Al, and Ni.
  • the magnetic metal powder may contain Fe—Si—B—Cr-based amorphous metal, but the present inventive concept is not necessarily limited thereto.
  • the magnetic metal powder may have a particle diameter of 0.1 ⁇ m to 30 ⁇ m and be contained in a form in which the magnetic metal powder is dispersed in a thermosetting resin such as an epoxy resin, polyimide, or the like.
  • a first internal coil part 41 having a coil shape may be formed in one surface of an insulating substrate 20 disposed in the magnetic body 50
  • a second internal coil part 42 having a coil shape may be formed on the other surface opposing one surface of the insulating substrate 20 .
  • the first and second internal coil parts 41 and 42 may be formed by performing an electroplating method.
  • Examples of the insulating substrate 20 may include a polypropylene glycol (PPG) substrate, a ferrite substrate, a metal-based soft magnetic substrate, and the like.
  • PPG polypropylene glycol
  • a central portion of the insulating substrate 20 may be penetrated to thereby form a hole, and a magnetic material is filled in the hole to thereby form a core part 55 .
  • inductance (Ls) may be improved.
  • the first and second internal coil parts 41 and 42 may be formed in a spiral shape, and the first and second internal coil parts 41 and 42 formed on one surface and the other surface of the insulating substrate 20 may be electrically connected to each other through a via 45 penetrating through the insulating substrate 20 .
  • the first and second internal coil parts 41 and 42 and the via 45 may be formed of a metal having excellent electric conductivity.
  • the first and second internal coil parts 41 and 42 and the via 45 may be formed of silver (Ag), palladium (Pd), aluminum (Al), nickel (Ni), titanium (Ti), gold (Au), copper (Cu), platinum (Pt), a mixture thereof, or the like.
  • DC direct current
  • Rdc direct current resistance
  • the cross-sectional area of the internal coil part and the area of the magnetic material should be increased.
  • a method of increasing the cross-sectional area of the internal coil part there are a method of increasing a width of a coil pattern portion and a method of increasing a thickness of the coil pattern portion.
  • an internal coil part having a high aspect ratio (AR) by increasing the thickness of the coil pattern portion without increasing the width of the coil pattern portion has been required.
  • the aspect ratio (AR) of the internal coil part is a value obtained by dividing the thickness of the coil pattern portion by the width of the coil pattern portion, and as an increase in the thickness of the coil pattern portion is further increased than an increase in the width of the coil pattern portion, the aspect ratio (AR) may also be increased.
  • the internal coil part having a high aspect ratio (AR) may be formed by adjusting a shape of a primary coil pattern part forming the internal coil part as described below.
  • FIG. 2 is a cross-sectional view taken along line I-I′ of FIG. 1 .
  • each of the first and second internal coil parts 41 and 42 may include a first coil pattern part 61 formed on the insulating substrate 20 and a second coil pattern part 62 formed on the first coil pattern part 61 .
  • FIG. 3 is an enlarged schematic view of an example of part ‘A’ of FIG. 2 .
  • a when a minimum interval between adjacent coil pattern portions 61 a , 61 b , 61 c , and 61 d forming the first coil pattern part 61 is defined as a, a may be 15 ⁇ m or less (a ⁇ 15 ⁇ m).
  • b/a may be 7 or more (b/a ⁇ 7).
  • the first coil pattern part 61 may be formed by a pattern plating method of forming a plating resist patterned through an exposure and development process on the insulating substrate 20 and filling an opening part by plating.
  • anisotropic plating growth that growth of the coil pattern portions in the width direction is suppressed but growth of the coil pattern portions in the thickness direction is performed may be induced by forming the first coil pattern part 61 to satisfy a ⁇ 15 ⁇ m and b/a ⁇ 7.
  • coil pattern portions 62 a , 62 b , 62 c , and 62 d of the second coil pattern part 62 may be formed on the coil pattern portions 61 a , 61 b , 61 c , and 61 d of the first coil pattern part 61 so that side surfaces 61 S of the coil pattern portions 61 a , 61 b , 61 c , and 61 d are not covered.
  • Upper surfaces 61 T of the coil pattern portions 61 a , 61 b , 61 c , and 61 d of the first coil pattern part 61 may refer to, for example, a surface of an upper portion of the coil pattern portion 61 a based on virtual lines W′ and W′′ extended from the width of the coil pattern portion 61 a.
  • side surfaces 61 S of the coil pattern portions 61 a , 61 b , 61 c , and 61 d of the first coil pattern part 61 may refer to, for example, a surface of a side portion of the coil pattern portion 61 a based on the virtual lines W′ and W′′ extended from the width of the coil pattern portion 61 a.
  • the first coil pattern part 61 is formed to satisfy a ⁇ 15 ⁇ m and b/a ⁇ 7, anisotropic plating of the second coil pattern part 62 may be induced, such that the second coil pattern part 62 may not be formed on portions of the side surfaces 61 S of the coil pattern portions 61 a , 61 b , 61 c , and 61 d of the first coil pattern part 61 instead of being formed so as to cover all of the side surfaces 61 S of the coil pattern portions 61 a , 61 b , 61 c , and 61 d of the first coil pattern part 61 .
  • the coil pattern portions 62 a , 62 b , 62 c , and 62 d of the second coil pattern part 62 may be formed as anisotropic plating layers grown on the upper surfaces 61 T of the coil pattern portions 61 a , 61 b , 61 c , and 61 d of the first coil pattern part 61 in the thickness direction in a state in which growth thereof in the width direction is suppressed.
  • the second coil pattern part 62 is anisotropically grown by plating, such that generation of the short-circuit between the coil pattern portions may be prevented, and the internal coil parts 41 and 42 having a high aspect ratio may be obtained.
  • high inductance may be obtained by increasing a volume of the core part 55 while decreasing direction current resistance (Rdc).
  • the second coil pattern part 62 is isotropically grown, that is, the second coil pattern part 62 is simultaneously grown in the thickness direction and the width direction, such that a short-circuit may be generated between the coil pattern portions, and the aspect ratio of the internal coil part may be decreased.
  • a maximum width c of the coil pattern portions 61 a , 61 b , 61 c , and 61 d of the first coil pattern part 61 may be 50 ⁇ m to 90 ⁇ m.
  • a thickness d of the internal coil parts 41 and 42 including the first and second coil pattern parts 61 and 62 may be 200 ⁇ m to 500 ⁇ m.
  • the first and second coil pattern parts 61 and 62 may be formed of a metal having excellent electric conductivity, respectively.
  • the first and second coil pattern parts 61 and 62 may be formed of silver (Ag), palladium (Pd), aluminum (Al), nickel (Ni), titanium (Ti), gold (Au), copper (Cu), platinum (Pt), an alloy thereof, or the like.
  • the first and second coil pattern parts 61 and 62 may be formed of the same metal as each other, and most preferably, may be formed of copper (Cu).
  • the internal coil parts 41 and 42 are formed so that the first coil pattern part 61 satisfies a ⁇ 15 ⁇ m and b/a ⁇ 7, such that generation of the short-circuit between the coil patterns may be prevented and the internal coil parts 41 and 42 having a high aspect ratio (AR) may be obtained by inducing the anisotropic plating growth of the second coil pattern part 62 .
  • the internal coil parts 41 and 42 may have an aspect ratio (AR) of 2.0 or more.
  • FIG. 4 is an enlarged schematic view of another example of part ‘A’ of FIG. 2 .
  • upper surfaces 61 T of coil pattern portions 61 a , 61 b , 61 c , and 61 d of a first coil pattern part 61 in another example of the present disclosure may have a flat structure, and a cross section of each of the coil pattern portions 61 a , 61 b , 61 c , and 61 d may have a tetragonal shape.
  • the cross-sectional shape of the coil pattern portions 61 a , 61 b , 61 c , and 61 d of the first coil pattern part 61 may be various changed in a range in which those skilled in the art may apply the present disclosure as long as the minimum interval a between the coil pattern portions 61 a , 61 b , 61 c , and 61 d of the first coil pattern part 61 is 15 ⁇ m or less, and in relation with the maximum thickness b between the coil pattern portions 61 a , 61 b , 61 c , and 61 d of the first coil pattern part 61 , b/a is 7 or more.
  • the internal coil parts 41 and 42 may be covered with an insulation film 30 .
  • the insulation film 30 may be formed by a method known in the art such as a screen printing method, an exposure and development process of a photo resist (PR), a spray application method, or the like.
  • the internal coil parts 41 and 42 may be covered with the insulation film 30 , such that the internal coil parts 41 and 42 may not directly come in contact with the magnetic material configuring the magnetic body 50 .
  • One end portion of the first internal coil part 41 formed on one surface of the insulating substrate 20 may be exposed to one end surface of the magnetic body 50 in the length (L) direction, and one end portion of the second internal coil part 42 formed on the other surface of the insulating substrate 20 may be exposed to the other end surface of the magnetic body 50 in the length (L) direction.
  • the first and second external electrodes 81 and 82 may be disposed on both end surfaces of the magnetic body 50 in the length (L) direction so as to be connected to the first and second internal coil parts 41 and 42 exposed to both end surfaces of the magnetic body 50 in the length (L) direction, respectively.
  • the first and second external electrodes 81 and 82 may be formed of a metal having excellent electric conductivity.
  • the first and second external electrodes 81 and 82 may be formed of one of nickel (Ni), copper (Cu), tin (Sn), silver (Ag), and the like, an alloy thereof, or the like.
  • the first and second external electrodes 81 and 82 may include, for example, conductive resin layers and plating layers formed on the conductive resin layers.
  • the conductive resin layer may contain one or more conductive metals selected from the group consisting of copper (Cu), nickel (Ni), and silver (Ag) and a thermosetting resin.
  • the plating layer may contain one or more selected from the group consisting of nickel (Ni), copper (Cu), and tin (Sn). For example, nickel (Ni) layers and tin (Sn) layers may be sequentially formed.
  • Table 1 shows results obtained by measuring plating growth of the second coil pattern part 62 formed on the first coil pattern part 61 by electroplating while changing a (a minimum interval between coil pattern portions) and b (a maximum thickness of the coil pattern portion) of the first coil pattern part 61 .
  • Growth of an upper portion of the second coil pattern part 62 means a thickness of the second coil pattern part 62 formed on the upper surface 61 T of the first coil pattern part 61
  • growth of a side portion of the second coil pattern part 62 means a thickness of the second coil pattern part 62 formed on the side surface 61 S of the first coil pattern part 61 .
  • the internal coil parts 41 and 42 having a high aspect ratio (AR) may be formed, and high inductance may be obtained by increasing the volume of the core part 55 while decreasing the direct current resistance (Rdc).
  • the internal coil part capable of preventing generation of the short-circuit between the coil pattern portions and having a high aspect ratio (AR) may be obtained by increasing the thickness of the coil pattern portion in comparison with the width thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

There is provided a chip electronic component including: a magnetic body in which an internal coil part is embedded, wherein the internal coil part includes: a first coil pattern part; and a second coil pattern part formed on the first coil pattern part, when a minimum interval between adjacent coil pattern portions in the first coil pattern part is defined as a, and a maximum thickness of each coil pattern portion in the first coil pattern part is defined as b, a≤15 μm and b/a≥7 are satisfied.

Description

CROSS-REFERENCE TO RELATED APPLICATION
This application is a Continuation patent application of U.S. patent application Ser. No. 14/796,715, filed on Jul. 10, 2015, which claims the priority and benefit of Korean Patent Application No. 10-2014-0124378 filed on Sep. 18, 2014, the disclosures of which are incorporated herein by reference.
BACKGROUND
The present disclosure relates to a chip electronic component.
An inductor, a chip electronic component, is a representative passive element configuring an electronic circuit, together with a resistor and a capacitor to remove noise.
A thin film type inductor is manufactured by forming an internal coil part by plating, forming a magnetic body by curing a magnetic power-resin composite obtained by mixing a magnetic power and a resin with each other, and then forming external electrodes on outer surfaces of the magnetic body.
RELATED ART DOCUMENT
(Patent Document 1) Japanese Patent Laid-Open Publication No. 2006-278479
SUMMARY
An aspect of the present disclosure may provide a chip electronic component having a structure in which the generation of short-circuits between coil pattern portions is prevented and a high aspect ratio (AR) by increasing a thickness of the coil pattern portion in comparison with a width thereof is realized.
According to an aspect of the present disclosure, a chip electronic component may include: a magnetic body in which an internal coil part is embedded, wherein the internal coil part includes: a first coil pattern part; and a second coil pattern part formed on the first coil pattern part, wherein when a minimum interval between adjacent coil pattern portions in the first coil pattern part is defined as a, and a maximum thickness of each coil pattern portion in the first coil pattern part is defined as b, a≤15 μm and b/a≥7 are satisfied.
BRIEF DESCRIPTION OF DRAWINGS
The above and other aspects, features and advantages of the present disclosure will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings, in which:
FIG. 1 is a schematic perspective view showing a chip electronic component including an internal coil part according to an exemplary embodiment of the present disclosure;
FIG. 2 is a cross-sectional view taken along line I-I′ of FIG. 1;
FIG. 3 is an enlarged schematic view of an example of part ‘A’ of FIG. 2; and
FIG. 4 is an enlarged schematic view of another example of part ‘A’ of FIG. 2.
DETAILED DESCRIPTION
Exemplary embodiments of the present disclosure will now be described in detail with reference to the accompanying drawings.
The disclosure may, however, be embodied in many different forms and should not be construed as being limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art.
In the drawings, the shapes and dimensions of elements may be exaggerated for clarity, and the same reference numerals will be used throughout to designate the same or like elements.
Chip Electronic Component
Hereinafter, a chip electronic component according to an exemplary embodiment of the present disclosure will be described. Particularly, a thin film type inductor will be described, but the present inventive concept is not limited thereto.
FIG. 1 is a schematic perspective view showing a chip electronic component including an internal coil part according to an exemplary embodiment of the present disclosure.
Referring to FIG. 1, as an example of the chip electronic component, a thin film type inductor used in a power line of a power supply circuit is disclosed.
The chip electronic component 100 according to an exemplary embodiment of the present disclosure may include a magnetic body 50, internal coil parts 41 and 42 embedded in the magnetic body 50, and first and second external electrodes 81 and 82 disposed on an outer portion of the magnetic body 50 to thereby be electrically connected to the internal coil parts 41 and 42.
In the chip electronic component 100 according to an exemplary embodiment of the present disclosure, a ‘length’ direction refers to an ‘L’ direction of FIG. 1, a ‘width’ direction refers to a ‘W’ direction of FIG. 1, and a ‘thickness’ direction refers to a ‘T’ direction of FIG. 1.
The magnetic body 50 may form the exterior of the chip electronic component 100 and may be formed of any material capable of exhibiting magnetic properties. For example, the magnetic body 50 may be formed by filling ferrite or magnetic metal powder.
As the ferrite, Mn—Zn based ferrite, Ni—Zn based ferrite, Ni—Zn—Cu based ferrite, Mn—Mg based ferrite, Ba based ferrite, Li based ferrite, or the like, may be used.
The magnetic metal powder may contain one or more selected from the group consisting of Fe, Si, Cr, Al, and Ni. For example, the magnetic metal powder may contain Fe—Si—B—Cr-based amorphous metal, but the present inventive concept is not necessarily limited thereto.
The magnetic metal powder may have a particle diameter of 0.1 μm to 30 μm and be contained in a form in which the magnetic metal powder is dispersed in a thermosetting resin such as an epoxy resin, polyimide, or the like.
A first internal coil part 41 having a coil shape may be formed in one surface of an insulating substrate 20 disposed in the magnetic body 50, and a second internal coil part 42 having a coil shape may be formed on the other surface opposing one surface of the insulating substrate 20.
The first and second internal coil parts 41 and 42 may be formed by performing an electroplating method.
Examples of the insulating substrate 20 may include a polypropylene glycol (PPG) substrate, a ferrite substrate, a metal-based soft magnetic substrate, and the like.
A central portion of the insulating substrate 20 may be penetrated to thereby form a hole, and a magnetic material is filled in the hole to thereby form a core part 55. As the core part 55 filled with the magnetic material is formed, inductance (Ls) may be improved.
The first and second internal coil parts 41 and 42 may be formed in a spiral shape, and the first and second internal coil parts 41 and 42 formed on one surface and the other surface of the insulating substrate 20 may be electrically connected to each other through a via 45 penetrating through the insulating substrate 20.
The first and second internal coil parts 41 and 42 and the via 45 may be formed of a metal having excellent electric conductivity. For example, the first and second internal coil parts 41 and 42 and the via 45 may be formed of silver (Ag), palladium (Pd), aluminum (Al), nickel (Ni), titanium (Ti), gold (Au), copper (Cu), platinum (Pt), a mixture thereof, or the like.
A direct current (DC) resistance (Rdc), which is one of the main characteristics of the inductor, is decreased as a cross-sectional area of an internal coil part is increased. In addition, as an area of the magnetic material through which magnetic fluxes pass, inductance of the inductor is increased.
Therefore, in order to decrease the direct current resistance (Rdc) and improve inductance, the cross-sectional area of the internal coil part and the area of the magnetic material should be increased.
As a method of increasing the cross-sectional area of the internal coil part, there are a method of increasing a width of a coil pattern portion and a method of increasing a thickness of the coil pattern portion.
However, in the case of increasing the width of the coil pattern portion, a risk that a short-circuit will be generated between the coil pattern portions may be increased, there may be a limitation in turns in the chip electronic component, which cause a decrease in the area of the magnetic material, such that efficiency may be decreased, and there is a limitation in forming a high inductance product.
Therefore, an internal coil part having a high aspect ratio (AR) by increasing the thickness of the coil pattern portion without increasing the width of the coil pattern portion has been required.
The aspect ratio (AR) of the internal coil part is a value obtained by dividing the thickness of the coil pattern portion by the width of the coil pattern portion, and as an increase in the thickness of the coil pattern portion is further increased than an increase in the width of the coil pattern portion, the aspect ratio (AR) may also be increased.
However, at the time of performing the electroplating method, as the plating proceeds, due to isotropic growth, that is, simultaneous growth of the coil pattern portions in the thickness direction and in the width direction, a short-circuit may be generated between the coil pattern portions and it may be difficult to form an internal coil part having a high aspect ratio (AR).
Therefore, according to an exemplary embodiment of the present disclosure, the internal coil part having a high aspect ratio (AR) may be formed by adjusting a shape of a primary coil pattern part forming the internal coil part as described below.
FIG. 2 is a cross-sectional view taken along line I-I′ of FIG. 1.
Referring to FIG. 2, each of the first and second internal coil parts 41 and 42 may include a first coil pattern part 61 formed on the insulating substrate 20 and a second coil pattern part 62 formed on the first coil pattern part 61.
FIG. 3 is an enlarged schematic view of an example of part ‘A’ of FIG. 2.
Referring to FIG. 3, in the first coil pattern part 61 according to an exemplary embodiment of the present disclosure, when a minimum interval between adjacent coil pattern portions 61 a, 61 b, 61 c, and 61 d forming the first coil pattern part 61 is defined as a, a may be 15 μm or less (a≤15 μm).
Further, when a maximum thickness of the coil pattern portions 61 a, 61 b, 61 c, and 61 d forming the first coil pattern part 61 is defined as b, b/a may be 7 or more (b/a≥7).
The first coil pattern part 61 may be formed by a pattern plating method of forming a plating resist patterned through an exposure and development process on the insulating substrate 20 and filling an opening part by plating.
At the time of forming the second coil pattern part 62 by electroplating using the first coil pattern part 61 as a seed layer, anisotropic plating growth that growth of the coil pattern portions in the width direction is suppressed but growth of the coil pattern portions in the thickness direction is performed may be induced by forming the first coil pattern part 61 to satisfy a≤15 μm and b/a≥7.
Therefore, as shown in FIG. 3, coil pattern portions 62 a, 62 b, 62 c, and 62 d of the second coil pattern part 62 may be formed on the coil pattern portions 61 a, 61 b, 61 c, and 61 d of the first coil pattern part 61 so that side surfaces 61S of the coil pattern portions 61 a, 61 b, 61 c, and 61 d are not covered.
Upper surfaces 61T of the coil pattern portions 61 a, 61 b, 61 c, and 61 d of the first coil pattern part 61 may refer to, for example, a surface of an upper portion of the coil pattern portion 61 a based on virtual lines W′ and W″ extended from the width of the coil pattern portion 61 a.
In addition, side surfaces 61S of the coil pattern portions 61 a, 61 b, 61 c, and 61 d of the first coil pattern part 61 may refer to, for example, a surface of a side portion of the coil pattern portion 61 a based on the virtual lines W′ and W″ extended from the width of the coil pattern portion 61 a.
The first coil pattern part 61 is formed to satisfy a≤15 μm and b/a≥7, anisotropic plating of the second coil pattern part 62 may be induced, such that the second coil pattern part 62 may not be formed on portions of the side surfaces 61S of the coil pattern portions 61 a, 61 b, 61 c, and 61 d of the first coil pattern part 61 instead of being formed so as to cover all of the side surfaces 61S of the coil pattern portions 61 a, 61 b, 61 c, and 61 d of the first coil pattern part 61.
That is, the coil pattern portions 62 a, 62 b, 62 c, and 62 d of the second coil pattern part 62 may be formed as anisotropic plating layers grown on the upper surfaces 61T of the coil pattern portions 61 a, 61 b, 61 c, and 61 d of the first coil pattern part 61 in the thickness direction in a state in which growth thereof in the width direction is suppressed.
The second coil pattern part 62 is anisotropically grown by plating, such that generation of the short-circuit between the coil pattern portions may be prevented, and the internal coil parts 41 and 42 having a high aspect ratio may be obtained. In addition, high inductance may be obtained by increasing a volume of the core part 55 while decreasing direction current resistance (Rdc).
In the case in which a of the first coil pattern part 61 is more than 15 μm, or b/a is less than 7, the second coil pattern part 62 is isotropically grown, that is, the second coil pattern part 62 is simultaneously grown in the thickness direction and the width direction, such that a short-circuit may be generated between the coil pattern portions, and the aspect ratio of the internal coil part may be decreased.
A maximum width c of the coil pattern portions 61 a, 61 b, 61 c, and 61 d of the first coil pattern part 61 may be 50 μm to 90 μm.
A thickness d of the internal coil parts 41 and 42 including the first and second coil pattern parts 61 and 62 may be 200 μm to 500 μm.
The first and second coil pattern parts 61 and 62 may be formed of a metal having excellent electric conductivity, respectively. For example, the first and second coil pattern parts 61 and 62 may be formed of silver (Ag), palladium (Pd), aluminum (Al), nickel (Ni), titanium (Ti), gold (Au), copper (Cu), platinum (Pt), an alloy thereof, or the like.
The first and second coil pattern parts 61 and 62 may be formed of the same metal as each other, and most preferably, may be formed of copper (Cu).
The internal coil parts 41 and 42 according to an exemplary embodiment of the present disclosure are formed so that the first coil pattern part 61 satisfies a≤15 μm and b/a≥7, such that generation of the short-circuit between the coil patterns may be prevented and the internal coil parts 41 and 42 having a high aspect ratio (AR) may be obtained by inducing the anisotropic plating growth of the second coil pattern part 62. For example, the internal coil parts 41 and 42 may have an aspect ratio (AR) of 2.0 or more.
FIG. 4 is an enlarged schematic view of another example of part ‘A’ of FIG. 2.
Referring to FIG. 4, upper surfaces 61T of coil pattern portions 61 a, 61 b, 61 c, and 61 d of a first coil pattern part 61 in another example of the present disclosure may have a flat structure, and a cross section of each of the coil pattern portions 61 a, 61 b, 61 c, and 61 d may have a tetragonal shape.
Although the case in which the upper surfaces 61T of the coil pattern portions 61 a, 61 b, 61 c, and 61 d of the first coil pattern part 61 have a convex shape is shown in FIG. 3, and the case in which the upper surfaces 61T have a flat shape is shown in FIG. 4, the present inventive concept is not necessarily limited thereto.
The cross-sectional shape of the coil pattern portions 61 a, 61 b, 61 c, and 61 d of the first coil pattern part 61 may be various changed in a range in which those skilled in the art may apply the present disclosure as long as the minimum interval a between the coil pattern portions 61 a, 61 b, 61 c, and 61 d of the first coil pattern part 61 is 15 μm or less, and in relation with the maximum thickness b between the coil pattern portions 61 a, 61 b, 61 c, and 61 d of the first coil pattern part 61, b/a is 7 or more.
The internal coil parts 41 and 42 may be covered with an insulation film 30.
The insulation film 30 may be formed by a method known in the art such as a screen printing method, an exposure and development process of a photo resist (PR), a spray application method, or the like. The internal coil parts 41 and 42 may be covered with the insulation film 30, such that the internal coil parts 41 and 42 may not directly come in contact with the magnetic material configuring the magnetic body 50.
One end portion of the first internal coil part 41 formed on one surface of the insulating substrate 20 may be exposed to one end surface of the magnetic body 50 in the length (L) direction, and one end portion of the second internal coil part 42 formed on the other surface of the insulating substrate 20 may be exposed to the other end surface of the magnetic body 50 in the length (L) direction.
The first and second external electrodes 81 and 82 may be disposed on both end surfaces of the magnetic body 50 in the length (L) direction so as to be connected to the first and second internal coil parts 41 and 42 exposed to both end surfaces of the magnetic body 50 in the length (L) direction, respectively.
The first and second external electrodes 81 and 82 may be formed of a metal having excellent electric conductivity. For example, the first and second external electrodes 81 and 82 may be formed of one of nickel (Ni), copper (Cu), tin (Sn), silver (Ag), and the like, an alloy thereof, or the like.
The first and second external electrodes 81 and 82 may include, for example, conductive resin layers and plating layers formed on the conductive resin layers. The conductive resin layer may contain one or more conductive metals selected from the group consisting of copper (Cu), nickel (Ni), and silver (Ag) and a thermosetting resin. The plating layer may contain one or more selected from the group consisting of nickel (Ni), copper (Cu), and tin (Sn). For example, nickel (Ni) layers and tin (Sn) layers may be sequentially formed.
The following Table 1 shows results obtained by measuring plating growth of the second coil pattern part 62 formed on the first coil pattern part 61 by electroplating while changing a (a minimum interval between coil pattern portions) and b (a maximum thickness of the coil pattern portion) of the first coil pattern part 61.
Growth of an upper portion of the second coil pattern part 62 means a thickness of the second coil pattern part 62 formed on the upper surface 61T of the first coil pattern part 61, and growth of a side portion of the second coil pattern part 62 means a thickness of the second coil pattern part 62 formed on the side surface 61S of the first coil pattern part 61.
TABLE 1
Growth of Upper Growth of Side
a(μm) b(μm) b/a Portion(μm) Portion (μm)
*1 30 30 1 10 10
*2 30 70 2.3 10 10
*3 30 150 5 10 7
*4 20 30 1.5 10 10
*5 20 70 3.5 10 10
*6 20 150 7.5 15 5
*7 15 30 2 10 10
*8 15 70 5 10 8
9 15 150 10 20 0
*10 10 30 3 5 5
11 10 70 7 10 0
12 10 150 7 10 0
(*Comparative Example)
As shown in Table 1, when the first coil pattern part 61 simultaneously satisfied a≤15 μm and b/a≥7, anisotropic plating growth that growth of the side portion of the second coil pattern part 62 formed on the first coil pattern part 61 was suppressed and the growth of the upper portion thereof was performed was induced.
Therefore, generation of the short-circuit between the coil pattern portions may be prevented, the internal coil parts 41 and 42 having a high aspect ratio (AR) may be formed, and high inductance may be obtained by increasing the volume of the core part 55 while decreasing the direct current resistance (Rdc).
As set forth above, according to exemplary embodiments of the present disclosure, the internal coil part capable of preventing generation of the short-circuit between the coil pattern portions and having a high aspect ratio (AR) may be obtained by increasing the thickness of the coil pattern portion in comparison with the width thereof.
While exemplary embodiments have been shown and described above, it will be apparent to those skilled in the art that modifications and variations could be made without departing from the scope of the present invention as defined by the appended claims.

Claims (8)

What is claimed is:
1. A chip electronic component comprising:
an insulating substrate;
a first coil pattern part disposed directly on the insulating substrate; and
a second coil pattern part disposed on an upper surface of the first coil pattern part,
wherein when a minimum interval between adjacent coil pattern portions in the first coil pattern part is defined as a, and a maximum thickness of each coil pattern portion in the first coil pattern part is defined as b, a≤15 μand b/a ≥7 are satisfied,
the first coil pattern part includes a first portion disposed directly on the insulating substrate and a second portion extending from the first portion,
a width of the second portion is smaller than a width of the first portion,
the second coil pattern part is disposed on the second portion, and
the second coil pattern part is not disposed on a side surface of the first portion.
2. The chip electronic component of claim 1, further comprising a magnetic body in which an internal coil part including the first and second coil pattern parts is embedded,
wherein the magnetic body contains a magnetic metal powder.
3. The chip electronic component of claim 1, wherein the insulating substrate has a through hole which is disposed in a central portion of the insulating substrate, and
the through hole is filled with a magnetic material to form a core part.
4. The chip electronic component of claim 1, wherein the first coil pattern part is disposed on one surface of the insulating substrate and the other surface of the insulating substrate opposing the one surface thereof to form electrical connections therebetween through a via.
5. The chip electronic component of claim 1, wherein the first and second coil pattern parts contain one or more selected from the group consisting of silver (Ag), palladium (Pd), aluminum (Al), nickel (Ni), titanium (Ti), gold (Au), copper (Cu), and platinum (Pt).
6. The chip electronic component of claim 1, wherein the width of the second portion decreases from the first portion to a top portion of the second portion.
7. The chip electronic component of claim 1, wherein a curvature of an upper surface of the first coil pattern part is different than a curvature of an upper surface of the second coil pattern part.
8. The chip electronic component of claim 1, further comprising an insulation film disposed directly on the insulating substrate and between the adjacent coil pattern portions.
US16/677,101 2014-09-18 2019-11-07 Chip electronic component Active US10910145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/677,101 US10910145B2 (en) 2014-09-18 2019-11-07 Chip electronic component

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020140124378A KR101832545B1 (en) 2014-09-18 2014-09-18 Chip electronic component
KR10-2014-0124378 2014-09-18
US14/796,715 US20160086720A1 (en) 2014-09-18 2015-07-10 Chip electronic component
US16/677,101 US10910145B2 (en) 2014-09-18 2019-11-07 Chip electronic component

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/796,715 Continuation US20160086720A1 (en) 2014-09-18 2015-07-10 Chip electronic component

Publications (2)

Publication Number Publication Date
US20200075228A1 US20200075228A1 (en) 2020-03-05
US10910145B2 true US10910145B2 (en) 2021-02-02

Family

ID=55526375

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/796,715 Abandoned US20160086720A1 (en) 2014-09-18 2015-07-10 Chip electronic component
US16/677,101 Active US10910145B2 (en) 2014-09-18 2019-11-07 Chip electronic component

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/796,715 Abandoned US20160086720A1 (en) 2014-09-18 2015-07-10 Chip electronic component

Country Status (3)

Country Link
US (2) US20160086720A1 (en)
KR (1) KR101832545B1 (en)
CN (2) CN109935438B (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101901700B1 (en) 2016-12-21 2018-09-27 삼성전기 주식회사 Inductor
KR101862503B1 (en) * 2017-01-06 2018-05-29 삼성전기주식회사 Inductor and method for manufacturing the same
KR102464308B1 (en) * 2017-01-06 2022-11-08 삼성전기주식회사 Inductor
KR101987213B1 (en) * 2017-09-20 2019-06-10 삼성전기주식회사 Coil component and manufacturing method for the same
JP6753421B2 (en) * 2018-01-11 2020-09-09 株式会社村田製作所 Multilayer coil parts
JP6753422B2 (en) * 2018-01-11 2020-09-09 株式会社村田製作所 Multilayer coil parts
JP6753423B2 (en) 2018-01-11 2020-09-09 株式会社村田製作所 Multilayer coil parts
KR102430636B1 (en) * 2018-03-08 2022-08-09 삼성전기주식회사 Coil component
KR102016497B1 (en) * 2018-04-02 2019-09-02 삼성전기주식회사 Coil component
KR102029586B1 (en) * 2018-05-28 2019-10-07 삼성전기주식회사 Coil electronic component
KR102096760B1 (en) * 2018-07-04 2020-04-03 스템코 주식회사 Coil device and fabricating method thereof
JP7174549B2 (en) * 2018-07-20 2022-11-17 株式会社村田製作所 inductor components
KR102658609B1 (en) * 2019-01-09 2024-04-19 삼성전기주식회사 Coil component
KR102194725B1 (en) * 2019-04-12 2020-12-23 삼성전기주식회사 Coil electronic component
JP2020191353A (en) * 2019-05-21 2020-11-26 Tdk株式会社 Coil component
KR102217291B1 (en) 2019-10-31 2021-02-19 삼성전기주식회사 Coil component
KR102224309B1 (en) * 2019-12-12 2021-03-08 삼성전기주식회사 Coil component
KR20220099006A (en) 2021-01-05 2022-07-12 삼성전기주식회사 Coil component

Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4392013A (en) * 1979-12-27 1983-07-05 Asahi Kasei Kogyo Kabushiki Kaisha Fine-patterned thick film conductor structure and manufacturing method thereof
JPH11204337A (en) 1998-01-12 1999-07-30 Tdk Corp Planar coil and planar transformer
US6600404B1 (en) * 1998-01-12 2003-07-29 Tdk Corporation Planar coil and planar transformer, and process of fabricating a high-aspect conductive device
US20040038516A1 (en) * 2002-08-02 2004-02-26 Samsung Electronics Co., Ltd. Method of manufacturing a semiconductor device
US20040056749A1 (en) * 2002-07-18 2004-03-25 Frank Kahlmann Integrated transformer configuration
US20040164835A1 (en) * 2003-02-21 2004-08-26 Tdk Corporation High density inductor and method for producing same
JP2004319570A (en) 2003-04-11 2004-11-11 Matsushita Electric Ind Co Ltd Method of manufacturing planar coil
JP2004342645A (en) 2003-05-13 2004-12-02 Matsushita Electric Ind Co Ltd Method for manufacturing planar coil
JP2004349468A (en) 2003-05-22 2004-12-09 Tdk Corp Coil substrate and surface mounting type coil element
US20050140488A1 (en) * 2003-12-26 2005-06-30 Koji Shimoyama Coil electric conductor, laminated coil conductor, production method of the same and electronic component using the same
US20050195062A1 (en) * 2004-02-25 2005-09-08 Tdk Corporation Coil component and method of manufacturing the same
JP3754557B2 (en) 1998-04-03 2006-03-15 株式会社リコー Magneto-optic element
JP2006278479A (en) 2005-03-28 2006-10-12 Tdk Corp Coil component
US7216419B2 (en) 2000-08-04 2007-05-15 Sony Corporation Method of manufacturing a high-frequency coil device
US20070235873A1 (en) * 2006-03-28 2007-10-11 Cheng Hsu M Pad structures and methods for forming pad structures
US20120068301A1 (en) * 2010-08-23 2012-03-22 The Hong Kong University Of Science And Technology Monolithic magnetic induction device
US20120126926A1 (en) 2010-11-19 2012-05-24 Infineon Technologies Austria Ag Transformer Device and Method for Manufacturing a Transformer Device
US20120235779A1 (en) 2009-09-16 2012-09-20 Maradin Technologies Ltd. Micro coil apparatus and manufacturing methods therefor
US20130222101A1 (en) * 2010-10-21 2013-08-29 Tdk Corporation Coil component and method for producing same
US20130236837A1 (en) * 2010-09-29 2013-09-12 Fujifilm Corporation Method for forming a resist pattern and a method for processing a substrate utilizing the method for forming a resist pattern
US20130249662A1 (en) * 2012-03-26 2013-09-26 Tdk Corporation Planar coil element
US20130249664A1 (en) 2012-03-26 2013-09-26 Tdk Corporation Planar coil element and method for producing the same
US20130300527A1 (en) * 2012-05-08 2013-11-14 Samsung Electro-Mechanics Co., Ltd. Method of manufacturing coil element and coil element
US20140009254A1 (en) * 2012-07-04 2014-01-09 Tdk Corporation Coil component
US20140167897A1 (en) 2012-12-14 2014-06-19 Samsung Electro-Mechanics Co., Ltd. Power inductor and method of manufacturing the same
US20150035640A1 (en) * 2013-08-02 2015-02-05 Cyntec Co., Ltd. Method of manufacturing multi-layer coil and multi-layer coil device

Patent Citations (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4392013A (en) * 1979-12-27 1983-07-05 Asahi Kasei Kogyo Kabushiki Kaisha Fine-patterned thick film conductor structure and manufacturing method thereof
JPH11204337A (en) 1998-01-12 1999-07-30 Tdk Corp Planar coil and planar transformer
US6600404B1 (en) * 1998-01-12 2003-07-29 Tdk Corporation Planar coil and planar transformer, and process of fabricating a high-aspect conductive device
JP3754557B2 (en) 1998-04-03 2006-03-15 株式会社リコー Magneto-optic element
US7216419B2 (en) 2000-08-04 2007-05-15 Sony Corporation Method of manufacturing a high-frequency coil device
US20040056749A1 (en) * 2002-07-18 2004-03-25 Frank Kahlmann Integrated transformer configuration
US20040038516A1 (en) * 2002-08-02 2004-02-26 Samsung Electronics Co., Ltd. Method of manufacturing a semiconductor device
CN1258777C (en) 2003-02-21 2006-06-07 Tdk株式会社 High density inductor and method for producing same
US7176773B2 (en) 2003-02-21 2007-02-13 Tdk Corporation High density inductor and method for producing same
US20040164835A1 (en) * 2003-02-21 2004-08-26 Tdk Corporation High density inductor and method for producing same
JP2004319570A (en) 2003-04-11 2004-11-11 Matsushita Electric Ind Co Ltd Method of manufacturing planar coil
JP2004342645A (en) 2003-05-13 2004-12-02 Matsushita Electric Ind Co Ltd Method for manufacturing planar coil
JP2004349468A (en) 2003-05-22 2004-12-09 Tdk Corp Coil substrate and surface mounting type coil element
US20050140488A1 (en) * 2003-12-26 2005-06-30 Koji Shimoyama Coil electric conductor, laminated coil conductor, production method of the same and electronic component using the same
US20050195062A1 (en) * 2004-02-25 2005-09-08 Tdk Corporation Coil component and method of manufacturing the same
JP4317470B2 (en) 2004-02-25 2009-08-19 Tdk株式会社 Coil component and manufacturing method thereof
JP2006278479A (en) 2005-03-28 2006-10-12 Tdk Corp Coil component
US20070235873A1 (en) * 2006-03-28 2007-10-11 Cheng Hsu M Pad structures and methods for forming pad structures
US20120235779A1 (en) 2009-09-16 2012-09-20 Maradin Technologies Ltd. Micro coil apparatus and manufacturing methods therefor
US20120068301A1 (en) * 2010-08-23 2012-03-22 The Hong Kong University Of Science And Technology Monolithic magnetic induction device
US20130236837A1 (en) * 2010-09-29 2013-09-12 Fujifilm Corporation Method for forming a resist pattern and a method for processing a substrate utilizing the method for forming a resist pattern
US20130222101A1 (en) * 2010-10-21 2013-08-29 Tdk Corporation Coil component and method for producing same
US8552829B2 (en) 2010-11-19 2013-10-08 Infineon Technologies Austria Ag Transformer device and method for manufacturing a transformer device
US20120126926A1 (en) 2010-11-19 2012-05-24 Infineon Technologies Austria Ag Transformer Device and Method for Manufacturing a Transformer Device
CN102479605A (en) 2010-11-19 2012-05-30 英飞凌科技奥地利有限公司 Transformer device and method for manufacturing a transformer device
US20130249662A1 (en) * 2012-03-26 2013-09-26 Tdk Corporation Planar coil element
US20130249664A1 (en) 2012-03-26 2013-09-26 Tdk Corporation Planar coil element and method for producing the same
CN103366920A (en) 2012-03-26 2013-10-23 Tdk株式会社 Planar coil element and method for producing the same
US20130300527A1 (en) * 2012-05-08 2013-11-14 Samsung Electro-Mechanics Co., Ltd. Method of manufacturing coil element and coil element
US20140009254A1 (en) * 2012-07-04 2014-01-09 Tdk Corporation Coil component
US20140167897A1 (en) 2012-12-14 2014-06-19 Samsung Electro-Mechanics Co., Ltd. Power inductor and method of manufacturing the same
KR20140077346A (en) 2012-12-14 2014-06-24 삼성전기주식회사 Power Inductor and Manufacturing Method for the Same
US20150035640A1 (en) * 2013-08-02 2015-02-05 Cyntec Co., Ltd. Method of manufacturing multi-layer coil and multi-layer coil device

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
Chinese First Office Action issued in corresponding Chinese Patent Application No. 201510440988.8, dated Sep. 5, 2017 (with English translation).
Notice of Office Action in corresponding Korean Patent Application No. 10-2014-0124378, dated Jun. 16, 2017 (with English translation).
Office Action issued in corresponding Chinese Patent Application No. 201910031367.2 dated Jul. 1, 2020, with English translation.
R. Wu, et al., "A Novel Silicon-Embedded Coreless Inductor for High-Frequency Power Management Applications," IEEE Electron Device Letters, Jan. 2011, vol. 32, No. 11, Hong Kong.
U.S. Final Office Action dated Aug. 7, 2019 issued in U.S. Appl. No. 14/796,715.
U.S. Final Office Action dated May 26, 2017 issued in U.S. Appl. No. 14/796,715.
U.S. Final Office Action dated Sep. 7, 2018 issued in U.S. Appl. No. 14/796,715.
U.S. Non-Final Office Action dated Feb. 6, 2019 issued in U.S. Appl. No. 14/796,715.
U.S. Non-Final Office Action dated Jan. 24, 2018 issued in U.S. Appl. No. 14/796,715.
U.S. Non-Final Office Action dated May 2, 2016 issued in U.S. Appl. No. 14/796,715.
U.S. Non-Final Office Action dated Nov. 16, 2016 issued in U.S. Appl. No. 14/796,715.

Also Published As

Publication number Publication date
KR101832545B1 (en) 2018-02-26
US20200075228A1 (en) 2020-03-05
CN106205972A (en) 2016-12-07
KR20160033462A (en) 2016-03-28
US20160086720A1 (en) 2016-03-24
CN109935438B (en) 2020-12-15
CN109935438A (en) 2019-06-25
CN106205972B (en) 2019-02-12

Similar Documents

Publication Publication Date Title
US10910145B2 (en) Chip electronic component
US11605484B2 (en) Multilayer seed pattern inductor and manufacturing method thereof
US10801121B2 (en) Chip electronic component and manufacturing method thereof
US10847303B2 (en) Coil component
US11562851B2 (en) Electronic component, and method of manufacturing thereof
US10347419B2 (en) Coil electronic component and method for manufacturing the same
US9812247B2 (en) Electronic component
US20150102891A1 (en) Chip electronic component, board having the same, and packaging unit thereof
US10141099B2 (en) Electronic component and manufacturing method thereof
CN110993253B (en) Coil electronic component
KR101823191B1 (en) Chip electronic component and manufacturing method thereof
US10607769B2 (en) Electronic component including a spacer part
US10170229B2 (en) Chip electronic component and board having the same
US20170196091A1 (en) Coil electronic component
US20160111194A1 (en) Chip electronic component and board having the same
US20170032883A1 (en) Coil electronic component and method of manufacturing the same
US10256032B2 (en) Electronic component
US20160104563A1 (en) Chip electronic component
US20160351320A1 (en) Coil electronic component
KR102414830B1 (en) Coil component
KR20170073554A (en) Coil component
US20180047494A1 (en) Coil component
US10483024B2 (en) Coil electronic component

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: SAMSUNG ELECTRO-MECHANICS CO., LTD., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:JEONG, DONG JIN;REEL/FRAME:050955/0408

Effective date: 20150405

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE