JPH11195418A - Quantitating method for elution mn quantity of spinel li/mn system composite oxide and positive electrode active material for lithium secondary battery - Google Patents

Quantitating method for elution mn quantity of spinel li/mn system composite oxide and positive electrode active material for lithium secondary battery

Info

Publication number
JPH11195418A
JPH11195418A JP10001371A JP137198A JPH11195418A JP H11195418 A JPH11195418 A JP H11195418A JP 10001371 A JP10001371 A JP 10001371A JP 137198 A JP137198 A JP 137198A JP H11195418 A JPH11195418 A JP H11195418A
Authority
JP
Japan
Prior art keywords
composite oxide
spinel
amount
positive electrode
eluted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10001371A
Other languages
Japanese (ja)
Inventor
Itaru Goshiyo
至 御書
Shigenori Suketani
重徳 祐谷
Kazuyuki Tateishi
和幸 立石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP10001371A priority Critical patent/JPH11195418A/en
Publication of JPH11195418A publication Critical patent/JPH11195418A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a quantitating method for elution Mn quantity of a spinel Li/Mn system composite oxide and a positive electrode active material for lithium secondary battery which is excellent in charging/discharging cycle characteristic and whose quality is stable. SOLUTION: This quantitating method for elution Mn quantity of a spinel Li/Mn system composite oxide comprises the steps of: existing a spinel Li/Mn system composite oxide of about 10<-2> -0.5×10<-2> mol per. 1l of an acidic aqueous solution whose pH is equal or smaller than 2 without dissolving λ-MnO<2> and eluting Mn; and quantitating a quantity of Mn eluted in the acidic aqueous solution in the dissolution equilibrium situation. There is provided, by this method, a positive electrode active material for lithium secondary battery containing a spinel Li/Mn system composite oxide as a main component wherein the eluted Mn quantity rate measured by using an acidic aqueous solution of pH 1±0.2 at 20 deg.C is equal or smaller than 15 wt.%. They are preferable for manufacturing a lithium secondary battery for various electric equipment, in particular, portable equipment having a long life.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、スピネル型Li・
Mn系複合酸化物の溶出Mn量の定量方法およびスピネ
ル型Li・Mn系複合酸化物を主成分とするリチウム二
次電池用の正極活物質に関する。
[0001] The present invention relates to a spinel type Li ·
The present invention relates to a method for determining the amount of Mn eluted from a Mn-based composite oxide and a positive electrode active material for a lithium secondary battery containing a spinel-type Li · Mn-based composite oxide as a main component.

【0002】[0002]

【従来の技術】リチウム二次電池は、起電力並びにエネ
ルギー密度の点で優れているので一般的に益々注目され
つつあり、斯界では一層実用性の高い製品を開発する目
的で各種の改善研究が鋭意なされている。正極活物質の
改善研究もその重要な一つである。正極活物質として、
従来のリチウムと遷移金属元素との複合酸化物(LiM
eO2 、Meは周期律表の新9〜10族遷移金属元素)
に代わって、一層の高起電力が得られるスピネル型Li
・Mn複合酸化物(LiA Mn2 4 )が近時提案され
ており、該複合酸化物の一般式においてAの値が0.0
5〜0.5の場合には4V級の、またAの値が0.5〜
1.1の場合には3V級のリチウム二次電池が得られる
ことが知られている。
2. Description of the Related Art Lithium secondary batteries are generally receiving more and more attention because they are superior in terms of electromotive force and energy density. In the art, various improvements have been studied in order to develop more practical products. Has been keen. Improvement research on positive electrode active materials is also one of the important issues. As a positive electrode active material,
Conventional composite oxides of lithium and transition metal elements (LiM
eO 2 and Me are new transition metal elements of Groups 9 to 10 of the periodic table)
Instead of spinel-type Li that can obtain higher electromotive force
Mn composite oxide (Li A Mn 2 O 4 ) has recently been proposed, and the value of A in the general formula of the composite oxide is 0.0
In the case of 5 to 0.5, 4V class, and the value of A is 0.5 to 0.5
It is known that a 1.1V lithium secondary battery can be obtained in the case of 1.1.

【0003】ところで該Li・Mn複合酸化物を正極活
物質として用いた二次電池は、充放電サイクル特性に問
題がある。即ち、充放電のサイクルを繰り返すと電池の
放電容量が漸次低下する。
A secondary battery using the Li.Mn composite oxide as a positive electrode active material has a problem in charge / discharge cycle characteristics. That is, when the charge / discharge cycle is repeated, the discharge capacity of the battery gradually decreases.

【0004】この問題を改善するために、Mnの一部を
Co、Cr、Ni、Fe、あるいはその他種々の元素の
一種または二種以上で置換することが提案されている。
かかる提案から得られる各種のLi・Mn系複合酸化物
は、充放電のサイクル特性は改善される傾向にあるもの
の、非置換のLi・Mn複合酸化物(LiA Mn
2 4 )と同様に製造ロット間で充放電サイクル特性に
大きなバラツキが存在する問題がある。
In order to solve this problem, a part of Mn is replaced by
Co, Cr, Ni, Fe, or various other elements
It has been proposed to substitute one or more of them.
Various Li-Mn based composite oxides obtained from such proposal
Indicates that the charge-discharge cycle characteristics tend to be improved
Of an unsubstituted Li-Mn composite oxide (LiAMn
TwoO FourAs in the case of), charge-discharge cycle characteristics between production lots
There is a problem that large variations exist.

【0005】スピネル型Li・Mn系複合酸化物は、充
電時にはLiが離脱してλ−MnO 2 に相変化し、放電
時には逆にλ−MnO2 から元のLi・Mn系複合酸化
物に相変化することが知られている。またスピネル構造
において、理論上からはLiは8aサイトに、一方、M
nは16dサイトにそれぞれ存在する。
[0005] Spinel-type Li-Mn-based composite oxides are
At the time of electricity, Li is released and λ-MnO TwoPhase change and discharge
Sometimes λ-MnOTwoOriginal Li-Mn-based composite oxidation
It is known that a substance changes its phase. Also spinel structure
In theory, Li is theoretically at the 8a site, while M
n is present at each of the 16d sites.

【0006】そこで本発明者らは、上記した充放電サイ
クル特性のバラツキあるいは低下の理由を究明する目的
から、上記の事実および理論を基礎としてつぎの〜
の仮説を立てた。 、充放電サイクル特性の低下は、一般的には、一部の
Mnの電解液中への溶出によるスピネル構造の部分的な
崩壊によること。 、充放電サイクルにおける上記した交互相変化の繰り
返しの間に、スピネル構造の格子の伸縮が原因で結晶構
造が崩れて、溶出し易い状態にあるMnが電解液に溶出
すること。 、Mnは理論的には16dサイトに存在するが一部の
Mnは8aサイトに存在する。このMnは、上記の溶出
し易い状態にあるMnの例であって、充電時にはLiの
離脱に伴って離脱すること。
Accordingly, the present inventors have made the following based on the above facts and theory for the purpose of investigating the reason for the above-mentioned variation or deterioration of the charge / discharge cycle characteristics.
Made the hypothesis. In general, the decrease in charge / discharge cycle characteristics is due to partial collapse of the spinel structure due to elution of a part of Mn into the electrolyte. In addition, during the repetition of the above-mentioned alternating phase change in the charge / discharge cycle, the crystal structure is broken due to expansion and contraction of the lattice of the spinel structure, and Mn that is in a state of being easily eluted is eluted into the electrolytic solution. , Mn are theoretically present at the 16d site, but some Mn are present at the 8a site. This Mn is an example of Mn in the above-mentioned easily eluted state, and should be released along with the release of Li during charging.

【0007】一方、スピネル型Li・Mn系複合酸化物
は、酸水溶液中では充電時と同様にLiが離脱してスピ
ネル構造を保持しながらλ−MnO2 に相変化すること
が知られている。そこでこの点に着目して、各種のLi
・Mn系複合酸化物の酸水溶液中での溶出Mn量と充放
電サイクル特性との関係を調べたところ、溶出Mn量が
大きいものを正極活物質として使用すると、電池の充放
電サイクル特性が悪化することが判明し、前記した仮説
〜がある程度正しいこと、および充放電サイクル特
性の良好なLi・Mn系複合酸化物を選別し得る選別基
準の確立が可能となることが判明した。
On the other hand, it is known that the spinel-type Li.Mn-based composite oxide undergoes a phase change to λ-MnO 2 in an acid aqueous solution while retaining Li and releasing the spinel structure as in the case of charging. . Therefore, focusing on this point, various types of Li
Examination of the relationship between the amount of Mn eluted in an aqueous solution of an Mn-based composite oxide and the charge / discharge cycle characteristics revealed that the use of a material with a large amount of eluted Mn as the positive electrode active material deteriorated the charge / discharge cycle characteristics of the battery. It was found that the above-mentioned hypothesis was somewhat correct, and that it was possible to establish a selection criterion capable of selecting a Li.Mn-based composite oxide having good charge / discharge cycle characteristics.

【0008】[0008]

【発明が解決しようとする課題】しかして本発明は、上
記の新知見をもとに完成したものであって、スピネル型
Li・Mn系複合酸化物の溶出Mn量の定量方法および
充放電サイクル特性に優れ、且つ品質が安定したリチウ
ム二次電池用の正極活物質を提案することを課題とす
る。
SUMMARY OF THE INVENTION The present invention has been completed on the basis of the above-mentioned new findings, and is directed to a method for quantifying the amount of dissolved Mn of a spinel-type Li.Mn-based composite oxide and a charge / discharge cycle. It is an object to propose a positive electrode active material for a lithium secondary battery having excellent characteristics and stable quality.

【0009】[0009]

【課題を解決するための手段】上記の課題は、つぎの定
量方法およびリチウム二次電池用の正極活物質により解
決することができる。 (1) λ−MnO2 を実質的に溶解せず且つpH2以下の
酸水溶液中に検査対象物のスピネル型Li・Mn系複合
酸化物を存在せしめてMnを溶出させ、溶解平衡状態に
おいて該酸水溶液中に溶出したMn量を定量することを
特徴とするスピネル型Li・Mn系複合酸化物の溶出M
n量の定量方法。 (2) 酸水溶液が、硝酸、硫酸および塩酸からなる群から
選ばれた少なくとも1種の水溶液である上記(1) 記載の
スピネル型Li・Mn系複合酸化物の溶出Mn量の定量
方法。 (3) 酸水溶液のpHが、1±0.2である上記(1) また
は(2) 記載のスピネル型Li・Mn系複合酸化物の溶出
Mn量の定量方法。 (4) 上記(1) 〜(3) のいずれかに記載の方法で20℃に
おける溶解平衡状態において定量された溶出Mn量から
下式にて算出される溶出Mn量率が15重量%以下であ
るスピネル型Li・Mn系複合酸化物を主成分とするこ
とを特徴とするリチウム二次電池用の正極活物質。 溶出Mn量率=(〔溶出Mn量〕/〔酸水溶液に投入し
た量の検査対象物のスピネル型Li・Mn系複合酸化物
に含まれる全Mn量〕)×100 (5) 溶出Mn量率が、13重量%以下である上記(4) 記
載のリチウム二次電池用の正極活物質。
The above object can be solved by the following quantitative method and a positive electrode active material for a lithium secondary battery. (1) The spinel-type Li · Mn-based composite oxide to be inspected is present in an aqueous acid solution having substantially no solubility of λ-MnO 2 and a pH of 2 or less to elute Mn. Dissolution M of spinel-type Li · Mn-based composite oxide characterized by quantifying the amount of Mn eluted in an aqueous solution
A method for determining the amount of n. (2) The method for determining the elution Mn amount of a spinel-type Li.Mn-based composite oxide according to (1), wherein the aqueous acid solution is at least one aqueous solution selected from the group consisting of nitric acid, sulfuric acid, and hydrochloric acid. (3) The method according to (1) or (2) above, wherein the pH of the aqueous acid solution is 1 ± 0.2. (4) When the dissolution Mn content rate calculated by the following formula from the dissolution Mn content determined in the dissolution equilibrium state at 20 ° C. by the method according to any of the above (1) to (3) is 15% by weight or less. A positive electrode active material for a lithium secondary battery, comprising a spinel-type Li · Mn-based composite oxide as a main component. Eluted Mn amount rate = ([Eluted Mn amount] / [Total Mn amount contained in spinel-type Li · Mn-based composite oxide of amount to be inspected in the acid aqueous solution]) × 100 (5) Eluted Mn amount ratio Is 13% by weight or less, the positive electrode active material for a lithium secondary battery according to the above (4).

【0010】[0010]

【作用】上記(1) の発明においては、検査対象物のスピ
ネル型Li・Mn系複合酸化物(以下において、スピネ
ル型Li・Mn系複合酸化物を単に「SLM複合酸化
物」と略称する。)をλ−MnO2 を溶解せず且つpH
2以下の酸水溶液に投入して溶解平衡状態に至らしめる
ことにより、充放電サイクル特性の良否判定上で重要と
なる溶出Mn量を正しく定量することができる。
In the above invention (1), the spinel-type Li.Mn-based composite oxide to be inspected (hereinafter, the spinel-type Li-Mn-based composite oxide is simply referred to as "SLM composite oxide"). ) Without dissolving λ-MnO 2 and pH
By introducing the solution into an acid aqueous solution of 2 or less to reach a dissolution equilibrium state, the amount of eluted Mn, which is important in determining the quality of charge / discharge cycle characteristics, can be accurately determined.

【0011】上記(4) の発明においては、上記(1) の発
明などから定量された溶出Mn量をもとに算出される溶
出Mn量率が15重量%以下であるSLM複合酸化物を
リチウム二次電池用の正極活物質として用いることによ
り、充放電サイクル特性に優れ、且つ品質が安定したリ
チウム二次電池を製造することができる。
In the above invention (4), the SLM composite oxide having an elution Mn content rate of 15% by weight or less calculated based on the elution Mn content determined from the invention of the above (1) is lithium. By using as a positive electrode active material for a secondary battery, a lithium secondary battery having excellent charge-discharge cycle characteristics and stable quality can be manufactured.

【0012】[0012]

【発明の実施の形態】SLM複合酸化物については、M
nを他の元素で置換しないもの、Mnの一部を他の元素
で置換したもの、さらにMnの一部を他の元素で置換し
たもののうちでも二種以上の元素で置換したもの、など
種々の複合酸化物が提案されているが、溶出Mn量のバ
ラツキはMnの置換元素の有無や置換元素の種類に本質
的に左右されないので、本発明においては、それら種々
のSLM複合酸化物を対象とすることができる。例え
ば、下記の一般式(1)にて示されるものを例示するこ
とができる。 LiA Mn2-x Mex 4 (1) 一般式(1)において、Aは0.05〜2.3、好まし
くは0.5〜1.5であり、Xは0〜0.5である。X
が0の場合は、Mnを他の元素で置換しないものを意味
する。一方、Xが0でない場合はMnを元素Meで置換
したものを意味し、その際にはXは0.01〜0.5、
特に0.02〜0.2であることが好ましい。元素Me
としては、新周期率表の3〜10族元素、例えばZr、
V、Cr、Mo、Fe、Co、Niなど、または13〜
15族元素、例えばB、Al、Ge、Pb、Sn、Sb
などである。それらの元素の二種以上でMnを置換する
SLM複合酸化物にあっては、二種以上の元素の合計量
が上記Xの範囲内であればよい。
BEST MODE FOR CARRYING OUT THE INVENTION For SLM composite oxide, M
n is not substituted with another element, Mn is partially substituted with another element, Mn is partially substituted with another element, and two or more elements are substituted. However, the variation in the amount of eluted Mn is not essentially affected by the presence or absence of the Mn substitution element and the type of the substitution element, and therefore, in the present invention, these various SLM composite oxides are targeted. It can be. For example, those represented by the following general formula (1) can be exemplified. Li A Mn 2-x Me x O 4 (1) General formula (1), A is from 0.05 to 2.3, preferably 0.5 to 1.5, X is 0 to 0.5 is there. X
Is 0, it means that Mn is not replaced by another element. On the other hand, when X is not 0, it means that Mn is replaced by the element Me, and in this case, X is 0.01 to 0.5,
It is particularly preferably 0.02 to 0.2. Element Me
As elements of Group 3 to 10 of the new periodic table, for example, Zr,
V, Cr, Mo, Fe, Co, Ni, etc., or 13 to
Group 15 element, for example, B, Al, Ge, Pb, Sn, Sb
And so on. In the case of an SLM composite oxide in which Mn is substituted by two or more of these elements, the total amount of the two or more elements may be within the range of X described above.

【0013】SLM複合酸化物の溶出Mn量の定量にお
いては、溶液としてλ−MnO2 を溶解せずあるいは実
質的に溶解せず且つpH2以下の酸水溶液が用いられ
る。酸水溶液としてpHが0.1程度の強酸を使用する
と、正常な電池反応における充電時に生じるλ−MnO
2 を溶解する問題があるので、溶出Mn量の定量に際し
ては、使用する酸水溶液がλ−MnO2 を実質的に溶解
しないもの、特に溶解度が0.1重量%以下のもの、で
あることを事前の溶解試験にて確認しておくとよい。λ
−MnO2 を溶解せずあるいは実質的に溶解せず且つp
H2以下の酸水溶液の例としては、pH0.5〜2、特
にpH0.8〜2の希硝酸、希硫酸、希塩酸などが好ま
しい。なお酸水溶液のpHが高いと可溶性Mnの溶出が
多少とも不十分となる傾向があるので、本発明において
は酸水溶液としてpH2以下、特に1±0.2の硝酸お
よび/または硫酸の水溶液が好ましい。
In the determination of the elution Mn amount of the SLM composite oxide, an aqueous solution of an acid that does not dissolve or substantially dissolves λ-MnO 2 and has a pH of 2 or less is used as the solution. When a strong acid having a pH of about 0.1 is used as the acid aqueous solution, λ-MnO generated during charging in a normal battery reaction is used.
Since there is a problem of dissolving 2 in the determination of the amount of eluted Mn, the acid aqueous solution used must be one that does not substantially dissolve λ-MnO 2 , particularly one that has a solubility of 0.1% by weight or less. It is advisable to confirm this in a preliminary dissolution test. λ
Do not dissolve or substantially dissolve MnO 2 and
As an example of the acid aqueous solution of H2 or less, dilute nitric acid, dilute sulfuric acid, dilute hydrochloric acid, and the like having a pH of 0.5 to 2, particularly preferably a pH of 0.8 to 2, are preferable. Since the elution of soluble Mn tends to be somewhat insufficient if the pH of the aqueous acid solution is high, an aqueous solution of nitric acid and / or sulfuric acid having a pH of 2 or less, particularly 1 ± 0.2 is preferable as the aqueous acid solution in the present invention. .

【0014】酸水溶液中に検査対象物のSLM複合酸化
物を過大量投入すると、Liが溶出して酸水溶液のpH
を上昇させ、定量目的の可溶性Mnの溶解度を低減す
る。この理由からSLM複合酸化物の投入量は、酸水溶
液1リットルあたり10-2モル以下の量、好ましくは1
-2〜0.5×10-2モル程度が適当である。
When an excessive amount of the SLM composite oxide to be inspected is put into an acid aqueous solution, Li is eluted and the pH of the acid aqueous solution is increased.
To reduce the solubility of soluble Mn for quantitative purposes. For this reason, the input amount of the SLM composite oxide is not more than 10 -2 mol per liter of the aqueous acid solution, preferably 1 to 2 mol.
The appropriate amount is about 0 -2 to 0.5 × 10 -2 mol.

【0015】検査対象物のSLM複合酸化物は、可溶性
Mnを効果的に溶解せしめるために微粉末のもの、就中
300メッシュのタイラー標準篩を100%通過する微
粉末のものを用いることが好ましい。SLM複合酸化物
は、予めpHを調節した酸水溶液に所定量を投入しても
よく、あるいは蒸留水にSLM複合酸化物を懸濁し、そ
の上に1〜5規定程度の上記の酸などを添加してpHを
所望値に調節するようにしてもよい。
The SLM composite oxide to be inspected is preferably a fine powder in order to effectively dissolve soluble Mn, particularly a fine powder which passes 100% through a 300 mesh Tyler standard sieve. . A predetermined amount of the SLM complex oxide may be added to an acid aqueous solution whose pH has been adjusted in advance, or the SLM complex oxide may be suspended in distilled water, and about 1 to 5 N of the above acid or the like may be added thereon. Then, the pH may be adjusted to a desired value.

【0016】いずれにせよ検査対象物のSLM複合酸化
物中の可溶性Mnを溶解平衡状態に至らしめ、ついで酸
水溶液中に溶出したMn量を例えば、ICP(誘導結合
高周波プラズマ発光分光分析)などにて定量する。SL
M複合酸化物の溶出Mn量率(%)は、下式(2)にて
算出することができる。 溶出Mn量率(%)=(〔溶出Mn量〕/〔酸水溶液に投入した量の検査対象物 のSLM複合酸化物に含まれる全Mn量〕)×100 (2)
In any case, the soluble Mn in the SLM composite oxide to be inspected is brought to a solution equilibrium state, and the amount of Mn eluted in the acid aqueous solution is determined by, for example, ICP (inductively coupled high frequency plasma emission spectroscopy). And quantify. SL
The elution Mn amount ratio (%) of the M composite oxide can be calculated by the following equation (2). Eluted Mn amount ratio (%) = ([Eluted Mn amount] / [Total Mn amount contained in the SLM composite oxide of the amount to be tested in the acid aqueous solution]) × 100 (2)

【0017】溶出Mn量は、溶解平衡状態における温度
によって多少変化するが、10〜40℃程度の範囲で定
量すると安定した溶出Mn量値が得られる。かくして定
量された溶出Mn量は、以下に示すようにリチウム二次
電池用の正極活物質として優れた性能を示すSLM複合
酸化物の選別に頗る有用である。
Although the amount of eluted Mn slightly varies depending on the temperature in the dissolution equilibrium state, a stable amount of eluted Mn can be obtained when quantified in the range of about 10 to 40 ° C. The amount of eluted Mn thus determined is very useful for selecting an SLM composite oxide exhibiting excellent performance as a positive electrode active material for a lithium secondary battery as described below.

【0018】本発明においてリチウム二次電池用の正極
活物質としては、上記の方法にて定量した溶出Mn量、
就中、pH1±0.2の酸水溶液を使用して20℃にお
ける溶解平衡状態において定量された溶出Mn量から算
出される溶出Mn量率が、15重量%以下、特に13重
量%以下のSLM複合酸化物を主成分とするものが用い
られる。かかるSLM複合酸化物は、例えばその化学式
がLiA Mn2-x Me x 4 である場合、該化学式を構
成する酸素以外の元素、即ちLi、Mn、Meの酸化
物、水酸化物、炭酸塩、硝酸塩などを各元素の原子数比
が化学式で示される割合となるように混合し、得られた
混合物を大気中で500〜1000℃で1〜50時間加
熱焼成し、ついで多数の焼成物の製造ロットのうちで溶
出Mn量率が上記の値以下であるものを選別することに
より得ることができる。
In the present invention, a positive electrode for a lithium secondary battery
As the active material, the elution Mn amount determined by the above method,
In particular, use an acid aqueous solution with a pH of 1 ± 0.2 to reach 20 ° C.
From the amount of eluted Mn determined at equilibrium
The dissolution rate of the released Mn is 15% by weight or less, especially 13 times.
% Or less of SLM composite oxide
Can be Such an SLM composite oxide has, for example, the chemical formula
Is LiAMn2-xMe xOFourIf the formula is
Oxidation of elements other than oxygen to be formed, ie, Li, Mn, Me
Substances, hydroxides, carbonates, nitrates, etc.
Was mixed so that the ratio represented by the chemical formula was obtained.
The mixture is heated in air at 500-1000 ° C for 1-50 hours.
Thermal firing and then melting out of lots of
In order to select those whose Mn output rate is less than the above value
You can get more.

【0019】本発明の正極活物質は、従来のSLM複合
酸化物を正極活物質とする非水電解質リチウム二次電池
や固体電解質リチウム二次電池などの分野で従来から知
られている方法と同じ方法にて実用することができる。
以下に、その代表的乃至好ましい実用方法の若干例を説
明する。
The positive electrode active material of the present invention is the same as a conventionally known method in the fields of a non-aqueous electrolyte lithium secondary battery and a solid electrolyte lithium secondary battery using a conventional SLM composite oxide as a positive electrode active material. It can be put to practical use by the method.
Hereinafter, some examples of typical or preferable practical methods will be described.

【0020】正極活物質の結着剤としては、ポリテトラ
フルオロエチレン、ポリビニリデンフルオリド、ポリエ
チレン、エチレン−プロピレン−ジエン系ポリマーなど
が例示され、導電剤としては、各種導電性黒鉛や導電性
カーボンブラックなどが例示される。
Examples of the binder for the positive electrode active material include polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, and ethylene-propylene-diene-based polymers. Examples of the conductive agent include various types of conductive graphite and conductive carbon. Black is exemplified.

【0021】正極活物質の使用量は、正極活物質、結着
剤、および導電剤の合計量100重量部あたり80〜9
5重量部程度であり、結着剤の使用量は正極活物質10
0重量部あたり1〜10重量部程度であり、また導電剤
の使用量は正極活物質100重量部あたり3〜15重量
部程度である。
The amount of the positive electrode active material used is 80 to 9 per 100 parts by weight of the total amount of the positive electrode active material, the binder, and the conductive agent.
It is about 5 parts by weight, and the amount of the binder used is 10
The amount is about 1 to 10 parts by weight per 0 parts by weight, and the amount of the conductive agent is about 3 to 15 parts by weight per 100 parts by weight of the positive electrode active material.

【0022】正極シートは、正極集電体の片面または両
面に正極活物質、結着剤、および導電剤からなる混合組
成物を塗布し、充分に乾燥後、圧延して形成することが
でき、片面または両面に厚さ20〜500μm程度、特
に50〜200μm程度の正極活物質層を有するものが
例示される。
The positive electrode sheet can be formed by applying a mixed composition comprising a positive electrode active material, a binder, and a conductive agent to one or both surfaces of a positive electrode current collector, sufficiently drying the resultant, and rolling. One having a positive electrode active material layer having a thickness of about 20 to 500 μm, particularly about 50 to 200 μm on one or both sides is exemplified.

【0023】本発明の正極活物質と共用される負極活物
質として好ましい例を挙げると、各種の天然黒鉛や人造
黒鉛、例えば繊維状黒鉛、鱗片状黒鉛、球状黒鉛などの
黒鉛類であり、その結着剤としては、ポリテトラフルオ
ロエチレン、ポリビニリデンフルオリド、ポリエチレ
ン、エチレン−プロピレン−ジエン系ポリマーなどであ
る。負極活物質の使用量は、負極活物質と結着剤との合
計量100重量部あたり80〜96重量部程度である。
Preferred examples of the negative electrode active material used in common with the positive electrode active material of the present invention include various natural graphites and artificial graphites, for example, graphites such as fibrous graphite, flake graphite, and spherical graphite. Examples of the binder include polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, and an ethylene-propylene-diene-based polymer. The amount of the negative electrode active material used is about 80 to 96 parts by weight per 100 parts by weight of the total amount of the negative electrode active material and the binder.

【0024】正極集電体としては、アルミニウム、アル
ミニウム合金、チタンなどの導電性金属の、厚さ10〜
100μm程度、特に15〜50μm程度の箔や穴あき
箔、厚さ25〜300μm程度、特に30〜150μm
程度のエキスパンドメタルなどが好ましい。負極集電体
としては、銅、ニッケル、銀、SUSなどの導電性金属
の、厚さ5〜100μm程度、特に8〜50μm程度の
箔や穴あき箔、厚さ20〜300μm程度、特に25〜
100μm程度のエキスパンドメタルなどが好ましい。
As the positive electrode current collector, a conductive metal such as aluminum, an aluminum alloy,
About 100 μm, especially about 15 to 50 μm foil or perforated foil, about 25 to 300 μm thickness, especially about 30 to 150 μm
A certain degree of expanded metal is preferred. As the negative electrode current collector, a conductive metal such as copper, nickel, silver, or SUS, having a thickness of about 5 to 100 μm, particularly about 8 to 50 μm or a perforated foil, and a thickness of about 20 to 300 μm, particularly about 25 to 300 μm,
An expanded metal of about 100 μm is preferable.

【0025】非水電解質としては、塩類を有機溶媒に溶
解させた電解液が例示される。該塩類としては、LiC
lO4 、LiBF4 、LiPF6 、LiAsF6 、Li
AlCl4 、Li(CF3 SO2 2 Nなどが例示さ
れ、それらの一種または二種以上の混合物が使用され
る。
Examples of the non-aqueous electrolyte include an electrolyte in which salts are dissolved in an organic solvent. The salts include LiC
10 4 , LiBF 4 , LiPF 6 , LiAsF 6 , Li
Examples thereof include AlCl 4 and Li (CF 3 SO 2 ) 2 N, and one or a mixture of two or more thereof is used.

【0026】有機溶媒としては、エチレンカーボネー
ト、プロピレンカーボネート、ジメチルカーボネート、
ジエチルカーボネート、エチルメチルカーボネート、ジ
メチルスルホキシド、スルホラン、γ−ブチロラクト
ン、1,2−ジメトキシエタン、N,N−ジメチルホル
ムアミド、テトラヒドロフラン、1,3−ジオキソラ
ン、2−メチルテトラヒドロフラン、ジエチルエーテル
などが例示され、それらの一種または二種以上の混合物
が使用される。また電解液中における上記塩類の濃度
は、0.1〜3モル/リットル程度が適当である。
As the organic solvent, ethylene carbonate, propylene carbonate, dimethyl carbonate,
Diethyl carbonate, ethyl methyl carbonate, dimethyl sulfoxide, sulfolane, γ-butyrolactone, 1,2-dimethoxyethane, N, N-dimethylformamide, tetrahydrofuran, 1,3-dioxolan, 2-methyltetrahydrofuran, diethyl ether, and the like, One or a mixture of two or more thereof is used. The concentration of the above salts in the electrolyte is suitably about 0.1 to 3 mol / l.

【0027】[0027]

【実施例】以下、実施例により本発明を一層詳細に説明
するとともに、比較例をも挙げて本発明の顕著な効果を
示す。
EXAMPLES The present invention will be described in more detail with reference to the following examples, and comparative examples will also be described to show the remarkable effects of the present invention.

【0028】実施例1〜2、比較例1 電解MnO2 とLi2 CO3 との混合物を約750℃で
約15時間焼成し、ついで粉砕して、LiMn2 4
化学式を有する微粉末(330メッシュのタイラー標準
篩を100%通過)のSLM複合酸化物を10ロット製
造した。ついで各ロット毎の溶出Mn量率(酸水溶液の
pH:1±0.2、定量温度:20℃)を測定し、その
値が12.5%(重量%、以下同じ)のロットを実施例
1とし、14.5%のロットを実施例2とし、またその
値が16.4%のロットを比較例1とした。
Examples 1 and 2, Comparative Example 1 A mixture of electrolytic MnO 2 and Li 2 CO 3 was calcined at about 750 ° C. for about 15 hours, and then pulverized to obtain a fine powder having the chemical formula of LiMn 2 O 4 ( Ten lots of SLM composite oxide (100% passed through a 330 mesh Tyler standard sieve) were produced. Then, the eluted Mn content ratio (pH of the aqueous acid solution: 1 ± 0.2, quantification temperature: 20 ° C.) for each lot was measured, and the lot having a value of 12.5% (% by weight, hereinafter the same) was used in Examples. 1, a lot of 14.5% was taken as Example 2, and a lot with a value of 16.4% was taken as Comparative Example 1.

【0029】実施例3〜4、比較例2 電解MnO2 、Li2 CO3 、およびAl(OH)3
混合物を約750℃で約15時間焼成し、ついで粉砕し
て、LiMn1.95Al0.054 の化学式を有する微粉末
(330メッシュのタイラー標準篩を100%通過)の
SLM複合酸化物を10ロット製造した。ついで各ロッ
ト毎の溶出Mn量率(酸水溶液のpH:1±0.2、定
量温度:20℃)を測定し、その値が10.6%のロッ
トを実施例3とし、12.2%のロットを実施例4と
し、またその値が15.3%のロットを比較例2とし
た。
Examples 3-4, Comparative Example 2 A mixture of electrolytic MnO 2 , Li 2 CO 3 , and Al (OH) 3 was calcined at about 750 ° C. for about 15 hours and then pulverized to obtain LiMn 1.95 Al 0.05 O Ten lots of SLM composite oxides of fine powder (100% passed through a 330 mesh Tyler standard sieve) having the chemical formula of 4 were produced. Then, the eluted Mn content rate (pH of the aqueous acid solution: 1 ± 0.2, quantification temperature: 20 ° C.) for each lot was measured, and the lot having the value of 10.6% was determined as Example 3, and 12.2%. Was determined as Example 4 and a lot having a value of 15.3% was determined as Comparative Example 2.

【0030】実施例1〜4および比較例1〜2の各正極
活物質を使用して、正極活物質92重量部、アセチレン
ブラック3重量部、ポリフッ化ビニリデン5重量部、お
よびN−メチル2ピロリドン70重量部とを混合してス
ラリーとした。このスラリーをアルミニウム箔上に塗布
し乾燥して、20mg/cm2 の正極活物質を有する正
極シートを作製した。かくして得た各正極シートとLi
箔とを多孔質ポリエチレンセパレータを介して密着対向
させ、エチレンカーボネートとエチルメチルカーボネー
トとの混合溶媒(混合体積比率は1:1)1リットルあ
たり1モルのLiPF6 を溶解してなる溶液を電解液と
して使用して、これを上記正極シートとLi箔との間に
含浸して密閉コイン型のリチウム二次電池を作製した。
Using each of the positive electrode active materials of Examples 1-4 and Comparative Examples 1-2, 92 parts by weight of the positive electrode active material, 3 parts by weight of acetylene black, 5 parts by weight of polyvinylidene fluoride, and N-methyl-2-pyrrolidone And 70 parts by weight to obtain a slurry. This slurry was applied on an aluminum foil and dried to prepare a positive electrode sheet having a positive electrode active material of 20 mg / cm 2 . Each positive electrode sheet thus obtained and Li
A foil is brought into close contact with a porous polyethylene separator therebetween, and a solution obtained by dissolving 1 mol of LiPF 6 per liter of a mixed solvent of ethylene carbonate and ethyl methyl carbonate (mixing volume ratio is 1: 1) is used as an electrolytic solution. This was impregnated between the positive electrode sheet and the Li foil to produce a sealed coin-type lithium secondary battery.

【0031】各リチウム二次電池につき、下記に示す試
験方法にて充放電サイクルを20回行った。この結果、
20サイクル目の放電容量の保持率(初回サイクル目の
放電容量に対する百分率)は表1の通りであって、各実
施例はいずれも保持率80%以上であって良好な放電容
量を保持しているのに対して、比較例1、比較例2とも
保持率は60%以下となって充放電サイクルにより急激
に放電容量が低下することがわかる。
Each lithium secondary battery was subjected to 20 charge / discharge cycles according to the test method described below. As a result,
The retention rate of the discharge capacity at the 20th cycle (percentage with respect to the discharge capacity at the first cycle) is as shown in Table 1. In each of the examples, the retention rate was 80% or more, and a good discharge capacity was maintained. On the other hand, it can be seen that in both Comparative Examples 1 and 2, the retention was 60% or less, and the discharge capacity was rapidly reduced by the charge / discharge cycle.

【0032】充放電サイクル試験方法:60℃におい
て、正極シートの面積1cm2 あたり1mAの定電流お
よび4.3Vの定電圧下で5時間充電し、ついで正極シ
ートの面積1cm2 あたり0.5mAの定電流のもとで
端子電圧が3Vとなる時点まで放電させ、この後1時間
充放電を休止する。以上の充放電並びに休止を1サイク
ルとして20回繰り返す。各サイクルにおける放電容量
は、放電電流値と放電時間から電気量(mA・H)を算
出し、リチウム二次電池中に含まれている正極活物質の
重量(g)から放電容量(mA・H/g)を得る。
Charge / discharge cycle test method: At 60 ° C., the battery was charged for 5 hours under a constant current of 1 mA / cm 2 of the positive electrode sheet and a constant voltage of 4.3 V, and then charged at a constant current of 0.5 mA / cm 2 of the positive electrode sheet. Discharge is performed until the terminal voltage becomes 3 V under a constant current, and then charging and discharging are paused for 1 hour. The above-described charging / discharging and pausing are repeated 20 times as one cycle. The discharge capacity in each cycle is calculated by calculating the quantity of electricity (mA · H) from the discharge current value and the discharge time, and calculating the discharge capacity (mA · H) from the weight (g) of the positive electrode active material contained in the lithium secondary battery. / G).

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【発明の効果】本発明の溶出Mn量の定量方法は、工場
や研究室などで製造あるいは調製されるSLM複合酸化
物中から充放電サイクル特性の良好なものを選別するた
めの試験方法として工業的にあるいは開発研究上で有用
である。また本発明の正極活物質は、充放電サイクル特
性に優れ且つ品質が安定しているので各種の電気機器と
りわけ携帯用品用の長寿命リチウム二次電池の製造に好
適である。
Industrial Applicability The method for quantifying the amount of dissolved Mn according to the present invention is an industrial method as a test method for selecting those having good charge / discharge cycle characteristics from SLM composite oxides manufactured or prepared in factories and laboratories. It is useful for research or development research. In addition, the positive electrode active material of the present invention is excellent in charge-discharge cycle characteristics and stable in quality, so that it is suitable for production of a long-life lithium secondary battery for various electric devices, especially portable products.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI // G01N 21/73 G01N 21/73 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI // G01N 21/73 G01N 21/73

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 λ−MnO2 を実質的に溶解せず且つp
H2以下の酸水溶液中に検査対象物のスピネル型Li・
Mn系複合酸化物を存在せしめてMnを溶出させ、溶解
平衡状態において該酸水溶液中に溶出したMn量を定量
することを特徴とするスピネル型Li・Mn系複合酸化
物の溶出Mn量の定量方法。
1. The method according to claim 1, wherein substantially no λ-MnO 2 is dissolved and p
Spinel type Li.
Mn eluted in the presence of a Mn-based composite oxide and quantification of the amount of Mn eluted in the spinel-type LiMn-based composite oxide, wherein the amount of Mn eluted in the acid aqueous solution in a solution equilibrium state is determined. Method.
【請求項2】 酸水溶液が、硝酸、硫酸および塩酸から
なる群から選ばれた少なくとも1種の水溶液である請求
項1記載のスピネル型Li・Mn系複合酸化物の溶出M
n量の定量方法。
2. The elution M of the spinel-type Li · Mn-based composite oxide according to claim 1, wherein the acid aqueous solution is at least one aqueous solution selected from the group consisting of nitric acid, sulfuric acid and hydrochloric acid.
A method for determining the amount of n.
【請求項3】 酸水溶液のpHが、1±0.2である請
求項1または2記載のスピネル型Li・Mn系複合酸化
物の溶出Mn量の定量方法。
3. The method according to claim 1, wherein the pH of the aqueous acid solution is 1 ± 0.2.
【請求項4】 請求項1〜3のいずれかに記載の方法で
20℃における溶解平衡状態において定量された溶出M
n量から下式にて算出される溶出Mn量率が15重量%
以下であるスピネル型Li・Mn系複合酸化物を主成分
とすることを特徴とするリチウム二次電池用の正極活物
質。 溶出Mn量率=(〔溶出Mn量〕/〔酸水溶液に投入し
た量の検査対象物のスピネル型Li・Mn系複合酸化物
に含まれる全Mn量〕)×100
4. The eluted M quantified in a solution equilibrium state at 20 ° C. by the method according to claim 1.
The elution Mn content rate calculated from the n content by the following formula is 15% by weight.
A positive electrode active material for a lithium secondary battery, comprising the following spinel-type Li · Mn-based composite oxide as a main component. Eluted Mn amount rate = ([Eluted Mn amount] / [Total Mn amount contained in spinel-type Li · Mn-based composite oxide of amount to be inspected in acid aqueous solution]) × 100
【請求項5】 溶出Mn量率が、13重量%以下である
請求項4記載のリチウム二次電池用の正極活物質。
5. The positive electrode active material for a lithium secondary battery according to claim 4, wherein the amount ratio of dissolved Mn is 13% by weight or less.
JP10001371A 1998-01-07 1998-01-07 Quantitating method for elution mn quantity of spinel li/mn system composite oxide and positive electrode active material for lithium secondary battery Pending JPH11195418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10001371A JPH11195418A (en) 1998-01-07 1998-01-07 Quantitating method for elution mn quantity of spinel li/mn system composite oxide and positive electrode active material for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10001371A JPH11195418A (en) 1998-01-07 1998-01-07 Quantitating method for elution mn quantity of spinel li/mn system composite oxide and positive electrode active material for lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH11195418A true JPH11195418A (en) 1999-07-21

Family

ID=11499650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10001371A Pending JPH11195418A (en) 1998-01-07 1998-01-07 Quantitating method for elution mn quantity of spinel li/mn system composite oxide and positive electrode active material for lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH11195418A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005191003A (en) * 2003-12-01 2005-07-14 Shin Kobe Electric Mach Co Ltd Lithium secondary battery and method of manufacturing lithium secondary battery
CN1324733C (en) * 2003-11-29 2007-07-04 三星Sdi株式会社 Method for preparing positive active material for rechargeable lithium battery and positive active material prepared by same
JP2010078381A (en) * 2008-09-24 2010-04-08 Sumitomo Metal Mining Co Ltd Method for high-precision analysis of metal elements by inductively-coupled plasma emission spectral analysis method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1324733C (en) * 2003-11-29 2007-07-04 三星Sdi株式会社 Method for preparing positive active material for rechargeable lithium battery and positive active material prepared by same
JP2005191003A (en) * 2003-12-01 2005-07-14 Shin Kobe Electric Mach Co Ltd Lithium secondary battery and method of manufacturing lithium secondary battery
JP2010078381A (en) * 2008-09-24 2010-04-08 Sumitomo Metal Mining Co Ltd Method for high-precision analysis of metal elements by inductively-coupled plasma emission spectral analysis method

Similar Documents

Publication Publication Date Title
Woo et al. Significant improvement of electrochemical performance of AlF3-coated Li [Ni0. 8Co0. 1Mn0. 1] O2 cathode materials
JP3024636B2 (en) Non-aqueous electrolyte secondary battery
JP4216669B2 (en) Lithium / nickel / manganese / cobalt composite oxide and lithium ion secondary battery using the same as positive electrode active material
JP4111806B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2002175808A (en) Lithium/transition metal compound oxide for cathode active material of lithium secondary battery, and its manufacturing method
JP3858699B2 (en) Lithium nickel composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using the same
JP4788075B2 (en) Lithium transition metal composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using the same
JP4628704B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
WO2016199732A1 (en) Positive electrode active material for magnesium secondary cell, positive electrode for magnesium secondary cell, and magnesium secondary cell
JP2002270181A (en) Non-aqueous electrolyte battery
JPH11121006A (en) Positive electrode active material for lithium secondary battery
JP5819786B2 (en) Lithium cuprate positive electrode material, method for producing the positive electrode material, and lithium secondary battery containing the positive electrode material as a positive electrode active material
JPH11195418A (en) Quantitating method for elution mn quantity of spinel li/mn system composite oxide and positive electrode active material for lithium secondary battery
JP2001297750A (en) Power-generating element for lithium secondary battery and lithium secondary battery using same
JP2001068093A (en) Positive electrode active material composition and lithium ion secondary battery using the same
Manickam et al. Lithium intercalation cells LiMn2O4/LiTi2O4 without metallic lithium
JP4697504B2 (en) Lithium nickel composite oxide for positive electrode active material of lithium secondary battery and method for producing the same
JP2001043854A (en) Active material for nonaqueous electrolyte battery and nonaqueous electrolyte battery using it
JP2000128540A (en) Manganese oxide, its production, lithium manganese multiple oxide produced with the same and production of the same multiple oxide
JPH11191416A (en) Positive electrode active material for lithium secondary battery
JP3495639B2 (en) Lithium-manganese composite oxide, method for producing the same, and lithium secondary battery using the composite oxide
JP2002343356A (en) Lithium manganese double oxide particle, its manufacturing method and secondary battery
JP2003007341A (en) Characteristic evaluation method for secondary lithium battery
JP3818753B2 (en) Method for producing lithium manganese composite oxide for non-aqueous lithium secondary battery
JPH10261416A (en) Lithium battery composite oxide, its manufacture, and its usage