JPH1116561A - Battery separator, its manufacture and nonaqueous secondary battery - Google Patents

Battery separator, its manufacture and nonaqueous secondary battery

Info

Publication number
JPH1116561A
JPH1116561A JP9165648A JP16564897A JPH1116561A JP H1116561 A JPH1116561 A JP H1116561A JP 9165648 A JP9165648 A JP 9165648A JP 16564897 A JP16564897 A JP 16564897A JP H1116561 A JPH1116561 A JP H1116561A
Authority
JP
Japan
Prior art keywords
polyvinylidene fluoride
fluoride resin
inorganic filler
battery
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9165648A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Miyaki
義行 宮木
Kazuyoshi Ohashi
和義 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkema KK
Original Assignee
Elf Atochem Japan KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elf Atochem Japan KK filed Critical Elf Atochem Japan KK
Priority to JP9165648A priority Critical patent/JPH1116561A/en
Priority to PCT/EP1998/004001 priority patent/WO1998059384A1/en
Priority to TW087109667A priority patent/TW424347B/en
Publication of JPH1116561A publication Critical patent/JPH1116561A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a separator having excellent mechanical strength and ion conductivity by using a polyvinylidene fluoride resin porous body, and dispersing an inorganic filler in the porous body. SOLUTION: This polyvinylidene fluoride resin preferably consists of a vinylidene fluoride homopolymer, and the polyvinylidene fluoride resin consists of a copolymer of at least one monomer selected from ethylene tetrafluoride, propylene hexafluoride, ethylene trifluoride, and ethylene trifluoride chloride with vinylidene fluoride. The ratio of the vinylidene fluoride component in the copolymer is preferably 50 wt.% or more. To 100 pts.wt. of the polyvinylidene fluoride resin, 2-200 pts.wt. of an inorganic filler is contained. The inorganic filler is selected from inorganic oxides and silicates, and preferably selected from alumina and silica.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、バッテリーセパレー
タ、その製造方法、およびそのセパレータを用いた非水
系二次電池に関する。その目的とする所は、厚さが薄く
て、可撓性および機械的強度に優れたリチウム二次電池
などの非水系二次電池の製造方法を提供することにあ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery separator, a method of manufacturing the same, and a non-aqueous secondary battery using the separator. It is an object of the present invention to provide a method for manufacturing a non-aqueous secondary battery such as a lithium secondary battery having a small thickness and excellent flexibility and mechanical strength.

【0002】[0002]

【従来の技術】リチウム電池等非水系の電池に用いられ
るセパレータは、正負電極間の短絡を防止したり、セパ
レータに無数に開いている孔中に電解液を保持すること
により導電性を確保する役割を担っている。従来、その
代表的なものとして、ポリエチレン(PE)やポリプロ
ピレン(PP)製の多孔質膜、PEとPPを張り合わせ
た二層膜、PPの間にPEを挟んだ三層膜などが使われ
てきた。しかし、PEやPPは可燃性材料であり、特に
リチウム電池においては、より安全性の高い材料が要望
されている。
2. Description of the Related Art A separator used for a non-aqueous battery such as a lithium battery ensures conductivity by preventing a short circuit between a positive electrode and a negative electrode and by holding an electrolyte in a myriad of holes formed in the separator. Has a role. Conventionally, as typical examples, a porous film made of polyethylene (PE) or polypropylene (PP), a two-layer film in which PE and PP are bonded, a three-layer film in which PE is sandwiched between PP, and the like have been used. Was. However, PE and PP are flammable materials, and particularly for lithium batteries, materials with higher safety are demanded.

【0003】最近、LiPF6等のLi塩をカーボネー
ト系溶媒に溶かしてなる溶液を弗化ビニリデン系共重合
体フィルムに膨潤させてセパレータ(高分子ゲル電解
質)として用いるリチウム電池が提案された(公表特許
公報、平8−507407および平8−50910
0)。このような電池の作製においては、弗化ビニリデ
ン系共重合体と可塑剤とを含んでなるフィルムを作製
し、この後、このフィルムから低沸点溶媒を用いて可塑
剤を除去するか、電解質塩の溶液で置換するという複雑
な工程を要する。また、溶媒で膨潤した弗化ビニリデン
系共重合体フィルムは、通常、高温(50℃以上)での
耐温度性が不十分となったり、低温(0℃以下)での容
量等の電池特性が低下し易い。
Recently, there has been proposed a lithium battery in which a solution prepared by dissolving a Li salt such as LiPF6 in a carbonate-based solvent is used as a separator (polymer gel electrolyte) by swelling a vinylidene fluoride-based copolymer film (published patent). Gazette, Hei 8-507407 and Hei 8-50910
0). In the production of such a battery, a film containing a vinylidene fluoride copolymer and a plasticizer is prepared, and then the plasticizer is removed from the film using a low-boiling solvent, or the electrolyte salt is removed. A complicated process of replacing with a solution is required. Further, a vinylidene fluoride copolymer film swollen with a solvent usually has insufficient temperature resistance at a high temperature (50 ° C. or more) or has poor battery characteristics such as capacity at a low temperature (0 ° C. or less). Easy to fall.

【0004】また、ポリ弗化ビニリデン系樹脂からなる
多孔性フィルムをセパレータとして用いることが提案さ
れた(公開特許公報 特開平8−250127;鳥山
ら、第37回電池討論会講演要旨集、239ページ、1
996年)。これらの文献によれば、ポリ弗化ビニリデ
ン系樹脂は有機電解液によって膨潤(可塑化)し、その
マトリックス部分もイオン伝導に寄与するようになるた
めに、この多孔性フィルムをセパレータに用いれば、ポ
リエチレンやポリプロピレン製多孔性フィルムを用いた
時よりも大きなイオン伝導度が得られるとされている。
しかしながら、この場合、高いイオン導伝性を得るには
多孔度の大きな多孔性フィルムを用いる必要があり、セ
パレータの機械的強度が問題となる。
Further, it has been proposed to use a porous film made of polyvinylidene fluoride resin as a separator (Japanese Patent Laid-Open Publication No. Hei 8-250127; Toriyama et al., Proceedings of the 37th Battery Symposium, page 239). , 1
996). According to these documents, polyvinylidene fluoride resin swells (plasticizes) with an organic electrolytic solution, and its matrix portion also contributes to ion conduction. Therefore, if this porous film is used for a separator, It is said that higher ionic conductivity can be obtained than when a porous film made of polyethylene or polypropylene is used.
However, in this case, in order to obtain high ion conductivity, it is necessary to use a porous film having large porosity, and the mechanical strength of the separator becomes a problem.

【0005】[0005]

【発明が解決しようとする課題】本発明者らは、従来の
ポリエチレンやポリプロピレン製多孔体、高分子ゲル電
解質における欠点を解決し、機械的強度とイオン伝導性
に優れたポリ弗化ビニリデン系樹脂多孔体からなるバッ
テリーセパレータを得るべく検討の結果、本発明に到達
した。
DISCLOSURE OF THE INVENTION The present inventors have solved the drawbacks of conventional porous bodies made of polyethylene or polypropylene and polymer gel electrolytes, and have obtained polyvinylidene fluoride resins having excellent mechanical strength and ion conductivity. As a result of investigations to obtain a battery separator made of a porous body, the present invention has been reached.

【0006】[0006]

【課題を解決するための手段】本発明は、ポリ弗化ビニ
リデン系樹脂多孔体からなり、該多孔体中に無機充填材
が分散されていることを特徴とするバッテリーセパレー
タに関する。
SUMMARY OF THE INVENTION The present invention relates to a battery separator comprising a porous polyvinylidene fluoride resin, wherein an inorganic filler is dispersed in the porous body.

【0007】本発明で用いられる「ポリ弗化ビニリデン
系樹脂」とは、樹脂の構成単位として弗化ビニリデンを
少なくとも50重量%以上、好ましくは75重量%以上
含有する熱可塑性弗素系樹脂である。従って、弗化ビニ
リデン単独から成るホモポリマ−に限定されず、弗化ビ
ニリデンと以下のモノマーから選ばれる1種類以上のモ
ノマーとの共重合体であってもよい。共重合可能なモノ
マーとしては、四弗化エチレン、三弗化エチレン、三弗
化塩化エチレン、弗化ビニル、六弗化プロピレン、エチ
レン、パ−フルオロアルキルビニルエ−テル等が例示さ
れる。ポリ弗化ビニリデン系共重合体としては、弗化ビ
ニリデンと六弗化プロピレンとの共重合体(六弗化プロ
ピレン含量が15重量%以下)が好んで用いられる。こ
のような熱可塑性ポリ弗化ビニリデン系樹脂は、乳化重
合、懸濁重合等一般に行われている重合方法によって得
られ、メルトフローレート(MFR)値が0.005〜
100g/10分(230℃、2.16kg荷重下で測
定)のものが好ましく、さらに好ましくは、0.01〜
20g/10分である。
The "polyvinylidene fluoride resin" used in the present invention is a thermoplastic fluorine resin containing at least 50% by weight, preferably 75% by weight or more of vinylidene fluoride as a constituent unit of the resin. Therefore, the copolymer is not limited to a homopolymer composed of vinylidene fluoride alone, and may be a copolymer of vinylidene fluoride and one or more monomers selected from the following monomers. Examples of the copolymerizable monomer include ethylene tetrafluoride, ethylene trifluoride, ethylene trifluoride chloride, vinyl fluoride, propylene hexafluoride, ethylene, and perfluoroalkyl vinyl ether. As the polyvinylidene fluoride-based copolymer, a copolymer of vinylidene fluoride and propylene hexafluoride (propylene hexafluoride content of 15% by weight or less) is preferably used. Such a thermoplastic polyvinylidene fluoride resin is obtained by a commonly used polymerization method such as emulsion polymerization and suspension polymerization, and has a melt flow rate (MFR) value of 0.005 to 0.005.
100 g / 10 min (measured at 230 ° C. under a load of 2.16 kg) is preferable, and more preferably 0.01 to 10 min.
20 g / 10 min.

【0008】本発明においては、ポリ弗化ビニリデン系
樹脂100重量部に対して、無機充填材は2から200
重量部含有され、さらに好ましくは、5から50重量部
である。
In the present invention, the inorganic filler is used in an amount of 2 to 200 parts by weight based on 100 parts by weight of the polyvinylidene fluoride resin.
Parts by weight, more preferably 5 to 50 parts by weight.

【0009】本発明で使用される無機充填材としては、
一般に高分子材料に対して用いられている数々の種類の
ものが使用可能である(参考文献:「フィラー活用事
典」フィラー研究会編、大成社、1994年)。特に、
無機酸化物類やケイ酸塩類が好ましく用いられる。無機
酸化物の例として、シリカ、アルミナ、珪藻土、酸化チ
タン、酸化カルシウム、酸化亜鉛、酸化マグネシウム、
酸化スズ、フェライト等がある。これらのうち、アルミ
ナおよび熱分解法シリカが特に好ましく用いられる。ま
た、ケイ酸塩類の例として、ケイ酸カルシウム、タル
ク、マイカ、モンモリロナイト、ベントナイト、セピオ
ライト、イモゴライト、セリサイト、ガラス繊維、ガラ
スビースなどがある。このような無機充填材の形状は特
に限定されず、繊維状、針状、板状、粒状のものが使用
可能である。
The inorganic filler used in the present invention includes:
Numerous types of materials generally used for polymer materials can be used (Reference: “Filler Encyclopedia” edited by Filler Research Group, Taiseisha, 1994). Especially,
Inorganic oxides and silicates are preferably used. Examples of the inorganic oxide, silica, alumina, diatomaceous earth, titanium oxide, calcium oxide, zinc oxide, magnesium oxide,
There are tin oxide and ferrite. Of these, alumina and pyrogenic silica are particularly preferably used. Examples of the silicates include calcium silicate, talc, mica, montmorillonite, bentonite, sepiolite, imogolite, sericite, glass fiber, and glass beads. The shape of such an inorganic filler is not particularly limited, and fibrous, needle-like, plate-like, and granular shapes can be used.

【0010】また、上記の無機充填材においては、表面
に存在するシラノール基などの水酸基を持つ官能基をハ
ロシラン、アルコキシシラン、シラザン、シロキサン等
のシラン化合物と反応させることによって表面が疎水化
されていてもよい。
In the above-mentioned inorganic filler, the surface is hydrophobized by reacting a functional group having a hydroxyl group such as a silanol group present on the surface with a silane compound such as halosilane, alkoxysilane, silazane or siloxane. You may.

【0011】本発明のバッテリーセパレータを作製する
方法としては、特に限定されず、高分子樹脂から多孔体
を作製する公知の方法が適用可能である。この代表的方
法として、使用する高分子樹脂の溶剤と非溶剤を用いた
ゾル−ゲル法と呼ばれる方法がある。すなわち、ポリ弗
化ビニリデン系樹脂を溶媒に溶かしてなる溶液中に上記
の無機充填材を分散せしめ、この溶液をポリ弗化ビニリ
デン系樹脂の非溶媒に接触せしめることにより多孔体を
作製することができる。この場合、ポリ弗化ビニリデン
系樹脂を溶解する溶媒として、N−メチルピロリドン、
ホルムアミド、ジメチルホルムアミド、ジメチルアセト
アミド、ジメチルスルホキシド、γ−ブチロラクトン、
テトラメチルウレア、トリメチルホスフェート、アセト
ン、メチルエチルケトン、テトラヒドロフランなどが用
いられる。また、これらの混合溶媒として用いてもよ
い。溶液中に含まれるポリ弗化ビニリデン系樹脂の濃度
は、通常、5〜50重量%であり、好ましくは、10〜
30重量%である。貧溶媒としては、水、アルコール類
が好ましく用いられ、特に、水が好ましい。
The method for producing the battery separator of the present invention is not particularly limited, and a known method for producing a porous body from a polymer resin can be applied. As a typical method, there is a method called a sol-gel method using a solvent and a non-solvent of a polymer resin to be used. That is, it is possible to produce a porous body by dispersing the above-mentioned inorganic filler in a solution obtained by dissolving a polyvinylidene fluoride resin in a solvent, and bringing this solution into contact with a non-solvent of the polyvinylidene fluoride resin. it can. In this case, as a solvent for dissolving the polyvinylidene fluoride resin, N-methylpyrrolidone,
Formamide, dimethylformamide, dimethylacetamide, dimethylsulfoxide, γ-butyrolactone,
Tetramethyl urea, trimethyl phosphate, acetone, methyl ethyl ketone, tetrahydrofuran and the like are used. Moreover, you may use as a mixed solvent of these. The concentration of the polyvinylidene fluoride resin contained in the solution is usually 5 to 50% by weight, preferably 10 to 50% by weight.
30% by weight. As the poor solvent, water and alcohols are preferably used, and water is particularly preferable.

【0012】上述のように作製した無機充填材を分散し
たポリ弗化ビニリデン系樹脂溶液を貧溶媒に接触せしめ
ることにより、直ちにゾルーゲル転移が開始され、多孔
体が生じる。この場合、ポリ弗化ビニリデン系樹脂を溶
解する溶媒の含有量の低い貧溶媒を用い、多孔体中の溶
媒を抽出するために十分長い時間貧溶媒と接触させるこ
とが望ましい。この接触時間は、多孔体のサイズによっ
て異なるが、通常、10秒以上が望ましく、さらに望ま
しくは、30秒以上である。
When the polyvinylidene fluoride resin solution in which the inorganic filler prepared as described above is dispersed is brought into contact with a poor solvent, the sol-gel transition starts immediately, and a porous body is formed. In this case, it is desirable to use a poor solvent having a low content of a solvent that dissolves the polyvinylidene fluoride resin, and to contact the poor solvent for a sufficiently long time to extract the solvent in the porous body. The contact time varies depending on the size of the porous body, but is usually preferably 10 seconds or more, and more preferably 30 seconds or more.

【0013】バッテリーセパレータとして望ましい多孔
体の形状は、フィルム状である。厚さとしては、5〜2
00μmが好ましく、さらに好ましくは、10〜100
μmである。孔径は、20μm以下が好ましく、さらに
好ましくは、0.05〜10μmである。多孔度として
は、5〜85%が好ましく、さらに好ましくは、20〜
80%である。
The preferred shape of the porous body as the battery separator is a film. 5-2 as thickness
00 μm, more preferably 10 to 100
μm. The pore size is preferably 20 μm or less, and more preferably 0.05 to 10 μm. The porosity is preferably 5 to 85%, more preferably 20 to 85%.
80%.

【0014】本発明の多孔体は、さらに必要に応じて、
延伸(熱延伸あるいは冷延伸)、および処理のいずれか
あるいは両方を施すことによって、結晶化度を高めたり
結晶構造を固定することができる。延伸倍率は、樹脂の
種類(分子量やコモノマーの割合)や多孔体の作製条件
にもよるが、1.1〜6倍且つ破断延伸倍率未満、好ま
しくは1.2〜4倍である。延伸は一軸でも二軸(同
時、逐次)でも良い。推奨される熱処理温度は、70〜
155℃、好ましくは100〜150℃である。熱処理
はフリー状態でも制限収縮、定長、或いは緊張状態でも
良いが、緊張状態の場合は10%以下、好ましくは5%
以下の緊張率が良い。要は溶融固化されたときに発生し
た球晶が破壊されない範囲であり、破壊されて微結晶に
移行する以前の状態で成長させることが好ましい。
The porous body of the present invention may further comprise, if necessary,
By performing stretching (hot stretching or cold stretching) and / or treatment, the crystallinity can be increased or the crystal structure can be fixed. The stretching ratio is 1.1 to 6 times and less than the breaking stretching ratio, and preferably 1.2 to 4 times, depending on the type of resin (molecular weight and comonomer ratio) and the production conditions of the porous body. Stretching may be uniaxial or biaxial (simultaneous, sequential). Recommended heat treatment temperature is 70 ~
The temperature is 155 ° C, preferably 100 to 150 ° C. The heat treatment may be in a free state or a limited shrinkage, a fixed length, or a strained state. In the case of a strained state, 10% or less, preferably 5%.
The following tension rates are good. The point is that the spherulite generated when melted and solidified is not destroyed, and it is preferable to grow the spherulite in a state before the spherulite is broken and transferred to microcrystals.

【0015】本発明の多孔体は高エネルギー(通常、2
から40メガラッド)の電子線やγ線の照射あるいは化
学的な脱HF反応により架橋を導入することが可能であ
る。これにより、多孔体の耐熱性や機械的強度の向上が
可能となる。
The porous material of the present invention has a high energy (usually 2
To 40 megarads) or by irradiation with an electron beam or γ-ray or a chemical deHF reaction. Thereby, the heat resistance and mechanical strength of the porous body can be improved.

【0016】以下に、上述のようにして得られた多孔質
フィルムのリチウム電池への応用について説明する。す
なわち、陽極活性物質層を集電体の少なくとも片面に形
成させてなる陽極、陰極活性物質層を集電体の少なくと
も片面に形成させてなる陰極、および上述の多孔性フィ
ルムを用い、陽極と陰極が直接接触しないように両者の
間に多孔質フィルムを差し挟み、これらを積層するかあ
るいはロール状(渦巻状)に巻回したものを適当な容器
に収納し、これに、LiPF6、LiBF4、LiClO4、LiAsF6、Li
N(CF3SO2)2、LiCF3SO3、LiSbF6等から選ばれる少なくと
も1種類のリチウム塩を、適切な溶媒(主に、エチレン
カーボネート、プロピレンカーボネート、ジメチルカー
ボネート等のカーボネート系)に溶解させてなる電解質
溶液を添加し、容器を密閉して最終的に電池が得られ
る。すなわち、本発明の多孔質フィルムは、その孔の部
分に上記の電解質溶液を満たした状態で使用され、同時
に多孔質フィルムのポリ弗化ビニリデン系樹脂からなる
マトリックス部分はその電解質溶液で膨潤した状態とな
る。
Hereinafter, the application of the porous film obtained as described above to a lithium battery will be described. That is, an anode having an anode active material layer formed on at least one surface of a current collector, a cathode having a cathode active material layer formed on at least one surface of a current collector, and an anode and a cathode using the porous film described above. A porous film is inserted between them so that they do not come into direct contact with each other, and they are laminated or wound in a roll (spiral) and stored in a suitable container, and LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , Li
Dissolve at least one lithium salt selected from N (CF 3 SO 2 ) 2 , LiCF 3 SO 3 , LiSbF 6 and the like in a suitable solvent (mainly a carbonate system such as ethylene carbonate, propylene carbonate and dimethyl carbonate) The resulting electrolyte solution is added, the container is sealed, and a battery is finally obtained. That is, the porous film of the present invention is used in a state where the pores are filled with the above electrolyte solution, and at the same time, the matrix portion of the porous film made of polyvinylidene fluoride resin is swollen with the electrolyte solution. Becomes

【0017】ここで、電極の集電体としては、金属箔、
金属メッシュ、三次元多孔体等があるが、この集電体に
用いる金属としては、リチウムと合金ができ難い金属が
望ましく、特に、鉄、ニッケル、コバルト、銅、アルミ
ニウム、チタン、バナジウム、クロム、マンガンが単
独、あるいはこれらの合金で用いられる。
Here, as the current collector of the electrode, a metal foil,
Although there are a metal mesh, a three-dimensional porous body, and the like, as a metal used for the current collector, a metal that is difficult to alloy with lithium is desirable, and particularly, iron, nickel, cobalt, copper, aluminum, titanium, vanadium, chromium, Manganese is used alone or in these alloys.

【0018】電極活性物質のうち負極活性物質として
は、リチウムイオンをドーピング、脱ドーピングし得る
材料であればよい。このような材料として、石油系コー
クスや炭素系コークスなどのコークス材料、アセチレン
ブラックなどのカーボンブラック類、グラファイト、ガ
ラス状炭素、活性炭、炭素繊維、有機高分子を非酸化性
雰囲気中で焼成して得られる有機高分子焼成体等の炭素
質材料がある。また、酸化銅を添加する場合もある。
The negative electrode active material of the electrode active material may be any material that can dope and dedope lithium ions. Such materials include coke materials such as petroleum coke and carbon coke, carbon blacks such as acetylene black, graphite, glassy carbon, activated carbon, carbon fiber, and organic polymers fired in a non-oxidizing atmosphere. There is a carbonaceous material such as a fired organic polymer obtained. In some cases, copper oxide is added.

【0019】また、正極活性物質としては、マンガン酸
化物、五酸化バナジウムのような遷移金属酸化物、硫化
鉄、硫化チタンのような遷移金属酸化物、さらにこれら
とリチウムとの複合化合物(例えば、リチウムコバルト
複合酸化物、リチウムコバルトニッケル複合酸化物、リ
チウムマンガン酸化物)などを使用することができる。
これらの材料を正極に組み込む場合も、粉体状の正極活
性物質に導電体(カーボンを用いることが多い)と結着
剤を適量添加した混合物に溶媒を混ぜてペースト状にし
たものを集電体に塗布、乾燥後、必要に応じてプレスし
て電極が得られる。
Examples of the positive electrode active substance include transition metal oxides such as manganese oxide and vanadium pentoxide, transition metal oxides such as iron sulfide and titanium sulfide, and composite compounds of these with lithium (for example, Lithium cobalt composite oxide, lithium cobalt nickel composite oxide, lithium manganese oxide) and the like can be used.
When these materials are incorporated into the positive electrode, a paste is prepared by mixing a solvent with a mixture of a powdered positive electrode active material and an appropriate amount of a conductor (often using carbon) and a binder. After application to the body and drying, pressing is performed as necessary to obtain an electrode.

【0020】[0020]

【実施例】以下、実施例によって本発明を具体的に説明
するが、本発明はこれだけに限定されるものではない。
EXAMPLES The present invention will be described below in detail with reference to examples, but the present invention is not limited to these examples.

【0021】[0021]

【実施例1】カイナー741(エルフ・アトケム社製ポ
リ弗化ビニリデン樹脂、MFR値が0.3g/10分
(230℃、2.16kg荷重下で測定))15重量部
を85重量部のN−メチルピロリドンに溶解した。この
溶液に 四塩化ケイ素と水素から燃焼法によって得られ
た非晶質シリカ(一次粒子径、20nm)4重量部を分
散させ、ポリエチレンテレフタレート製支持フィルム上
に流延し、水中に2時間浸漬し、50μmの厚さを有す
る多孔性フィルムを得た。このフィルム中のシリカ含有
率は21重量%であった。フィルムは約40%の多孔度
を有し、内部には1μm程度の孔が多数認められた。
Example 1 15 parts by weight of Kynar 741 (polyvinylidene fluoride resin manufactured by Elf Atchem Co., Ltd., having an MFR value of 0.3 g / 10 minutes (measured at 230 ° C. under a load of 2.16 kg)) were replaced by 85 parts by weight of N -Dissolved in methylpyrrolidone. 4 parts by weight of amorphous silica (primary particle diameter, 20 nm) obtained by a combustion method from silicon tetrachloride and hydrogen was dispersed in this solution, cast on a polyethylene terephthalate support film, and immersed in water for 2 hours. , A porous film having a thickness of 50 μm was obtained. The silica content in this film was 21% by weight. The film had a porosity of about 40%, and many pores of about 1 μm were found inside.

【0022】このフィルムをエチレンカーボネート(E
C)とプロピレンカーボネート(PC)の1:1混合液
にLiPF6を1Mの濃度に溶解した電解質溶液に1時
間浸漬した後、通常のブリッジを用いて導電率を測定し
たところ、比較例1に比べて約3倍の値が得られた。こ
の電解質溶液で膨潤したフィルムを60℃に加熱したと
ころ、フィルムの形状は壊れることなく安定であること
が分かった。
This film was treated with ethylene carbonate (E
C) and propylene carbonate (PC) were immersed for 1 hour in an electrolyte solution in which LiPF 6 was dissolved at a concentration of 1 M in a 1: 1 mixture, and the conductivity was measured using a normal bridge. About three times the value was obtained. When the film swollen with this electrolyte solution was heated to 60 ° C., it was found that the shape of the film was stable without breaking.

【0023】[0023]

【実施例2】負極活性物質担持体として石炭ピッチコー
クスをボールミルで粉砕したもの100重量部を、結着
剤としてポリ弗化ビニリデン(エルフ・アトケム社製、
カイナー301F、230℃、2.16kg荷重下での
MFRが0.03g/10分)10重量部をN−メチル
ピロリドンに溶解してなる溶液に添加してスラリー(ペ
ースト)状にした。このスラリーを、厚さ20μmの銅
箔の両面に塗布し、120℃で1時間放置した後、減圧
乾燥、プレスを行い厚さ140μm、幅20mmの負極
を得た。
Example 2 100 parts by weight of a coal pitch coke pulverized by a ball mill as a negative electrode active material carrier was used as a binder, polyvinylidene fluoride (manufactured by Elf Atochem Co., Ltd .;
10 parts by weight of Kynar 301F (230 ° C., MFR under a load of 2.16 kg of 0.03 g / 10 min) was added to a solution of N-methylpyrrolidone to form a slurry (paste). This slurry was applied to both sides of a copper foil having a thickness of 20 μm, left at 120 ° C. for 1 hour, dried under reduced pressure, and pressed to obtain a negative electrode having a thickness of 140 μm and a width of 20 mm.

【0024】次に、正極を次のようにして得た。正極活
性物質としてのLiCoO2100重量部と導電剤とし
てのグラファイト6重量部とを、結着剤としてのポリ弗
化ビニリデン(カイナー301F)10重量部をN−メ
チルピロリドン中に分散させてスラリー(ペースト)状
にした。このスラリーを、厚さ20μmのアルミニウム
箔の両面に塗布し、120℃で1時間放置した後、減圧
乾燥、プレスを行い、厚さ160μm、幅20mmの正
極を得た。
Next, a positive electrode was obtained as follows. 100 parts by weight of LiCoO 2 as a positive electrode active material and 6 parts by weight of graphite as a conductive agent, and 10 parts by weight of polyvinylidene fluoride (Kyner 301F) as a binder are dispersed in N-methylpyrrolidone to form a slurry ( Paste). This slurry was applied to both surfaces of a 20-μm-thick aluminum foil, left at 120 ° C. for 1 hour, dried under reduced pressure, and pressed to obtain a positive electrode having a thickness of 160 μm and a width of 20 mm.

【0025】また、得られた負極、正極、およびセパレ
ータとして実施例1で得られた多孔性フィルムを用い、
セパレータ、負極、セパレータ、正極、セパレータの順
に積層した後、この積層体を渦巻状に巻回することによ
り渦巻式の電極体を作製した。ついでこの電極体のそれ
ぞれの極にリード線を付けた後、ステンレスの缶に収容
し、これに電解液としてプロピレンカーボネートと1,
2−ジメトキシエタンとの等容量混合溶媒中にLiPF
6を1M溶解した溶液を注入した。
The porous film obtained in Example 1 was used as the obtained negative electrode, positive electrode, and separator,
After laminating the separator, the negative electrode, the separator, the positive electrode, and the separator in this order, the spirally wound electrode body was produced by spirally winding the laminate. Next, after a lead wire was attached to each electrode of the electrode body, the electrode body was housed in a stainless steel can, and propylene carbonate was added thereto as an electrolytic solution.
LiPF in an equal volume mixed solvent with 2-dimethoxyethane
A solution of 6 dissolved in 1M was injected.

【0026】充放電試験は、炭素1gあたり30mAの
電流密度で、初めに4.1Vまで充電を行い、続いて同
じ電流で2.5Vまで放電を行った。2回目以降もこれ
と同じ条件で充放電を繰り返し、放電容量にて電池の評
価を行った。その結果、100サイクル目の放電容量
は、10サイクル目のそれの60%以上と良好であっ
た。
In the charge / discharge test, the battery was charged to 4.1 V at a current density of 30 mA per g of carbon, and then discharged to 2.5 V at the same current. After the second time, charging and discharging were repeated under the same conditions, and the battery was evaluated by discharge capacity. As a result, the discharge capacity at the 100th cycle was as good as 60% or more of that at the 10th cycle.

【0027】[0027]

【実施例3】実施例1において、カイナー741に替え
てエルフ・アトケム社製の弗化ビニリデンと六弗化プロ
ピレンとの共重合体であるカイナー2801(六弗化プ
ロピレン含量、約10重量%、MFR値が0.2g/1
0分(230℃、2.16kg荷重下で測定))、シリ
カに替えてα−アルミナの微粒子を使用した他は実施例
1と同様にして多孔性フィルムを作製した。このフィル
ム中のアルミナ含有率は21重量%であった。フィルム
は約30%の多孔度を有し、内部には1μm程度の孔が
多数認められた。また、実施例1と同様に導電率を測定
したところ、比較例2に比べて約3倍の値が得られた。
Example 3 In Example 1, Kyner 2801 (propylene hexafluoride content, about 10% by weight, a copolymer of vinylidene fluoride and propylene hexafluoride, manufactured by Elf Atochem Co., Ltd.) was used in place of Kynar 741. MFR value 0.2g / 1
At 0 minutes (measured at 230 ° C. under a load of 2.16 kg), a porous film was produced in the same manner as in Example 1 except that fine particles of α-alumina were used instead of silica. The alumina content in this film was 21% by weight. The film had a porosity of about 30%, and many pores of about 1 μm were found inside. Further, when the conductivity was measured in the same manner as in Example 1, a value approximately three times as large as that in Comparative Example 2 was obtained.

【0028】[0028]

【比較例1】15重量部のカイナー741を85重量部
のN−メチルピロリドンに溶解した溶液をポリエチレン
テレフタレート製支持フィルム上に流延し、水中に2時
間浸漬し、50μmの厚さを有する多孔性フィルムを得
た。このフィルムは約40%の多孔度を有し、内部には
1μm程度の孔が多数認められた。このフィルムをエチ
レンカーボネート(EC)とプロピレンカーボネート
(PC)の1:1混合液にLiPF6を1Mの濃度に溶
解した電解質溶液に1時間浸漬した後、通常のブリッジ
を用いて導電率を測定したところ、0.3mS/cmで
あった。
Comparative Example 1 A solution prepared by dissolving 15 parts by weight of Kynar 741 in 85 parts by weight of N-methylpyrrolidone was cast on a support film made of polyethylene terephthalate and immersed in water for 2 hours to form a porous film having a thickness of 50 μm. A functional film was obtained. This film had a porosity of about 40%, and many pores of about 1 μm were found inside. This film was immersed in an electrolyte solution of LiPF 6 at a concentration of 1 M in a 1: 1 mixture of ethylene carbonate (EC) and propylene carbonate (PC) for 1 hour, and then the conductivity was measured using a normal bridge. However, it was 0.3 mS / cm.

【0029】[0029]

【比較例2】比較例1において、カイナー741に替え
てカイナー2801を使用した他は比較例1と同様にし
て多孔性フィルムを作製した。フィルムは約30%の多
孔度を有し、内部には1μm程度の孔が多数認められ
た。また、比較例1と同様に導電率を測定したところ、
0.4mS/cmであった。
Comparative Example 2 A porous film was produced in the same manner as in Comparative Example 1 except that the Kynar 2801 was used instead of the Kynar 741. The film had a porosity of about 30%, and many pores of about 1 μm were found inside. Also, when the conductivity was measured in the same manner as in Comparative Example 1,
0.4 mS / cm.

【0030】[0030]

【発明の効果】以上説明したように、本発明のバッテリ
ーセパレータは大きなイオン導電性を有し、作製が容易
で、機械的特性にも優れる。これをリチウム電池のセパ
レータに応用すれば、ポリ弗化ビニリデン系樹脂は難燃
性であるため、ポリエチレン製のセパレータを用いる場
合よりも安全性の高い電池となる。
As described above, the battery separator of the present invention has high ionic conductivity, is easy to manufacture, and has excellent mechanical properties. If this is applied to a lithium battery separator, the polyvinylidene fluoride-based resin is flame-retardant, so that the battery has higher safety than when a polyethylene separator is used.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 ポリ弗化ビニリデン系樹脂多孔体からな
り、該多孔体中に無機充填材が分散されていることを特
徴とするバッテリーセパレータ。
1. A battery separator comprising a polyvinylidene fluoride resin porous body, wherein an inorganic filler is dispersed in the porous body.
【請求項2】 ポリ弗化ビニリデン系樹脂が弗化ビニリ
デン単独重合体である請求項1記載のバッテリーセパレ
ータ。
2. The battery separator according to claim 1, wherein the polyvinylidene fluoride resin is a vinylidene fluoride homopolymer.
【請求項3】 ポリ弗化ビニリデン系樹脂が、四弗化エ
チレン、六弗化プロピレン、三弗化エチレン、および三
弗化塩化エチレンから選ばれる少なくとも1種類のモノ
マーと弗化ビニリデンとの共重合体であり、該共重合体
中の弗化ビニリデン成分の比率が50重量%以上である
請求項1記載のバッテリーセパレータ。
3. The copolymer of vinylidene fluoride and at least one monomer selected from the group consisting of ethylene tetrafluoride, propylene hexafluoride, ethylene trifluoride, and ethylene trifluoride chloride. 2. The battery separator according to claim 1, wherein the ratio of the vinylidene fluoride component in the copolymer is 50% by weight or more.
【請求項4】 ポリ弗化ビニリデン系樹脂100重量部
に対して、無機充填材を2から200重量部含有する請
求項1〜3記載のバッテリーセパレータ。
4. The battery separator according to claim 1, wherein the inorganic filler is contained in an amount of 2 to 200 parts by weight based on 100 parts by weight of the polyvinylidene fluoride resin.
【請求項5】 無機充填材が無機酸化物類やケイ酸塩類
から選ばれる請求項1〜4記載のバッテリーセパレー
タ。
5. The battery separator according to claim 1, wherein the inorganic filler is selected from inorganic oxides and silicates.
【請求項6】 アルミナおよびシリカの類から選ばれる
少なくとも1種類の無機充填材が含有されてなる請求項
5記載のバッテリーセパレータ。
6. The battery separator according to claim 5, comprising at least one inorganic filler selected from the group consisting of alumina and silica.
【請求項7】 ポリ弗化ビニリデン系樹脂を溶媒に溶か
してなる溶液中に無機充填材を分散せしめ、この溶液を
ポリ弗化ビニリデン系樹脂の非溶媒に接触せしめること
により形成された請求項1記載のバッテリーセパレー
タ。
7. The method according to claim 1, wherein the inorganic filler is dispersed in a solution obtained by dissolving the polyvinylidene fluoride resin in a solvent, and the solution is brought into contact with a non-solvent of the polyvinylidene fluoride resin. The battery separator as described.
【請求項8】 ポリ弗化ビニリデン系樹脂を溶媒に溶か
してなる溶液中に無機充填材を分散せしめ、この溶液を
ポリ弗化ビニリデン系樹脂の非溶媒に接触せしめること
によるポリ弗化ビニリデン系樹脂多孔体からなるバッテ
リーセパレータの製造方法。
8. A polyvinylidene fluoride resin obtained by dispersing an inorganic filler in a solution obtained by dissolving a polyvinylidene fluoride resin in a solvent, and bringing this solution into contact with a non-solvent of the polyvinylidene fluoride resin. A method for producing a battery separator made of a porous material.
【請求項9】 正極、セパレータ、および負極からなる
非水系二次電池において、セパレータが、無機充填材が
分散されているポリ弗化ビニリデン系樹脂多孔体からな
ることを特徴とする非水系二次電池。
9. A non-aqueous secondary battery comprising a positive electrode, a separator, and a negative electrode, wherein the separator is made of a porous polyvinylidene fluoride resin in which an inorganic filler is dispersed. battery.
【請求項10】 ポリ弗化ビニリデン系樹脂多孔体が弗
化ビニリデン単独重合体からなる請求項7記載の非水系
二次電池。
10. The non-aqueous secondary battery according to claim 7, wherein the polyvinylidene fluoride resin porous body is made of a vinylidene fluoride homopolymer.
【請求項11】 ポリ弗化ビニリデン系樹脂多孔体が、
四弗化エチレン、六弗化プロピレン、三弗化エチレン、
および三弗化塩化エチレンから選ばれる少なくとも1種
類のモノマーと弗化ビニリデンとの共重合体で、該共重
合体中の弗化ビニリデン成分の比率が50重量%以上で
ある共重合体からなる請求項7記載の非水系二次電池。
11. A polyvinylidene fluoride resin porous material,
Ethylene tetrafluoride, propylene hexafluoride, ethylene trifluoride,
And a copolymer of at least one monomer selected from ethylene trifluoride chloride and vinylidene fluoride, wherein the copolymer has a vinylidene fluoride component ratio of 50% by weight or more. Item 7. A non-aqueous secondary battery according to Item 7.
JP9165648A 1997-06-23 1997-06-23 Battery separator, its manufacture and nonaqueous secondary battery Pending JPH1116561A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP9165648A JPH1116561A (en) 1997-06-23 1997-06-23 Battery separator, its manufacture and nonaqueous secondary battery
PCT/EP1998/004001 WO1998059384A1 (en) 1997-06-23 1998-06-17 A battery separator, its method of production and anon-aqueous secondary battery
TW087109667A TW424347B (en) 1997-06-23 1998-06-17 A battery separator, its method of production and a non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9165648A JPH1116561A (en) 1997-06-23 1997-06-23 Battery separator, its manufacture and nonaqueous secondary battery

Publications (1)

Publication Number Publication Date
JPH1116561A true JPH1116561A (en) 1999-01-22

Family

ID=15816361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9165648A Pending JPH1116561A (en) 1997-06-23 1997-06-23 Battery separator, its manufacture and nonaqueous secondary battery

Country Status (3)

Country Link
JP (1) JPH1116561A (en)
TW (1) TW424347B (en)
WO (1) WO1998059384A1 (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000299133A (en) * 1999-04-09 2000-10-24 Samsung Sdi Co Ltd Manufacture of rectangular lithium secondary battery
JP2000348705A (en) * 1999-06-07 2000-12-15 Toshiba Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2001093498A (en) * 1999-09-24 2001-04-06 Nippon Muki Co Ltd Separator for nonaqueous electrolyte solution battery
JP2001102089A (en) * 1999-09-29 2001-04-13 Tdk Corp Solid electrolyte, electrolyte chemical device, lithium secondary cell and electricity double-layer capacitor
JP2002134092A (en) * 2000-10-12 2002-05-10 Valence Technology (Nevada) Inc Polymer meso porous separator element for laminated lithium ion battery
JP2002240215A (en) * 2001-02-22 2002-08-28 Tonen Chem Corp Composite film and its manufacturing method
US6566013B2 (en) 1999-12-15 2003-05-20 Sanyo Electric Co., Ltd. Nonaqueous secondary battery
US6579648B2 (en) 1999-12-15 2003-06-17 Sanyo Electric Co., Ltd. Nonaqueous secondary battery
KR100399785B1 (en) * 2001-04-07 2003-09-29 삼성에스디아이 주식회사 Separators for winding-type lithium secondary batteries comprising gel-type polymer electrolytes and manufacturing method for the same
US6660433B2 (en) 1999-12-14 2003-12-09 Sanyo Electric Co., Ltd. Lithium secondary battery and battery device comprising same
WO2005057689A1 (en) * 2003-12-11 2005-06-23 Dupont Teijin Advanced Papers, Ltd. Heat resistant separator and electric electronic component employing it
KR100615157B1 (en) * 1999-10-25 2006-08-25 삼성에스디아이 주식회사 Separator for lithium ion polymer battery
JP2006269424A (en) * 2005-03-23 2006-10-05 Samsung Sdi Co Ltd Electrode assembly for lithium ion battery and lithium ion battery using it
KR100647966B1 (en) 2004-02-24 2006-11-23 가부시키가이샤 도모에가와 세이시쇼 Separator for electronic components and process for producing the same
JP2006351365A (en) * 2005-06-16 2006-12-28 Tomoegawa Paper Co Ltd Separator for electronic components, and the electronic component
JP2010222262A (en) * 2009-03-19 2010-10-07 Idemitsu Kosan Co Ltd Method for producing alkoxy-n,n-dialkylacetamide and polymer solution
JP2012146477A (en) * 2011-01-12 2012-08-02 Hitachi Ltd Nonaqueous electrolyte battery
JP2013105673A (en) * 2011-11-15 2013-05-30 Hitachi Chemical Co Ltd Lithium ion secondary battery
JP2013127955A (en) * 2011-11-15 2013-06-27 Hitachi Chemical Co Ltd Separator for lithium-ion secondary battery
WO2014138516A1 (en) * 2013-03-07 2014-09-12 Daramic, Llc Oxidation protected separator
US9876210B2 (en) 2016-03-11 2018-01-23 Sumitomo Chemical Company, Limited Porous layer
US10707467B2 (en) 2016-05-17 2020-07-07 Samsung Sdi Co., Ltd. Separator for rechargeable battery and rechargeable lithium battery including the same
US10950838B2 (en) 2017-12-19 2021-03-16 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US10957941B2 (en) 2017-12-19 2021-03-23 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11038208B2 (en) 2017-12-19 2021-06-15 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11094997B2 (en) 2017-05-29 2021-08-17 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11158883B2 (en) 2017-12-19 2021-10-26 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11158907B2 (en) 2017-12-19 2021-10-26 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11205799B2 (en) 2017-12-19 2021-12-21 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6811928B2 (en) * 1998-01-22 2004-11-02 Mitsubishi Denki Kabushiki Kaisha Battery with adhesion resin layer including filler
JP4081895B2 (en) 1998-11-26 2008-04-30 ソニー株式会社 Gel electrolyte for lithium ion secondary battery and gel electrolyte lithium ion secondary battery
US6777135B2 (en) 2000-02-24 2004-08-17 Japan Storage Battery Co., Ltd. Nonaqueous electrolyte secondary cell
FR2834651B1 (en) * 2002-01-16 2004-02-20 Atofina POROUS MEMBRANE BASED ON A MIXTURE OF A FLUOROPOLYMER AND A SILANE
EP1667252B1 (en) * 2003-08-06 2011-06-22 Mitsubishi Chemical Corporation Separator for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery including the same
EP2472637A3 (en) * 2003-12-15 2013-09-11 Mitsubishi Chemical Corporation Nonaqueous-electrolyte secondary battery
US20080026294A1 (en) * 2006-07-26 2008-01-31 Zhiping Jiang Batteries, electrodes for batteries, and methods of their manufacture
KR20210046573A (en) * 2019-10-18 2021-04-28 주식회사 엘지화학 A separator for electrochemical device, an electrochemical device comprising the separator and a method for manufacturing the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0676808A (en) * 1992-06-29 1994-03-18 Japan Gore Tex Inc Battery diaphragm and battery
US5418091A (en) * 1993-03-05 1995-05-23 Bell Communications Research, Inc. Polymeric electrolytic cell separator membrane
US5429891A (en) * 1993-03-05 1995-07-04 Bell Communications Research, Inc. Crosslinked hybrid electrolyte film and methods of making and using the same
US5571634A (en) * 1993-03-05 1996-11-05 Bell Communications Research, Inc. Hybrid lithium-ion battery polymer matrix compositions
US5514461A (en) * 1993-10-05 1996-05-07 Kureha Chemical Industry Co., Ltd. Vinylidene fluoride porous membrane and method of preparing the same
TW342537B (en) * 1995-03-03 1998-10-11 Atochem North America Elf Polymeric electrode, electrolyte, article of manufacture and composition
US5720780A (en) * 1996-11-04 1998-02-24 Valence Technology, Inc. Film forming method for lithium ion rechargeable batteries

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000299133A (en) * 1999-04-09 2000-10-24 Samsung Sdi Co Ltd Manufacture of rectangular lithium secondary battery
JP2000348705A (en) * 1999-06-07 2000-12-15 Toshiba Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2001093498A (en) * 1999-09-24 2001-04-06 Nippon Muki Co Ltd Separator for nonaqueous electrolyte solution battery
JP2001102089A (en) * 1999-09-29 2001-04-13 Tdk Corp Solid electrolyte, electrolyte chemical device, lithium secondary cell and electricity double-layer capacitor
KR100615157B1 (en) * 1999-10-25 2006-08-25 삼성에스디아이 주식회사 Separator for lithium ion polymer battery
US6660433B2 (en) 1999-12-14 2003-12-09 Sanyo Electric Co., Ltd. Lithium secondary battery and battery device comprising same
US6566013B2 (en) 1999-12-15 2003-05-20 Sanyo Electric Co., Ltd. Nonaqueous secondary battery
US6579648B2 (en) 1999-12-15 2003-06-17 Sanyo Electric Co., Ltd. Nonaqueous secondary battery
JP2002134092A (en) * 2000-10-12 2002-05-10 Valence Technology (Nevada) Inc Polymer meso porous separator element for laminated lithium ion battery
JP2002240215A (en) * 2001-02-22 2002-08-28 Tonen Chem Corp Composite film and its manufacturing method
KR100399785B1 (en) * 2001-04-07 2003-09-29 삼성에스디아이 주식회사 Separators for winding-type lithium secondary batteries comprising gel-type polymer electrolytes and manufacturing method for the same
WO2005057689A1 (en) * 2003-12-11 2005-06-23 Dupont Teijin Advanced Papers, Ltd. Heat resistant separator and electric electronic component employing it
JPWO2005057689A1 (en) * 2003-12-11 2007-07-05 デュポン帝人アドバンスドペーパー株式会社 Heat-resistant separator and electrical and electronic parts using the same
KR100647966B1 (en) 2004-02-24 2006-11-23 가부시키가이샤 도모에가와 세이시쇼 Separator for electronic components and process for producing the same
JP2006269424A (en) * 2005-03-23 2006-10-05 Samsung Sdi Co Ltd Electrode assembly for lithium ion battery and lithium ion battery using it
JP4628981B2 (en) * 2005-03-23 2011-02-09 三星エスディアイ株式会社 Lithium ion battery electrode assembly and lithium ion battery using the same
JP2006351365A (en) * 2005-06-16 2006-12-28 Tomoegawa Paper Co Ltd Separator for electronic components, and the electronic component
JP2010222262A (en) * 2009-03-19 2010-10-07 Idemitsu Kosan Co Ltd Method for producing alkoxy-n,n-dialkylacetamide and polymer solution
JP2012146477A (en) * 2011-01-12 2012-08-02 Hitachi Ltd Nonaqueous electrolyte battery
JP2013105673A (en) * 2011-11-15 2013-05-30 Hitachi Chemical Co Ltd Lithium ion secondary battery
JP2013127955A (en) * 2011-11-15 2013-06-27 Hitachi Chemical Co Ltd Separator for lithium-ion secondary battery
US11302991B2 (en) 2013-03-07 2022-04-12 Daramic, Llc Oxidation protected separator
WO2014138516A1 (en) * 2013-03-07 2014-09-12 Daramic, Llc Oxidation protected separator
US9991487B2 (en) 2013-03-07 2018-06-05 Daramic, Llc Oxidation protected separator
US9876210B2 (en) 2016-03-11 2018-01-23 Sumitomo Chemical Company, Limited Porous layer
US10707467B2 (en) 2016-05-17 2020-07-07 Samsung Sdi Co., Ltd. Separator for rechargeable battery and rechargeable lithium battery including the same
US11094997B2 (en) 2017-05-29 2021-08-17 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US10957941B2 (en) 2017-12-19 2021-03-23 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11038208B2 (en) 2017-12-19 2021-06-15 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11158883B2 (en) 2017-12-19 2021-10-26 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11158907B2 (en) 2017-12-19 2021-10-26 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11205799B2 (en) 2017-12-19 2021-12-21 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US10950838B2 (en) 2017-12-19 2021-03-16 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
TW424347B (en) 2001-03-01
WO1998059384A1 (en) 1998-12-30

Similar Documents

Publication Publication Date Title
JPH1116561A (en) Battery separator, its manufacture and nonaqueous secondary battery
KR101957074B1 (en) Graphite particles for lithium ion secondary battery negative electrode materials, lithium ion secondary battery negative electrode and lithium ion secondary battery
US8771859B2 (en) Separator for battery and nonaqueous electrolyte battery using same
US6558840B1 (en) Electrode for use in a non-aqueous battery
JP4412840B2 (en) Lithium polymer battery and manufacturing method thereof
JP4470288B2 (en) Battery separator and lithium secondary battery using the same
WO2013080946A1 (en) Separator for non-aqueous electrolyte cell and non-aqueous electrolyte cell using same
WO2013046383A1 (en) Separator for nonaqueous electrolyte secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery
JP3854382B2 (en) Polymer matrix for forming gelled solid electrolyte, solid electrolyte and battery
EP2573838A1 (en) Separator for electrochemical device, method for producing the same, and electrochemical device
TWI785058B (en) Sulfur-carbon material composite, positive electrode material for lithium-sulfur secondary battery, and lithium-sulfur secondary battery
JP4797577B2 (en) battery
JP4751502B2 (en) Polymer battery
JP5144837B1 (en) Nonaqueous electrolyte secondary battery
JP5177211B2 (en) Negative electrode active material, negative electrode and battery
JP2008234879A (en) Lithium ion secondary battery
JP4050072B2 (en) Method for producing graphitic particles and negative electrode material for lithium ion secondary battery
JP4256741B2 (en) Composite particle for electrode and method for producing the same, electrode and method for producing the same, electrochemical device and method for producing the same
JP3236400B2 (en) Non-aqueous secondary battery
JPH06181058A (en) Looseness restraining means of wound electrode body for nonaqueous electrolyte type battery
JPH11279785A (en) Composite carbon material for electrode, its production and nonaqueous electrolytic solution secondary cell using that
JPH09199134A (en) Electrode and secondary battery using it
JP2002042874A (en) Polymer secondary battery
JP2023528519A (en) Negative electrode for lithium ion secondary battery
JP2002110233A (en) Non-aqueous electrolyte secondary battery