JP2001093498A - Separator for nonaqueous electrolyte solution battery - Google Patents

Separator for nonaqueous electrolyte solution battery

Info

Publication number
JP2001093498A
JP2001093498A JP26967799A JP26967799A JP2001093498A JP 2001093498 A JP2001093498 A JP 2001093498A JP 26967799 A JP26967799 A JP 26967799A JP 26967799 A JP26967799 A JP 26967799A JP 2001093498 A JP2001093498 A JP 2001093498A
Authority
JP
Japan
Prior art keywords
separator
battery
inorganic powder
inorganic
heat resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26967799A
Other languages
Japanese (ja)
Other versions
JP4812919B2 (en
Inventor
Haruji Imoto
春二 井本
Hideo Endo
秀夫 遠藤
Eikichi Sato
英吉 佐藤
Taizo Matsunami
泰三 松波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Muki Co Ltd
Original Assignee
Nippon Muki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Muki Co Ltd filed Critical Nippon Muki Co Ltd
Priority to JP26967799A priority Critical patent/JP4812919B2/en
Publication of JP2001093498A publication Critical patent/JP2001093498A/en
Application granted granted Critical
Publication of JP4812919B2 publication Critical patent/JP4812919B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a separator for non-aqueous electrolyte solution battery which contains less water, decreases lowering of the battery capacity, and has excellent heat resistance. SOLUTION: In an inorganic material containing porous film formed of 20 to 80 wt.% of polyolefin resin and 80 to 20 wt.% of inorganic powder, the inorganic powder to be used has hydrophobic surface and contains not more than 0.5% of equilibrium water.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、各種電子機器等の
電源として利用されるリチウムイオン二次電池等の非水
電解液電池用セパレータに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a separator for a non-aqueous electrolyte battery such as a lithium ion secondary battery used as a power source for various electronic devices.

【0002】[0002]

【従来の技術】従来、小型の二次電池は、OA、FA、
家電、通信機器等のポータブル電子機器用電源として幅
広く使用されており、さらに機器に装備した場合に容積
効率がよく、機器の小型化、軽量化につながることから
リチウムイオン二次電池を使用したポータブル機器が増
加している。一方、大型の二次電池は、ロードレベリン
グ、UPS、電気自動車をはじめ、環境問題に関連する
多くの分野に置いて研究開発が進められ、大容量、高出
力、高電圧、長期保存性に優れている点より非水電解液
二次電池の一種であるリチウムイオン二次電池の要求が
高まっている。
2. Description of the Related Art Conventionally, small secondary batteries have been known as OA, FA,
It is widely used as a power source for portable electronic devices such as home appliances and communication devices, and when used in devices, it has good volumetric efficiency and leads to smaller and lighter devices. Equipment is increasing. On the other hand, large secondary batteries are being researched and developed in many fields related to environmental issues, including road leveling, UPS, electric vehicles, etc., and are excellent in large capacity, high output, high voltage, and long-term storage. Therefore, there is an increasing demand for a lithium ion secondary battery which is a kind of non-aqueous electrolyte secondary battery.

【0003】リチウムイオン二次電池の使用電圧は、通
常、4.1から4.2Vを上限として設計されている。
このような高い電圧では、水溶液は電気分解を起こすの
で電解液として使うことができない。そのため、高い電
圧でも耐えられる電解液として、有機溶媒を使用したい
わゆる非水電解液が用いられている。非水電解液用の溶
媒は、より多くのリチウムイオンを存在させることがで
きる高誘電率有機溶媒としてポリプロピレンカーボネー
トやエチレンカーボネート等の有機炭酸エステルが使用
されている。また、溶媒中でリチウムイオン源となる支
持電解質として、6フッ化リン酸リチウム等の反応性の
高い電解質を溶媒中に溶かして使用している。
[0003] The operating voltage of a lithium ion secondary battery is usually designed with an upper limit of 4.1 to 4.2V.
At such a high voltage, the aqueous solution undergoes electrolysis and cannot be used as an electrolyte. Therefore, a so-called non-aqueous electrolyte using an organic solvent is used as an electrolyte that can withstand a high voltage. As a solvent for the non-aqueous electrolyte, an organic carbonate such as polypropylene carbonate or ethylene carbonate is used as a high dielectric constant organic solvent in which more lithium ions can be present. Further, as a supporting electrolyte serving as a lithium ion source in a solvent, a highly reactive electrolyte such as lithium hexafluorophosphate is used by being dissolved in the solvent.

【0004】リチウムイオン二次電池は、構成材料に多
くの可燃性物質が使われているので、誤使用されても発
火などの事故が起こらないように種々の対策を行ってい
る。特にセパレータは安全性向上で重要な役割を担って
おり、異常高温時にセパレータが溶融して微孔が閉鎖す
るいわゆるシャットダウン機能を具備したポリオレフィ
ン系樹脂からなる微多孔質膜がセパレータとして使用さ
れている。しかし、シャットダウン後も何らかの理由で
電池温度の上昇が続いてセパレータの耐熱温度を超える
と、セパレータが溶融し、極板間の隔離性が著しく低下
するため、電池内でショートが発生すると共に電池が発
火する問題点がある。この問題を解決するため、ポリオ
レフィン系樹脂と無機粉体等から構成された耐熱性の優
れた無機質含有多孔膜のセパレータが、特開平10−5
0287号に開示されている。
[0004] Since a large amount of flammable substances are used in the constituent materials of lithium ion secondary batteries, various measures are taken to prevent accidents such as fire from occurring even if misused. In particular, the separator plays an important role in improving safety, and a microporous membrane made of a polyolefin-based resin having a so-called shutdown function in which the separator is melted at abnormally high temperatures to close the pores is used as the separator. . However, if the battery temperature continues to rise for some reason after the shutdown and exceeds the heat-resistant temperature of the separator, the separator melts and the isolation between the electrode plates is significantly reduced. There is a problem of ignition. In order to solve this problem, a separator of an inorganic-containing porous membrane having excellent heat resistance and composed of a polyolefin-based resin and inorganic powder has been disclosed in JP-A-10-5.
No. 0287.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前記し
たようにリチウムイオン二次電池は、電解液の中に6フ
ッ化リン酸リチウム等のフッ素等を含んだ反応性の高い
電解質を使用しているため、電池内に水分が介在する
と、電解質と反応してフッ化水素が発生し、有機電解液
や極板を劣化させるため電池容量が低下する問題があ
る。そこで、電池の製造・組立行程での作業条件、放置
・保管において最新の注意を払って水分の管理を行って
いる。特開平10−50287号に開示されているポリ
オレフィン系樹脂と無機粉体とで構成されたセパレータ
は、付着水分が多かったり、構造中に結合水を含有する
ために平衡水分が5%以上という水分の多い無機粉体が
含まれていたため、乾燥処理で水分を抜くことが難し
く、電池使用中に電池容量が低下するという問題があっ
た。また、特願平11−10182号に記載されている
平衡水分が4%未満の無機粉体でも、湿度の高い雰囲気
中に放置された場合、表面に水分が付着してしまう問題
があった。
However, as described above, the lithium ion secondary battery uses a highly reactive electrolyte containing fluorine or the like such as lithium hexafluorophosphate in the electrolyte. Therefore, when moisture is present in the battery, it reacts with the electrolyte to generate hydrogen fluoride, deteriorating the organic electrolytic solution and the electrode plate, and thus causing a problem that the battery capacity is reduced. Therefore, the latest care is taken in the working conditions in the battery manufacturing and assembling process, and in the leaving and storing, to control the moisture. The separator composed of a polyolefin resin and an inorganic powder disclosed in Japanese Patent Application Laid-Open No. H10-50287 has a high moisture content of 5% or more due to a large amount of adhering water or a structure containing bound water. Since the inorganic powder contains a large amount of inorganic powder, there is a problem that it is difficult to remove moisture by the drying treatment, and the battery capacity is reduced during use of the battery. Further, even if the inorganic powder described in Japanese Patent Application No. 11-10182 has an equilibrium moisture content of less than 4%, moisture remains on the surface when left in an atmosphere of high humidity.

【0006】本発明は、セパレータ中の介在水分を少な
くし、電池容量の低下が少なく、耐熱性にも優れた非水
電解液電池用セパレータを提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a separator for a non-aqueous electrolyte battery in which the intervening moisture in the separator is reduced, the reduction in battery capacity is small, and the heat resistance is excellent.

【0007】[0007]

【課題を解決するための手段】本発明の非水電解液電池
用セパレータは、請求項1に記載の通り、ポリオレフィ
ン系樹脂20〜80wt%と無機粉体80〜20wt%
とで構成される無機質含有多孔膜において、使用する無
機粉体が、その表面が疎水性であり、平衡水分が0.5
%以下であることを特徴とする。また、請求項2記載の
非水電解液電池用セパレータは、請求項1記載の非水電
解液電池用セパレータにおいて、上記無機粉体がクロロ
シランまたはシラザンで表面を疎水化した無水ケイ酸で
あることを特徴とする。
According to a first aspect of the present invention, there is provided a separator for a non-aqueous electrolyte battery, comprising 20 to 80 wt% of a polyolefin resin and 80 to 20 wt% of an inorganic powder.
In the inorganic-containing porous membrane composed of: inorganic powder to be used, the surface is hydrophobic, equilibrium moisture is 0.5
% Or less. The separator for a non-aqueous electrolyte battery according to claim 2 is the separator for a non-aqueous electrolyte battery according to claim 1, wherein the inorganic powder is silicic anhydride whose surface is hydrophobized with chlorosilane or silazane. It is characterized by.

【0008】[0008]

【作用】本発明の非水電解液電池用セパレータによれ
ば、無機質含有多孔膜を構成する無機粉体として、水分
の少ない無機粉体を使用しているため、耐熱性に優れ、
しかも、電池容量低下の少ない電池を得ることができ
る。
According to the separator for a non-aqueous electrolyte battery of the present invention, since the inorganic powder having a low water content is used as the inorganic powder constituting the inorganic-containing porous film, the separator has excellent heat resistance.
In addition, a battery with a small decrease in battery capacity can be obtained.

【0009】[0009]

【発明の実施の形態】前記のようにセパレータの構成を
ポリオレフィン系樹脂20〜80wt%と無機粉体80
〜20wt%とするのは、ポリオレフィン系樹脂が20
wt%未満、あるいは、無機粉体が80wt%を超える
場合は、ポリオレフィン系樹脂がセパレータ全体に均一
に分散できず機械的強度が弱くなり好ましくなく、ま
た、ポリオレフィン系樹脂が80wt%を超える、ある
いは、無機粉体が20wt%未満の場合は、実質的な耐
熱性向上効果が得られないためである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As described above, the separator is composed of 20 to 80% by weight of polyolefin resin and 80% of inorganic powder.
The reason why the content of the polyolefin resin is 20 to 20 wt% is that
If the amount is less than 80% by weight, or if the amount of the inorganic powder exceeds 80% by weight, the polyolefin-based resin cannot be uniformly dispersed throughout the separator, resulting in poor mechanical strength. When the amount of the inorganic powder is less than 20 wt%, a substantial heat resistance improving effect cannot be obtained.

【0010】前記のように無機質含有多孔膜を構成する
無機粉体が特願平11−10182号に記載されている
平衡水分が4%未満の無機粉体でも、湿度の高い雰囲気
中に放置された場合、表面に水分が付着してしまい、電
池容量が3%以上低下する問題があった。本発明者らが
その後に検討を行った結果、表面を疎水化し、平衡水分
を0.5%以下とした無機粉体を用いれば電池容量の低
下を招かないことが判明した。
As described above, even if the inorganic powder constituting the inorganic-containing porous membrane has an equilibrium moisture content of less than 4% as described in Japanese Patent Application No. 11-10182, it is left in an atmosphere of high humidity. In such a case, there is a problem that moisture adheres to the surface and the battery capacity is reduced by 3% or more. As a result of investigations by the present inventors, it has been found that the use of an inorganic powder having a hydrophobic surface and an equilibrium water content of 0.5% or less does not cause a reduction in battery capacity.

【0011】表面が疎水性であり、平衡水分が0.5%
以下である無機粉体としては、無水ケイ酸、酸化チタ
ン、酸化アルミニウム、チタン酸カリウム、酸化マグネ
シウム、酸化硼素、雲母等の表面をクロロシランやシラ
ザンなどで疎水化したものが使用できる。その使用方法
としては、通常は単独で使用するが、二種以上のものを
混合して使用することもできる。また、無機粉体は一次
粒子径が0.001〜1μm程度のものの使用が好まし
い。
The surface is hydrophobic and the equilibrium water content is 0.5%
As the following inorganic powders, those obtained by hydrophobizing the surface of silicic anhydride, titanium oxide, aluminum oxide, potassium titanate, magnesium oxide, boron oxide, mica or the like with chlorosilane or silazane can be used. As a method of using it, it is usually used alone, but two or more kinds can be used as a mixture. Further, it is preferable to use an inorganic powder having a primary particle diameter of about 0.001 to 1 μm.

【0012】また、前記無機質含有多孔膜を構成するポ
リオレフィン系樹脂としては、ポリプロピレン、ポリエ
チレン、ポリブテン及びこれらの共重合物、あるいは、
これらの混合物等が使用できる。特に重量平均分子量2
00万以上の高密度ポリエチレンを使用すれば、機械的
強度の優れた無機質含有多孔膜を得ることができる。ま
た、重量平均分子量の異なる樹脂を混合使用することも
可能であり、例えば、重量平均分子量200万以上の高
密度ポリエチレンと重量平均分子量20万未満の低密度
ポリエチレンをブレンドして重量平均分子量70万以上
の高密度ポリエチレンとして使用することができる。
The polyolefin resin constituting the inorganic-containing porous membrane may be polypropylene, polyethylene, polybutene and copolymers thereof, or
These mixtures and the like can be used. Especially weight average molecular weight 2
If the high-density polyethylene of not less than 100,000 is used, an inorganic-containing porous membrane having excellent mechanical strength can be obtained. It is also possible to mix and use resins having different weight average molecular weights. For example, a high density polyethylene having a weight average molecular weight of 2,000,000 or more and a low density polyethylene having a weight average molecular weight of less than 200,000 are blended to obtain a weight average molecular weight of 700,000. It can be used as the above high density polyethylene.

【0013】前記セパレータの厚さは10μmから20
0μmの範囲にするのが好ましい。これは、厚さが20
0μmを超える場合は、電池におけるセパレータの容積
が増えて、その結果、活物質の容積が減少する不都合が
あり、また、厚さ10μm未満の場合は、セパレータ強
度が著しく低下して電池の作成が困難になるからであ
る。
The thickness of the separator is from 10 μm to 20 μm.
It is preferable that the thickness be in the range of 0 μm. It has a thickness of 20
When the thickness exceeds 0 μm, the volume of the separator in the battery increases, and as a result, there is a disadvantage that the volume of the active material decreases. Because it becomes difficult.

【0014】次に、本発明非水電解液電池用セパレータ
の製造方法について詳述する。ポリオレフィン系樹脂と
して、例えば、ポリエチレン樹脂粉体、または、ポリプ
ロピレン樹脂粉体の単独、あるいは、混合物の20〜8
0wt%と無機粉体80〜20wt%及び可塑剤の適量
をレーディゲミキサで混合する。次いで、この混合物を
押出機で加熱溶融・混練しながらシート状の成形を行
う。シートの厚さはシート成形条件を変更したり、延伸
・圧延等の二次加工によって自由に調整できるものであ
る。その後、可塑剤を有機溶媒で抽出除去し、乾燥する
ことで本発明の非水電解液電池用セパレータが得られ
る。なお、可塑剤としては、パラフィン系、ナフテン系
等の工業用潤滑油、あるいは、フタル酸ジオクチル等の
樹脂用可塑剤が使用できる。
Next, a method for manufacturing the separator for a non-aqueous electrolyte battery of the present invention will be described in detail. As the polyolefin resin, for example, a polyethylene resin powder or a polypropylene resin powder alone or a mixture of 20 to 8
0 wt%, 80 to 20 wt% of inorganic powder and an appropriate amount of a plasticizer are mixed with a Reedige mixer. Next, the mixture is heated and melted and kneaded by an extruder to form a sheet. The thickness of the sheet can be freely adjusted by changing sheet forming conditions or by performing secondary processing such as stretching and rolling. Thereafter, the plasticizer is extracted and removed with an organic solvent and dried to obtain the non-aqueous electrolyte battery separator of the present invention. As the plasticizer, an industrial lubricating oil such as a paraffinic or naphthenic oil, or a plasticizer for a resin such as dioctyl phthalate can be used.

【0015】[0015]

【実施例】次に、本発明の実施例を説明する。 (実施例1)表面をクロロシランで疎水化した平衡水分
0.4%の疎水性ケイ酸(1)無機粉体30wt%と、
重量平均分子量200万の高密度ポリエチレン樹脂粉体
15wt%に鉱物オイル55wt%を混合し、二軸押出
機で加熱溶融・混練しながら0.2mmの無機多孔質シ
ートを得た。その後、120℃に加熱した状態で一軸方
向に6倍延伸し、鉱物オイルを抽出し、ポリエチレン樹
脂55wt%と無機粉体45wt%とで構成される厚さ
40μmの多孔質膜セパレータを作成した。
Next, embodiments of the present invention will be described. (Example 1) Hydrophobic silicic acid (1) having an equilibrium moisture of 0.4% whose surface was hydrophobized with chlorosilane (1) 30 wt% of inorganic powder,
55 wt% of mineral oil was mixed with 15 wt% of high-density polyethylene resin powder having a weight average molecular weight of 2,000,000, and heated and melted and kneaded by a twin screw extruder to obtain a 0.2 mm inorganic porous sheet. Thereafter, the film was stretched 6 times in the uniaxial direction while being heated to 120 ° C., and mineral oil was extracted to produce a 40 μm thick porous membrane separator composed of 55 wt% of polyethylene resin and 45 wt% of inorganic powder.

【0016】次に、このようにして得られたセパレータ
を温度25℃、湿度RH80%に24時間放置した後、
正極材にマンガン酸リチウム、負極材に非晶質炭素材、
電解液は有機炭酸エステル、支持電解質として6フッ化
リン酸リチウムを使用した電池に組み込み、電池の放電
容量と耐熱性を測定した。その結果、表1に示すように
放電容量、耐熱性とも良好な結果が得られた。
Next, the separator thus obtained is left at a temperature of 25 ° C. and a humidity of RH 80% for 24 hours.
Lithium manganate for the positive electrode material, amorphous carbon material for the negative electrode material,
The electrolytic solution was incorporated in a battery using an organic carbonate and lithium hexafluorophosphate as a supporting electrolyte, and the discharge capacity and heat resistance of the battery were measured. As a result, as shown in Table 1, good results were obtained in both the discharge capacity and the heat resistance.

【0017】(実施例2)実施例1と同様にして、疎水
性ケイ酸(1)無機粉体24wt%、重量平均分子量2
00万の高密度ポリエチレン樹脂粉体20wt%、鉱物
オイル56wt%からポリエチレン樹脂55wt%と無
機粉体45wt%とで構成される厚さ40μmの多孔質
膜セパレータを作成した。得られたセパレータを温度2
5℃、湿度RH80%に24時間放置した後、実施例1
と同様の試験を行った。その結果、表1に示すように電
池の放電容量、耐熱性とも良好な結果が得られた。
Example 2 As in Example 1, hydrophobic silica (1) inorganic powder 24 wt%, weight average molecular weight 2
A 40 μm-thick porous membrane separator composed of 55% by weight of polyethylene resin and 45% by weight of inorganic powder was prepared from 20% by weight of a high-density polyethylene resin powder of 20 million and 56% by weight of mineral oil. The obtained separator was heated to a temperature of 2.
Example 1 After leaving for 24 hours at 5 ° C. and 80% humidity RH,
The same test was performed. As a result, as shown in Table 1, good results were obtained in both the discharge capacity and the heat resistance of the battery.

【0018】(実施例3)実施例2で得られたセパレー
タを温度25℃、湿度RH90%に24時間放置した
後、実施例1と同様の試験を行った。その結果、表1に
示すように電池の放電容量、耐熱性とも良好な結果が得
られた。
Example 3 After the separator obtained in Example 2 was left at a temperature of 25 ° C. and a humidity RH of 90% for 24 hours, the same test as in Example 1 was performed. As a result, as shown in Table 1, good results were obtained in both the discharge capacity and the heat resistance of the battery.

【0019】(実施例4)表面をシラザンで疎水化した
平衡水分0.4%の疎水性ケイ酸(2)無機粉体24w
t%と、重量平均分子量200万の高密度ポリエチレン
樹脂粉体20wt%に鉱物オイル56wt%を混合し、
二軸押出機で加熱溶融・混練しながら0.2mmの無機
多孔質シートを得た。その後、120℃に加熱した状態
で一軸方向に6倍延伸し、鉱物オイルを抽出し、ポリエ
チレン樹脂55wt%と無機粉体45wt%とで構成さ
れる厚さ40μmの多孔質膜セパレータを作成した。得
られたセパレータを温度25℃、湿度RH80%に24
時間放置した後、実施例1と同様の試験を行った。その
結果、表1に示すように電池の放電容量、耐熱性とも良
好な結果が得られた。
(Example 4) Hydrophobic silicic acid (2) inorganic powder having an equilibrium moisture of 0.4% and having its surface hydrophobicized with silazane 24w
t%, and 20 wt% of high-density polyethylene resin powder having a weight average molecular weight of 2,000,000 and 56 wt% of mineral oil,
While heating and melting and kneading with a twin-screw extruder, an inorganic porous sheet of 0.2 mm was obtained. Thereafter, the film was stretched 6 times in the uniaxial direction while being heated to 120 ° C., and mineral oil was extracted to produce a 40 μm thick porous membrane separator composed of 55 wt% of polyethylene resin and 45 wt% of inorganic powder. The obtained separator is kept at a temperature of 25 ° C. and a humidity of RH 80% for 24 hours.
After being left for a time, the same test as in Example 1 was performed. As a result, as shown in Table 1, good results were obtained in both the discharge capacity and the heat resistance of the battery.

【0020】(実施例5)実施例4で得られたセパレー
タを温度25℃、湿度RH90%に24時間放置した
後、実施例1と同様の試験を行った。その結果、表1に
示すように電池の放電容量、耐熱性とも良好な結果が得
られた。
Example 5 After the separator obtained in Example 4 was left at a temperature of 25 ° C. and a humidity RH of 90% for 24 hours, the same test as in Example 1 was performed. As a result, as shown in Table 1, good results were obtained in both the discharge capacity and the heat resistance of the battery.

【0021】(比較例1)平衡水分が2.0%の無水ケ
イ酸(1)無機粉体24wt%と、重量平均分子量20
0万の高密度ポリエチレン樹脂粉体20wt%に鉱物オ
イル56wt%を混合し、二軸押出機で加熱溶融・混練
しながら0.2mmの無機多孔質シートを得た。その
後、一軸方向に6倍延伸し、鉱物オイルを抽出し、ポリ
エチレン樹脂55wt%と無機粉体45wt%とで構成
される厚さ40μmの多孔質膜セパレータを作成した。
得られたセパレータを温度25℃、湿度RH80%に2
4時間放置した後、実施例1と同様の試験を行った。そ
の結果、表1に示すように電池の放電容量が低下するこ
とが分かった。尚、耐熱性については良好な結果が得ら
れた。
(Comparative Example 1) 24% by weight of inorganic powder of silicic anhydride (1) having an equilibrium water content of 2.0%, and a weight average molecular weight of 20
56 wt% of mineral oil was mixed with 20 wt% of 100,000 high-density polyethylene resin powder, and heated and melted and kneaded with a twin-screw extruder to obtain a 0.2 mm inorganic porous sheet. Thereafter, the film was stretched 6 times in the uniaxial direction, and mineral oil was extracted to prepare a 40 μm thick porous membrane separator composed of 55 wt% of polyethylene resin and 45 wt% of inorganic powder.
The obtained separator was heated to a temperature of 25 ° C. and a humidity of RH 80%.
After standing for 4 hours, the same test as in Example 1 was performed. As a result, as shown in Table 1, it was found that the discharge capacity of the battery was reduced. In addition, good results were obtained for the heat resistance.

【0022】(比較例2)比較例1で得られたセパレー
タを温度25℃、湿度RH90%に24時間放置した
後、実施例1と同様の試験を行った。その結果、表1に
示すように電池の放電容量が低下することが分かった。
尚、耐熱性については良好な結果が得られた。
Comparative Example 2 After the separator obtained in Comparative Example 1 was left at a temperature of 25 ° C. and a relative humidity of 90% for 24 hours, the same test as in Example 1 was performed. As a result, as shown in Table 1, it was found that the discharge capacity of the battery was reduced.
In addition, good results were obtained for the heat resistance.

【0023】(比較例3)パラフィンで表面処理した平
衡水分2.5%の無水ケイ酸(2)無機粉体24wt%
と、重量平均分子量200万の高密度ポリエチレン樹脂
粉体20wt%に鉱物オイル56wt%を混合し、二軸
押出機で加熱溶融・混練しながら0.2mmの無機多孔
質シートを得た。その後、120℃に加熱した状態で一
軸方向に6倍延伸し、鉱物オイルを抽出し、ポリエチレ
ン樹脂55wt%と無機粉体45wt%とで構成される
厚さ40μmの多孔質膜セパレータを作成した。得られ
たセパレータを温度25℃、湿度RH80%に24時間
放置した後、実施例1と同様の試験を行った。その結
果、表1に示すように電池の放電容量が低下することが
分かった。尚、耐熱性については良好な結果が得られ
た。
(Comparative Example 3) 24% by weight of inorganic powder of silicic anhydride (2) having an equilibrium moisture of 2.5% and surface-treated with paraffin
Then, 56 wt% of mineral oil was mixed with 20 wt% of a high-density polyethylene resin powder having a weight average molecular weight of 2,000,000, and heated and melted and kneaded with a twin screw extruder to obtain a 0.2 mm inorganic porous sheet. Thereafter, the film was stretched 6 times in the uniaxial direction while being heated to 120 ° C., and mineral oil was extracted to produce a 40 μm thick porous membrane separator composed of 55 wt% of polyethylene resin and 45 wt% of inorganic powder. After leaving the obtained separator at a temperature of 25 ° C. and a humidity RH of 80% for 24 hours, the same test as in Example 1 was performed. As a result, as shown in Table 1, it was found that the discharge capacity of the battery was reduced. In addition, good results were obtained for the heat resistance.

【0024】(比較例4)ポリエチレン単体の多孔質膜
セパレータを温度25℃、湿度RH80%に24時間放
置した後、実施例1と同様の試験を行った。その結果、
表1に示すように電池の放電容量は良好であるが、耐熱
性は絶縁抵抗値が150℃で急激に低下した。
Comparative Example 4 The same test as in Example 1 was conducted after leaving the porous membrane separator made of polyethylene alone at 25 ° C. and 80% RH for 24 hours. as a result,
As shown in Table 1, the discharge capacity of the battery was good, but the heat resistance sharply decreased at an insulation resistance value of 150 ° C.

【0025】[0025]

【表1】 [Table 1]

【0026】上記試験は次のようにして行い、評価し
た。 1)無機粉体の平衡水分:平衡水分は、まず、温度37
℃、湿度72%の条件で2日放置した無機粉体の重量を
測定し、重量既知の平型秤量ビンに入れ、105℃の恒
温乾燥器中で2時間乾燥する。その後、デシケータ中に
放冷し、重量をはかり、減量を求め、次式によって水分
を算出した。 平衡水分(%)=(減量(g)/試料(g))×100 2)放電容量(電池特性):放電容量は、充電電圧4.
2V、充電電流1CmA、充電時間3hで定電流定電圧
充電した電池を周囲温度25℃で0.33CmA放電
し、終止電圧2.7Vにおける電池容量をパーセントで
表したものであり、比較例4の無機粉体を含有しないセ
パレータを100%として示した。 3)耐熱性(電池特性):アルゴンで充満させた電気炉
内に電池を置き、速度10℃/minで昇温させ、正負
極間の初期の絶縁抵抗値を100%とした時、10%以
下になった温度を耐熱性とした。評価については、耐熱
温度が180℃以上で耐熱性有り、放電容量が95%を
超えるものを放電容量に優れるものとして評価し、両者
を満たすものを表1中に○で示した。
The above test was conducted and evaluated as follows. 1) Equilibrium moisture of inorganic powder: Equilibrium moisture is first measured at a temperature of 37
The weight of the inorganic powder left for 2 days at a temperature of 72 ° C. and a humidity of 72% is measured, placed in a flat weighing bottle of known weight, and dried in a thermostatic oven at 105 ° C. for 2 hours. Thereafter, the mixture was allowed to cool in a desiccator, weighed, the weight loss was determined, and the water content was calculated by the following equation. Equilibrium moisture (%) = (weight loss (g) / sample (g)) × 100 2) Discharge capacity (battery characteristics): The discharge capacity is the charge voltage 4.
A battery charged at a constant current and a constant voltage of 2 V, a charging current of 1 CmA and a charging time of 3 h was discharged at an ambient temperature of 25 ° C. by 0.33 CmA, and the battery capacity at a final voltage of 2.7 V was expressed as a percentage. The separator containing no inorganic powder is shown as 100%. 3) Heat resistance (battery characteristics): 10% when the battery is placed in an electric furnace filled with argon, heated at a rate of 10 ° C./min, and the initial insulation resistance between the positive and negative electrodes is 100%. The temperature at which the temperature became below was regarded as heat resistance. With respect to the evaluation, those having a heat resistance of 180 ° C. or higher and having heat resistance and having a discharge capacity exceeding 95% were evaluated as having excellent discharge capacity, and those satisfying both were indicated by a circle in Table 1.

【0027】表1から、本発明の無機質含有多孔膜を構
成する無機粉体として、表面が疎水性であり、平衡水分
が0.5%以下である無機粉体を使用したセパレータ
は、湿度の高い雰囲気に放置しても電池の放電容量、耐
熱性に優れていることが分かる。
From Table 1, it can be seen that a separator using an inorganic powder having a hydrophobic surface and an equilibrium water content of 0.5% or less as an inorganic powder constituting the inorganic-containing porous membrane of the present invention has a high humidity. It can be seen that the battery has excellent discharge capacity and heat resistance even when left in a high atmosphere.

【0028】[0028]

【発明の効果】本発明の非水電解液電池用セパレータ
は、無機粉体を含有させることで耐熱性の優れたセパレ
ータに構成され、セパレータを使用した電池は、外部加
熱、あるいは、外部ショートによる発熱があっても、セ
パレータ中の無機粉体による正負極間の絶縁性をより高
温まで維持できるため、耐熱性の優れた電池が得られ
る。また、表面を疎水化した平衡水分が0.5%以下の
無機粉体を使用しているため、セパレータが湿度の高い
雰囲気で放置されても電池容量が低下しにくく、電解液
の中に6フッ化リン酸リチウム等のフッ素等を含んだ反
応性の高い電解質を使用していても、有機電解液や極板
の劣化がないことから、前記耐熱性に優れるばかりでな
く容量低下の少ない電池が得られる。
The separator for a non-aqueous electrolyte battery according to the present invention is formed into a separator having excellent heat resistance by containing an inorganic powder, and a battery using the separator is subjected to external heating or external short circuit. Even if heat is generated, the insulation between the positive and negative electrodes due to the inorganic powder in the separator can be maintained at a higher temperature, so that a battery having excellent heat resistance can be obtained. In addition, since inorganic powder having a hydrophobized surface and an equilibrium water content of 0.5% or less is used, the battery capacity is hardly reduced even when the separator is left in a humid atmosphere, and 6% of electrolyte is contained in the electrolyte. Even if a highly reactive electrolyte containing fluorine or the like such as lithium fluorophosphate is used, the battery is not only excellent in the heat resistance but also has a small capacity reduction because the organic electrolyte and the electrode plate are not deteriorated. Is obtained.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 英吉 岐阜県不破郡垂井町630 日本無機株式会 社垂井工場内 (72)発明者 松波 泰三 岐阜県不破郡垂井町630 日本無機株式会 社垂井工場内 Fターム(参考) 5H021 BB09 CC00 EE04 EE21 HH01 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Eikichi Sato 630, Tarui-cho, Fuwa-gun, Gifu Japan Inorganic Co., Ltd.Tarii Plant F-term (reference) 5H021 BB09 CC00 EE04 EE21 HH01

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ポリオレフィン系樹脂20〜80wt%
と無機粉体80〜20wt%とで構成される無機質含有
多孔膜において、使用する無機粉体が、その表面が疎水
性であり、平衡水分が0.5%以下であることを特徴と
する非水電解液電池用セパレータ。
1. A polyolefin-based resin in an amount of 20 to 80% by weight.
And inorganic powder comprising 80 to 20 wt% of inorganic powder, wherein the inorganic powder used has a hydrophobic surface and an equilibrium moisture content of 0.5% or less. Separator for water electrolyte battery.
【請求項2】 上記無機粉体がクロロシランまたはシラ
ザンで表面を疎水化した無水ケイ酸であることを特徴と
する請求項1記載の非水電解液電池用セパレータ。
2. The non-aqueous electrolyte battery separator according to claim 1, wherein the inorganic powder is silicic anhydride whose surface is hydrophobized with chlorosilane or silazane.
JP26967799A 1999-09-24 1999-09-24 Non-aqueous electrolyte battery separator Expired - Fee Related JP4812919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26967799A JP4812919B2 (en) 1999-09-24 1999-09-24 Non-aqueous electrolyte battery separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26967799A JP4812919B2 (en) 1999-09-24 1999-09-24 Non-aqueous electrolyte battery separator

Publications (2)

Publication Number Publication Date
JP2001093498A true JP2001093498A (en) 2001-04-06
JP4812919B2 JP4812919B2 (en) 2011-11-09

Family

ID=17475666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26967799A Expired - Fee Related JP4812919B2 (en) 1999-09-24 1999-09-24 Non-aqueous electrolyte battery separator

Country Status (1)

Country Link
JP (1) JP4812919B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008029922A1 (en) * 2006-09-07 2008-03-13 Hitachi Maxell, Ltd. Battery separator, method for manufacture thereof, and lithium secondary battery
JP2008210686A (en) * 2007-02-27 2008-09-11 Sanyo Electric Co Ltd Non-aqueous electrolyte secondary battery and its manufacturing method
US7553587B2 (en) 2006-03-30 2009-06-30 Panasonic Corporation Non-aqueous electrolyte secondary battery and method of manufacturing the same
US8405957B2 (en) 2005-12-08 2013-03-26 Hitachi Maxell, Ltd. Separator for electrochemical device and method for producing the same, and electrochemical device and method for producing the same
WO2015197428A1 (en) * 2014-06-23 2015-12-30 Evonik Litarion Gmbh Hydrophobic separator and method for producing the separator
CN105453301A (en) * 2014-07-29 2016-03-30 住友化学株式会社 Porous membrane
US9419283B2 (en) 2006-08-21 2016-08-16 Lg Chem, Ltd. Non-aqueous lithium secondary battery containing hydrophobic, inactive particle
US10153493B2 (en) 2013-07-05 2018-12-11 Shin-Etsu Chemical Co., Ltd. Nonaqueous electrolyte secondary battery
US11050095B2 (en) 2004-12-08 2021-06-29 Maxell Holdings, Ltd. Separator for electrochemical device, and electrochemical device
CN114744363A (en) * 2022-03-29 2022-07-12 中材锂膜(宁乡)有限公司 Lithium ion battery diaphragm slurry, preparation method thereof and diaphragm

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05234578A (en) * 1991-07-05 1993-09-10 Asahi Chem Ind Co Ltd Separator for battery using organic electrolyte and its manufacture
JPH076747A (en) * 1993-06-15 1995-01-10 Nippon Muki Co Ltd Manufacture of battery separator and manufacturing equipment
JPH08259216A (en) * 1995-03-24 1996-10-08 Tokuyama Corp Production of hydrophobic silica
JPH1044348A (en) * 1996-08-02 1998-02-17 Tonen Chem Corp Polyolefin porous membrane, manufacture thereof, separator for electric cell using membrane
JPH1050287A (en) * 1996-07-31 1998-02-20 Sony Corp Nonaqueous electrolyte battery, separator for it, and manufacture of the separator
JPH10100224A (en) * 1996-09-30 1998-04-21 Nippon Muki Co Ltd Manufacture of separator for galvanic cell
JPH10298324A (en) * 1997-04-23 1998-11-10 Tonen Chem Corp Microporous polyolefin film and its production
JPH1116561A (en) * 1997-06-23 1999-01-22 Elf Atochem Japan Kk Battery separator, its manufacture and nonaqueous secondary battery
JPH1160790A (en) * 1997-08-08 1999-03-05 Mitsui Chem Inc Polyethylene microporous film and its production
JPH1160789A (en) * 1997-08-08 1999-03-05 Asahi Chem Ind Co Ltd Production of microporous film
JPH11195409A (en) * 1998-01-06 1999-07-21 Ube Ind Ltd Porous film and separator for battery
JPH11233095A (en) * 1998-02-19 1999-08-27 Mitsubishi Chemical Corp Separator for battery
JP2002542574A (en) * 1999-02-19 2002-12-10 アムテック リサーチ インターナショナル エルエルシー Conductive self-supporting microporous polymer sheet

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05234578A (en) * 1991-07-05 1993-09-10 Asahi Chem Ind Co Ltd Separator for battery using organic electrolyte and its manufacture
JPH076747A (en) * 1993-06-15 1995-01-10 Nippon Muki Co Ltd Manufacture of battery separator and manufacturing equipment
JPH08259216A (en) * 1995-03-24 1996-10-08 Tokuyama Corp Production of hydrophobic silica
JPH1050287A (en) * 1996-07-31 1998-02-20 Sony Corp Nonaqueous electrolyte battery, separator for it, and manufacture of the separator
JPH1044348A (en) * 1996-08-02 1998-02-17 Tonen Chem Corp Polyolefin porous membrane, manufacture thereof, separator for electric cell using membrane
JPH10100224A (en) * 1996-09-30 1998-04-21 Nippon Muki Co Ltd Manufacture of separator for galvanic cell
JPH10298324A (en) * 1997-04-23 1998-11-10 Tonen Chem Corp Microporous polyolefin film and its production
JPH1116561A (en) * 1997-06-23 1999-01-22 Elf Atochem Japan Kk Battery separator, its manufacture and nonaqueous secondary battery
JPH1160790A (en) * 1997-08-08 1999-03-05 Mitsui Chem Inc Polyethylene microporous film and its production
JPH1160789A (en) * 1997-08-08 1999-03-05 Asahi Chem Ind Co Ltd Production of microporous film
JPH11195409A (en) * 1998-01-06 1999-07-21 Ube Ind Ltd Porous film and separator for battery
JPH11233095A (en) * 1998-02-19 1999-08-27 Mitsubishi Chemical Corp Separator for battery
JP2002542574A (en) * 1999-02-19 2002-12-10 アムテック リサーチ インターナショナル エルエルシー Conductive self-supporting microporous polymer sheet

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11050095B2 (en) 2004-12-08 2021-06-29 Maxell Holdings, Ltd. Separator for electrochemical device, and electrochemical device
US8405957B2 (en) 2005-12-08 2013-03-26 Hitachi Maxell, Ltd. Separator for electrochemical device and method for producing the same, and electrochemical device and method for producing the same
US7553587B2 (en) 2006-03-30 2009-06-30 Panasonic Corporation Non-aqueous electrolyte secondary battery and method of manufacturing the same
US9419283B2 (en) 2006-08-21 2016-08-16 Lg Chem, Ltd. Non-aqueous lithium secondary battery containing hydrophobic, inactive particle
JP2010157521A (en) * 2006-09-07 2010-07-15 Hitachi Maxell Ltd Battery separator, and lithium secondary battery using the same
KR101117753B1 (en) 2006-09-07 2012-03-12 히다치 막셀 가부시키가이샤 Battery separator, method for manufacture thereof, and lithium secondary battery
KR101223081B1 (en) 2006-09-07 2013-01-17 히다치 막셀 가부시키가이샤 Battery separator and lithium secondary battery
JP2013030497A (en) * 2006-09-07 2013-02-07 Hitachi Maxell Ltd Lithium secondary battery
JP2009224341A (en) * 2006-09-07 2009-10-01 Hitachi Maxell Ltd Separator for battery, its manufacturing method, and lithium secondary battery
US9166250B2 (en) 2006-09-07 2015-10-20 Hitachi Maxell, Ltd. Separator for battery, method for manufacturing the same, and lithium secondary battery
WO2008029922A1 (en) * 2006-09-07 2008-03-13 Hitachi Maxell, Ltd. Battery separator, method for manufacture thereof, and lithium secondary battery
JP2008210686A (en) * 2007-02-27 2008-09-11 Sanyo Electric Co Ltd Non-aqueous electrolyte secondary battery and its manufacturing method
US10153493B2 (en) 2013-07-05 2018-12-11 Shin-Etsu Chemical Co., Ltd. Nonaqueous electrolyte secondary battery
WO2015197428A1 (en) * 2014-06-23 2015-12-30 Evonik Litarion Gmbh Hydrophobic separator and method for producing the separator
CN105453301A (en) * 2014-07-29 2016-03-30 住友化学株式会社 Porous membrane
CN114744363A (en) * 2022-03-29 2022-07-12 中材锂膜(宁乡)有限公司 Lithium ion battery diaphragm slurry, preparation method thereof and diaphragm

Also Published As

Publication number Publication date
JP4812919B2 (en) 2011-11-09

Similar Documents

Publication Publication Date Title
JP3948838B2 (en) HYBRID POLYMER ELECTROLYTE, ITS MANUFACTURING METHOD, AND LITHIUM BATTERY PRODUCED BY USING THE SAME
Ahmad et al. Porous (PVDF-HFP/PANI/GO) ternary hybrid polymer electrolyte membranes for lithium-ion batteries
JP5701741B2 (en) Sulfide-based solid electrolyte
WO2018003333A1 (en) Sulfide-based solid electrolyte for lithium secondary battery
CN110459798B (en) Sulfide solid electrolyte with core-shell structure, preparation method and solid-state battery
JP6997216B2 (en) Solid electrolyte
Inda et al. Development of all-solid lithium-ion battery using Li-ion conducting glass-ceramics
US5143805A (en) Cathodic electrode
Vijayakumar et al. Effect of nanoscale CeO 2 on PVDF-HFP-based nanocomposite porous polymer electrolytes for Li-ion batteries
JPWO2015011937A1 (en) Sulfide-based solid electrolyte for lithium-ion battery
WO2017047378A1 (en) All-solid secondary battery
JP2000208123A (en) Separator for nonaqueous electrolyte battery
Sharma et al. Lithium ion batteries with alumina separator for improved safety
WO2017047379A1 (en) Binder for all-solid-state secondary batteries, and all-solid-state secondary battery
CN102064340A (en) Composite polymer electrolyte film for lithium ion battery and preparation method thereof
JP2020114787A (en) Sulfide solid electrolyte particle and method for producing the same, and total solid content battery
JP4812919B2 (en) Non-aqueous electrolyte battery separator
JP2009094029A (en) All-solid lithium secondary battery, and electrode for all-solid lithium secondary battery
Xiao et al. A novel NaA-type zeolite-embedded composite separator for lithium-ion battery
JP2010056027A (en) Aqueous lithium secondary battery, and electrode for aqueous lithium secondary battery
KR20160013630A (en) Polymer coated solfide electrolyte, methods for manufacturing the same, and all solid state rechargeable lithium battery including the same
JP2008210686A (en) Non-aqueous electrolyte secondary battery and its manufacturing method
JP5235324B2 (en) Polyolefin microporous membrane
JP5060034B2 (en) Electric storage device separator and electric storage device
KR101841278B1 (en) Lithium sulfur battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060502

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100705

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110824

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees