JP2002134092A - Polymer meso porous separator element for laminated lithium ion battery - Google Patents

Polymer meso porous separator element for laminated lithium ion battery

Info

Publication number
JP2002134092A
JP2002134092A JP2001203606A JP2001203606A JP2002134092A JP 2002134092 A JP2002134092 A JP 2002134092A JP 2001203606 A JP2001203606 A JP 2001203606A JP 2001203606 A JP2001203606 A JP 2001203606A JP 2002134092 A JP2002134092 A JP 2002134092A
Authority
JP
Japan
Prior art keywords
solvent
polymer
membrane
separator
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001203606A
Other languages
Japanese (ja)
Inventor
Aurelien Dupasquier
オーレリアン・デュパスキエ
Jean-Marie Tarascon
ジャン−マリー・タラスコン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valence Technology Inc
Original Assignee
Valence Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/689,170 external-priority patent/US6537334B1/en
Application filed by Valence Technology Inc filed Critical Valence Technology Inc
Publication of JP2002134092A publication Critical patent/JP2002134092A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a simple, economical method for manufacturing a battery separator element showing a high ionic conductivity and circulation stability under a long period of storage and usage of the battery. SOLUTION: A manufacturing method of a meso porous polymer film employed as an ionic conductive interelectrode separator for a battery cell, comprising the steps of: (a) preparing a polymer material, a volatile fluid solvent for the polymer material, and a compound containing a second fluid with the volatility lower than that of the solvent, the compound being able to be mixed with the solvent and be coated; (b) casting the compound so that layers are formed; (c) volatilizing the fluid from the layers under the condition that the solvent volatilizes actually faster than the above non-solvent; (d) keeping the solvent volatilized up to the completion of the gellation of the above polymer material parent; and (e) continuing the volatilization of the above non-solvent from the above droplet until the process is complete, so that meso porous voids are equally dispersed among the above film parent.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は典型的に加熱加圧下
で積層されて単一の電池セル構造を形成する、高分子フ
ィルム組成物電極及びセパレーター要素、及び金属フォ
イル又はメッシュ電流コレクターを含む再充電可能な電
解電池セルに関する。特に、本発明は極めて多孔質であ
り、従って高温の積層処理の後でもかなりの量の電解溶
液を吸収して保持でき、これにより広範囲の温度での長
時間の蓄電池の貯蔵及び使用において、高いイオン伝導
率と循環安定性を提供できるセパレーター要素フィルム
又は膜を製造する簡単で経済的な方法を提供する。
FIELD OF THE INVENTION The present invention relates to a polymer film composition electrode and separator element, and a metal foil or mesh current collector, typically laminated under heat and pressure to form a single battery cell structure. The present invention relates to a rechargeable electrolytic battery cell. In particular, the present invention is extremely porous, and therefore can absorb and retain a significant amount of electrolytic solution even after high temperature lamination processing, thereby increasing the storage and use of batteries over a wide range of temperatures and for extended periods of time. Provided is a simple and economical method of producing a separator element film or membrane that can provide ionic conductivity and circulation stability.

【0002】[0002]

【従来の技術】本発明に特に好ましく使用される電解電
池セルは米国特許5,460,904に記述されている
形式のLiイオン挿入セルを含み、これは好ましくは米
国特許5,418,091に記述されているようなセパ
レーター要素を含み、これらの特許の開示は参考用とし
てここに挙げられる。このようなセルは高分子母体中に
分散したリチウム‐源LiMn24及び炭素のような細
かく分割された活性物質を含むそれぞれ正及び負の電極
要素から構成され、そして柔軟な層又は膜に形成され
る。これらの要素はこれらの間に電気的に絶縁性のセパ
レーター膜を張り合わされ、このセパレーター膜は通常
は類似の重合体物質を含み、このセパレーター膜は最終
的にはリチウム塩が均一に分散した有機溶液を含有し
て、前記電極間において電解質のイオン導電性の橋とし
て働き、また電池セルの充電及び放電のサイクルを通じ
てこれらの電極の活物質から活物質に可逆的に流れるL
iイオンの挿入を可能にする。最終的に、電池セル回路
の電子の付随する流れを促進するために、正極要素及び
負極要素のそれぞれは集電極要素を有し、これは使用時
に利用装置に導かれる導線の留め具のための端末ベース
として働く。
BACKGROUND OF THE INVENTION Electrolytic battery cells which are particularly preferably used in the present invention include Li-ion insertion cells of the type described in US Pat. No. 5,460,904, which is preferably disclosed in US Pat. No. 5,418,091. It includes a separator element as described and the disclosures of these patents are hereby incorporated by reference. Such cells are composed of positive and negative electrode elements, respectively, containing finely divided active materials such as a lithium-source LiMn 2 O 4 and carbon dispersed in a polymer matrix, and formed into a flexible layer or membrane. It is formed. These elements are laminated with an electrically insulating separator membrane between them, which usually contains a similar polymeric material, which is ultimately an organic material in which the lithium salt is uniformly dispersed. It contains a solution, acts as an ionic conductive bridge of electrolyte between the electrodes, and reversibly flows from the active material of these electrodes to the active material through the charge and discharge cycles of the battery cell.
Enables i-ion insertion. Ultimately, to facilitate the attendant flow of electrons in the battery cell circuit, each of the positive and negative electrode elements has a collector element, which is used for conducting wire fasteners that are directed to the application during use. Work as a terminal base.

【0003】これらの従来の電池セルの製作及び使用に
おいて、重合体に相溶性の可塑剤化合物を含むセパレー
ター膜要素組成物が採用され、この可塑剤は電解質溶液
の添加による活性化のための準備として、最終のセルセ
パレーター成分から部分的に除去された。これらの重合
体セパレーター組成物だけでなく類似の重合体電池電極
組成物も、一般に重合体に不活性の溶媒を用いた抽出に
より、添加された相溶性可塑剤を除去しても、重合体母
体中に多孔性を付与しないで、むしろ活性電解質の早期
の吸収のための母体を予め調整することにおいて、特に
ユニークであった。
In the fabrication and use of these conventional battery cells, a separator membrane element composition containing a polymer-compatible plasticizer compound is employed, the plasticizer being prepared for activation by the addition of an electrolyte solution. As part of the final cell separator component. Not only these polymer separator compositions but also similar polymer battery electrode compositions are generally prepared by extraction using a solvent inert to the polymer to remove the added compatible plasticizer. It was particularly unique in preconditioning the matrix for early absorption of the active electrolyte without imparting porosity therein.

【0004】他方で、電解質吸収を促進するために母体
の多孔性を当てにする従来の重合体電池セルセパレータ
ー要素は米国特許3,351,495に記述されてい
る。しかしながら、このようなセパレーター要素の調製
は、類似の溶媒抽出操作を当てにしており、多孔性を得
るために、添加された不活性充填剤粒子と共に不相溶性
の、いわゆる“可塑剤”成分を凝固した組成物から物理
的に除去する。
[0004] On the other hand, conventional polymer battery cell separator elements that rely on the porosity of the matrix to promote electrolyte absorption are described in US Patent 3,351,495. However, the preparation of such separator elements relies on a similar solvent extraction procedure, in which a so-called "plasticizer" component, which is incompatible with the added inert filler particles, is used to obtain porosity. Physically removed from the solidified composition.

【0005】[0005]

【発明が解決しようとする課題】本発明によれば、電池
セパレーター膜要素が提供され、これは改良された電解
質溶液吸収を生じることができる程度のメソ多孔性を有
し、そして結果として生じる高いイオン伝導性を有し、
更に時間がかかり、高価な抽出操作に依存することなく
調製される。また本発明の電池セル要素の調製方法は簡
単な要素膜被覆方法又は流し込み成形方法を含み、この
方法は被覆組成物流体ビヒクル成分の差別的な蒸発によ
り好ましい多孔性を形成する。
In accordance with the present invention, there is provided a battery separator membrane element which has a degree of mesoporosity which can result in improved electrolyte solution absorption and which results in a high mesoporosity. Has ionic conductivity,
The preparation is more time-consuming and does not depend on expensive extraction operations. Also, the method of preparing the battery cell element of the present invention includes a simple element film coating method or a casting method, which forms the desired porosity by differential evaporation of the coating composition fluid vehicle component.

【0006】[0006]

【課題を解決するための手段】本発明は積層されたLi
イオン挿入電池セルのセパレーター及び電極要素として
均一に良好に作用するメソ多孔質重合体母体層又は膜を
調製する方法を提供する。このような膜は重合体溶媒成
分及び非溶媒被覆ビヒクル成分の組合せを含む重合体組
成物を利用した簡単な被覆又はフィルム形成方法により
調製され、この方法は、それぞれの前記成分の蒸発速度
により、初期の溶媒蒸発を通じて凝固する重合体母体層
中に揮発性の小さい非溶媒を細かく分散させる。前記重
合体母体が前記溶媒成分の蒸発の結果、ゲル化又は凝固
した後に、前記非溶媒成分が重合体母体から最終的に蒸
発して拡散すると、メソ多孔質母体構造物を生成し、こ
れは電解質溶液を容易に吸収して電池セル中に高レベル
のイオン伝導性を与える。
SUMMARY OF THE INVENTION The present invention relates to a laminated Li
Provided is a method for preparing a mesoporous polymer matrix layer or membrane that works uniformly and well as a separator and an electrode element of an ion insertion battery cell. Such membranes are prepared by a simple coating or film forming method utilizing a polymer composition comprising a combination of a polymer solvent component and a non-solvent coated vehicle component, the method comprising the steps of: The non-volatile non-solvent is finely dispersed in the polymer matrix which solidifies through the initial solvent evaporation. After the polymer matrix gels or solidifies as a result of the evaporation of the solvent component, the non-solvent component eventually evaporates and diffuses from the polymer matrix to produce a mesoporous matrix structure, It readily absorbs the electrolyte solution to provide a high level of ionic conductivity in the battery cells.

【0007】前記母体重合体及び被覆ビヒクルの混合物
の他に、前記組成物は好ましくはシリカのように細かく
分割された不活性充填剤を含み、この粒子は最初は被覆
層中に均一に分散するが、部分的に移動し、前記母体膜
のゲル化を通じて前記分散した非溶媒ビヒクル液滴中に
塊として集結する。従って、不活性充填剤はその均一な
分散により最終層に構造強度を与えるばかりでなく、非
溶媒ビヒクルの拡散の後にメソ孔の開口構造を維持する
支持体を提供し、また更に後で前記セパレーターと電極
要素を接合して単一電池セル構造を形成する熱積層操作
の圧縮を通じて別の支持体を提供する。
[0007] In addition to the mixture of the matrix polymer and the coating vehicle, the composition preferably contains a finely divided inert filler such as silica, the particles of which are initially uniformly dispersed in the coating layer. Partially migrate and aggregate as lumps in the dispersed non-solvent vehicle droplets through gelation of the matrix film. Thus, the inert filler not only provides structural strength to the final layer due to its uniform dispersion, but also provides a support that maintains the open structure of the mesopores after diffusion of the non-solvent vehicle, and further later provides the separator with the separator. And an electrode element to provide another support through compression of a thermal lamination operation to form a single battery cell structure.

【0008】相補的電極被覆組成物は母体重合体及び溶
媒と非溶媒の混合物の他に、粉末炭素及び挿入化合物、
例えば、LiMn24スピネルのようなそれぞれ電解質
的に活性な成分を含む。これらの活性成分は細かく分割
された形で被膜組成物中に分散するが、これらはこれら
の粒子の大きさが通常はメソ孔よりも極めて大きい範囲
にあるため、メソ孔の形成を著しくは妨害しない。
The complementary electrode coating composition comprises, in addition to a matrix polymer and a mixture of a solvent and a non-solvent, powdered carbon and an intercalating compound;
For example, each contains an electrolytically active component such as LiMn 2 O 4 spinel. These active ingredients are dispersed in the coating composition in finely divided form, but they significantly impede the formation of mesopores, since the size of these particles is usually much larger than the mesopores. do not do.

【0009】メソ多孔質セパレーター及び電極要素の形
成が完了した後に、それぞれの電極要素に金属グリッド
又はフォイルの集電極を熱で積層し、続いてこれらの電
極副集成体に介在のセパレーター要素を積層することは
上述の特許明細書に記述されている。電池セルの製作は
定法のように、活性化及び電解質溶液のメソ孔膜への吸
収、及び最終包装によって終了する。
After the formation of the mesoporous separator and the electrode elements is completed, a metal grid or foil collector is laminated on each electrode element by heat, and then an intervening separator element is laminated on these electrode subassemblies. This is described in the above-mentioned patent specification. The fabrication of the battery cell is completed by activation, absorption of the electrolyte solution into the mesoporous membrane, and final packaging, as is customary.

【0010】[0010]

【発明の実施の形態】本発明は費用及び時間のかかる溶
媒抽出工程に頼らずに、再充電可能な電解電池セルのメ
ソ多孔質重合体セパレーター及び電極要素を製造する方
法を本質的に含む。更に本発明は得られたセパレーター
及び電極要素を含み、これに加えて、これらのセパレー
ター及び電極要素及び伝導性集電極要素の熱積層集成体
により組立てられた蓄電池セルを含む。このような集成
体及び蓄電池セルの作製に用いる方法はその大部分が米
国特許の5,470,357及び5,540,741及
びこれらの関連特許に記述される。
DETAILED DESCRIPTION OF THE INVENTION The present invention essentially comprises a method of making a mesoporous polymer separator and electrode element of a rechargeable electrolytic battery cell without resorting to costly and time consuming solvent extraction steps. The invention further comprises the separator and the electrode element obtained, in addition to a battery cell assembled by a thermally laminated assembly of these separator and electrode element and the conductive collector element. The methods used to make such assemblies and battery cells are described in large part in U.S. Patents 5,470,357 and 5,540,741 and related patents.

【0011】典型的な電池セル集成体10は図1に示さ
れ、これは正極膜要素13及び負極膜要素17を含み、
これらの間に本発明に従って調製されるセパレーター要
素15が配置され、この中にリチウム塩電解質溶液が最
終的に吸収される。前記電極13,17はそれぞれリチ
ウムを含む(lithiated)挿入化合物、例えば、LiM
24、及びリチウムイオンを可逆的に挿入できる補充
物質、例えば、石油コークス又は黒鉛の形状の炭素を含
む。好ましくはアルミニウム及び銅、又はニッケルから
成る導電性集電極11,19はそれぞれの電極要素1
3,17に付着し、好ましくは、予備的に張合わされて
副‐集成体を形成し、そしてこれらの副‐集成体は熱で
積層されて、中間に位置するセパレーター要素15に接
着して、単一の電池セル10を形成する。前記セルの後
の処理を促進するために、特に電解質溶液を取り込むた
めに、少なくとも1つの、好ましくは2つの集電要素
は、有孔箔又はエキスパンデッドメタルグリッドの形状
のように、透過性である。
A typical battery cell assembly 10 is shown in FIG. 1, which includes a positive membrane element 13 and a negative membrane element 17,
Between these is located a separator element 15 prepared according to the invention, into which the lithium salt electrolyte solution is finally absorbed. The electrodes 13 and 17 are each made of a lithiated insertion compound such as LiM.
n 2 O 4 and supplements that can reversibly insert lithium ions, such as carbon in the form of petroleum coke or graphite. The conductive collectors 11, 19, which are preferably made of aluminum and copper or nickel, have respective electrode elements 1
3, 17, preferably pre-laminated to form sub-assemblies, and these sub-assemblies are laminated by heat and adhere to an intermediate separator element 15, A single battery cell 10 is formed. At least one, and preferably two, current collecting elements, such as in the form of a perforated foil or expanded metal grid, to facilitate subsequent processing of the cell, particularly to incorporate the electrolyte solution, It is.

【0012】本発明のセパレーター及び同様の電極要素
の作製に利用される重合体物質は、例えば、塩化ビニ
ル、アクリロニトリル、酢酸ビニル、フッ化ビニル、塩
化ビニリデン、及びフッ化ビニリデンの重合体及び共重
合体;及びアクリロニトリルと塩化ビニル又は塩化ビニ
リデンとの重合体及び共重合体;フッ化ビニリデンとテ
トラフルオロエチレンとの重合体及び共重合体;トリフ
ルオロエチレン、クロロトリフルオロエチレン、又はヘ
キサフルオロプロピレンの重合体及び共重合体から選択
できるが、約75〜97重量%のフッ化ビニリデン(V
dF)と3〜25重量%のヘキサフルオロプロピレン
(HFP)との共重合体が特に好ましく、VdFコモノ
マーの比率は一般にその分子量と共に変化する。
The polymeric materials utilized in making the separators and similar electrode elements of the present invention include, for example, polymers and copolymers of vinyl chloride, acrylonitrile, vinyl acetate, vinyl fluoride, vinylidene chloride, and vinylidene fluoride. Polymers and copolymers of acrylonitrile and vinyl chloride or vinylidene chloride; polymers and copolymers of vinylidene fluoride and tetrafluoroethylene; and the weight of trifluoroethylene, chlorotrifluoroethylene, or hexafluoropropylene. About 75-97% by weight of vinylidene fluoride (V
Copolymers of dF) and 3-25% by weight of hexafluoropropylene (HFP) are particularly preferred, the proportion of VdF comonomer generally varying with its molecular weight.

【0013】本発明のセパレーター要素と電極要素の調
製と処理のためには必須ではないけれども、積層を通じ
て柔軟性と熱凝集を最適の状態にするために、重合体組
成物はフタル酸ジブチルのような相溶性の有機可塑剤の
適当量を更に含んでもよい。正極及び負極の組成物は普
通は細かく分割された分散形状において、更に電解質的
に活性な成分を含み、この活性成分は実質的に最終電池
の放電/充電のサイクルを通じてリチウムイオンを提供
し、そして挿入できる物質である。
Although not required for the preparation and processing of the separator and electrode elements of the present invention, the polymer composition is preferably dibutyl phthalate, such as dibutyl phthalate, to optimize flexibility and thermal aggregation through lamination. It may further contain a suitable amount of a compatible organic plasticizer. The positive and negative electrode compositions, usually in finely divided dispersion form, further comprise an electrolytically active component, which provides lithium ions substantially throughout the final battery discharge / charge cycle, and It is a substance that can be inserted.

【0014】本発明の方法はセパレーター及び電極の膜
を流し込み成形するのに使用される被覆組成物を調製す
る従来の電池セルの製造技術と相違する独特の技術であ
る。従来の方法は母体重合体及び被覆ビヒクル溶媒、必
要ならば可塑剤を含む均一な被覆溶液の調製を必要とす
るが、本発明で採用される被覆組成物は、アセトン又は
テトラヒドロフランのような第1の重合体溶媒に加え
て、実質的に重合体に対し非溶媒であるが、前記第1溶
媒とかなりの程度混和できる低級アルコールのような揮
発性の低い液体被覆ビヒクル成分を含む。このような混
合された溶解力のある被覆ビヒクルは透明で均質な重合
体溶液層を最初に流し込み成形でき、また第1溶媒の大
部分を蒸発させることにより被覆層中の非溶媒が濃縮さ
れると、重合体のゲル化又は合体が前記層中に局部的に
生じて、非溶媒成分の多数の細かい液滴を包囲する。非
溶媒の揮発性が低いため、非溶媒成分の後の蒸発により
重合体膜が十分にゲル化してメソ多孔性構造を維持する
まで、均一な液滴の分散が保持される。
The method of the present invention is a unique technique that differs from conventional battery cell manufacturing techniques for preparing coating compositions used to cast separator and electrode membranes. While conventional methods require the preparation of a uniform coating solution containing a host polymer and a coating vehicle solvent and, if necessary, a plasticizer, the coating composition employed in the present invention comprises a primary coating solution such as acetone or tetrahydrofuran. In addition to the polymer solvent of the present invention, a liquid coating vehicle component such as a lower alcohol, such as a lower alcohol, which is substantially non-solvent for the polymer, but is miscible with the first solvent to a considerable extent. Such a mixed soluble coating vehicle can be cast first with a clear, homogeneous polymer solution layer, and the non-solvent in the coating layer is concentrated by evaporating most of the first solvent. Then, gelling or coalescence of the polymer occurs locally in the layer, surrounding many small droplets of non-solvent components. Due to the low volatility of the non-solvent, uniform droplet dispersion is maintained until the subsequent evaporation of the non-solvent component causes the polymer film to sufficiently gel and maintain a mesoporous structure.

【0015】本発明の好ましい態様において、被覆組成
物はシリカ又はアルミナのようなかなりの量の不活性な
粒状の充填剤を含み、これは流し込み成形された層中に
最初は均一に分散する。この充填剤成分は、これが従来
技術の組成物中においてそうであったように、最終膜の
物理的強度に実質的に寄与する。しかしながら、本発明
で利用される場合、この粒状充填剤は独特の機能を付加
する。即ち、第1溶媒ビヒクルの蒸発及びこれによる重
合体膜母体の合体を通じて、充填剤粒子はビヒクルの蒸
発が進行するにつれて、流動が大きい非溶媒液滴中に蓄
積する傾向を示し、そして非溶媒によって最初に占めら
れた隙間の内部に大きな寸法で最終的に塊になり、その
結果、セパレーター膜の最終のメソ多孔性が維持され
る。
In a preferred embodiment of the present invention, the coating composition contains a significant amount of inert particulate filler, such as silica or alumina, which is initially homogeneously dispersed in the cast layer. This filler component substantially contributes to the physical strength of the final film, as it did in prior art compositions. However, when utilized in the present invention, the particulate filler adds a unique function. That is, through evaporation of the first solvent vehicle and thus coalescence of the polymer film matrix, the filler particles tend to accumulate in larger non-solvent droplets as the evaporation of the vehicle proceeds, and Larger dimensions eventually agglomerate within the initially occupied gaps, so that the final mesoporosity of the separator membrane is maintained.

【0016】被覆組成物の特殊な溶解力の不均衡さと組
合された粒状充填剤のこの優れた機能は図2及び図3に
示されるであろう。図2において、セパレーター膜被覆
層の部分15は非溶媒の液滴26を分離するのに十分な
程度まで第1溶媒を蒸発させることによりゲル化した重
合体溶液の連続する母体22を含む。充填剤粒子24,
25は、均質組成物が最初に流し込み成形された時と同
様に、層全体に、即ち、重合体母体22と非溶媒液滴2
6の両方に実質的に同じ均質な分散状態で分散される。
第1溶媒の蒸発によって更にゲル化されると、図3に示
すように、重合体母体22の粘度が増大して充填剤粒子
24の分散を固定し、その間に流動性の高い非溶媒液滴
36内の粒子25は非溶媒が蒸発するにつれて自由に塊
になる。重合体母体が凝固して隙間36の寸法を十分に
維持できるまで更なる塊状化が行われてもよい。
This superior function of the particulate filler combined with the specific dissolution imbalance of the coating composition will be illustrated in FIGS. In FIG. 2, portion 15 of the separator membrane coating layer includes a continuous matrix 22 of polymer solution gelled by evaporating the first solvent to an extent sufficient to separate non-solvent droplets 26. Filler particles 24,
25 is the same as when the homogeneous composition was first cast and formed over the entire layer, ie, the polymer matrix 22 and the non-solvent droplets 2.
6 are dispersed in substantially the same homogeneous dispersion state.
When the gel is further formed by the evaporation of the first solvent, the viscosity of the polymer matrix 22 increases to fix the dispersion of the filler particles 24 as shown in FIG. Particles 25 within 36 are free to clump as the non-solvent evaporates. Further agglomeration may occur until the polymer matrix solidifies and the dimensions of the gap 36 can be sufficiently maintained.

【0017】図2及び図3の描写は理解を容易にするた
めに極めて調和がとれていない状態で示されていること
に注目すべきである。重合体母体中の非溶媒の分散によ
り生じる隙間内部におけるヒュームドシリカのような粒
状充填剤の相対的な分配は前記シリカ粒子の実際の寸法
が約10nmであり、顕微鏡写真によれば隙間の直径が
約1μmであることを考慮して、更に密接して描かれて
もよい。
It should be noted that the depictions of FIGS. 2 and 3 are shown in a very uncoordinated state for ease of understanding. The relative distribution of the particulate filler, such as fumed silica, inside the gap caused by the dispersion of the non-solvent in the polymer matrix is such that the actual size of the silica particles is about 10 nm, and the micrograph shows the diameter of the gap. May be drawn more closely, taking into account that is about 1 μm.

【0018】図4に見られる隙間と粒状充填剤の別の描
写は、膜の隙間を容易に崩壊させ、そして電解質の臨界
吸収を大きく制限する熱と圧力を用いた積層により電池
セルを作製する極限の状態でセパレーター膜の隙間構造
を支えるという最大の役割を達成するために、充填剤粒
子の塊を配置することを意図する。最大圧縮で示される
ように、塊の粒子はセパレーター15の持続するメソ多
孔性を与える隙間の開いた網状組織を維持する。一方、
電極膜13,17中の完全な状態のメソ孔は大部分がこ
れらの組成物中の大きな寸法の粒子によって維持され
る。
Another depiction of the gaps and particulate filler seen in FIG. 4 is that the battery cells are made by lamination using heat and pressure that easily collapses the gaps in the membrane and greatly limits the critical absorption of the electrolyte. In order to achieve the greatest role of supporting the interstitial structure of the separator membrane in an extreme state, it is intended to arrange a mass of filler particles. As indicated by the maximum compression, the agglomerated particles maintain an open network that provides the sustained mesoporosity of the separator 15. on the other hand,
Intact mesopores in the electrode films 13, 17 are largely maintained by the large sized particles in these compositions.

【0019】本発明は上述の特許明細書及び関連の公報
に述べられた電池電極及び電解質成分を利用できるが、
平易さのために、本発明を下記の実施例に含まれるいく
つかの代表的な組成物に関して記述する。
Although the present invention can utilize the battery electrodes and electrolyte components described in the above-mentioned patent specification and related publications,
For simplicity, the present invention will be described with reference to some representative compositions included in the following examples.

【0020】[0020]

【実施例】実施例1 セパレーター膜15の好ましい態様のための被膜組成物
を本発明に従って約380×103MW(Atochem Kynar
FLEX 2801)を有する3.0グラムの88:12VdF:
HFP共重合体を約20ミリリットルのアセトンに溶解
することにより調製した。この溶液中に前記共重合体が
実質的に溶解しない約10ミリリットルのエタノール及
び2.0グラムのヒュームドシリカ(SiO2)を入れ
て撹拌して、透明で滑らかな粘性の組成物を形成した。
この組成物を付着防止剤のポリエチレンテレフタレート
フイルムの表面上に約250μmの湿潤厚に成形し、そ
して約30℃の適度に循環する空気中で被膜のビヒクル
成分を蒸発させることにより乾燥した。約50μmの厚
さの得られたセパレーター膜は前記成形用の基板から剥
離した時に自立しており、また均質な状態を示した。顕
微鏡写真の検査の結果、図2に示すように、前記膜中に
は前記重合体母体を通して円形の空隙とシリカ粒子が均
等に分配され、また前記空隙の範囲内の前記粒子の密度
は前記重合体母体中の前記粒子の密度より大きいことを
示した。
EXAMPLE 1 A coating composition for a preferred embodiment of a separator membrane 15 was prepared according to the present invention at about 380 × 10 3 MW (Atochem Kynar).
FLEX 2801) with 3.0 grams of 88:12 VdF:
It was prepared by dissolving the HFP copolymer in about 20 milliliters of acetone. About 10 milliliters of ethanol and 2.0 grams of fumed silica (SiO 2 ), in which the copolymer was substantially insoluble, were stirred into this solution to form a clear, smooth, viscous composition. .
The composition was formed into a wet thickness of about 250 μm on the surface of an anti-adhesive polyethylene terephthalate film and dried by evaporating the vehicle components of the coating in moderately circulating air at about 30 ° C. The obtained separator membrane having a thickness of about 50 μm was self-supported when peeled from the molding substrate, and showed a homogeneous state. As a result of inspection of the micrograph, as shown in FIG. 2, circular voids and silica particles were evenly distributed through the polymer matrix in the film, and the density of the particles within the voids was reduced by the weight. Greater than the density of the particles in the combined matrix.

【0021】実施例2 本発明の上述の一般的な態様の比較例を実施した。即
ち、不活性充填剤が分散されていないメソ多孔質膜を、
被膜組成物のシリカ成分が付与されないことを除いては
実施例1の方法を用いて調製した。組成物の流動性が大
きくなることを補償し、また同じ膜厚を得るために被膜
組成物を約350μmの厚さに成形した。得られたセパ
レーター膜は限界物理的強度を示し、また顕微鏡写真検
査の結果、実施例1と同じメソ多孔質構造を示したが、
不活性分散粒子は存在しなかった。
Example 2 A comparative example of the above general embodiment of the present invention was implemented. That is, the mesoporous membrane in which the inert filler is not dispersed,
The coating composition was prepared using the method of Example 1 except that the silica component was not added. The coating composition was molded to a thickness of about 350 μm to compensate for the increased flow of the composition and to obtain the same film thickness. The obtained separator membrane showed a limit physical strength, and as a result of microscopic inspection, showed the same mesoporous structure as in Example 1.
No inert dispersed particles were present.

【0022】実施例3 非溶剤のイソプロパノールがエタノールの代わりに使用
されたことを除いては、実施例1の方法により別の膜サ
ンプルを調製した。得られた膜は実施例1の膜と視覚的
に見分けがつかなかった。
Example 3 Another membrane sample was prepared by the method of Example 1 except that the non-solvent isopropanol was used instead of ethanol. The obtained film was visually indistinguishable from the film of Example 1.

【0023】実施例4 非溶剤のメタノールがエタノールの代わりに使用された
ことを除いては、実施例1の方法により異なる別の膜サ
ンプルを調製した。得られた膜は実施例1の膜と視覚的
に見分けがつかなかった。
Example 4 Another membrane sample was prepared according to the method of Example 1, except that the non-solvent methanol was used instead of ethanol. The obtained film was visually indistinguishable from the film of Example 1.

【0024】実施例5 約8ミリリットルのアセトンがエタノールの代わりに使
用されたことを除いては、比較例の膜サンプルを実施例
1の成分から調製し、これにより重合体溶媒のみから成
る被膜ビヒクルを得た。この組成物を同様な方法で成形
し、乾燥して、実施例1と類似するマクロ外観の膜を形
成した。顕微鏡写真の検査の結果、この膜はメソ多孔質
構造が存在しない重合体母体を通して均等に分散したシ
リカ粒子のみから構成されること判明した。
Example 5 A comparative membrane sample was prepared from the components of Example 1 except that about 8 milliliters of acetone was used in place of ethanol, thereby providing a coating vehicle consisting solely of a polymer solvent. I got This composition was molded in the same manner and dried to form a film having a macro appearance similar to that of Example 1. Examination of the micrographs revealed that the membrane consisted solely of silica particles evenly dispersed throughout the polymer matrix without the presence of a mesoporous structure.

【0025】実施例6 本発明の有効性を試験するために、比較の従来技術のセ
パレーター膜サンプルを実質的に上述の5,418,0
91特許の実施例13の方法により、溶媒に分散した約
20%SiO2及び25%フタル酸ジブチル可塑剤を含
むFLEX2801VdF:HFP共重合体組成物の成
形により調製した。上述の従来技術の方法に続いて、得
られた柔軟なセパレーター膜をジエチルエーテルで抽出
して、可塑剤成分を除去し、これにより電解質吸収のた
めの前記膜を調節した。抽出した膜を試験した結果、前
記参照した特許に記述されたように、シリカ粒子は重合
体母体中に分散していたが、空隙は認識できないことが
判明した。
Example 6 To test the effectiveness of the present invention, a comparative prior art separator membrane sample was prepared substantially as described above for 5,418,0.
Prepared by the method of Example 13 of the '91 patent by molding a FLEX 2801 VdF: HFP copolymer composition containing about 20% SiO 2 and 25% dibutyl phthalate plasticizer dispersed in a solvent. Following the prior art methods described above, the resulting flexible separator membrane was extracted with diethyl ether to remove the plasticizer component, thereby conditioning the membrane for electrolyte absorption. Testing of the extracted membranes revealed that the silica particles were dispersed in the polymer matrix, but voids were not recognizable, as described in the referenced patent.

【0026】実施例7 実施例1及び6のそれぞれに従って調製された本発明及
び従来例のセパレーター膜のそれぞれ4組のサンプルの
電解質吸収能力を比較した。この目的のために、これら
のサンプルを秤量し、次いで電池セル活性化電解質溶液
用のビヒクルとして典型的に使用されるリチウム塩溶媒
である炭酸プロピレン(PC)に数分間浸漬した。浸漬
後に、これらのサンプルの表面に蓄積したPCを清浄化
し、そしてPC吸収量を測定するために再秤量した。こ
れらのサンプルの組による吸収を比較するグラフは図5
で表され、これは本発明のメソ多孔質膜の模擬の電解質
吸収性が一般に大きいことを示す。
Example 7 Four sets of samples of the separator membranes of the present invention and the conventional example prepared according to Examples 1 and 6, respectively, were compared with each other in terms of electrolyte absorption capacity. To this end, the samples were weighed and then immersed for a few minutes in propylene carbonate (PC), a lithium salt solvent typically used as a vehicle for battery cell activating electrolyte solutions. After immersion, the PC accumulated on the surface of these samples was cleaned and reweighed to determine PC uptake. A graph comparing the absorption by these sets of samples is shown in FIG.
Which indicates that the simulated electrolyte absorption of the mesoporous membranes of the present invention is generally large.

【0027】実施例8 種々の温度状態に曝された後の模擬の電解質吸収を実施
例1〜5の本発明及び比較例のセパレーター膜のそれぞ
れのサンプルについて試験した。上記温度状態は電池セ
ルの作製におけるセパレーター要素及び電極要素の熱積
層を通じて遭遇し易いものである。このような積層温度
が増大すると多孔性及び電解質吸収能力が低下すること
が予想される。積層圧力及び100℃及び170℃の積
層温度に曝した後に、前記サンプルを実施例7の方法の
PC吸収について試験した。それぞれの実施例の膜の比
較吸収の結果を図6のグラフに示す。これらの試験結果
において特に注目すべき点は本発明のメソ多孔性膜によ
り最初に示される電解質吸収が高水準であり、更に構造
体を支持する粒状充填剤を含む実施例1,3及び4の好
ましい態様の吸収性がかなり高く維持されていることで
ある。実施例2で示すような充填剤のない膜のメソ孔崩
壊に対する感受性は母体重合体の融点以上の温度におい
てこれらの結果から明らかである。非常に優れた初期吸
収を有するこれらの膜は、もちろん、低温又は非積層の
電池セルの用途に有用であろう。更に明らかなように、
実施例5の比較の膜の非孔質構造体はほとんど温度によ
り影響されないが、いかなる状態でも最小の電解質吸収
を示す。
Example 8 Simulated electrolyte absorption after exposure to various temperature conditions was tested on each sample of the inventive and comparative separator membranes of Examples 1-5. The above temperature condition is easily encountered through thermal lamination of the separator element and the electrode element in the production of the battery cell. It is expected that porosity and electrolyte absorption capacity will decrease as such lamination temperature increases. After exposure to lamination pressure and lamination temperatures of 100 ° C. and 170 ° C., the samples were tested for PC absorption by the method of Example 7. The results of comparative absorption of the films of each example are shown in the graph of FIG. Of particular note in these test results is the high level of electrolyte absorption initially exhibited by the mesoporous membranes of the present invention, as well as those of Examples 1, 3 and 4, which include particulate fillers that support the structure. The absorption of the preferred embodiment is kept fairly high. The susceptibility of unfilled membranes to mesopore collapse as shown in Example 2 is apparent from these results at temperatures above the melting point of the parent polymer. These films with very good initial absorption would, of course, be useful for low temperature or non-laminated battery cell applications. As further evident,
The non-porous structure of the comparative membrane of Example 5 is hardly affected by temperature, but shows minimal electrolyte absorption under any conditions.

【0028】実施例9 本発明に従って調製されたメソ多孔性セパレーター及び
電極膜の最高の有効性を上述の特許の5,460,90
4の図4の方法で作製した比較の積層電池セルを用いて
試験した。可塑剤を抽出した従来技術のセルを前記特許
の実施例15のように調製し、また本発明のセルを以下
のように調製した。前記特許の図1に示すように、2.
5グラムのFLEX2801VdF:HFP共重合体、
1グラムのSP導電性炭素、5グラムのLiMn24
40ミリリットルのアセトン、及び15ミリリットルの
エタノールから成る組成物から正極膜13を約375μ
m厚に流し込み成形した。得られたメソ多孔性膜を加熱
ローラー装置内において約150℃でエキスパンデッド
アルミニウムフォイル集電極要素11に積層した。2.
5グラムのFLEX2801VdF:HFP共重合体、
1グラムのSP導電性炭素、5グラムのマイクロビーズ
炭素、40ミリリットルのアセトン、及び15ミリリッ
トルのエタノールから成る組成物から負極膜17を約4
50μm厚に流し込み成形した。得られたメソ多孔性膜
を加熱ローラー装置内において約150℃でエキスパン
デッド銅フォイル集電極要素19に積層した。前記実施
例1に従って作製されたメソ多孔性セパレーター要素1
5を前記副集成体の電極要素13,17の間にこれらに
接触させて配置し、そしてこの集成体を装置内において
約120℃で積層して単一の電池セル10を形成し、次
いでこの電池セルを上述の参照特許に記述したようにE
C:PC:LiPF6電解質溶液に浸漬することにより
活性化した。
Example 9 The highest effectiveness of mesoporous separators and electrode membranes prepared according to the present invention was determined using the above patents of 5,460,90.
The test was performed using the comparative laminated battery cell manufactured by the method of FIG. A prior art cell from which the plasticizer was extracted was prepared as in Example 15 of the patent, and a cell of the present invention was prepared as follows. As shown in FIG.
5 grams of FLEX2801VdF: HFP copolymer,
1 gram of SP conductive carbon, 5 grams of LiMn 2 O 4 ,
A positive electrode film 13 of about 375 μm was prepared from a composition consisting of 40 ml of acetone and 15 ml of ethanol.
It was cast to a thickness of m. The resulting mesoporous membrane was laminated to an expanded aluminum foil collector element 11 at about 150 ° C. in a heated roller device. 2.
5 grams of FLEX2801VdF: HFP copolymer,
Anode film 17 was prepared from a composition comprising 1 gram of SP conductive carbon, 5 grams of microbead carbon, 40 milliliters of acetone, and 15 milliliters of ethanol by about 4
It was cast to a thickness of 50 μm and molded. The resulting mesoporous membrane was laminated to an expanded copper foil collector element 19 at about 150 ° C. in a heated roller device. Mesoporous separator element 1 made according to Example 1 above
5 are placed between and in contact with the electrode elements 13, 17 of the subassembly, and the assembly is laminated in an apparatus at about 120 ° C. to form a single battery cell 10 and then The battery cell is E as described in the above referenced patent.
C: activated by immersion in PC: LiPF 6 electrolyte solution.

【0029】従来技術の電池セル及び本発明に従い作製
された要素で組立てられた電池セルを前記参照特許の
5,460,904の実施例13に記述された方法によ
りC/5サイクル速度において3.0V〜4.5Vのカ
ットオフ電圧間の定数10mAで循環させた。両方のセ
ルは前記参照特許の図2に示した方法で同じように作動
し、そして約20〜25mAhの範囲の放電性能を示し
た。
The prior art battery cells and battery cells assembled with elements made in accordance with the present invention were prepared at a C / 5 cycle rate by the method described in Example 13 of 5,460,904 of the referenced patent. Circulation was carried out with a constant 10 mA between 0 V and 4.5 V cutoff voltage. Both cells operated similarly in the manner shown in FIG. 2 of the referenced patent, and exhibited discharge performance in the range of about 20-25 mAh.

【0030】上述の実施例は例示のみを意図するもので
あって本発明を限定するものではない。同じ結果を生じ
るその他の重合体及び溶媒/非溶媒の組合せが添付の特
許請求の範囲に記載された発明の範囲から逸脱すること
なく一定の実験の実施に基づく上述の記述を考慮して当
業者により達成されるであろう。
The above embodiments are intended to be illustrative only and not limiting of the present invention. Other polymers and solvent / non-solvent combinations that produce the same result will be understood by those skilled in the art in light of the foregoing description based on the performance of certain experiments without departing from the scope of the invention as set forth in the appended claims. Will be achieved by

【0031】メソ多孔質セパレーター及び電極要素の形
成が完了した後に、それぞれの電極要素に金属グリッド
又はフォイルの集電極を熱で積層し、続いてこれらの電
極副集成体に介在のセパレーター要素を積層することは
上述の特許明細書に記述されている。電池セルの製作は
定法のように、活性化及び電解質溶液のメソ孔膜への吸
収、及び最終包装によって終了する。
After the formation of the mesoporous separator and the electrode element is completed, a metal grid or foil collector is laminated on each electrode element by heat, and then an intervening separator element is laminated on these electrode subassemblies. This is described in the above-mentioned patent specification. The fabrication of the battery cell is completed by activation, absorption of the electrolyte solution into the mesoporous membrane, and final packaging, as is customary.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のセパレーター要素及び電極要素を含む
複合Liイオン電池セルの概略図。
FIG. 1 is a schematic diagram of a composite Li-ion battery cell including a separator element and an electrode element of the present invention.

【図2】膜重合体の早い段階のゲル化の間の非溶媒ビヒ
クル液滴及び不活性充填剤粒子の相対的分散を示す本発
明のセパレーター膜の部分の断面図。
FIG. 2 is a cross-sectional view of a portion of a separator membrane of the present invention showing the relative dispersion of non-solvent vehicle droplets and inert filler particles during early stage gelation of the membrane polymer.

【図3】膜重合体の最終段階のゲル化の間の非溶媒ビヒ
クル液滴及び不活性充填剤粒子の相対的分散を示す本発
明のセパレーター膜の部分の断面図。
FIG. 3 is a cross-sectional view of a portion of a separator membrane of the present invention showing the relative dispersion of non-solvent vehicle droplets and inert filler particles during the final gelation of the membrane polymer.

【図4】膜重合体を積層する温度と圧力に曝した後の非
溶媒と置換するメソ多孔質空隙及び不活性充填剤粒子の
相対的分散を示す本発明のセパレーター膜の部分の断面
図。
FIG. 4 is a cross-sectional view of a portion of a separator membrane of the present invention showing the relative dispersion of non-solvent-replaced mesoporous voids and inert filler particles after exposure to the temperature and pressure at which the membrane polymer is laminated.

【図5】本発明及び従来技術に従って作製された類似の
重合体のセパレーター膜サンプルにおける電解質吸収を
比較するグラフ。
FIG. 5 is a graph comparing electrolyte absorption in separator membrane samples of similar polymers made according to the present invention and the prior art.

【図6】種々の組成物から調製され、そして中くらいの
及び高い積層温度に曝されたメソ多孔性セパレーター膜
における電解質吸収を比較するグラフ。
FIG. 6 is a graph comparing electrolyte absorption in mesoporous separator membranes prepared from various compositions and exposed to moderate and high lamination temperatures.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4F074 AA38A CB31 CB32 CB37 CB47 CC07Y CC22X DA24 DA49 4J002 BD031 BD101 BD121 BD131 BD141 BD161 BF021 BG101 DE146 DJ016 FD016 GQ00 5H021 BB04 BB12 CC04 EE10 EE15 EE23 EE31 HH01 HH05 5H029 AJ06 AJ14 AK03 AL06 AL07 AM03 AM05 AM07 BJ04 BJ12 CJ06 HJ01 HJ08  ──────────────────────────────────────────────────続 き Continuing on the front page F term (reference) 4F074 AA38A CB31 CB32 CB37 CB47 CC07Y CC22X DA24 DA49 4J002 BD031 BD101 BD121 BD131 BD141 BD161 BF021 BG101 DE146 DJ016 FD016 GQ00 5H021 BB04 BB12 CC04 EE10 EE15H01 A03 EE15H01 AL07 AM03 AM05 AM07 BJ04 BJ12 CJ06 HJ01 HJ08

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 蓄電池セルのイオン導電性電極間セパレ
ーターとして使用されるメソ多孔性重合体膜の製造方法
であって、 a)重合体物質、前記重合体物質のための揮発性流体溶
媒、及び前記溶媒と混合可能であって、前記溶媒よりも
揮発性が低い第2の流体を含む被覆可能な組成物を調製
し、前記第2の流体は前記重合体物質に対して著しい溶
解力を示さない非溶媒であり、 b)前記組成物を流し込み成形して、層を形成し、 c)前記溶媒が前記非溶媒よりも実質的に速い速度で揮
発する条件下で前記層から前記流体を揮発させ、これに
より前記層の非溶媒が優勢な領域中の前記重合体物質の
ゲル化が生じ、また重合体物質の母体中に実質的に均等
に分散した液滴として前記非溶媒が単離し、 d)前記重合体物質母体のゲル化が完了するまで前記溶
媒の揮発を継続させ、これにより前記膜が自立し、 e)前記液滴からの前記非溶媒の揮発を次の完了まで継
続させて、前記膜母体中にメソ多孔質の空隙を等しく分
散することを含むことを特徴とする前記方法。
1. A method for producing a mesoporous polymer membrane used as a separator between ionic conductive electrodes of a storage battery cell, comprising: a) a polymer material, a volatile fluid solvent for the polymer material, and Preparing a coatable composition that includes a second fluid that is miscible with the solvent and that is less volatile than the solvent, wherein the second fluid exhibits significant solvency for the polymeric material. B) casting the composition to form a layer; and c) volatilizing the fluid from the layer under conditions in which the solvent volatilizes at a substantially faster rate than the non-solvent. Thereby causing gelling of the polymeric material in the non-solvent predominant regions of the layer, and isolating the non-solvent as substantially evenly dispersed droplets in the matrix of the polymeric material; d) The gelation of the matrix of the polymer substance is completed. And e) allowing the non-solvent to evaporate from the droplets until the next completion to equalize the mesoporous voids in the film matrix. The above method, comprising dispersing.
【請求項2】 前記被覆可能な組成物中に前記組成物の
残存成分に対して実質的に不活性な充填剤の粒子を均一
に分配し、これにより前記粒子が前記隙間内部並びに前
記膜母体中に分配されることを更に含む、請求項1記載
の方法。
2. A uniform distribution of filler particles substantially inert to the remaining components of the composition in the coatable composition, such that the particles are in the gaps and in the film matrix. 2. The method of claim 1, further comprising dispensing therein.
【請求項3】 前記隙間の少なくとも一部中への吸収に
より前記電解質を前記隙間中に分配するのに十分な時
間、前記メソ多孔質セパレーター膜を流体電解質に接触
させ、これにより前記膜をイオン伝導性にすることを更
に含む、請求項2記載の方法。
3. The mesoporous separator membrane is contacted with a fluid electrolyte for a time sufficient to distribute the electrolyte into the gap by absorption into at least a portion of the gap, thereby causing the membrane to ionize. 3. The method of claim 2, further comprising making it conductive.
【請求項4】 蓄電池セルのイオン導電性電極間セパレ
ーターとして使用されるメソ多孔質重合体膜であって、 前記膜は内部に分配された多数の隙間と多数の不活性充
填剤粒子を有する重合体母体を含み、前記粒子の少なく
とも一部は前記隙間内部に位置することを特徴とする前
記重合体膜。
4. A mesoporous polymer membrane used as a separator between ion-conductive electrodes of a storage battery cell, wherein the membrane has a plurality of gaps distributed therein and a number of inert filler particles. The polymer film according to claim 1, further comprising a united matrix, wherein at least a part of the particles is located inside the gap.
【請求項5】 前記粒子は前記母体内部よりも大きい空
間密度で前記隙間内部に分配される、請求項4記載の
膜。
5. The membrane according to claim 4, wherein said particles are distributed inside said gap with a higher spatial density than inside said matrix.
【請求項6】 前記重合体母体は3〜25重量%のヘキ
サフルオロプロピレンを有するフッ化ビニリデンの共重
合体を含む、請求項4記載の膜。
6. The membrane of claim 4, wherein said polymer matrix comprises a copolymer of vinylidene fluoride having 3 to 25% by weight of hexafluoropropylene.
【請求項7】 正極要素、負極要素、及びこれらの間に
設けられたセパレーター膜要素を含む蓄電池セル構造物
であって、 前記セパレーター膜は内部に分配された多数の隙間と多
数の不活性充填剤粒子を有する重合体母体を含み、前記
粒子の少なくとも一部は前記隙間内部に位置することを
特徴とする前記蓄電池セル構造物。
7. A battery cell structure including a positive electrode element, a negative electrode element, and a separator membrane element provided therebetween, wherein the separator membrane has a number of gaps distributed therein and a number of inert fillers. The battery cell structure according to claim 1, further comprising a polymer matrix having agent particles, wherein at least a part of the particles is located inside the gap.
【請求項8】 前記粒子は前記母体内部よりも大きい空
間密度で前記隙間内部に分配される、請求項7記載の蓄
電池構造物。
8. The storage battery structure according to claim 7, wherein the particles are distributed inside the gap with a higher spatial density than inside the matrix.
【請求項9】 前記重合体母体は3〜25重量%のヘキ
サフルオロプロピレンを有するフッ化ビニリデンの共重
合体を含む、請求項7記載の蓄電池構造物。
9. The storage battery structure according to claim 7, wherein said polymer matrix comprises a copolymer of vinylidene fluoride having 3 to 25% by weight of hexafluoropropylene.
【請求項10】 前記電極要素のそれぞれは重合体母体
を含み、また前記電極要素及びセパレーター要素のそれ
ぞれはそれぞれの境界面において隣接する要素に結合し
て単一の柔軟な積層構造物を形成する、請求項7記載の
蓄電池構造物。
10. Each of said electrode elements includes a polymer matrix, and each of said electrode elements and separator elements is bonded to an adjacent element at a respective interface to form a single flexible laminated structure. The storage battery structure according to claim 7.
JP2001203606A 2000-10-12 2001-07-04 Polymer meso porous separator element for laminated lithium ion battery Pending JP2002134092A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/689,170 US6537334B1 (en) 1998-11-12 2000-10-12 Polymeric mesoporous separator elements for laminated lithium-ion rechargeable batteries
US09/689170 2000-10-12

Publications (1)

Publication Number Publication Date
JP2002134092A true JP2002134092A (en) 2002-05-10

Family

ID=24767327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001203606A Pending JP2002134092A (en) 2000-10-12 2001-07-04 Polymer meso porous separator element for laminated lithium ion battery

Country Status (5)

Country Link
JP (1) JP2002134092A (en)
KR (1) KR100790039B1 (en)
CN (1) CN1280929C (en)
SG (1) SG129214A1 (en)
TW (1) TW508855B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011165574A (en) * 2010-02-12 2011-08-25 Tomoegawa Paper Co Ltd Method of manufacturing separator for electronic component

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007042554B4 (en) * 2007-09-07 2017-05-11 Carl Freudenberg Kg Nonwoven with particle filling
US8470468B2 (en) * 2010-02-12 2013-06-25 GM Global Technology Operations LLC Lithium-ion batteries with coated separators

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1116561A (en) * 1997-06-23 1999-01-22 Elf Atochem Japan Kk Battery separator, its manufacture and nonaqueous secondary battery
JPH11102686A (en) * 1997-07-17 1999-04-13 Alcatel Alsthom Co General Electricite Polymer separator, its manufacture, and battery containing the separator
JPH11152366A (en) * 1997-11-19 1999-06-08 Asahi Chem Ind Co Ltd Porous membrane of vinylidene fluoride-based resin
JPH11329395A (en) * 1998-04-16 1999-11-30 Alcatel Cit Separator containing macro-porous matrix and porous polymer, its manufacture, battery including it and manufacture of the battery

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3953241A (en) * 1970-03-12 1976-04-27 Westinghouse Electric Corporation Heat resistant substrates and battery separators made therefrom
GB2169129B (en) * 1984-12-28 1988-06-08 Ppg Industries Inc Battery separator
GB8517571D0 (en) * 1985-07-11 1985-08-14 Raychem Ltd Polymer composition
US5418091A (en) * 1993-03-05 1995-05-23 Bell Communications Research, Inc. Polymeric electrolytic cell separator membrane
KR0115725Y1 (en) * 1995-06-22 1998-04-21 김태구 The fixing device of an engine hood
US5962162A (en) * 1997-10-10 1999-10-05 Ultralife Batteries Inc. Lithium ion polymer cell separator
WO1999059218A1 (en) * 1998-05-12 1999-11-18 Ecole Polytechnique Federale De Lausanne (Epfl) Sri Primary or secondary electrochemical generator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1116561A (en) * 1997-06-23 1999-01-22 Elf Atochem Japan Kk Battery separator, its manufacture and nonaqueous secondary battery
JPH11102686A (en) * 1997-07-17 1999-04-13 Alcatel Alsthom Co General Electricite Polymer separator, its manufacture, and battery containing the separator
JPH11152366A (en) * 1997-11-19 1999-06-08 Asahi Chem Ind Co Ltd Porous membrane of vinylidene fluoride-based resin
JPH11329395A (en) * 1998-04-16 1999-11-30 Alcatel Cit Separator containing macro-porous matrix and porous polymer, its manufacture, battery including it and manufacture of the battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011165574A (en) * 2010-02-12 2011-08-25 Tomoegawa Paper Co Ltd Method of manufacturing separator for electronic component

Also Published As

Publication number Publication date
KR100790039B1 (en) 2008-01-02
SG129214A1 (en) 2007-02-26
CN1349263A (en) 2002-05-15
TW508855B (en) 2002-11-01
KR20020029295A (en) 2002-04-18
CN1280929C (en) 2006-10-18

Similar Documents

Publication Publication Date Title
US6537334B1 (en) Polymeric mesoporous separator elements for laminated lithium-ion rechargeable batteries
JP5591704B2 (en) Batteries having inorganic / organic porous membrane
JP3253090B2 (en) Polymer electrolytic cell separator membrane and method for producing the same
US3661645A (en) Polytetrafluoroethylene battery separator and method for producing same
US20040018430A1 (en) Electrodes and related devices
JP6220124B2 (en) Carbonaceous composition for supercapacitor cell electrode, electrode, manufacturing process of the electrode, and cell incorporating the electrode
JP2002525864A (en) Super capacitor structure and manufacturing method thereof
JPH08507407A (en) Rechargeable Lithium Insertion Battery Using Hybrid Polymer Electrolyte
EP1243039A1 (en) Method of making multi-layer electrochemical cell devices
TWI667829B (en) All-solid-state battery, hybrid structure solid electrolyte membrane and their manufacturing methods thereof
JP2004111157A (en) Secondary battery and its manufacturing method
TW201351766A (en) Collector, electrode structure, nonaqueous electrolyte battery and power storage component, and method for producing collector
CN1331935C (en) Composite microporous polymer electrolyte and its preparing method
JP5123486B2 (en) Method for producing positive and negative electrode bonded lithium polymer battery
TW201415700A (en) Collector, electrode structure, nonaqueous electrolyte battery and power storage component, and method for producing collector
CA2391189A1 (en) Method of treating separator for use in electrochemical cell devices
JP2016115417A (en) Positive electrode used for lithium sulfur secondary battery, and lithium sulfur secondary battery
JPH10255849A (en) Manufacture of organic electrolyte electrochemical battery with single structure
JP2002134092A (en) Polymer meso porous separator element for laminated lithium ion battery
JP3540629B2 (en) Method for producing electrode for electrochemical device and electrochemical device
CN111933879A (en) Lithium ion battery
JP2001167796A (en) High molecular electrolyte for lithium secondary battery
JP5782611B2 (en) Electric double layer capacitor
JP2001319690A (en) Polymer-electrolyte battery and its manufacturing method
JP4112712B2 (en) Solid electrolyte, method for producing the same, and electrochemical device using the solid electrolyte

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060106

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060203

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110913

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110916

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20111013

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20111018

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20111111

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20111116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120710