JPH11162872A - Semiconductor integrated circuit device and manufacture thereof - Google Patents

Semiconductor integrated circuit device and manufacture thereof

Info

Publication number
JPH11162872A
JPH11162872A JP33933297A JP33933297A JPH11162872A JP H11162872 A JPH11162872 A JP H11162872A JP 33933297 A JP33933297 A JP 33933297A JP 33933297 A JP33933297 A JP 33933297A JP H11162872 A JPH11162872 A JP H11162872A
Authority
JP
Japan
Prior art keywords
integrated circuit
circuit device
concentration
semiconductor integrated
tiw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP33933297A
Other languages
Japanese (ja)
Inventor
Genichi Shigesato
元一 重里
Shinji Tokumaru
慎司 徳丸
Shunichi Hayashi
林  俊一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP33933297A priority Critical patent/JPH11162872A/en
Publication of JPH11162872A publication Critical patent/JPH11162872A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor integrated circuit device having an interconnection which is capable of having a low contact resistance with a semiconductor substrate, without conducting a heat treatment other than the one at 400-500 deg.C which is indispensable to a normal semiconductor integrated circuit device manufacturing process and which includes a TiW alloy which exhibits superior property as a barrier even for a single layer. SOLUTION: In a semiconductor integrated circuit device, wherein a contact hole 13a formed in an insulating film 13 formed on a semiconductor substrate 11 is filled with a metal, a TiW alloy layer 14 having a Ti density of 20 at.% at least and 50 at.% at most against the total density of W and Ti and an oxygen density of 1.0 at.% at least and 20 at.% at most or a TiW alloy layer 14, having the Ti density of 5 at.% at least and less than 20 at.% and the oxygen density of 0.5 at.% at least and 15 at.% at most is formed on part of the semiconductor substrate which is exposed at the bottom of the contact hole.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体集積回路装
置に関するものであり、より詳しくはコンタクトホール
に埋め込まれるTiW配線とその形成方法に特徴を有す
る半導体集積回路装置及びその製造方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor integrated circuit device, and more particularly to a semiconductor integrated circuit device characterized by a TiW wiring buried in a contact hole and a method of forming the same, and a method of manufacturing the same. .

【0002】[0002]

【従来の技術】コンタクトホールにWやAlなどの金属
プラグあるいは金属配線を埋め込む際には、例えば特開
平2−96331号公報や特開平1−138718号公
報に開示されているように、半導体基板と前記金属プラ
グとの間、あるいは半導体基板と前記金属配線との間に
TiW合金やTiの層を形成することが多い。これは半
導体基板とのオーミックコンタクトを得たり、前記金属
プラグあるいは金属配線と半導体基板との相互拡散を防
ぐ目的で形成されるものであり、それぞれコンタクト
層、バリア層と呼ばれている。また、Tiは半導体基板
との接触抵抗が低くコンタクト層としては優れた材料で
あるが、半導体基板やTiの上に積層されるAlやWを
CVD法で形成するときの酸素やフッ素ガスなどに対す
るバリア性が悪い。従って、Ti層の上にはTiNなど
のバリア層が積層されることが多い。
2. Description of the Related Art When a metal plug or metal wiring such as W or Al is buried in a contact hole, as disclosed in, for example, JP-A-2-96331 and JP-A-1-138718, In many cases, a TiW alloy or a Ti layer is formed between the semiconductor substrate and the metal wiring or between the semiconductor substrate and the metal wiring. This is formed for the purpose of obtaining an ohmic contact with the semiconductor substrate or preventing interdiffusion between the metal plug or metal wiring and the semiconductor substrate, and is called a contact layer and a barrier layer, respectively. Further, Ti is a material having a low contact resistance with the semiconductor substrate and an excellent material as a contact layer. However, Ti or oxygen gas or the like when forming Al or W laminated on the semiconductor substrate or Ti by the CVD method is used. Poor barrier properties. Therefore, a barrier layer such as TiN is often laminated on the Ti layer.

【0003】LSI配線用に良く用いられているTiW
合金のTi濃度は20at%〜30at%である。この
ときのTiWは、Tiに比べてバリア性に優れ、かつ金
属埋め込み時の膜剥がれが生じにくいなどの利点があ
る。
[0003] TiW commonly used for LSI wiring
The Ti concentration of the alloy is 20 at% to 30 at%. At this time, TiW has advantages such as excellent barrier properties as compared with Ti and less occurrence of film peeling during metal embedding.

【0004】しかしながら、TiW合金と半導体基板と
の接触抵抗はTiと半導体基板との接触抵抗に比べて大
きく、抵抗不良によるトラブルが発生するという問題が
あった。特に400℃〜500℃で熱処理を施すと、T
i濃度が20at%〜30at%のTiW合金の場合、
半導体基板との接触抵抗は著しく高くなりトラブルが発
生する。ここで、上記400℃〜500℃の熱処理は、
通常の半導体集積回路装置製造工程において、TiWな
どのバリア層を形成した後の酸化珪素絶縁膜形成などで
不可避的に行われるものである。
However, the contact resistance between the TiW alloy and the semiconductor substrate is larger than the contact resistance between the Ti and the semiconductor substrate, and there is a problem that a trouble due to poor resistance occurs. In particular, when heat treatment is performed at 400 ° C. to 500 ° C., T
In the case of a TiW alloy having an i concentration of 20 at% to 30 at%,
The contact resistance with the semiconductor substrate becomes extremely high, causing trouble. Here, the heat treatment at 400 ° C. to 500 ° C.
In a normal semiconductor integrated circuit device manufacturing process, it is inevitable to form a silicon oxide insulating film after forming a barrier layer such as TiW.

【0005】そこで米国特許第4888297号では、
コンタクト層としてTi濃度が約90at%〜97at
%のTiW合金を用いることが示され、またBabco
ckらは(J.Appl.phys.53,1982,P.
6898-6905)Ti濃度が80at%のTiW合
金を用いることを推奨している。
Therefore, in US Pat. No. 4,888,297,
Ti concentration of about 90 at% to 97 at for the contact layer
% TiW alloy has been shown to be used, and Babco
ck et al. (J. Appl. phys. 53, 1982, p.
6898-6905) It is recommended to use a TiW alloy having a Ti concentration of 80 at%.

【0006】しかしながら、このような組成のTiW合
金ではバリア性が不十分であるために、コンタクト層と
は別の組成のTiW合金、すなわちそれぞれTi63a
t%以下、Ti30at%のTiW合金層をバリア層と
して積層している。
However, since the TiW alloy having such a composition has insufficient barrier properties, a TiW alloy having a composition different from that of the contact layer, that is, Ti63a is used.
A TiW alloy layer of 30 at% or less of t% is laminated as a barrier layer.

【0007】また、特開平5−175346号公報に開
示されているように、TiWなどのバリア層を形成した
後に600℃〜750℃で熱処理を施すことによってT
iW合金と半導体基板との接触抵抗を低下させる方法も
あるが、その場合には通常の半導体集積回路装置製造工
程に新たな熱処理工程を追加しなければならないため、
製造コストが増加するという問題があった。
Further, as disclosed in JP-A-5-175346, a heat treatment is performed at 600 to 750 ° C. after forming a barrier layer such as TiW.
There is also a method of reducing the contact resistance between the iW alloy and the semiconductor substrate, but in that case, a new heat treatment step must be added to the normal semiconductor integrated circuit device manufacturing process,
There was a problem that manufacturing cost increased.

【0008】[0008]

【発明が解決しようとする課題】本発明は、通常の半導
体集積回路装置製造工程に用いられる400℃〜500
℃の熱処理以外の特別な熱処理を施さなくても半導体基
板との接触抵抗が低く、一層でも十分にバリア性が高い
TiW合金からなる配線を有する半導体集積回路装置と
その製造方法を提供することを目的とするものである。
SUMMARY OF THE INVENTION The present invention relates to a method for fabricating a semiconductor integrated circuit device which is used in a normal process of manufacturing semiconductor integrated circuit devices.
It is an object of the present invention to provide a semiconductor integrated circuit device having a wiring made of a TiW alloy, which has a low contact resistance with a semiconductor substrate even without performing a special heat treatment other than a heat treatment at a temperature of 1 ° C. and has a sufficiently high barrier property, and a method of manufacturing the same. It is the purpose.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するべ
く、本発明は、半導体基板上に形成された絶縁膜に開孔
されたコンタクトホールに金属が埋め込まれた半導体集
積回路装置において、コンタクトホール底部に露出した
半導体基板上に、WとTiとの濃度和に対するTi濃度
が20at%以上50at%以下であって、かつ酸素濃
度が全体の1.0at%以上20at%以下となってい
るTiW合金層、あるいはTi濃度が5at%以上20
at%未満であって、かつ酸素濃度が全体の0.5at
%以上15at%以下となっているであるTiW合金層
が形成されていることを特徴とするものである。また、
全流量の0.1vol%以上20vol%以下の酸素ガ
スと1vol%以上50vol%以下の水素ガスを含ん
だArガスを用いてスパッタ成膜するか、更に半導体基
板にバイアス電流を印加してスパッタ成膜することによ
り上記半導体集積回路装置を製造することを特徴とする
ものである。
In order to achieve the above object, the present invention relates to a semiconductor integrated circuit device in which a metal is buried in a contact hole formed in an insulating film formed on a semiconductor substrate. A TiW alloy having a Ti concentration of 20 at% or more and 50 at% or less and a total oxygen concentration of 1.0 at% or more and 20 at% or less with respect to the total concentration of W and Ti on the semiconductor substrate exposed at the bottom. Layer or Ti concentration is at least 5 at% and 20
at% and the oxygen concentration is at least 0.5 at%.
% At least 15 at% or less. Also,
Sputtering is performed by using an Ar gas containing 0.1 vol% to 20 vol% of oxygen gas and 1 vol% to 50 vol% of hydrogen gas of the entire flow rate, or by applying a bias current to a semiconductor substrate and performing sputtering. The semiconductor integrated circuit device is manufactured by forming a film.

【0010】TiW合金のWとTiの濃度和に対するT
i濃度が20at%以上50at%以下で、あってかつ
酸素濃度が1.0at%以上20at%以下であるか、
あるいはWとTiの濃度和に対するTi濃度が5at%
以上20at%未満であって、かつ酸素濃度が0.5a
t%以上15at%以下である場合に、400℃〜50
0℃の熱処理を施してもBCC構造のTiW合金層と半
導体基板との間に非晶質シリサイド層が生成せず、Ti
W合金と半導体基板との接触抵抗が低く保たれる。
[0010] T with respect to the sum of the concentration of W and Ti in the TiW alloy
whether the i concentration is 20 at% or more and 50 at% or less and the oxygen concentration is 1.0 at% or more and 20 at% or less;
Alternatively, the Ti concentration relative to the sum of the W and Ti concentrations is 5 at%.
Not less than 20 at% and the oxygen concentration is 0.5 a
400% to 50 ° C.
Even if heat treatment at 0 ° C. is performed, no amorphous silicide layer is formed between the TiW alloy layer having the BCC structure and the semiconductor substrate.
The contact resistance between the W alloy and the semiconductor substrate is kept low.

【0011】[0011]

【発明の実施の形態】以下に、本発明の好適な実施形態
について詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail.

【0012】半導体基板上にTiW合金をスパッタリン
グにより成膜すると、Ti濃度が0at%〜90at%
の範囲でTiW合金はBCC構造となる(J.App
l.phys.53,1982,P.6898-690
5)。バリア層として工業的によく用いられるTiW合
金はTi濃度が20at%〜30at%のものである
が、これを400℃〜500℃の温度で熱処理を施す
と、BCC構造のTiW合金と半導体基板の間に厚さ約
1nm〜2nmの非晶質シリサイド層が生成する。この
非晶質シリサイド層が生成することにより、半導体基板
とTiW合金層との接触抵抗は大幅に増大する。
When a TiW alloy is formed on a semiconductor substrate by sputtering, the Ti concentration becomes 0 at% to 90 at%.
The TiW alloy has a BCC structure in the range of (J. App.
l. phys. 53, 1982, P. 6898-690
5). A TiW alloy that is industrially frequently used as a barrier layer has a Ti concentration of 20 at% to 30 at%. When this is heat-treated at a temperature of 400 to 500 ° C., the TiW alloy having a BCC structure and the An amorphous silicide layer having a thickness of about 1 nm to 2 nm is generated therebetween. The generation of this amorphous silicide layer greatly increases the contact resistance between the semiconductor substrate and the TiW alloy layer.

【0013】これを防ぐ手法として、特開平5−175
346号公報では、TiW合金などのバリア層を形成し
た後に600℃〜750℃での高温熱処理を施すことに
よって、TiW合金と半導体基板の間にTiとWと半導
体基板元素の結晶質の三元合金をエピタキシャルに形成
させる手法が提案されていた。しかしながら、この手法
では、通常の半導体集積回路装置製造工程に新たな熱処
理工程を追加することとなるため、コストが増加すると
いう問題があった。図1は典型的な半導体集積回路の断
面構造を表したものである。基板1上に形成された酸化
珪素絶縁膜3に於ける基板1のn型拡散層2上にはコン
タクトホール3aが形成され、その内部及び酸化珪素絶
縁膜3上にTiW合金層4及びW層5が成膜されてい
る。このTiW合金層4及びW層5を形成後、酸化珪素
絶縁膜6(spin on grass:以下SOG)
を塗布した後に400℃〜500℃の温度に加熱する。
更に、後工程でSOGが形成される場合、400℃〜5
00℃の熱処理が施される。従って、400℃〜500
℃の熱処理は不可避的なものである。本発明者らは、本
発明の組成のTiW合金は400℃〜500℃の温度で
熱処理を施しても、BCC構造のTiW合金と半導体基
板の間に非晶質シリサイド層は生成しないことを見いだ
し、これにより600℃〜750℃での高温熱処理を施
さなくても半導体基板とTiW合金層との接触抵抗の増
大を防ぐことができることを見いだした。また、本発明
の組成のTiW合金はバリア性も十分であるため、一層
でコンタクト層とバリア層を兼ねることができる。これ
は、適当な量の酸素を意図的に混入させることにより、
酸素が粒界などの欠陥に入り込むため従来のTiW合金
よりもさらにバリア性が高くなっているためと考えられ
る。
As a method for preventing this, Japanese Patent Application Laid-Open No. 5-175
No. 346 discloses that a barrier layer of a TiW alloy or the like is formed and then subjected to a high-temperature heat treatment at 600 ° C. to 750 ° C., so that the Ti, W and the crystalline ternary elements of the semiconductor substrate element are formed between the TiW alloy and the semiconductor substrate. A method of forming an alloy epitaxially has been proposed. However, in this method, a new heat treatment step is added to the normal semiconductor integrated circuit device manufacturing process, and thus there is a problem that the cost increases. FIG. 1 shows a cross-sectional structure of a typical semiconductor integrated circuit. In the silicon oxide insulating film 3 formed on the substrate 1, a contact hole 3 a is formed on the n-type diffusion layer 2 of the substrate 1, and a TiW alloy layer 4 and a W layer are formed therein and on the silicon oxide insulating film 3. 5 is formed. After forming the TiW alloy layer 4 and the W layer 5, a silicon oxide insulating film 6 (spin on glass: SOG)
Is heated to a temperature of 400 ° C to 500 ° C.
Further, when SOG is formed in a later step, the temperature may be 400 ° C. to 5 ° C.
A heat treatment at 00 ° C. is performed. Therefore, 400 ° C. to 500
C. heat treatment is inevitable. The present inventors have found that an amorphous silicide layer is not formed between the TiW alloy having the BCC structure and the semiconductor substrate even when the TiW alloy having the composition of the present invention is heat-treated at a temperature of 400 ° C. to 500 ° C. It has been found that this makes it possible to prevent an increase in contact resistance between the semiconductor substrate and the TiW alloy layer without performing high-temperature heat treatment at 600 ° C. to 750 ° C. Further, the TiW alloy of the composition of the present invention has a sufficient barrier property, so that one layer can serve both as a contact layer and a barrier layer. This is achieved by intentionally mixing an appropriate amount of oxygen,
It is considered that the barrier property is higher than that of the conventional TiW alloy because oxygen enters defects such as grain boundaries.

【0014】以下に、組成の限定理由について説明す
る。請求項1に関し、WとTiとの濃度和に対するTi
濃度(以下、Ti濃度と略記)が20at%以上の場
合、酸素濃度が1.0at%未満では、400℃〜50
0℃の温度での熱処理によりBCC構造のTiW合金と
半導体基板の間に非晶質シリサイド層が生成し、半導体
基板との接触抵抗が熱処理によって増大する。従って、
Ti濃度が20at%以上の場合の酸素濃度の下限は
1.0at%となる。また、半導体基板との接触抵抗は
酸素濃度が高くなるに従い増大する傾向にあり、特に酸
素濃度が20at%を越えると半導体基板との接触抵抗
は急激に大きくなる。このため、酸素濃度の上限は20
at%となる。
The reasons for limiting the composition will be described below. Regarding claim 1, Ti with respect to the sum of the concentrations of W and Ti
When the concentration (hereinafter, abbreviated as Ti concentration) is 20 at% or more, and when the oxygen concentration is less than 1.0 at%, 400 ° C. to 50 ° C.
An amorphous silicide layer is generated between the TiW alloy having the BCC structure and the semiconductor substrate by the heat treatment at a temperature of 0 ° C., and the contact resistance with the semiconductor substrate is increased by the heat treatment. Therefore,
When the Ti concentration is 20 at% or more, the lower limit of the oxygen concentration is 1.0 at%. In addition, the contact resistance with the semiconductor substrate tends to increase as the oxygen concentration increases. In particular, when the oxygen concentration exceeds 20 at%, the contact resistance with the semiconductor substrate rapidly increases. Therefore, the upper limit of the oxygen concentration is 20
at%.

【0015】また、Ti濃度が50at%を越えると、
酸素濃度によらず400℃〜500℃の温度での熱処理
によりBCC構造のTiW合金と半導体基板の間に非晶
質TiW層が生成し、半導体基板との接触抵抗が熱処理
によって増大する。従って、Ti濃度の上限は50at
%となる。
When the Ti concentration exceeds 50 at%,
An amorphous TiW layer is generated between the TiW alloy having the BCC structure and the semiconductor substrate by the heat treatment at a temperature of 400 ° C. to 500 ° C. regardless of the oxygen concentration, and the contact resistance with the semiconductor substrate is increased by the heat treatment. Therefore, the upper limit of the Ti concentration is 50 at.
%.

【0016】次に、請求項2に関し、Ti濃度が20a
t%未満の場合、酸素濃度が0.5at%未満では、4
00℃〜500℃の温度での熱処理によりBCC構造の
TiW合金と半導体基板の間に非晶質シリサイド層が生
成する。従って、Ti濃度が20at%未満の場合の酸
素濃度の下限は0.5at%となる。また、半導体基板
との接触抵抗は酸素濃度が高くなるに従い増大する傾向
にあり、特に酸素濃度が15at%を越えると半導体基
板との接触抵抗は急激に大きくなる。このため、酸素濃
度の上限は15at%となる。また、Ti濃度が5at
%未満では、熱処理による半導体基板との接触抵抗の増
大は見られないが、熱処理前の半導体基板との接触抵抗
がすでに大きい。従って、Ti濃度の下限は5at%と
なる。
Next, according to claim 2, the Ti concentration is 20a.
When the oxygen concentration is less than 0.5 at%,
An amorphous silicide layer is generated between the semiconductor substrate and the TiW alloy having the BCC structure by the heat treatment at a temperature of 00 ° C. to 500 ° C. Therefore, when the Ti concentration is less than 20 at%, the lower limit of the oxygen concentration is 0.5 at%. Further, the contact resistance with the semiconductor substrate tends to increase as the oxygen concentration increases, and particularly when the oxygen concentration exceeds 15 at%, the contact resistance with the semiconductor substrate rapidly increases. Therefore, the upper limit of the oxygen concentration is 15 at%. When the Ti concentration is 5 at
%, The contact resistance with the semiconductor substrate does not increase due to the heat treatment, but the contact resistance with the semiconductor substrate before the heat treatment is already large. Therefore, the lower limit of the Ti concentration is 5 at%.

【0017】次いで、本発明の半導体集積回路装置の製
造方法におけるガス成分の限定理由について述べる。T
iW合金をスパッタ成膜するには通常アルゴンガスをス
パッタガスとして用い、TiW酸化膜あるいは酸素を含
んだTiW合金をスパッタ成膜するにはアルゴンガスに
酸素を混合したガスをスパッタガスとして用いる。一般
的に金属ターゲットをアルゴンガスに酸素を混合したガ
スを用いてスパッタ成膜した場合、酸素ガスの濃度があ
る臨界値以上になると成膜したTiW合金中の酸素濃度
が急激に上昇し、完全な酸化膜になってしまう。従っ
て、TiW合金中の酸素濃度を精密に制御するには水素
ガスを酸化反応の緩衝剤をして用いる必要がある。酸素
濃度が全体の0.5at%であるTiW合金を成膜する
には、スパッタガス中に酸素ガスを全流量の0.1vo
l%以上含まなければならない。従って、酸素ガス濃度
の下限は0.1vol%となる。また、酸素ガスが全流
量の20vol%を超えると水素ガス濃度にかかわらず
TiW合金中の酸素濃度は20at%を超えてしまう。
従って、酸素ガス濃度の上限は20vol%となる。一
方、水素ガス濃度は酸化を抑制する効果がある1vol
%以上にする必要があるが、50vol%を越えてもそ
の効果に変化はなく、そのうえアルゴンガス濃度が相対
的に低下するためTiW合金の成膜速度が急激に低下す
る恐れがある。従って、水素ガスの濃度範囲は1vol
%以上50vol%以下となる。
Next, the reasons for limiting the gas components in the method of manufacturing a semiconductor integrated circuit device according to the present invention will be described. T
In general, an argon gas is used as a sputtering gas to form an iW alloy by sputtering, and a gas obtained by mixing oxygen with argon gas is used as a sputtering gas to form a TiW oxide film or a TiW alloy containing oxygen by sputtering. In general, when a metal target is formed by sputtering using a gas obtained by mixing oxygen with argon gas, when the oxygen gas concentration exceeds a certain critical value, the oxygen concentration in the formed TiW alloy rapidly increases, and It becomes an oxidized film. Therefore, in order to precisely control the oxygen concentration in the TiW alloy, it is necessary to use hydrogen gas as a buffer for the oxidation reaction. In order to form a TiW alloy having an oxygen concentration of 0.5 at%, oxygen gas is added to the sputtering gas at a total flow rate of 0.1 vol.
1% or more. Therefore, the lower limit of the oxygen gas concentration is 0.1 vol%. When the oxygen gas exceeds 20 vol% of the total flow rate, the oxygen concentration in the TiW alloy exceeds 20 at% regardless of the hydrogen gas concentration.
Therefore, the upper limit of the oxygen gas concentration is 20 vol%. On the other hand, the hydrogen gas concentration is 1 vol.
%, But the effect does not change even if it exceeds 50 vol%, and the deposition rate of the TiW alloy may be sharply reduced since the argon gas concentration is relatively reduced. Therefore, the concentration range of hydrogen gas is 1 vol.
% Or more and 50 vol% or less.

【0018】[0018]

【実施例】実施例1 図2は本発明の一実施例を示す半導体集積回路装置のコ
ンタクトホール部分の断面図である。p型シリコン基板
11の上に層間絶縁膜として厚さ1.5μmの酸化珪素
膜13が形成され、p型シリコン基板1の一部に設けら
れた厚さ約0.3μmのn型拡散層2の上の酸化珪素膜
13には0.5μm径のコンタクトホール13aが形成
されている。コンタクトホール13aには該コンタクト
ホール外での膜厚が100nmとなるように(ホール底
部では約20nm)TiW合金層14が成膜されてい
る。ここで、本実施例ではTi濃度を制御するためにT
i、Wの2枚のターゲットを用い、基板を回転させなが
ら各ターゲットに印加する電力を調整して同時にスパッ
タリングすることにより、Ti濃度が70at%、30
at%、3at%である3種類の試料を作製した。スパ
ッタリングは基板を300℃に加熱しながら、酸素ガス
を全流量の1.8vol%、水素を8.9vol%含ん
だアルゴンガス中で行った。TiW合金層14の上にコ
ンタクトホール外での膜厚が100nmのW層15をC
VD法にて埋め込み、フォトリソグラフィー法によりコ
ンタクトホール13a周辺部以外の部分のWをエッチン
グで取り除いた。その上に層間絶縁膜としての酸化珪素
膜16を形成し、再度フォトリソグラフィー法を用いて
コンタクトホール13a周辺部の酸化珪素膜16のみを
取り除いた。この方法により作製したコンタクト抵抗測
定用試料をアルゴン雰囲気中で450℃にて3時間の熱
処理を施した後、各試料のコンタクト抵抗を測定した。
また、TiW合金中の酸素濃度は後で述べる透過型電子
顕微鏡観察の際にEDS分析法により測定した。TiW
合金中の酸素濃度と熱処理前後のコンタクト抵抗の測定
結果を表1に示す。
Embodiment 1 FIG. 2 is a sectional view of a contact hole portion of a semiconductor integrated circuit device showing one embodiment of the present invention. A 1.5 μm-thick silicon oxide film 13 is formed as an interlayer insulating film on a p-type silicon substrate 11, and an approximately 0.3 μm-thick n-type diffusion layer 2 provided on a part of the p-type silicon substrate 1 is formed. A contact hole 13a having a diameter of 0.5 μm is formed in the silicon oxide film 13 above. A TiW alloy layer 14 is formed in the contact hole 13a so that the film thickness outside the contact hole becomes 100 nm (about 20 nm at the bottom of the hole). Here, in this embodiment, in order to control the Ti concentration, T
Using two targets of i and W, the power applied to each target is adjusted while rotating the substrate, and sputtering is performed at the same time.
At% and 3 at% were prepared. The sputtering was carried out in an argon gas containing 1.8 vol% of the total flow rate of oxygen gas and 8.9 vol% of hydrogen while heating the substrate to 300 ° C. A W layer 15 having a thickness of 100 nm outside the contact hole is formed on the TiW alloy layer 14 by C
It was buried by the VD method, and W was removed by etching using a photolithography method except for the peripheral portion of the contact hole 13a. A silicon oxide film 16 as an interlayer insulating film was formed thereon, and only the silicon oxide film 16 around the contact hole 13a was removed again by photolithography. After subjecting the contact resistance measurement samples produced by this method to heat treatment at 450 ° C. for 3 hours in an argon atmosphere, the contact resistance of each sample was measured.
The oxygen concentration in the TiW alloy was measured by an EDS analysis at the time of observation with a transmission electron microscope described later. TiW
Table 1 shows the measurement results of the oxygen concentration in the alloy and the contact resistance before and after the heat treatment.

【0019】[0019]

【表1】 [Table 1]

【0020】Ti濃度が70at%、酸素濃度が9at
%のTiWの場合、コンタクト抵抗は2015Ω、また
Ti濃度が3at%、酸素濃度が3at%のTiWの場
合、コンタクト抵抗は980Ωとそれぞれ高い値を示し
たのに対して、本発明の一例としてTi濃度が30at
%、酸素濃度が5at%のTiWでは340Ωと小さな
抵抗値となった。
When the Ti concentration is 70 at% and the oxygen concentration is 9 at%
% Of TiW, the contact resistance was 2015 Ω, and the contact resistance of Ti at 3 at% and the oxygen concentration of 3 at% was as high as 980 Ω, respectively. The concentration is 30at
% And an oxygen concentration of 5 at%, the resistance value was as small as 340Ω.

【0021】次に、それぞれの試料の基板SiとTiW
合金の接触部分の断面構造(界面構造)を透過型電子顕
微鏡で観察し、基板SiとTiW合金の間に非晶質Ti
W層が存在するかどうかを確かめた。図3は本発明の範
囲外の一例として、Ti濃度が70at%、酸素濃度が
9at%のTiW合金とSi基板の界面構造の観察結果
を示す。Si基板とBCC構造のTiW合金の間に厚さ
約2nmの非晶質(TiW)Si層が生成していること
がわかった。図4は本発明の一例として、Ti濃度が3
0at%、酸素濃度が5at%のTiW合金とSi基板
との界面構造の観察結果である。Si基板上に直接BC
C構造のTiW合金が成膜されており、Si基板とBC
C構造のTiW合金の間には非晶質シリサイド層は存在
しないことがわかった。このように本発明の半導体集積
回路装置ではSi基板とBCC構造のTiW合金の間に
高抵抗化の原因となる非晶質シリサイド層は形成されな
かった。
Next, the substrates Si and TiW of each sample were prepared.
The cross-sectional structure (interface structure) of the contact portion of the alloy was observed with a transmission electron microscope, and amorphous Ti was added between the substrate Si and the TiW alloy.
It was determined whether a W layer was present. FIG. 3 shows an observation result of an interface structure between a TiW alloy having a Ti concentration of 70 at% and an oxygen concentration of 9 at% and an Si substrate as an example outside the scope of the present invention. It was found that an amorphous (TiW) Si layer having a thickness of about 2 nm was formed between the Si substrate and the TiC alloy having the BCC structure. FIG. 4 shows an example of the present invention where the Ti concentration is 3
It is an observation result of an interface structure between a TiW alloy having an oxygen concentration of 0 at% and an oxygen concentration of 5 at% and a Si substrate. BC directly on Si substrate
A TiW alloy having a C structure is formed, and a Si substrate and a BC
It was found that there was no amorphous silicide layer between the TiW alloys having the C structure. As described above, in the semiconductor integrated circuit device of the present invention, no amorphous silicide layer causing a high resistance was formed between the Si substrate and the TiW alloy having the BCC structure.

【0022】実施例2 実施例1と同様のコンタクトホールが形成されたSi基
板に、コンタクトホールにコンタクトホール外での膜厚
が100nmになるように(ホール底部では約20n
m)TiW合金層14を成膜した。ここで、本実施例で
は、Ti濃度が30at%のターゲットを用い、基板を
300℃に加熱しながらアルゴンガスのみでスパッタリ
ングした試料と酸素ガスを全流量の1.6vol%、水
素を16vol%含んだアルゴンガスでスパッタリング
した試料を作製した。TiW合金成膜後、実施例1と同
様の工程でコンタクト抵抗測定用試料を作製した。それ
ぞれのコンタクト抵抗測定用試料をアルゴン雰囲気中で
450℃で30分から3時間の熱処理を施した後、各試
料のコンタクト抵抗を測定した。
Example 2 A contact hole was formed on a Si substrate having the same contact hole as that of Example 1 so that the thickness of the contact hole outside the contact hole was 100 nm (about 20 nm at the bottom of the hole).
m) A TiW alloy layer 14 was formed. Here, in this example, a target having a Ti concentration of 30 at% was used, and a sample sputtered with only argon gas while heating the substrate to 300 ° C. and 1.6 vol% of the total flow rate of the oxygen gas and 16 vol% of hydrogen were included. A sample was prepared by sputtering with argon gas. After the formation of the TiW alloy, a sample for contact resistance measurement was manufactured in the same process as in Example 1. After subjecting each sample for contact resistance measurement to heat treatment at 450 ° C. for 30 minutes to 3 hours in an argon atmosphere, the contact resistance of each sample was measured.

【0023】図5にそれぞれの試料のコンタクト抵抗の
熱処理時間依存性を示す。アルゴンガスのみでスパッタ
リングして作製した試料の場合、30分の熱処理では2
15Ωと低いコンタクト抵抗を示すものの、それ以上の
熱処理では時間とともにコンタクト抵抗が増大した。一
方、本発明である水素と酸素を含んだアルゴンガスでス
パッタ成膜した場合、3時間までの熱処理では時間に依
存することなく十分低いコンタクト抵抗を維持した。こ
のことは、本発明の場合は、TiW層形成後のSOGベ
ークなどの半導体集積回路装置製造工程において不可避
である熱処理工程後でも信頼性が高いことを示唆するも
のである。
FIG. 5 shows the dependence of the contact resistance of each sample on the heat treatment time. In the case of a sample prepared by sputtering only with argon gas, a heat treatment
Although the contact resistance was as low as 15Ω, the contact resistance increased with time in the further heat treatment. On the other hand, when the film was formed by sputtering with an argon gas containing hydrogen and oxygen according to the present invention, a sufficiently low contact resistance was maintained without depending on the time in the heat treatment up to 3 hours. This suggests that in the case of the present invention, the reliability is high even after a heat treatment step, which is inevitable in a semiconductor integrated circuit device manufacturing process such as SOG baking after the formation of a TiW layer.

【0024】実施例3 シリコン基板上に100nmのTiW膜を、Ti濃度比
を制御するためにTi、Wの2枚のターゲットを用い、
基板を回転させながら各ターゲットに印加する電力を調
整して同時にスパッタすることにより作製した。Ti濃
度が30at%になるように各ターゲットの電力を制御
し、酸素ガスを全流量の10vol%、水素を40vo
l%含んだアルゴンガスで基板にRF100Wのバイア
スを印加しながら成膜した。また、上記と同様にしてT
i濃度が30at%及び70at%になるように各ター
ゲットの電力を調整し、アルゴンガスのみでスパッタリ
ングした試料も作製した。
Example 3 A 100 nm TiW film was formed on a silicon substrate, and two targets of Ti and W were used to control the Ti concentration ratio.
It was fabricated by adjusting the power applied to each target while rotating the substrate and sputtering simultaneously. The power of each target is controlled so that the Ti concentration becomes 30 at%, oxygen gas is supplied at 10 vol% of the total flow rate, and hydrogen is supplied at 40 vol%.
Film formation was performed while applying a bias of RF 100 W to the substrate with an argon gas containing 1%. In addition, T
The power of each target was adjusted so that the i concentration became 30 at% and 70 at%, and samples sputtered with only argon gas were also produced.

【0025】これら3つの試料の酸素に対するバリア性
を評価するために、真空チャンバ内にヒータが設置され
た装置に酸素ガスを圧力3mTorrになるように導入
して、450℃で10分の熱処理を行った。次いで、各
試料の酸素濃度の深さ方向分布を光電子分光法により測
定した。その結果を図6〜図8のグラフに示す。Ti濃
度が30at%及び70at%になるように各ターゲッ
トの電力を調整しアルゴンガスのみでスパッタした試料
(それぞれ図6、図7)では、Tiの酸化物が膜表面に
厚く形成している。これに対し、本発明によるプロセス
で作製した試料(図8)ではTiの酸化物は表面に極薄
く存在しているに過ぎず、酸素に対するバリア性が高い
ことを示した。このことは、本発明によればTiNなど
のバリア層を積層せずに直接層間絶縁膜を被覆すること
が可能であり、キャパシタ酸化膜の電極としての使用が
可能であることを示すものである。
In order to evaluate the barrier properties of these three samples against oxygen, an oxygen gas was introduced into a device provided with a heater in a vacuum chamber at a pressure of 3 mTorr, and heat treatment was performed at 450 ° C. for 10 minutes. went. Next, the depth direction distribution of the oxygen concentration of each sample was measured by photoelectron spectroscopy. The results are shown in the graphs of FIGS. In the samples (FIGS. 6 and 7) in which the power of each target was adjusted so that the Ti concentration became 30 at% and 70 at% and sputtered using only argon gas, respectively (FIGS. 6 and 7), a thick oxide of Ti was formed on the film surface. On the other hand, in the sample (FIG. 8) manufactured by the process according to the present invention, the Ti oxide was present only extremely thinly on the surface, indicating that the barrier property against oxygen was high. This indicates that according to the present invention, it is possible to directly cover the interlayer insulating film without laminating a barrier layer such as TiN, and it is possible to use the capacitor oxide film as an electrode. .

【0026】[0026]

【発明の効果】本発明によれば、通常の半導体集積回路
装置製造工程において不可避である400℃〜500℃
の熱処理以外の特別な熱処理を施さなくても半導体基板
との接触抵抗が低く、一層でも十分にバリア性が高いT
iW合金を含む配線を有する半導体集積回路装置を提供
することができ、これにより製造コストを低下させるこ
とができる。
According to the present invention, 400.degree. C. to 500.degree. C. which is inevitable in a normal semiconductor integrated circuit device manufacturing process.
The contact resistance with the semiconductor substrate is low even if no special heat treatment other than the heat treatment of
It is possible to provide a semiconductor integrated circuit device having a wiring containing an iW alloy, thereby reducing manufacturing costs.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の典型的な半導体集積回路装置のコンタク
トホール部分の断面図。
FIG. 1 is a cross-sectional view of a contact hole portion of a conventional typical semiconductor integrated circuit device.

【図2】接触抵抗測定に用いた本発明による半導体集積
回路装置のコンタクトホール部分の断面図。
FIG. 2 is a cross-sectional view of a contact hole portion of a semiconductor integrated circuit device according to the present invention used for contact resistance measurement.

【図3】Ti濃度が70at%、O濃度が9at%のT
iW合金を基板Si上に成膜し、450℃で3時間の熱
処理を施したものの金属組織を示す透過型電子顕微鏡写
真。
FIG. 3 shows a T concentration of 70 at% and an O concentration of 9 at%.
The transmission electron micrograph which shows the metal structure of what formed the iW alloy on the board | substrate Si, and heat-processed at 450 degreeC for 3 hours.

【図4】Ti濃度が30at%、O濃度が5at%のT
iW合金を基板Si上に成膜し、450℃で3時間の熱
処理を施したものの金属組織を示す透過型電子顕微鏡写
真。
FIG. 4 shows a T concentration of 30 at% and an O concentration of 5 at%.
The transmission electron micrograph which shows the metal structure of what formed the iW alloy on the board | substrate Si, and heat-processed at 450 degreeC for 3 hours.

【図5】アルゴンガスのみでスパッタして作製した試料
と、水素と酸素を含んだアルゴンガスでスパッタ成膜し
た試料のコンタクト抵抗の熱処理時間依存性を示すグラ
フ。
FIG. 5 is a graph showing heat treatment time dependence of contact resistance of a sample manufactured by sputtering only with an argon gas and a sample formed by sputtering with an argon gas containing hydrogen and oxygen.

【図6】Ti濃度が30at%になるように各ターゲッ
トの電力を調整し、アルゴンガスのみでスパッタリング
した試料の酸素に対するバリア性を示すグラフ。O1
s、Ti2p、W4fで示した曲線はそれぞれ酸素の1
s軌道の電子、Tiの2p軌道の電子、Wの4f軌道の
電子の励起による光電子強度を示しており、それぞれ酸
素、Ti、Wの濃度に比例する。
FIG. 6 is a graph showing the barrier property against oxygen of a sample sputtered only with argon gas by adjusting the power of each target so that the Ti concentration becomes 30 at%. O1
The curves indicated by s, Ti2p, and W4f are the oxygen 1
It shows photoelectron intensity due to excitation of s orbital electrons, Ti 2p orbital electrons, and W 4f orbital electrons, which are proportional to the concentrations of oxygen, Ti, and W, respectively.

【図7】Ti濃度が70at%になるように各ターゲッ
トの電力を調整し、アルゴンガスのみでスパッタリング
した試料の酸素に対するバリア性を示す図6と同様なグ
ラフ。
FIG. 7 is a graph similar to FIG. 6, showing the barrier property against oxygen of a sample sputtered with only argon gas by adjusting the power of each target so that the Ti concentration becomes 70 at%.

【図8】Ti濃度が30at%になるように各ターゲッ
トの電力を調整し、酸素、水素を含んだアルゴンガスで
基板にRF100Wのバイアスを印加しながらスパッタ
リングした試料の酸素に対するバリア性を示す図6及び
図7と同様なグラフ。
FIG. 8 is a diagram showing the barrier property against oxygen of a sample sputtered by adjusting the power of each target so that the Ti concentration becomes 30 at% and applying a bias of RF 100 W to the substrate with an argon gas containing oxygen and hydrogen while applying a bias of RF 100 W to the substrate. 6 and a graph similar to FIG.

【符号の説明】[Explanation of symbols]

1 p型シリコン基板 2 n型拡散層 3 層間絶縁膜(酸化珪素) 3a コンタクトホール 4 TiW合金層 5 W層 6 層間絶縁膜(酸化珪素) 11 p型シリコン基板 12 n型拡散層 13 層間絶縁膜(酸化珪素) 13a コンタクトホール 14 TiW合金層 15 W層 16 層間絶縁膜(酸化珪素) REFERENCE SIGNS LIST 1 p-type silicon substrate 2 n-type diffusion layer 3 interlayer insulating film (silicon oxide) 3 a contact hole 4 TiW alloy layer 5 W layer 6 interlayer insulating film (silicon oxide) 11 p-type silicon substrate 12 n-type diffusion layer 13 interlayer insulating film (Silicon oxide) 13a Contact hole 14 TiW alloy layer 15 W layer 16 Interlayer insulating film (silicon oxide)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に形成された絶縁膜に開
孔されたコンタクトホールに金属が埋め込まれた半導体
集積回路装置において、 前記コンタクトホール底部に露出した半導体基板上に、
WとTiとの濃度和に対するTi濃度が20at%以上
50at%以下であって、かつ酸素濃度が全体の1.0
at%以上20at%以下となっているTiW合金層を
含む金属配線が形成されていることを特徴とする半導体
集積回路装置。
1. A semiconductor integrated circuit device in which a metal is buried in a contact hole opened in an insulating film formed on a semiconductor substrate, wherein:
The Ti concentration with respect to the sum of the concentrations of W and Ti is 20 at% or more and 50 at% or less, and the oxygen concentration is 1.0 at
A semiconductor integrated circuit device, wherein a metal wiring including a TiW alloy layer of not less than at% and not more than 20 at% is formed.
【請求項2】 半導体基板上に形成された絶縁膜に開
孔されたコンタクトホールに金属が埋め込まれた半導体
集積回路装置において、 前記コンタクトホール底部に露出した半導体基板上に、
WとTiとの濃度和に対するTi濃度が5at%以上
20at%未満であって、かつ酸素濃度が全体の0.5
at%以上15at%以下となっているTiW合金層を
含む金属配線が形成されていることを特徴とする半導体
集積回路装置。
2. A semiconductor integrated circuit device in which metal is buried in a contact hole opened in an insulating film formed on a semiconductor substrate, wherein:
The Ti concentration with respect to the sum of the concentrations of W and Ti is 5 at% or more and less than 20 at%, and the oxygen concentration is 0.5
A semiconductor integrated circuit device, wherein a metal wiring including a TiW alloy layer having a content of at least 15 at% or less is formed.
【請求項3】 請求項1または請求項2に記載の半導
体集積回路装置の製造方法であって、 TiW層を形成する工程で、全流量の0.1vol%以
上20vol%以下の酸素ガスと、1vol%以上50
vol%以下の水素ガスとを含むアルゴンガスを用いて
スパッタ成膜することを特徴とする半導体集積回路装置
の製造方法。
3. The method for manufacturing a semiconductor integrated circuit device according to claim 1, wherein in the step of forming the TiW layer, oxygen gas having a total flow rate of 0.1 vol% or more and 20 vol% or less; 1 vol% or more 50
A method for manufacturing a semiconductor integrated circuit device, comprising: forming a film by sputtering using an argon gas containing a hydrogen gas of not more than vol%.
【請求項4】 請求項1または請求項2に記載の半導
体集積回路装置の製造方法であって、 TiW層を形成する工程で、全流量の0.1vol%以
上20vol%以下の酸素ガスと、1vol%以上50
vol%以下の水素ガスとを含んだアルゴンガスを用
い、半導体基板にバイアス電流を印加してスパッタ成膜
することを特徴とする半導体集積回路装置の製造方法。
4. The method for manufacturing a semiconductor integrated circuit device according to claim 1, wherein in the step of forming the TiW layer, an oxygen gas having a total flow rate of 0.1 vol% or more and 20 vol% or less; 1 vol% or more 50
A method for manufacturing a semiconductor integrated circuit device, wherein a bias current is applied to a semiconductor substrate to form a film by sputtering using an argon gas containing hydrogen gas of not more than vol%.
JP33933297A 1997-11-24 1997-11-24 Semiconductor integrated circuit device and manufacture thereof Withdrawn JPH11162872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33933297A JPH11162872A (en) 1997-11-24 1997-11-24 Semiconductor integrated circuit device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33933297A JPH11162872A (en) 1997-11-24 1997-11-24 Semiconductor integrated circuit device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH11162872A true JPH11162872A (en) 1999-06-18

Family

ID=18326457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33933297A Withdrawn JPH11162872A (en) 1997-11-24 1997-11-24 Semiconductor integrated circuit device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH11162872A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011258811A (en) * 2010-06-10 2011-12-22 Ulvac Japan Ltd Method for manufacturing semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011258811A (en) * 2010-06-10 2011-12-22 Ulvac Japan Ltd Method for manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
US5766379A (en) Passivated copper conductive layers for microelectronic applications and methods of manufacturing same
JP3128811B2 (en) Method for manufacturing semiconductor device
JP4591084B2 (en) Copper alloy for wiring, semiconductor device, and method for manufacturing semiconductor device
JPS61142739A (en) Manufacture of semiconductor device
US4708904A (en) Semiconductor device and a method of manufacturing the same
JP2566072B2 (en) Device manufacturing method
JP3304541B2 (en) Method of forming ohmic electrode
JPH03148131A (en) Semiconductor element and its manufacture
JPH11233760A (en) Laminated structure member composed of metal, oxide film and silicon carbide semiconductor
JPS62113421A (en) Manufacture of semiconductor device
JP2534434B2 (en) Oxidation resistant compound and method for producing the same
JPH11162872A (en) Semiconductor integrated circuit device and manufacture thereof
JP2997371B2 (en) Integrated circuit device
WO1990013912A1 (en) Silicon oxide film and semiconductor device having the same
JPS60734A (en) Semiconductor device and manufacture thereof
JP2000514602A (en) Method for producing a semiconductor component having a low contact resistance to a highly doped region
JPH11162879A (en) Interconnection structure for semiconductor device and manufacture thereof
JPS61135156A (en) Semiconductor device and manufacture thereof
JP2874642B2 (en) Method for manufacturing semiconductor device
JPH06209049A (en) Manufacture of semiconductor device
JP3638678B2 (en) Wiring hole and method for manufacturing wiring hole
JPS6372156A (en) Semiconductor device
KR100217544B1 (en) Process for forming metal wiring with excellent step coverage
JPS62172756A (en) Iii - v group compound semiconductor device
JPS5935475A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050201