JPH11160166A - Calibration method and device of pyrometer - Google Patents

Calibration method and device of pyrometer

Info

Publication number
JPH11160166A
JPH11160166A JP34413997A JP34413997A JPH11160166A JP H11160166 A JPH11160166 A JP H11160166A JP 34413997 A JP34413997 A JP 34413997A JP 34413997 A JP34413997 A JP 34413997A JP H11160166 A JPH11160166 A JP H11160166A
Authority
JP
Japan
Prior art keywords
temperature
phase transition
sample
pyrometer
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34413997A
Other languages
Japanese (ja)
Other versions
JP3410347B2 (en
Inventor
Hiroyuki Tanaka
宏幸 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP34413997A priority Critical patent/JP3410347B2/en
Publication of JPH11160166A publication Critical patent/JPH11160166A/en
Application granted granted Critical
Publication of JP3410347B2 publication Critical patent/JP3410347B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To correctly calibrate a measured temperature of a pyrometer of an elevated temperature desorption gas analyzer by calibrating a temperature T1' when the phase transition of a material generating the phase transition at a predetermined phase transition temperature T1 to be the temperature T1. SOLUTION: The pressure of an inside of a sample feeding mechanism 11, and the insides of a vacuum chamber 10 and an ionizing chamber 12 are reduced in vacuum, and a sample (a) is mounted on a mount table 14. Then the sample (a) is superheated at a high temperature by an infrared ray lamp heater 15. A temperature of the material forming a film on a surface of the sample (a) is measured by a pyrometer 16 while superheating the same. The impurity gas desorbed from the film of the surface of the sample (a) by the superheating, is introduced into the ionizing chamber 12 to analyze the mass. When the sample (a) is, for example, TiSi2 , the phases is transited from a C49 structure to a C54 structure at the phase transition temperature T1, and the supernatant gas (H2 gas) is generated from the layer. The temperature T1' at the peak of the supernatant gas is calibrated to the phase transition temperature T1 while analyzing the mass in the ionizing chamber. The correct measurement temperature after the calibration is input to a control means 18 with the information on the sample (a).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は,高温計(パイロメ
ータ)の測定温度を正確な温度に校正する方法と装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for calibrating a temperature measured by a pyrometer to an accurate temperature.

【0002】[0002]

【従来の技術】半導体装置の製造において,例えばシリ
コン基板の表面に成膜された膜や膜中に含まれている不
純物などを分析するために,昇温脱離ガス分析装置(T
AS装置)が用いられている。この昇温脱離ガス分析装
置では,真空チャンバ内にて試料を高温度に加熱し,膜
中から脱離したガスを分析する。加熱により熱エネルギ
ーを得た試料表面近傍の吸着分子,原子は,吸着力の弱
いものから順次試料表面から脱離するので,ガスの脱離
は真空チャンバ内の圧力上昇により検知でき,脱離した
ガスを質量分析することにより,試料表面の吸着状態,
表面吸着ガス,試料内に含まれた不純物等の情報を得る
ことができる。
2. Description of the Related Art In the manufacture of semiconductor devices, for example, a thermal desorption gas analyzer (T) is used to analyze a film formed on the surface of a silicon substrate and impurities contained in the film.
AS device). In this thermal desorption gas analyzer, a sample is heated to a high temperature in a vacuum chamber, and the gas desorbed from the film is analyzed. Adsorbed molecules and atoms in the vicinity of the sample surface, which have obtained thermal energy by heating, desorb from the sample surface in order from those with weak adsorption power, so desorption of gas can be detected by the rise in pressure in the vacuum chamber and desorbed. By mass analysis of gas, the adsorption state on the sample surface,
Information such as surface adsorbed gas and impurities contained in the sample can be obtained.

【0003】ここで図5に,従来の昇温脱離ガス分析装
置100のシステム概要を示す。真空チャンバ101の
内部には,シリコン基板の表面に所望の物質を成膜形成
した試料a’を載置させる載置台102が設けられてい
る。試料送り機構103からゲートバルブ104を介し
てこの真空チャンバ101内に設けられた載置台102
の上に試料a’が載置される。また,載置台102上に
載置された試料a’に赤外線ランプヒータ105から赤
外線が照射されて,高温度まで加熱を行うようになって
いる。この加熱によって試料a’表面の膜中(物質中)
から発生したガスはイオン化室106に導入され,質量
分析されることにより,種類が判別される。また,試料
a’の加熱温度は例えば熱電対や白金温度計,放射温度
計などからなる高温計107で測定され,脱離ガスに関
する情報と共に制御手段108に入力される構成になっ
ている。このような昇温脱離ガス分析装置の一例は,例
えば文献「真空,第34巻,第11号(1991)」の
p.83に記載されている。
[0005] FIG. 5 shows a system outline of a conventional thermal desorption gas analyzer 100. Inside the vacuum chamber 101, there is provided a mounting table 102 on which a sample a 'having a desired substance formed on the surface of a silicon substrate is mounted. A mounting table 102 provided in the vacuum chamber 101 from a sample feeding mechanism 103 via a gate valve 104
The sample a 'is placed on the sample. Further, the sample a ′ placed on the mounting table 102 is irradiated with infrared rays from the infrared lamp heater 105 to heat the sample a ′ to a high temperature. By this heating, in the film on the surface of the sample a '(in the substance)
The gas generated from is introduced into the ionization chamber 106 and subjected to mass analysis to determine the type. Further, the heating temperature of the sample a 'is measured by a pyrometer 107 composed of, for example, a thermocouple, a platinum thermometer, a radiation thermometer, and the like, and is input to the control means 108 together with information on the desorbed gas. An example of such a thermal desorption gas analyzer is described in, for example, the document “Vacuum, Vol. 34, No. 11 (1991)”, p. 83.

【0004】[0004]

【発明が解決しようとする課題】しかしながら,従来の
高温計は測定温度を正確に校正する手段を備えていなか
った。このため,上記のように昇温脱離ガス分析装置に
よって分析を行う際に,試料の加熱温度を正確に制御す
ることが困難な場合があった。昇温脱離ガス分析を行う
際に試料の加熱温度を正確に制御できなければ,試料を
所望の温度に加熱し難く,適切な分析ができなくなって
しまう。
However, the conventional pyrometer has no means for accurately calibrating the measured temperature. For this reason, when performing the analysis by the thermal desorption gas analyzer as described above, it is sometimes difficult to accurately control the heating temperature of the sample. Unless the heating temperature of the sample can be accurately controlled when performing the thermal desorption gas analysis, it is difficult to heat the sample to a desired temperature, and proper analysis cannot be performed.

【0005】従って本発明の目的は,昇温脱離ガス分析
装置などに利用される高温計の測定温度を正確に校正で
きる手段を提供することにある。
Accordingly, it is an object of the present invention to provide means for accurately calibrating the measurement temperature of a pyrometer used in a thermal desorption gas analyzer or the like.

【0006】[0006]

【課題を解決するための手段】この目的を達成するため
に,請求項1の発明は,所定の相転移温度T1で相転移
する物質を高温計で温度を測定しながら昇温させて相転
移させ,該相転移を生じた時に高温計で測定した温度T
1’が前記所定の相転移温度T1となるように校正する
ことを特徴とする高温計の校正方法である。この請求項
1の方法において,請求項2に記載したように,前記物
質は例えばTiSi2とし,前記相転移をC49構造か
らC54構造への相転移によって検出することができ
る。また,請求項3に記載したように,前記物質に不純
物を注入しておき,昇温に伴う該物質からの不純物の脱
離がピークとなった時に前記高温計で測定される温度T
1’が前記所定の相転移温度T1となるように校正する
ようにしても良い。
In order to achieve this object, a first aspect of the present invention is to increase the temperature of a substance which undergoes a phase transition at a predetermined phase transition temperature T1 while measuring the temperature with a pyrometer. And the temperature T measured by a pyrometer when the phase transition occurs
A method for calibrating a pyrometer, wherein 1 ′ is calibrated so as to be the predetermined phase transition temperature T1. In the method according to the first aspect, as described in the second aspect, the substance is, for example, TiSi 2, and the phase transition can be detected by a phase transition from a C49 structure to a C54 structure. Further, as described in claim 3, an impurity is implanted into the substance, and a temperature T measured by the pyrometer when the desorption of the impurity from the substance due to the temperature rise reaches a peak.
Calibration may be performed so that 1 ′ becomes the predetermined phase transition temperature T1.

【0007】請求項4の発明は,所定の再結晶温度T2
で再結晶する物質を高温計で温度を測定しながら昇温さ
せて再結晶させ,該再結晶した時に高温計で測定した温
度T2’が前記所定の再結晶温度T2となるように校正
することを特徴とする高温計の校正方法である。この請
求項4の方法において,請求項5に記載したように,前
記物質をSiとし,前記再結晶をアモルファスSiから
結晶Siへの再結晶によって検出することができる。ま
た,請求項6に記載したように,前記物質に不純物を注
入しておき,昇温に伴う該物質からの不純物の脱離がピ
ークとなった時に前記高温計で測定される温度T2’が
前記所定の再結晶温度T2となるように校正するように
しても良い。その場合,前記物質を真空チャンバ内で昇
温させ,該真空チャンバ内の圧力上昇によって前記再結
晶を検知するようにしても良い。
According to a fourth aspect of the present invention, the predetermined recrystallization temperature T2
The temperature of the substance to be recrystallized by measuring the temperature with a pyrometer is increased while the temperature is measured with a pyrometer, and the material is recrystallized, and the temperature T2 'measured by the pyrometer at the time of the recrystallization is calibrated so as to be the predetermined recrystallization temperature T2. This is a method for calibrating a pyrometer. In the method according to the fourth aspect, as described in the fifth aspect, the substance is Si, and the recrystallization can be detected by recrystallization from amorphous Si to crystalline Si. Further, as described in claim 6, an impurity is injected into the substance, and the temperature T2 ′ measured by the pyrometer when the desorption of the impurity from the substance due to the temperature rise reaches a peak. The calibration may be performed so as to reach the predetermined recrystallization temperature T2. In that case, the temperature of the substance may be raised in a vacuum chamber, and the recrystallization may be detected by an increase in the pressure in the vacuum chamber.

【0008】請求項7の発明は,不純物が注入された所
定の相転移温度T1で相転移する物質を昇温させる加熱
手段と,昇温に伴う該物質からの不純物の脱離のピーク
を検知する検知手段と,該検知手段によって不純物の脱
離のピークを検知した時に高温計で測定される温度T
1’が前記所定の相転移温度T1となるように校正する
校正手段とを備えることを特徴とする高温計の校正装置
である。
According to a seventh aspect of the present invention, there is provided a heating means for increasing the temperature of a substance which undergoes a phase transition at a predetermined phase transition temperature T1 into which an impurity has been implanted, and detecting a peak of desorption of the impurity from the substance due to the temperature increase. And a temperature T measured by a pyrometer when the peak of desorption of impurities is detected by the detecting means.
A calibrating device for calibrating the thermometer so that 1 ′ is the predetermined phase transition temperature T1.

【0009】請求項8の発明は,不純物が注入された所
定の再結晶温度T2で再結晶する物質を昇温させる加熱
手段と,昇温に伴う該物質からの不純物の脱離のピーク
を検知する検知手段と,該検知手段によって不純物の脱
離のピークを検知した時に高温計で測定される温度T
2’が前記所定の再結晶温度T2となるように校正する
校正手段とを備えることを特徴とする高温計の校正装置
である。
The invention according to claim 8 is a heating means for increasing the temperature of a substance to be recrystallized at a predetermined recrystallization temperature T2 into which impurities are implanted, and detecting a peak of desorption of impurities from the substance due to the temperature increase. And a temperature T measured by a pyrometer when the peak of desorption of impurities is detected by the detecting means.
A calibrating device for calibrating the thermometer 2 ′ so as to be the predetermined recrystallization temperature T2.

【0010】[0010]

【発明の実施の形態】以下,本発明の好ましい実施の形
態を図面に基づいて説明する。図1は,本発明の実施の
形態にかかる校正装置を備えた昇温脱離ガス分析装置1
のシステム概要を示すブロック図である。
Preferred embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a thermal desorption gas analyzer 1 equipped with a calibration device according to an embodiment of the present invention.
FIG. 1 is a block diagram showing an outline of a system.

【0011】真空チャンバ10に隣接して試料送り機構
11とイオン化室12が配置されている。真空チャンバ
10と試料送り機構11の間には気密性を保つためのゲ
ートバルブ13が設けられている。真空チャンバ10の
内部には,シリコン基板の表面に所望の物質を成膜して
形成した試料aを載置させる載置台14が設けられてお
り,試料送り機構11からゲートバルブ13を介して真
空チャンバ10内に搬入された試料aがこの載置台14
の上に載置されるようになっている。なお試料aは,例
えばシリコン基板の表面に不純物としてを注入したTi
Si2からなる層を成膜形成したもの,あるいはシリコ
ン基板の表面に不純物としてBF2 +を注入してアモルフ
ァスSiからなる層を成膜形成したもの,などである。
A sample feeding mechanism 11 and an ionization chamber 12 are arranged adjacent to the vacuum chamber 10. A gate valve 13 for maintaining airtightness is provided between the vacuum chamber 10 and the sample feeding mechanism 11. A mounting table 14 for mounting a sample a formed by depositing a desired substance on the surface of a silicon substrate is provided inside the vacuum chamber 10. The sample a carried into the chamber 10 is
It is designed to be placed on top of. The sample a is made of, for example, Ti having impurities implanted on the surface of a silicon substrate.
A film formed by forming a layer made of Si 2 , or a film formed by forming BF 2 + as an impurity on the surface of a silicon substrate to form a layer made of amorphous Si, or the like.

【0012】真空チャンバ10の下方には,こうして載
置台14上に載置された試料aに赤外線を照射して高温
度まで加熱する赤外線ランプヒータ15が設けられてい
る。この加熱によって試料a表面の膜中から発生したガ
スはイオン化室12に導入され,質量分析されるように
なっている。また,載置台14上に載置された試料a表
面の温度を測定するための高温計16が設けられてい
る。高温計16は例えば熱電対や白金温度計,放射温度
計などからなり,この高温計16で測定された温度は,
校正手段17にて正確な温度に校正された後,イオン化
室12にて分析された物質aに関する情報と共に制御手
段18に入力される構成になっている。校正手段17に
は,試料aの表面に成膜形成された物質の相転移温度T
1や再結晶温度T2(例えばTiSi2がC49構造か
らC54構造へ相転移する温度T1やアモルファスSi
から結晶Siへ再結晶する温度T2)が設定されてい
る。
Below the vacuum chamber 10, there is provided an infrared lamp heater 15 for irradiating the sample a thus mounted on the mounting table 14 with infrared rays and heating it to a high temperature. The gas generated from the film on the surface of the sample a by this heating is introduced into the ionization chamber 12 and subjected to mass analysis. Further, a pyrometer 16 for measuring the temperature of the surface of the sample a mounted on the mounting table 14 is provided. The pyrometer 16 includes, for example, a thermocouple, a platinum thermometer, a radiation thermometer, and the like.
After being calibrated to an accurate temperature by the calibration means 17, the information is input to the control means 18 together with information on the substance a analyzed in the ionization chamber 12. The calibration means 17 has a phase transition temperature T of a substance formed on the surface of the sample a.
1 or a recrystallization temperature T2 (for example, a temperature T1 at which TiSi 2 undergoes a phase transition from a C49 structure to a C54 structure or an amorphous Si
Is set at a temperature T2) at which the crystal is recrystallized into crystalline Si.

【0013】さて,以上のように構成された昇温脱離ガ
ス分析装置1において,高温計16を校正する方法を図
2に従って説明する。先ず予め,試料送り機構11の内
部と,真空チャンバ10及びイオン化室12の内部が真
空に減圧される。そして,減圧下においてゲートバルブ
13が開き,試料送り機構11から真空チャンバ10内
に試料aが搬入され,試料aは載置台14上に載置され
る(S1)。この場合,試料aは例えばシリコン基板の
表面に不純物として水素を注入したTiSi2からなる
層を成膜形成したもの,あるいはシリコン基板の表面に
BF2 +を注入してアモルファスSiからなる層を成膜形
成したもの,などである。
A method of calibrating the pyrometer 16 in the thermal desorption gas analyzer 1 configured as described above will be described with reference to FIG. First, the inside of the sample feeding mechanism 11 and the insides of the vacuum chamber 10 and the ionization chamber 12 are reduced to a vacuum. Then, the gate valve 13 is opened under the reduced pressure, the sample a is carried into the vacuum chamber 10 from the sample feeding mechanism 11, and the sample a is mounted on the mounting table 14 (S1). In this case, the sample a is formed, for example, by forming a layer made of TiSi 2 into which hydrogen is implanted as an impurity on the surface of a silicon substrate, or forming a layer made of amorphous Si by implanting BF 2 + into the surface of the silicon substrate. Film formed, and the like.

【0014】次に,赤外線ランプヒータ15により,試
料aに赤外線が照射され,試料aは高温度まで加熱され
る(S2)。この加熱を行いながら,試料aの表面に成
膜形成された物質の温度を高温計16によって測定す
る。そして,加熱によって試料a表面の膜中から脱離し
た不純物ガス(例えば水素ガスなど)はイオン化室12
に導入され,質量分析される(S3)。
Next, the sample a is irradiated with infrared rays by the infrared lamp heater 15, and the sample a is heated to a high temperature (S2). While this heating is being performed, the temperature of the substance formed on the surface of the sample a is measured by the pyrometer 16. The impurity gas (eg, hydrogen gas) desorbed from the film on the surface of the sample a by the heating is supplied to the ionization chamber 12.
And mass analyzed (S3).

【0015】ここで,試料aが例えばシリコン基板の表
面に不純物として水素を注入したTiSi2からなる層
を成膜形成したものである場合であれば,TiSi2
所定の相転移温度T1(約740゜C)でC49構造か
らC54構造へ相転移し,この相転移する際に,層中か
ら脱離ガス(水素ガス)が最も多く発生する。そこで,
イオン化室12において質量分析を行いながら,脱離ガ
スのピークを生じたときの高温計16によって測定され
る温度T1’を校正手段17に入力する(S4)。
Here, if the sample a is, for example, a layer formed of TiSi 2 into which hydrogen has been implanted as an impurity on the surface of a silicon substrate, the TiSi 2 has a predetermined phase transition temperature T1 (about At 740 ° C.), a phase transition from a C49 structure to a C54 structure occurs, and at this phase transition, most desorbed gas (hydrogen gas) is generated from the layer. Therefore,
While performing mass spectrometry in the ionization chamber 12, the temperature T1 'measured by the pyrometer 16 when the peak of the desorbed gas occurs is input to the calibration means 17 (S4).

【0016】次に,校正手段17では,こうして入力さ
れた温度T1’と予め設定されてTiSi2の相転移温
度T1とが比較され,相転移を生じた時に高温計16で
測定される温度T1’が相転移温度T1となるように校
正が行われる(S5)。そして,校正が行われた後の正
確な温度がイオン化室12にて分析された物質aに関す
る情報と共に制御手段18に入力される(S6)。
Next, the calibrating means 17 compares the thus inputted temperature T1 'with a preset phase transition temperature T1 of TiSi 2 , and detects a temperature T1 measured by the pyrometer 16 when a phase transition occurs. Calibration is performed so that 'becomes the phase transition temperature T1 (S5). Then, the accurate temperature after the calibration is input to the control means 18 together with the information on the substance a analyzed in the ionization chamber 12 (S6).

【0017】また一方,試料aが例えばシリコン基板の
表面にBF2 +を注入してアモルファスSiからなる層を
成膜形成したものである場合であれば,アモルファスS
iは所定の相転移温度T2(約550゜C)で再結晶
し,この再結晶する際に,層中から脱離ガス(水素ガス
など)が最も多く発生する。そこで,イオン化室12に
おいて質量分析を行いながら,脱離ガスのピークを生じ
たときの高温計16によって測定される温度T2’を校
正手段17に入力する(S4)。
On the other hand, if the sample “a” is formed by injecting BF 2 + into a surface of a silicon substrate to form a layer made of amorphous Si, for example,
i is recrystallized at a predetermined phase transition temperature T2 (approximately 550 ° C.). During this recrystallization, most desorbed gas (eg, hydrogen gas) is generated from the layer. Therefore, while performing mass spectrometry in the ionization chamber 12, the temperature T2 'measured by the pyrometer 16 when the peak of the desorbed gas occurs is input to the calibration means 17 (S4).

【0018】次に,校正手段17では,こうして入力さ
れた温度T2’と予め設定されてTiSi2の再結晶温
度T2とが比較され,再結晶を生じた時に高温計16で
測定される温度T2’が再結晶温度T2となるように校
正が行われる(S5)。そして,校正が行われた後の正
確な温度がイオン化室12にて分析された物質aに関す
る情報と共に制御手段18に入力される(S6)。
Next, the calibration unit 17, thus being preset with the input temperature T2 'and recrystallization temperature T2 of the TiSi 2 are compared, the temperature T2 measured by the pyrometer 16 when caused recrystallization Calibration is performed so that 'becomes the recrystallization temperature T2 (S5). Then, the accurate temperature after the calibration is input to the control means 18 together with the information on the substance a analyzed in the ionization chamber 12 (S6).

【0019】以上のようにこの実施の形態によれば,相
転移温度や再結晶温度が既知の物質(TiSi2やアモ
ルファスSiなど)を利用することにより,高温計の校
正を容易に行うことができるようになる。なお,昇温脱
離ガス分析装置に基づいて説明したが,本発明はその
他,半導体製造工程に用いるCVD装置,スパッタ装
置,エッチング装置など,真空チャンバを用い,かつチ
ャンバ内で昇温を行う装置の温度校正にも好適に適用で
きる。また実施の形態では,TiSi2やアモルファス
Siなどといった単一物質の変態(相移転や再結晶)に
伴う脱離ガスのピークを検出することにより温度校正を
行ったが,反応温度が既知な2種以上の物質の反応,例
えばTiとSiの反応によってC49構造のTiSi2
を形成する際に発生する脱離ガスを検出することなどに
よって温度校正を行うことも可能である。更に,上記実
施の形態では,脱離ガスを検出することにより校正を行
っているが,不純物ガスの脱離に伴い真空チャンバ内の
圧力が変化するので,その圧力変化を測定して脱離ガス
のピークを検知し,温度校正するようにしても良い。
As described above, according to the present embodiment, the pyrometer can be easily calibrated by using a substance having a known phase transition temperature or recrystallization temperature (such as TiSi 2 or amorphous Si). become able to. Although the description has been given based on the thermal desorption gas analyzer, the present invention also relates to an apparatus that uses a vacuum chamber and raises the temperature in the chamber, such as a CVD apparatus, a sputtering apparatus, and an etching apparatus used in a semiconductor manufacturing process. Can be suitably applied to the temperature calibration. In the embodiment, the temperature calibration is performed by detecting the peak of the desorbed gas accompanying the transformation (phase transfer or recrystallization) of a single substance such as TiSi 2 or amorphous Si. By the reaction of more than one kind of substance, for example, the reaction of Ti and Si, TiSi 2 of C49 structure
It is also possible to perform temperature calibration by detecting a desorbed gas generated when forming the gas. Further, in the above embodiment, the calibration is performed by detecting the desorbed gas. However, the pressure in the vacuum chamber changes with the desorption of the impurity gas. May be detected and the temperature may be calibrated.

【0020】[0020]

【実施例】次に,本発明の実施例を行った。先ず第1の
実施例として,Si基板上に膜厚40nmのC49構造
のTiSi2を成膜形成して試料を作成した。この試料
を120℃/分で昇温脱離ガス分析装置内で昇温させ,
脱離した水素ガスを質量分析計で調べた。試料表面のT
iSi2の温度は熱電対によって測定した。この第1の
実施例の水素(M/e=2)の脱離スペクトルを図3に
示す。熱伝対による測定値680℃のときに水素の脱離
ピークを示している。実施例1のTiSi2は680℃
でC49構造からC54構造へ相転移することが知られ
ている。この試料表面をX線回析した結果,上記脱離温
度前後でTiSi2の相がC49構造からC54構造へ
変わっていた。上記脱離ピークがTiSi2の相転移に
よるものであり,熱伝対による測定値680℃が正しい
ものであることがわかる。
EXAMPLE Next, an example of the present invention was performed. First, as a first example, a sample was prepared by forming a film of TiSi 2 having a C49 structure with a thickness of 40 nm on a Si substrate. This sample was heated at 120 ° C./min in a thermal desorption gas analyzer,
The desorbed hydrogen gas was examined with a mass spectrometer. T on sample surface
The temperature of iSi 2 was measured by a thermocouple. FIG. 3 shows the desorption spectrum of hydrogen (M / e = 2) of the first embodiment. The peak of desorption of hydrogen is shown at 680 ° C. measured by a thermocouple. TiSi 2 of Example 1 was 680 ° C.
Is known to cause a phase transition from the C49 structure to the C54 structure. As a result of X-ray diffraction of this sample surface, the phase of TiSi 2 changed from the C49 structure to the C54 structure around the above desorption temperature. It can be seen that the above desorption peak is due to the phase transition of TiSi 2 , and the value 680 ° C. measured by the thermocouple is correct.

【0021】次に第2の実施例として,Si基板にBF
2 +を60keVのイオン注入法により50×1015io
ns/cm2打ち込むことで,基板表面をアモルファス
化し,試料を作成した。この試料を120℃/分で昇温
脱離ガス分析装置内で昇温させ,脱離した水素ガスを質
量分析計で調べた。試料表面の温度を熱電対によって測
定した。この第2の実施例の水素(M/e=2),BF
3 +(M/e=33),及びSiF3 +(M/e=85)の
脱離スペクトルを図4に示す。熱伝対での測定値550
℃にそれぞれの脱離ピークを示している。アモルファス
Siは550℃で再結晶することが知られている。この
試料表面を反射高速電子線回析した結果,上記脱離温度
前後でアモルファスからSi結晶へ変わっていた。上記
脱離ピークがSiの再結晶によるものであり,熱伝対に
よる測定値550℃が正しいものであることがわかる。
Next, as a second embodiment, BF is applied to a Si substrate.
2 + by ion implantation of 60keV 50 × 10 15 io
By implanting ns / cm 2 , the substrate surface was made amorphous to prepare a sample. This sample was heated at 120 ° C./min in a heated desorption gas analyzer, and the desorbed hydrogen gas was examined by a mass spectrometer. The temperature of the sample surface was measured with a thermocouple. Hydrogen (M / e = 2), BF of this second embodiment
FIG. 4 shows desorption spectra of 3 + (M / e = 33) and SiF 3 + (M / e = 85). 550 measured with thermocouple
Each desorption peak is shown in ° C. It is known that amorphous Si recrystallizes at 550 ° C. As a result of reflection high-speed electron diffraction of the surface of the sample, it was found that the crystal changed from amorphous to Si crystal around the above desorption temperature. It can be seen that the above desorption peak is due to recrystallization of Si, and the measured value of 550 ° C. by thermocouple is correct.

【0022】[0022]

【発明の効果】本発明によれば,昇温脱離ガス分析装置
や,その他の半導体製造工程に用いるCVD装置,スパ
ッタ装置,エッチング装置などといった真空チャンバを
用い,かつチャンバ内で昇温を行う装置などにおいて,
高温計の測定温度を正しく校正することが可能となる。
このため,試料を所望の温度に正確に加熱することがで
きるようになる。
According to the present invention, a vacuum chamber such as a thermal desorption gas analyzer, a CVD apparatus, a sputtering apparatus, or an etching apparatus used in other semiconductor manufacturing processes is used, and the temperature is raised in the chamber. In equipment, etc.
It is possible to correctly calibrate the measurement temperature of the pyrometer.
Therefore, the sample can be accurately heated to a desired temperature.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態にかかる校正装置を備えた
昇温脱離ガス分析装置のシステム概要を示すブロック図
である。
FIG. 1 is a block diagram showing a system outline of a thermal desorption gas analyzer provided with a calibration device according to an embodiment of the present invention.

【図2】高温計を校正する方法を説明するためのフロー
チャートである。
FIG. 2 is a flowchart for explaining a method of calibrating a pyrometer.

【図3】実施例1にかかるC49構造のTiSi2の昇
温脱離スペクトルを示すグラフである。
FIG. 3 is a graph showing a thermal desorption spectrum of TiSi 2 having a C49 structure according to Example 1.

【図4】実施例2にかかるBF2 +をイオン注入したSi
表面の昇温脱離スペクトルを示すグラフである。
FIG. 4 shows Si implanted with BF 2 + according to Example 2;
It is a graph which shows a thermal desorption spectrum of the surface.

【図5】従来の昇温脱離ガス分析装置のシステム概要を
示すブロック図である。
FIG. 5 is a block diagram showing a system outline of a conventional thermal desorption gas analyzer.

【符号の説明】[Explanation of symbols]

a 試料 1 昇温脱離ガス分析装置 10 真空チャンバ 11 試料送り機構 12 イオン化室 13 ゲートバルブ 14 載置台 15 赤外線ランプヒータ 16 高温計 17 校正手段 18 制御手段 a sample 1 thermal desorption gas analyzer 10 vacuum chamber 11 sample feeding mechanism 12 ionization chamber 13 gate valve 14 mounting table 15 infrared lamp heater 16 pyrometer 17 calibration means 18 control means

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 所定の相転移T1で相転移する物質を高
温計で温度を測定しながら昇温させて相転移させ,該相
転移を生じた時に高温計で測定した温度T1’が前記所
定の相転移温度T1となるように校正することを特徴と
する高温計の校正方法。
1. A substance which undergoes a phase transition at a predetermined phase transition T1 is subjected to a phase transition by raising the temperature while measuring the temperature with a pyrometer, and when the phase transition occurs, the temperature T1 'measured by the pyrometer is determined by the predetermined temperature. A calibration method for a pyrometer, wherein the calibration is performed so as to have a phase transition temperature T1 of.
【請求項2】 前記物質がTiSi2であり,前記相転
移がC49構造からC54構造への相転移であることを
特徴とする請求項1に記載の高温計の校正方法。
2. The method according to claim 1, wherein the substance is TiSi 2 , and the phase transition is a phase transition from a C49 structure to a C54 structure.
【請求項3】 前記物質に不純物を注入しておき,昇温
に伴う該物質からの不純物の脱離がピークとなった時に
前記高温計で測定される温度T1’が前記所定の相転移
T1となるように校正することを特徴とする請求項1又
は2に記載の高温計の校正方法。
3. An impurity is injected into the substance, and the temperature T1 'measured by the pyrometer when the desorption of the impurity from the substance due to the temperature rise reaches a peak is determined by the predetermined phase transition T1. 3. The method for calibrating a pyrometer according to claim 1, wherein the calibration is performed so that
【請求項4】 所定の再結晶温度T2で再結晶する物質
を高温計で温度を測定しながら昇温させて再結晶させ,
該再結晶した時に高温計で測定した温度T2’が前記所
定の再結晶温度T2となるように校正することを特徴と
する高温計の校正方法。
4. A substance to be recrystallized at a predetermined recrystallization temperature T2 is heated and recrystallized while measuring the temperature with a pyrometer.
A method for calibrating a pyrometer, comprising calibrating a temperature T2 'measured by a pyrometer at the time of the recrystallization so as to be the predetermined recrystallization temperature T2.
【請求項5】 前記物質がSiであり,前記再結晶がア
モルファスSiから結晶Siへの再結晶であることを特
徴とする請求項4に記載の高温計の校正方法。
5. The method for calibrating a pyrometer according to claim 4, wherein said substance is Si, and said recrystallization is recrystallization from amorphous Si to crystalline Si.
【請求項6】 前記物質に不純物を注入しておき,昇温
に伴う該物質からの不純物の脱離がピークとなった時に
前記高温計で測定される温度T2’が前記所定の再結晶
温度T2となるように校正することを特徴とする請求項
4又は5に記載の高温計の校正方法。
6. An impurity is implanted into the substance, and the temperature T2 'measured by the pyrometer when the desorption of the impurity from the substance with a rise in temperature reaches a peak is the predetermined recrystallization temperature. 6. The method for calibrating a pyrometer according to claim 4, wherein the calibration is performed so as to be T2.
【請求項7】 不純物が注入された所定の相転移温度T
1で相転移する物質を昇温させる加熱手段と,昇温に伴
う該物質からの不純物の脱離のピークを検知する検知手
段と,該検知手段によって不純物の脱離のピークを検知
した時に高温計で測定される温度T1’が前記所定の相
転移温度T1となるように校正する校正手段とを備える
ことを特徴とする高温計の校正装置。
7. A predetermined phase transition temperature T into which impurities are implanted.
A heating means for raising the temperature of the substance which undergoes a phase transition in step 1, a detecting means for detecting a peak of desorption of impurities from the substance accompanying the temperature rise, and a high temperature when the peak of desorption of impurities is detected by the detecting means. A calibrating means for calibrating the temperature T1 'measured by the meter so as to be the predetermined phase transition temperature T1.
【請求項8】 不純物が注入された所定の再結晶温度T
2で再結晶する物質を昇温させる加熱手段と,昇温に伴
う該物質からの不純物の脱離のピークを検知する検知手
段と,該検知手段によって不純物の脱離のピークを検知
した時に高温計で測定される温度T2’が前記所定の再
結晶温度T2となるように校正する校正手段とを備える
ことを特徴とする高温計の校正装置。
8. A predetermined recrystallization temperature T at which impurities are implanted.
Heating means for raising the temperature of the substance to be recrystallized in step 2, detecting means for detecting the peak of desorption of impurities from the substance due to the temperature rise, and high temperature when the peak of desorption of impurities is detected by the detection means A calibrator for calibrating the thermometer so that the temperature T2 'measured by the thermometer becomes the predetermined recrystallization temperature T2.
JP34413997A 1997-11-27 1997-11-27 Calibration method and calibration device for pyrometer Expired - Fee Related JP3410347B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34413997A JP3410347B2 (en) 1997-11-27 1997-11-27 Calibration method and calibration device for pyrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34413997A JP3410347B2 (en) 1997-11-27 1997-11-27 Calibration method and calibration device for pyrometer

Publications (2)

Publication Number Publication Date
JPH11160166A true JPH11160166A (en) 1999-06-18
JP3410347B2 JP3410347B2 (en) 2003-05-26

Family

ID=18366951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34413997A Expired - Fee Related JP3410347B2 (en) 1997-11-27 1997-11-27 Calibration method and calibration device for pyrometer

Country Status (1)

Country Link
JP (1) JP3410347B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6799888B2 (en) * 2000-11-02 2004-10-05 Matsushita Electric Industrial Co., Ltd. Method for predicting temperature, test wafer for use in temperature prediction, and method for evaluating lamp heating system
JP2011247613A (en) * 2010-05-24 2011-12-08 Nippon Telegr & Teleph Corp <Ntt> Analytical method
JP2014509391A (en) * 2011-02-09 2014-04-17 シーメンス エナジー インコーポレイテッド Apparatus and method for temperature mapping of turbine components in a high temperature combustion environment
US8848436B2 (en) 2010-10-04 2014-09-30 Ricoh Company, Ltd. Electric element
CN111006768A (en) * 2019-11-15 2020-04-14 江苏宜兴德融科技有限公司 Device and method for calibrating temperature of MOCVD (Metal organic chemical vapor deposition) equipment by utilizing alloy phase change

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6799888B2 (en) * 2000-11-02 2004-10-05 Matsushita Electric Industrial Co., Ltd. Method for predicting temperature, test wafer for use in temperature prediction, and method for evaluating lamp heating system
JP2011247613A (en) * 2010-05-24 2011-12-08 Nippon Telegr & Teleph Corp <Ntt> Analytical method
US8848436B2 (en) 2010-10-04 2014-09-30 Ricoh Company, Ltd. Electric element
US9184380B2 (en) 2010-10-04 2015-11-10 Ricoh Company, Ltd. Electric element
JP2014509391A (en) * 2011-02-09 2014-04-17 シーメンス エナジー インコーポレイテッド Apparatus and method for temperature mapping of turbine components in a high temperature combustion environment
CN111006768A (en) * 2019-11-15 2020-04-14 江苏宜兴德融科技有限公司 Device and method for calibrating temperature of MOCVD (Metal organic chemical vapor deposition) equipment by utilizing alloy phase change

Also Published As

Publication number Publication date
JP3410347B2 (en) 2003-05-26

Similar Documents

Publication Publication Date Title
US8129202B2 (en) Plasma doping method and apparatus
JP2923008B2 (en) Film forming method and film forming apparatus
US5831249A (en) Secondary measurement of rapid thermal annealer temperature
US20070037300A1 (en) Systems and methods for plasma processing of microfeature workpieces
EP1865544A1 (en) Plasma doping method and apparatus
CN107924825A (en) Manufacture method, lining processor and the program of semiconductor devices
JP3410347B2 (en) Calibration method and calibration device for pyrometer
US5994676A (en) Method for calibrating the temperature of an epitaxy reactor
JP2000114198A (en) Surface treatment method and equipment thereof
Wakagi et al. Real time spectroscopic ellipsometry for characterization of the crystallization of amorphous silicon by thermal annealing
TW409320B (en) Lamp annealer and method for annealing semiconductor wafer
JP2755214B2 (en) Method of forming semiconductor thin film
COLLINS et al. Real-time spectroscopic ellipsometry studies of the nucleation, growth, and optical functions of thin films, Part I: Tetrahedrally bonded materials
JP3080933B2 (en) Semiconductor substrate temperature calibration method
Großhans et al. Advanced apparatus for combinatorial synthesis of buried II–VI nanocrystals by ion implantation
JPH05299428A (en) Method and apparatus for heat-treatment of semiconductor wafer
JP2001289714A (en) Temperature measurement method and measurement device of substrate and treating device of the substrate
JPH11163070A (en) Temperature control method for heat treatment process in production of semiconductor device
Tseng et al. Novel temperature measurement and process control in anneal
JP3244463B2 (en) Vacuum processing apparatus, film forming apparatus and film forming method using the same
JP3244462B2 (en) Film formation method
JP4208995B2 (en) Substrate temperature measurement method
Shih-En Novel Temperature Measurement and Process Control in Anneal
Shaffner Surface Characterization For VLSI
JP2001060560A (en) Method of measuring reflectivity of semiconductor substrate, method of measuring temperature of the semiconductor substrate, method and apparatus for controlling heating temperature of the semiconductor substrate

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080320

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090320

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090320

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100320

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100320

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110320

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110320

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120320

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees