JPH11148902A - Apparatus for inspecting surface flaw of flat substrate - Google Patents

Apparatus for inspecting surface flaw of flat substrate

Info

Publication number
JPH11148902A
JPH11148902A JP33085197A JP33085197A JPH11148902A JP H11148902 A JPH11148902 A JP H11148902A JP 33085197 A JP33085197 A JP 33085197A JP 33085197 A JP33085197 A JP 33085197A JP H11148902 A JPH11148902 A JP H11148902A
Authority
JP
Japan
Prior art keywords
substrate
inspection
inspected
transport
feed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33085197A
Other languages
Japanese (ja)
Inventor
Tadaaki Hosoda
忠昭 細田
Takashi Mizuno
尊司 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP33085197A priority Critical patent/JPH11148902A/en
Publication of JPH11148902A publication Critical patent/JPH11148902A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To perform not only surface inspection by rapidly performing the feed of a substrate to be inspected substantially by the point contact of both side edges but also to adapt respective surface inspections by a reflected light system, a scattered light system and a transmitted light system and to enable the surface inspection of the substrate to be inspected different in width dimension. SOLUTION: A feed mechanism 11 wherein each one set of taper rollers 12 wherein the small diameter side end surfaces thereof are mutually opposed at a required interval are arranged in a feed direction in one row to feed a substrate A to be inspected so as to straddle the opposed taper rollers 12, 12 and an inspection space part 13 is set at the required position between the taper roller rows, air floating mechanisms 21 arranged within the required width range along the feed center between the respective one set of the taper rollers 12, 12 excepting the inspection space part 13 and floating the center part in the feed direction of the fed substrate A to be inspected by ejected air 22 from a lower part to exclude the effect of gravity, a CCD camera 41 for continuously optically detecting the surface state of the substrate A to be inspected passed through the inspection space part 13 in the unidimensional direction crossing the feed direction at a right angle, a signal processor 42 and a CPU 43 are provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、平板状に形成され
た各種基板の表面欠陥検査装置に関し、さらに詳しく
は、比較的面積の大きい各種の平板状製品、例えば、表
示素子の一種として用いられる表面に酸化膜(SiO2
膜)を形成した液晶表示基板、同様に透明導電膜(IT
O膜)を形成したプラズマディスプレイ基板や、その他
の原材料から切り取られたままのシリコンウエハ等の大
型化平板状製品の表面状況を一次元CCD(Charge Coup
led Device) カメラで撮像して、この撮像された画像信
号から該表面の状況、ここでは表面欠陥等を検出するよ
うにした検査装置の改良に係るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for inspecting surface defects of various substrates formed in a flat plate shape, and more particularly, to a flat plate product having a relatively large area, for example, a type of display element. An oxide film (SiO 2
Liquid crystal display substrate on which a transparent film (IT film) is formed.
One-dimensional CCD (Charge Coup) is used to measure the surface condition of large-sized flat products such as plasma display substrates on which silicon film (O film) has been formed and silicon wafers that have been cut from other raw materials.
The present invention relates to an improvement of an inspection apparatus which picks up an image with a camera and detects the state of the surface, here a surface defect, etc., from the imaged image signal.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】一般
に、各種の平板状基板製品においては、これまでのとこ
ろ、主として目視による表面状況の観察で、該表面の欠
陥検査を行っているのであるが、最近に至り、CCDカ
メラの急速な性能向上に伴い、該CCDカメラを用いた
自動検査手段が広く採用されており、特に、液晶ディス
プレイ装置等に適用される平板状基板に関しては、近
年、次第に大型化される傾向を有し、この種の大型化基
板に対するより厳しく且つ迅速な自動検査のために、一
次元CCDカメラによる欠陥検査が利用されはじめてい
る。
2. Description of the Related Art Generally, with respect to various flat substrate products, a defect inspection of the surface has been performed so far mainly by visually observing the surface condition. Recently, with the rapid improvement in the performance of CCD cameras, automatic inspection means using the CCD cameras have been widely adopted. In particular, with respect to flat substrates applied to liquid crystal display devices and the like, in recent years, gradually Due to the tendency to increase in size, defect inspection by a one-dimensional CCD camera has begun to be used for more rigorous and rapid automatic inspection of such large-sized substrates.

【0003】従来の一次元CCDカメラを用いた大型化
基板の表面欠陥検査においては、通常の場合、検査対象
の大型化基板を支持台としての平坦な検査ステージ上に
載置してセッテイングし、この状態で、これらの一次元
CCDカメラと検査ステージの何れか一方もしくは双方
を相対的に移動させることで実行しており、従って、こ
こでは検査対象の大型化基板が平坦な検査ステージ上に
密着状態で載置されることから、検査対象基板の平坦度
が容易に確保されて高精度な表面欠陥等の検出が可能に
なる。
In a conventional surface defect inspection of a large-sized substrate using a one-dimensional CCD camera, a large-sized substrate to be inspected is usually set on a flat inspection stage serving as a support table. In this state, one or both of the one-dimensional CCD camera and the inspection stage are relatively moved, so that the large-sized substrate to be inspected is closely attached to the flat inspection stage here. Since the substrate to be inspected is placed in a state, the flatness of the substrate to be inspected is easily ensured, and highly accurate detection of a surface defect or the like becomes possible.

【0004】しかし、この場合には、該当大型化基板を
いちいち検査ステージ上に載置させてから検査を実行
し、且つ検査終了後に該検査ステージ上から該当基板を
取りはずすという作業を頻繁に繰り返さなければならな
いので、板面に汚れやキズ等を与える惧れがあるほか、
作業性が悪くて迅速さに欠け、さらには、検査該当基板
を取り扱うハンドリング機構も徒らに煩雑化するという
不利を有し、全体としての検査工程のスループットが格
段に低下するもので、今後の問題として、この種の大型
化基板に対する効果的且つ迅速な欠陥検査には、到底採
用し得ないものであった。
[0004] In this case, however, it is necessary to frequently repeat the work of placing the corresponding large-sized substrate on the inspection stage and then performing the inspection, and removing the substrate from the inspection stage after the inspection. Besides, there is a concern that the board surface may be stained or scratched.
The workability is poor and lacks in speed, and furthermore, the handling mechanism for handling the substrate to be inspected has the disadvantage of being complicated, and the overall throughput of the inspection process is significantly reduced. As a problem, this method cannot be used for effective and quick defect inspection of such a large-sized substrate.

【0005】一方、上記のように検査対象基板を検査ス
テージ上に載置させることなく、該当基板自体をローラ
ーによって搬送させる手段が、該対象基板の大型化に容
易に対応させ得て、しかも、高速搬送が可能であるため
に広く利用されるが、一次元CCDカメラを用いた欠陥
検査では、該当大型化基板への搬送ローラーの接触によ
る汚れやキズの発生の可能性が残されるので、これに対
処させる必要上、可及的に非接触での搬送システムが望
まれている。
On the other hand, means for transporting the substrate to be inspected by rollers without placing the substrate to be inspected on the inspection stage as described above can easily cope with the enlargement of the substrate to be inspected. Although it is widely used because it can be transported at high speed, defect inspection using a one-dimensional CCD camera leaves the possibility of dirt and scratches caused by the contact of the transport roller with the corresponding large-sized substrate. In order to cope with the problem, a non-contact transport system is desired as much as possible.

【0006】一方、前記非接触による大型化基板の搬送
システムとしては、例えば、図4に示すように、径小側
端面を相互に所要間隔で対向させた一組づつのテーパー
ローラー51、51を搬送方向に並設して配置し、各組
のテーパーローラー51、51間に検査対象の大型化基
板Aの搬送方向両側縁を点接触状態で支架して搬送させ
る手段が考えられる。
On the other hand, as a non-contact large-size substrate transfer system, for example, as shown in FIG. 4, a pair of tapered rollers 51, 51 having small-diameter side end faces opposed to each other at a required interval are used. It is conceivable to arrange them in parallel in the transport direction, and to support the transported side edges of the enlarged substrate A to be inspected between the tapered rollers 51 of each set in a point contact state.

【0007】しかし、この図4の搬送手段を適用する場
合には、検査対象基板Aの大型化に伴い、該基板Aのそ
れ自体が自重のために、ここでは同図に誇張して示す如
く、その重力部を中心にして下方へ沈み込んで湾曲さ
れ、比較的大きく反り返ってしまい、適正な態様での表
面欠陥等の検出がなされなくなる惧れがあり、検査点に
おける該当検査対象基板Aを重力の影響のない本来の平
坦性のままに維持して搬送する必要がある。
However, when the transfer means shown in FIG. 4 is applied, the size of the substrate A to be inspected is increased due to the weight of the substrate A itself. However, there is a possibility that the surface of the substrate to be inspected A at the inspection point may not be detected in a proper manner because it sinks downward and curves around the gravitational portion and is relatively largely warped. It is necessary to convey while maintaining the original flatness without the influence of gravity.

【0008】そこで一般的には、前記テーパーローラー
51、51間に点接触状態で支架して搬送される検査対
象基板Aの自重による下方への反りを是正するために
は、例えば、図5に示されているように、前記搬送手段
の下方にあって、表面に多数のエアー噴出孔を有するエ
アーフローティング機構61を配置させ、該各エアー噴
出孔からの噴出エアー62によって検査対象基板Aの全
体を浮き上がらせることで重力の影響を排除する手段が
考えられるのであるが、検査点がエアーフローティング
機構61上にある場合は、該検査対象基板Aの浮上高さ
が大型化するほど僅かになることから、反射光方式や散
乱光方式による表面検査では、該エアーフローティング
機構61の表面部の影響を受け易く、また、透過光方式
による表面検査では、エアーフローティング機構61自
体が照射光の透過を遮ることになるため、それぞれに適
用できないという問題点がある。さらに、この種の欠陥
検査の場合には、各テーパーローラー51、51間が特
定の対向間隔に固定的に設定されているので、それぞれ
に幅寸法の異なる検査対象基板52に対応させ得ないと
いう不利をも有するものであった。
Therefore, generally, in order to correct the downward warpage caused by the own weight of the substrate A to be inspected which is transported while being supported in a point contact state between the tapered rollers 51, 51, for example, as shown in FIG. As shown in the drawing, an air floating mechanism 61 having a large number of air ejection holes on its surface is disposed below the transporting means, and the whole of the inspection target substrate A is ejected by the ejection air 62 from each of the air ejection holes. Is possible to eliminate the influence of gravity by raising the surface of the inspection target substrate A when the inspection point is on the air floating mechanism 61. Therefore, in the surface inspection by the reflected light method or the scattered light method, the surface portion of the air floating mechanism 61 is easily affected, and in the surface inspection by the transmitted light method, Since the air floating mechanism 61 itself is to interrupt the transmission of irradiated light, there is a problem that can not be applied to each. Further, in the case of this type of defect inspection, since the interval between the tapered rollers 51 is fixedly set to a specific facing distance, it is impossible to correspond to the inspection target substrate 52 having a different width dimension. It also had disadvantages.

【0009】本発明は、従来のこのようなそれぞれの問
題点を解消するためになされたもので、その目的とする
ところは、検査対象基板の搬送を実質的に非接触で且つ
迅速に行って表面検査をなし得るようにし、併せて、反
射光方式、散乱光方式および透過光方式による各表面検
査を適用可能にすると共に、幅寸法の異なる検査対象基
板の表面検査を可能にした平板状基板の表面欠陥検査装
置を提供することである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems. It is an object of the present invention to provide a method for transporting a substrate to be inspected in a substantially non-contact and rapid manner. A flat substrate that enables surface inspection and, in addition, makes it possible to apply each surface inspection by the reflected light method, the scattered light method, and the transmitted light method, and enables the surface inspection of substrates to be inspected having different width dimensions. To provide a surface defect inspection apparatus.

【0010】[0010]

【課題を解決するための手段】前記目的を達成するため
に、本発明に係る請求項1に記載の発明は、径小側端面
を相互に所要間隔で対向させた一組づつのテーパーロー
ラーを搬送方向へ列状に配置し、該対向するテーパーロ
ーラ間に跨って検査対象基板を搬送させ得るようにする
と共に、該テーパーローラー列間の所要位置に検査空間
部を設定した搬送機構と、前記各組のテーパーローラー
間の搬送中心に添わせた所要幅範囲内で前記検査空間部
を除いて配置され、前記搬送される検査対象基板の搬送
方向中心部を下部側からの噴出エアーで浮上させて重力
の影響を排除するエアーフローティング機構と、前記検
査空間部を通過する検査対象基板の表面状況を搬送方向
に直交する一次元方向で連続して光学的に検出する手段
とを備えることを特徴とする平板状基板の表面欠陥検査
装置である。
In order to achieve the above object, according to the first aspect of the present invention, there is provided a tapered roller having a pair of tapered rollers whose small-diameter side end faces are opposed to each other at a required interval. A transport mechanism arranged in a row in the transport direction so that the substrate to be inspected can be transported across the opposing tapered rollers, and a transport mechanism in which an inspection space is set at a required position between the tapered roller rows, Arranged within the required width range along the transport center between the tapered rollers of each set, except for the inspection space, and the center of the transport direction of the inspected substrate to be transported is floated by jet air from the lower side. An air floating mechanism that eliminates the influence of gravity by gravity, and a unit that optically continuously detects the surface condition of the inspection target substrate passing through the inspection space in a one-dimensional direction orthogonal to the transport direction. A surface defect inspection apparatus of the flat substrate to symptoms.

【0011】また、本発明に係る請求項2に記載の発明
は、前記請求項1に記載の平板状基板の表面欠陥検査装
置において、前記光学的検出手段が、直線帯状の照射光
によって前記検査空間部を通過する検査対象基板の表面
部を照射する照射光源と、該照射光の反射光または透過
光を受光する一次元CCDカメラ、一次元方向に配置さ
れた光ファイバーセンサーアレイ等の一次元方向受光検
出器と、受光される反射光または透過光の光量変化か
ら、検査対象基板の表面欠陥の有無等を検出する信号処
理器および中央演算処理装置とで構成されていることを
特徴とするものである。
According to a second aspect of the present invention, in the apparatus for inspecting a surface defect of a flat substrate according to the first aspect, the optical detecting means uses the linear band-shaped irradiation light to perform the inspection. An irradiation light source that irradiates the surface of the inspection target substrate passing through the space, a one-dimensional CCD camera that receives reflected light or transmitted light of the irradiation light, and a one-dimensional direction such as a one-dimensionally arranged optical fiber sensor array. Characterized by comprising a light receiving detector, a signal processor and a central processing unit for detecting the presence / absence of a surface defect of a substrate to be inspected from a change in the amount of reflected light or transmitted light received. It is.

【0012】さらに、本発明に係る請求項3に記載の発
明は、前記請求項1に記載の平板状基板の表面欠陥検査
装置において、前記搬送機構の各組毎のテーパーローラ
ーの対向間隔が、前記検査対象基板の搬送方向幅に対応
して調整可能にされていることを特徴とするものであ
る。
Further, according to a third aspect of the present invention, in the apparatus for inspecting a surface defect of a flat substrate according to the first aspect, the opposed interval of the tapered rollers for each set of the transport mechanism is set as follows. It is characterized in that it can be adjusted in accordance with the width of the substrate to be inspected in the transport direction.

【0013】従って、本発明の平板状基板の表面欠陥検
査装置では、検査対象基板の点接触による搬送が、搬送
機構上に設定されている検査空間部の前後で、該搬送方
向に添う所要幅範囲内に配置された各エアーフローティ
ング機構によって浮上され、重力の影響を排除した平坦
な状態でなされるため、自身の平坦度を保持した上での
迅速な搬送が可能になり、結果的に、検査空間部を通過
する検査対象基板の表面状況を光学的検出手段によって
容易に検出し得る。
Therefore, in the apparatus for inspecting the surface of a flat substrate according to the present invention, the substrate to be inspected is transported by point contact before and after the inspection space set on the transport mechanism in the required width along the transport direction. It is levitated by each air floating mechanism arranged in the range and is made in a flat state eliminating the influence of gravity, so it is possible to quickly transport while maintaining its own flatness, as a result, The surface state of the inspection target substrate passing through the inspection space can be easily detected by the optical detection means.

【0014】また、前記検査対象基板の表面状況の検出
には、搬送途上に検査空間部を設定してあるので、反射
光方式、散乱光方式および透過光方式による各表面検査
を容易に適用し得る。
In addition, since the inspection space portion is set in the middle of the transportation for detecting the surface condition of the inspection target substrate, each surface inspection by the reflected light method, the scattered light method and the transmitted light method can be easily applied. obtain.

【0015】さらに、搬送機構を構成する各組毎のテー
パーローラーの対向間隔を調整することで、幅寸法の異
なる検査対象基板の表面検査が可能になる。
Further, by adjusting the facing distance between the tapered rollers of each set constituting the transport mechanism, it becomes possible to inspect the surface of the substrate to be inspected having different width dimensions.

【0016】[0016]

【発明の実施の形態】以下、本発明に係る平板状基板の
表面欠陥検査装置の反射光方式による光学的検出手段を
適用した場合の実施形態例につき、図1ないし図3を参
照して詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of a flat substrate surface defect inspection apparatus according to the present invention in which an optical detection means based on a reflected light method is applied will be described in detail with reference to FIGS. Will be described.

【0017】図1は、本実施形態例による点接触支持搬
送機構を適用した表面欠陥検査装置の全体的な概要を模
式的に示す側面説明図である。図2は、同上搬送機構上
に設定される検査空間部とエアーフローティング機構と
の関係を模式的に示す側面説明図である。図3は、同上
搬送機構に対するエアーフローティング機構の配置態様
と各組毎のテーパーローラーの対向間隔の調整とを模式
的に示す側面説明図である。
FIG. 1 is an explanatory side view schematically showing an overall outline of a surface defect inspection apparatus to which a point contact support transport mechanism according to the embodiment is applied. FIG. 2 is an explanatory side view schematically showing a relationship between an inspection space set on the transport mechanism and the air floating mechanism. FIG. 3 is an explanatory side view schematically showing the arrangement of the air floating mechanism with respect to the transport mechanism and the adjustment of the facing distance between the tapered rollers of each set.

【0018】即ち、これらの図1ないし図3に示す実施
形態例の装置構成において、本表面欠陥検査装置は、径
小側端面を相互に所要間隔で対向させた一組づつのテー
パー付きローラー12、12を用い、該各組のテーパー
ローラー12、12を搬送方向に所要間隔で列状に配置
させると共に、該テーパーローラー列間の所要位置に検
査空間部13を設定した搬送機構11を設ける。
That is, in the apparatus configuration of the embodiment shown in FIG. 1 to FIG. 3, the present surface defect inspection apparatus includes a set of tapered rollers 12 having small-diameter side end faces facing each other at a required interval. , 12, the sets of tapered rollers 12, 12 are arranged in a row at required intervals in the transport direction, and a transport mechanism 11 in which an inspection space 13 is set at a required position between the tapered roller rows is provided.

【0019】また、前記各組のテーパーローラー12、
12間の下方側には、搬送中心に添わせた所要幅範囲内
で、且つ前記検査空間部13の位置を除く該当部分にエ
アーフローティング機構21を配置させてあり、該エア
ーフローティング機構21の表面(上面)には、この場
合、あらためては図示してないが多数のエアー噴出孔を
形成してある。
Further, each of the sets of tapered rollers 12,
An air floating mechanism 21 is arranged at a lower portion between the 12 and within a required width range along the transport center and in a corresponding portion except the position of the inspection space portion 13. In this case, a large number of air ejection holes are formed in the (upper surface), not shown again.

【0020】さらに、前記搬送機構11の上部側で、前
記検査空間部13における検査点13aを挟む対向位置
には、前記搬送機構11によって搬送される検査対象基
板Aを検査空間部13上で照射する照射光源31と、一
次元方向受光器としての一次元CCDカメラ41とを配
置させておき、照射光源31からの直線帯状の照射光3
2を検査点13aに投光し、該検査点13aで反射され
た反射光33を一次元CCDカメラ41によって受光さ
せ得るようにしてあり、併せて、該一次元CCDカメラ
41で受光される反射光33の光量変化を次段の信号処
理器42によって処理し、且つマイクロコンピュータ等
のCPU(Central Processing Unit:中央演算処理装
置)43によって該当表面の状況、例えば、表面欠陥の
有無等を検出可能にする。なお、前記一次元方向受光検
出器としては、別に一次元方向に配置された光ファイバ
ーセンサーアレイ等をも適用してもよい。
Further, on the upper side of the transport mechanism 11, a substrate A to be inspected transported by the transport mechanism 11 is irradiated on the inspection space 13 at a position facing the inspection point 13 a in the inspection space 13. An irradiation light source 31 and a one-dimensional CCD camera 41 as a one-dimensional light receiver are arranged in advance, and a linear band of irradiation light 3 from the irradiation light source 31 is provided.
2 is projected to the inspection point 13a, and the reflected light 33 reflected at the inspection point 13a can be received by the one-dimensional CCD camera 41. A change in the amount of light 33 can be processed by a signal processor 42 at the next stage, and a CPU (Central Processing Unit: Central Processing Unit) 43 such as a microcomputer can detect the state of the surface, for example, the presence or absence of a surface defect. To In addition, as the one-dimensional direction light receiving detector, an optical fiber sensor array or the like separately arranged in one-dimensional direction may be applied.

【0021】従って、本実施形態例による装置構成の場
合、搬送機構11の各組のテーパーローラー12、12
間に両側縁を点接触状態で支架して搬送される検査対象
基板Aは、検査空間部13を除く前後の搬送位置で各エ
アーフローティング機構21からの噴出エアー22によ
って所要量相当に浮上させることにより、重力の影響が
排除されて自身の平坦度を保持したままで迅速に搬送さ
れる。次いで、検査空間部13を通過する時点では、照
射光源31から投光される直線帯状の照射光32によっ
て検査点13aが常時照射されており、通過途上の検査
対象基板Aの表面(被検査対象表面)で反射される反射
光が一次元CCDカメラ41で順次連続して受光され、
この結果、先に述べた如くに、該検査対象基板Aの表面
状況、ひいては目的とする表面欠陥の現状を光学的手段
によって容易に検出し得るのである。
Therefore, in the case of the apparatus configuration according to the present embodiment, each set of the tapered rollers 12, 12 of the transport mechanism 11 is used.
The board A to be inspected, which is transported with both side edges supported in a point contact state, is floated by a required amount by the jet air 22 from each air floating mechanism 21 at the transport position before and after excluding the inspection space 13. Thus, the effect of gravity is eliminated, and the sheet is quickly conveyed while maintaining its own flatness. Next, at the time of passing through the inspection space 13, the inspection point 13 a is constantly illuminated by the linear band-shaped irradiation light 32 emitted from the irradiation light source 31, and the surface of the inspection target substrate A (the inspection target The reflected light reflected on the surface) is sequentially and continuously received by the one-dimensional CCD camera 41,
As a result, as described above, the surface condition of the inspection target substrate A, and thus the current state of the target surface defect, can be easily detected by optical means.

【0022】この場合の欠陥検査の一つの態様を具体的
に述べると、次ぎの通りである。即ち、搬送機構11と
して各組のテーパーローラー12、12を80mm間隔
毎に列状をなして配置させると共に、検査空間部13に
対応して前後に配置される各エアーフローティング機構
21の間隔を50mmとし、検査対象基板Aとしての搬
送方向幅550mm×長さ650mm×厚さ1.1mm
の素材ガラス基板を搬送機構11によって搬送速度1m
/分で搬送させ、且つ該素材ガラス基板に対し、検査空
間部13上の検査点13aで、照射光源31としてのハ
ロゲンランプによる直線帯状の照射光32を照射して欠
陥検査を行った。
One embodiment of the defect inspection in this case is specifically described as follows. That is, the taper rollers 12, 12 of each set are arranged in a row at an interval of 80 mm as the transport mechanism 11, and the interval between the air floating mechanisms 21 arranged before and after in correspondence with the inspection space 13 is 50 mm. And 550 mm in width in the transport direction as a substrate to be inspected A × 650 mm in length × 1.1 mm in thickness
Transfer speed of 1m by the transfer mechanism 11
/ Min, and the material glass substrate was irradiated with a linear band of irradiation light 32 by a halogen lamp as an irradiation light source 31 at an inspection point 13a on the inspection space 13 to perform a defect inspection.

【0023】この場合、前記検査空間部13の前後に配
置される各エアーフローティング機構21のエアー噴出
孔は、25mm間隔の格子状に配置形成されており、該
エアー噴出孔から噴出されるところの、ダスト・フィル
ターを通してクリーンでドライにされた噴出エアー22
によって前記搬送される検査対象基板Aを所期通りに浮
上させる。ここで、通常、該サイズの検査対象基板Aに
おいて、単に両側縁を支架させるのみの搬送では、先に
述べた如くに中心部が重力の影響で約10mm程度下方
へ沈み込んで反り返ることになるのであるが、該検査対
象基板Aの幅方向サイズ550mmのほぼ50%程度に
相当する範囲内での中間部エアーフローティング領域と
しての300mm幅のエアーフローティング機構21で
あっても、該検査対象基板Aの十分な平坦度を維持し得
ることを確認した。
In this case, the air ejection holes of each air floating mechanism 21 disposed before and after the inspection space portion 13 are formed in a grid shape at intervals of 25 mm, and the air ejection holes are formed from the air ejection holes. , Clean and dry blast air through a dust filter 22
The substrate A to be inspected conveyed is floated as expected. Here, in the case of the substrate A to be inspected of this size, usually, when the substrate is transported by merely supporting both side edges, as described above, the center portion sinks down by about 10 mm due to the influence of gravity and warps. However, even if the air floating mechanism 21 having a width of 300 mm as an intermediate air floating area within a range corresponding to approximately 50% of the width direction size 550 mm of the inspection target substrate A, the inspection target substrate A It was confirmed that sufficient flatness could be maintained.

【0024】而して、前記状態における照射検査の結
果、前記検査対象基板Aの表面における代表的な気泡、
異物および傷等の各欠陥を安定して検出することができ
た。なお、この状態でのより高精度な検査のためには、
前後の各エアーフローティング機構21間に補助ローラ
ーを介装させるのも一つの効果的な手法である。
As a result of the irradiation inspection in the above state, typical air bubbles on the surface of the inspection target substrate A,
Defects such as foreign matter and scratches could be detected stably. In addition, for more accurate inspection in this state,
Interposing an auxiliary roller between the front and rear air floating mechanisms 21 is also one effective method.

【0025】また、前記検査空間部13における前方側
エアーフローティング機構21の後端と検査点13aと
の間隔Kについては、該当部分にエアーフローティング
手段がないことから、高精度な検査を得る必要上、該間
隔Kの値を一定値以下に保持するのが好ましい。ここ
で、前記サイズによる素材ガラス基板と間隔Kの値とに
よる該基板の浮上差(反り返り量)を測定した結果を表
1に示す。
The interval K between the rear end of the front air floating mechanism 21 and the inspection point 13a in the inspection space 13 is not necessary because there is no air floating means in the corresponding portion. It is preferable that the value of the interval K be kept below a certain value. Table 1 shows the results of measuring the floating difference (warpage) of the glass substrate according to the size and the value of the interval K according to the size of the substrate.

【0026】[0026]

【表1】 [Table 1]

【0027】この測定結果から、前記間隔Kの値は50
mm以下、好ましくは浮上差(反り返り量)が100μ
m以下となる30mm以下とするのが効果的であること
が分かる。
From this measurement result, the value of the interval K is 50
mm or less, preferably, the floating difference (warpage) is 100 μm.
It is understood that it is effective to set the length to 30 mm or less, which is equal to or less than m.

【0028】さらに、前記各テーパーローラー12、1
2間の対向間隔Lについては、先にも述べた如くに、各
種幅サイズの検査対象基板Aに対応させる必要上、例え
ば、搬送中心線を基準にして250mmから最大570
mm程度の範囲内で調節可能にするのがよい。
Further, each of the tapered rollers 12, 1
As described above, since the facing distance L between the two needs to correspond to the inspection target substrate A of various widths, for example, 250 mm to 570
It is preferable that the distance can be adjusted within a range of about mm.

【0029】この場合の一つの具体例は、次ぎの通りで
ある。即ち、前記の如く、搬送方向幅550mm×長さ
650mm×厚さ1.1mmの素材ガラス基板を搬送機
構10によって搬送速度1m/分で搬送させる場合に比
較して、150mm/550mm=3/11(エアーフ
ローティング機構21の幅/検査対象基板Aの幅)の比
率でも十分な平坦度を得られることが確認された。つま
り、前記各テーパーローラー12、12間の対向間隔L
の幅を250mmに設定し、この搬送機構11を用い
て、搬送方向幅250mm×長さ300mm×厚さ0.
7mmの素材ガラス基板Aを搬送速度1m/分で搬送さ
せた場合でも十分な平坦度が得られた。これらの結果か
ら、前記エアーフローティング領域における搬送方向幅
については、検査対象基板Aの最大幅以下のエアーフロ
ーティング幅、好ましくは50%以下のエアーフローテ
ィング幅に設定するのが好ましいものと判断される。
One specific example in this case is as follows. That is, 150 mm / 550 mm = 3/11 as compared with the case where the material glass substrate having a width of 550 mm × length 650 mm × thickness 1.1 mm is transported by the transport mechanism 10 at a transport speed of 1 m / min. It was confirmed that sufficient flatness could be obtained even with the ratio of (the width of the air floating mechanism 21 / the width of the inspection target substrate A). That is, the facing distance L between the tapered rollers 12, 12
Is set to 250 mm, and a width of 250 mm × length of 300 mm × thickness of 0.
Even when the glass substrate A of 7 mm was transferred at a transfer speed of 1 m / min, sufficient flatness was obtained. From these results, it is determined that the width of the air floating region in the transport direction is preferably set to an air floating width equal to or less than the maximum width of the inspection target substrate A, and more preferably to 50% or less.

【0030】なお、上記実施形態例においては、反射光
方式による光学的検出手段を適用する場合について述べ
たが、その他の散乱光方式もしくは透過光方式による光
学的検出手段にも適用可能であることは勿論である。
In the above-described embodiment, the case where the optical detection means based on the reflected light method is applied has been described. However, the present invention is applicable to other optical detection means based on the scattered light method or the transmitted light method. Of course.

【0031】[0031]

【発明の効果】以上、実施形態例によって詳述したよう
に、本発明装置によれば、径小側端面を相互に所要間隔
で対向する一組づつのテーパーローラーを搬送方向へ列
状に配置して構成した搬送機構を用い、各テーパーロー
ラー間に跨って検査対象基板の両側縁を支架した状態の
実質的に非接触状態で搬送可能にすると共に、この検査
対象基板の点接触による搬送が、搬送機構上に設定され
ている検査空間部の前後で、該搬送方向に添う所要幅範
囲内に配置された各エアーフローティング機構で浮上さ
れて重力の影響を排除した平坦な状態でなされるように
したので、自身の平坦度を保持した上での迅速な搬送を
行うことができ、この結果、検査空間部を通過する検査
対象基板の表面状況を光学的検出手段によって容易且つ
正確に検出し得る利点がある。また、検査対象基板の表
面状況の検出には、搬送途上に検査空間部を設定してあ
ることから、反射光方式、散乱光方式および透過光方式
による各表面検査を容易に適用できるのであり、併せ
て、搬送機構を構成する各組毎のテーパーローラーの対
向間隔を調整可能にしてあるため、幅寸法の異なった各
検査対象基板の表面検査をも行い得る等の実用上有益な
諸効果を有し、しかも、構造自体も比較的簡単で容易に
実施できるという優れた特長がある。
As described above in detail in the embodiment, according to the apparatus of the present invention, a pair of tapered rollers whose small-diameter side end faces face each other at a required interval are arranged in a row in the transport direction. By using a transport mechanism configured as described above, it is possible to transport in a substantially non-contact state in which both side edges of the substrate to be inspected are supported across the respective tapered rollers, and transport by point contact of the substrate to be inspected is performed. Before and after the inspection space set on the transport mechanism, the air is floated by each air floating mechanism arranged within a required width range along the transport direction, so that it is formed in a flat state eliminating the influence of gravity. As a result, it is possible to carry out quickly while maintaining its own flatness, and as a result, it is possible to easily and accurately detect the surface condition of the inspection target substrate passing through the inspection space by the optical detection means. obtain There is a point. In addition, in order to detect the surface condition of the inspection target substrate, since the inspection space is set on the way of transport, each surface inspection by the reflected light method, the scattered light method and the transmitted light method can be easily applied, At the same time, since the opposing interval of the tapered rollers of each set constituting the transport mechanism is adjustable, various useful effects such as the surface inspection of each inspection target substrate having different width dimensions can be performed. It has an excellent feature that it has a relatively simple structure and can be easily implemented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態例による点接触支持搬送機構
を適用した表面欠陥検査装置の全体的な概要を模式的に
示す側面説明図である。
FIG. 1 is an explanatory side view schematically showing an overall outline of a surface defect inspection apparatus to which a point contact support transport mechanism according to an embodiment of the present invention is applied.

【図2】同上搬送機構上に設定される検査空間部とエア
ーフローティング機構との関係を模式的に示す側面説明
図である。
FIG. 2 is an explanatory side view schematically showing a relationship between an inspection space set on the transport mechanism and an air floating mechanism.

【図3】同上搬送機構に対するエアーフローティング機
構の配置態様と各組毎のテーパーローラーの対向間隔の
調整とを模式的に示す側面説明図である。
FIG. 3 is an explanatory side view schematically showing an arrangement of an air floating mechanism with respect to the transport mechanism and an adjustment of an interval between tapered rollers in each set.

【図4】従来の点接触支持搬送機構の概要を模式的に示
す側面説明図である。
FIG. 4 is an explanatory side view schematically showing an outline of a conventional point contact support transport mechanism.

【図5】同上点接触支持搬送機構を適用する場合のエア
ーフローティング機構の配置態様を模式的に示す側面説
明図である。
FIG. 5 is an explanatory side view schematically showing an arrangement of an air floating mechanism when the same point contact support transport mechanism is applied.

【符号の説明】[Explanation of symbols]

11 搬送機構 12 テーパーローラー 13 検査空間部 13a 検査点 21 エアーフローティング機構 22 噴出エアー 31 照射光源 32 照射光 33 反射光 41 CCDカメラ 42 信号処理器 43 CPU(中央演算処理装置) A 検査対象基板 DESCRIPTION OF SYMBOLS 11 Conveying mechanism 12 Taper roller 13 Inspection space part 13a Inspection point 21 Air floating mechanism 22 Jet air 31 Irradiation light source 32 Irradiation light 33 Reflection light 41 CCD camera 42 Signal processor 43 CPU (Central processing unit) A Inspection board

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 径小側端面を相互に所要間隔で対向させ
た一組づつのテーパーローラーを搬送方向へ列状に配置
し、該対向するテーパーローラ間に跨って検査対象基板
を搬送させ得るようにすると共に、該テーパーローラー
列間の所要位置に検査空間部を設定した搬送機構と、前
記各組のテーパーローラー間の搬送中心に添わせた所要
幅範囲内で前記検査空間部を除いて配置され、前記搬送
される検査対象基板の搬送方向中心部を下部側からの噴
出エアーで浮上させて重力の影響を排除するエアーフロ
ーティング機構と、前記検査空間部を通過する検査対象
基板の表面状況を搬送方向に直交する一次元方向で連続
して光学的に検出する手段とを備えることを特徴とする
平板状基板の表面欠陥検査装置。
1. A set of tapered rollers whose small-diameter side end faces are opposed to each other at a required interval are arranged in a row in the transport direction, and the substrate to be inspected can be transported across the opposed tapered rollers. In addition to the above, a transport mechanism in which an inspection space is set at a required position between the tapered roller rows, and excluding the inspection space within a required width range attached to a transport center between the tapered rollers of each set. An air floating mechanism that is disposed and lifts a central portion in the transport direction of the inspected substrate to be transported by jet air from below to eliminate the influence of gravity, and a surface condition of the inspected substrate passing through the inspection space portion Means for continuously and optically detecting in a one-dimensional direction orthogonal to the transport direction.
【請求項2】 前記検出手段が、直線帯状の照射光によ
って前記検査空間部を通過する検査対象基板の表面部を
照射する照射光源と、該照射光の反射光または透過光を
受光する一次元CCDカメラ、一次元方向に配置された
光ファイバーセンサーアレイ等の一次元方向受光検出器
と、受光される反射光または透過光の光量変化から検査
対象基板の表面欠陥の有無等を検出する信号処理器およ
び中央演算処理装置とで構成されている請求項1に記載
の平板状基板の表面欠陥検査装置。
2. An irradiation light source for irradiating a surface portion of a substrate to be inspected passing through the inspection space with a linear band of irradiation light, and a one-dimensional light receiving reflected light or transmitted light of the irradiation light. A one-dimensional light receiving detector such as a CCD camera, a one-dimensional optical fiber sensor array, and a signal processor that detects the presence or absence of surface defects on the inspection target substrate from changes in the amount of reflected light or transmitted light received. 2. The apparatus according to claim 1, wherein the apparatus comprises a central processing unit.
【請求項3】 前記搬送機構の各組毎のテーパーローラ
ーの対向間隔が、前記検査対象基板の搬送方向幅に対応
して調整可能にされている請求項1に記載の平板状基板
の表面欠陥検査装置。
3. The surface defect of the flat substrate according to claim 1, wherein an interval between the tapered rollers in each set of the transport mechanism is adjustable in accordance with a width of the inspection target substrate in the transport direction. Inspection equipment.
JP33085197A 1997-11-17 1997-11-17 Apparatus for inspecting surface flaw of flat substrate Pending JPH11148902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33085197A JPH11148902A (en) 1997-11-17 1997-11-17 Apparatus for inspecting surface flaw of flat substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33085197A JPH11148902A (en) 1997-11-17 1997-11-17 Apparatus for inspecting surface flaw of flat substrate

Publications (1)

Publication Number Publication Date
JPH11148902A true JPH11148902A (en) 1999-06-02

Family

ID=18237249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33085197A Pending JPH11148902A (en) 1997-11-17 1997-11-17 Apparatus for inspecting surface flaw of flat substrate

Country Status (1)

Country Link
JP (1) JPH11148902A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004333198A (en) * 2003-05-01 2004-11-25 Olympus Corp Substrate inspection apparatus
JP2007189211A (en) * 2005-12-14 2007-07-26 Fujitsu Ltd Inspection method and inspection apparatus
KR20070117287A (en) * 2006-06-08 2007-12-12 삼성전자주식회사 Inspection unit for substrate, inspection apparatus for substrate and method of substrate inspection using the same
KR100899101B1 (en) 2007-10-15 2009-05-27 엠파워(주) Substrate Transfer Apparatus
KR100899104B1 (en) 2007-10-15 2009-05-27 엠파워(주) Substrate Transfer Apparatus
KR20210129038A (en) 2019-02-28 2021-10-27 요시노 셋고 가부시키가이샤 plate inspection device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004333198A (en) * 2003-05-01 2004-11-25 Olympus Corp Substrate inspection apparatus
JP2007189211A (en) * 2005-12-14 2007-07-26 Fujitsu Ltd Inspection method and inspection apparatus
KR20070117287A (en) * 2006-06-08 2007-12-12 삼성전자주식회사 Inspection unit for substrate, inspection apparatus for substrate and method of substrate inspection using the same
KR100899101B1 (en) 2007-10-15 2009-05-27 엠파워(주) Substrate Transfer Apparatus
KR100899104B1 (en) 2007-10-15 2009-05-27 엠파워(주) Substrate Transfer Apparatus
KR20210129038A (en) 2019-02-28 2021-10-27 요시노 셋고 가부시키가이샤 plate inspection device
US11692944B2 (en) 2019-02-28 2023-07-04 Yoshino Gypsum Co., Ltd. Apparatus for inspecting plate-like bodies

Similar Documents

Publication Publication Date Title
KR101697216B1 (en) Plate glass inspection unit and manufacturing facility
TWI528027B (en) Object defect detection method and device
JP2012073036A (en) Glass substrate defect checkup device and glass substrate defect checkup method
JP2015105930A (en) Minute defect inspection method for translucent substrate and minute defect inspection device for translucent substrate
TWI637928B (en) Glass plate manufacturing method and glass plate manufacturing device
JPH11148902A (en) Apparatus for inspecting surface flaw of flat substrate
JP2006071284A (en) Inside and outside discrimination method of flaw of glass substrate
KR102623714B1 (en) Manufacturing method of glass plate
JP2004309287A (en) Defect detection device and defect detection method
JP2008145428A (en) Rod lens array inspection device and method
JP2003263627A (en) Image taking-in device
JP5502740B2 (en) Inspection device
WO2013080093A1 (en) Inspection system
JP3102850B2 (en) Crystal blank scratch inspection equipment
JP2010127910A (en) Film inspecting device, translucent film manufacturing apparatus equipped therewith, film inspecting method, and translucent film manufacturing method using the same
JP7246774B2 (en) Plate-shaped body inspection device
KR20180138035A (en) A Foreign Substance Inspection Device in a Continuous Production Process in which Multiple Inspection Areas are Applied on the Movement Path of the Object to be Inspected
JP2013246106A (en) Conveyance unit, conveyance device, and inspection apparatus
JP5618209B2 (en) Glass plate end face imaging device and imaging method thereof
JP2010127909A (en) Film inspecting device, translucent film manufacturing apparatus equipped therewith, film inspecting method, and translucent film manufacturing method using the same
JP2010066242A (en) Substrate inspection device and substrate inspection method
KR20200062417A (en) Apparatus and method for inspecting surface of substrate
CN211042088U (en) Dimension measuring device for glass substrate
KR101186272B1 (en) Apparatus for inspecting substrate
JP5683333B2 (en) Substrate inspection apparatus and method