JPH11142322A - Double refraction measuring apparatus and method - Google Patents
Double refraction measuring apparatus and methodInfo
- Publication number
- JPH11142322A JPH11142322A JP31200897A JP31200897A JPH11142322A JP H11142322 A JPH11142322 A JP H11142322A JP 31200897 A JP31200897 A JP 31200897A JP 31200897 A JP31200897 A JP 31200897A JP H11142322 A JPH11142322 A JP H11142322A
- Authority
- JP
- Japan
- Prior art keywords
- light
- birefringence
- test object
- phase difference
- polarizing element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
- Testing Of Optical Devices Or Fibers (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、光ディスク基板等
のプラスチック平板、あるいはレーザプリンタ等に用い
られる光書き込み用レンズ、カメラレンズ、光ディスク
ドライブ装置のピックアップ用レンズ等のプラスチック
レンズ等、種々の透明体の複屈折を測定する複屈折測定
装置及び複屈折測定方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to various transparent bodies such as a plastic flat plate such as an optical disk substrate or a plastic lens such as an optical writing lens used for a laser printer, a camera lens, and a pickup lens of an optical disk drive. The present invention relates to a birefringence measuring device and a birefringence measuring method for measuring the birefringence of an object.
【0002】[0002]
【従来の技術】複屈折測定方法の従来技術としては、位
相変調法、回転検光子法が知られている。それらの方法
においては、透明被検物に平行ビームを照射し、その透
過光をフォトダイオード等の受光素子で受光して、透明
被検物の複屈折による透過光の偏光状態の変化を検出す
ることにより、透明被検物の複屈折を求める。位相変調
法では光弾性変調器を利用して照射光を位相変調させ、
透明被検物を透過した光のビート信号と変調信号の位相
差から複屈折を求める。回転検光子法では透明被検物の
後に置いた検光子を回転させながら、検光子の後に置い
た受光素子にて透過光を受光し、検光子の回転に伴う受
光素子からの出力の変化より複屈折を求める。2. Description of the Related Art As a prior art of a birefringence measuring method, a phase modulation method and a rotation analyzer method are known. In these methods, a transparent object is irradiated with a parallel beam, the transmitted light is received by a light receiving element such as a photodiode, and the change in the polarization state of the transmitted light due to the birefringence of the transparent object is detected. Thereby, the birefringence of the transparent test object is obtained. In the phase modulation method, the irradiation light is phase-modulated using a photoelastic modulator,
Birefringence is determined from the phase difference between the beat signal and the modulation signal of the light transmitted through the transparent test object. In the rotating analyzer method, the transmitted light is received by the light receiving element placed after the analyzer while rotating the analyzer placed after the transparent test object, and the change in output from the light receiving element due to the rotation of the analyzer is obtained. Find birefringence.
【0003】また他に特開平4−58138号公報、特
開平7−77490号公報記載の複屈折測定方法では、
拡大した平行光を透明被検物に照射し、その透過光をC
CDカメラ等の2次元センサで受光して透明被検物の複
屈折を求めるという、複屈折の面計測を行っている。In addition, in the birefringence measurement methods described in JP-A-4-58138 and JP-A-7-77490,
The transparent object is irradiated with the expanded parallel light, and the transmitted light
Birefringence surface measurement is performed, in which a two-dimensional sensor such as a CD camera receives light and obtains birefringence of a transparent test object.
【0004】[0004]
【発明が解決しようとする課題】前述の位相変調法、回
転検光子法においては、例えば細い平行ビームを照射し
フォトダイオードで受光するいわゆる点計測であるた
め、被検物の全面を測定するには被検物や測定装置を調
整する必要があり、レンズを測定するような場合、その
セッティングが困難であった。一方、特開平4−581
38号公報、特開平7−77490号公報に記載の複屈
折測定方法は、面計測であるため、被検物等の調整の必
要はないが、測定に使用する光源の波長を越えるような
大きな複屈折位相差の測定が困難であり、光書き込み用
レンズなどは複屈折位相差が大きくなるため、その測定
が困難であった。尚、大きな複屈折位相差の測定が困難
な点は、前記の点計測についても同様である。In the above-described phase modulation method and rotary analyzer method, for example, a so-called point measurement in which a thin parallel beam is irradiated and received by a photodiode, so that the entire surface of the test object is measured. It is necessary to adjust the test object and the measuring device, and when measuring a lens, setting the lens is difficult. On the other hand, JP-A-4-581
38 and JP-A-7-77490 do not require adjustment of the test object or the like because of the surface measurement, but do not need to adjust the size of the light source used for measurement. The measurement of the birefringence phase difference is difficult, and the measurement of the optical writing lens and the like is difficult because the birefringence phase difference becomes large. The difficulty in measuring a large birefringence phase difference is the same as in the above point measurement.
【0005】本発明は上記事情に鑑みなされたものであ
って、被検物の全面を一次元、あるいは二次元的に観察
することにより、高速測定を可能とすると同時に、アレ
イ状に並んだ受光素子について、隣接する受光素子での
測定値の差を検知することにより、使用する光源の波長
を越えるような大きな複屈折位相差の分布をも測定可能
とする複屈折測定装置及び複屈折測定方法を提供するこ
とを目的とする。The present invention has been made in view of the above circumstances, and enables high-speed measurement by observing the entire surface of a test object one-dimensionally or two-dimensionally, and at the same time, light receiving arranged in an array. A birefringence measuring device and a birefringence measuring method which can measure a distribution of a large birefringence phase difference exceeding a wavelength of a light source to be used by detecting a difference between measured values of adjacent light receiving elements. The purpose is to provide.
【0006】[0006]
【課題を解決するための手段】上記目的を達成するた
め、請求項1の発明に係る複屈折測定装置は、所定の偏
光状態で光を被検物に入射させる光源と、前記被検物か
らの透過光の偏光状態を変化させる偏光素子と、前記偏
光素子をほぼ光の進行方向周りに回転させる手段と、前
記偏光素子の回転角度を検知する手段と、複数の受光素
子からなり前記偏光素子を透過した光を受光する受光素
子アレイと、前記光源からの光を拡大して前記被検物に
照射し、該被検物からの透過光を受光素子アレイのほぼ
受光面上で結像させる光学系と、前記受光素子にて検出
した出力から被検物の複屈折を求める演算手段とを備え
た構成としたものである。In order to achieve the above object, a birefringence measuring apparatus according to the first aspect of the present invention comprises: a light source for causing light to enter a test object in a predetermined polarization state; A polarizing element that changes a polarization state of transmitted light, a unit that rotates the polarizing element substantially around a traveling direction of light, a unit that detects a rotation angle of the polarizing element, and a plurality of light receiving elements. A light-receiving element array that receives light transmitted through the light-emitting element; and irradiating the test object with light expanded from the light source to form an image of transmitted light from the test object substantially on a light-receiving surface of the light-receiving element array. An optical system and a calculation means for obtaining the birefringence of the test object from the output detected by the light receiving element are provided.
【0007】請求項2の発明に係る複屈折測定方法は、
請求項1記載の複屈折装置を用い、受光素子アレイの隣
接する各受光素子での測定値の差を検知することによ
り、複屈折位相差分布における位相とび(所定の範囲を
越えるような大きな位相差の分布がある場合に、本来の
測定結果とは異なる値が出力される現象)を補正するも
のである。The method for measuring birefringence according to the invention of claim 2 is as follows:
Using the birefringent device according to claim 1, detecting a difference in measured values between adjacent light receiving elements of the light receiving element array, thereby detecting a phase jump in a birefringence phase difference distribution (a large position exceeding a predetermined range). In the case where there is a phase difference distribution, a phenomenon that a value different from the original measurement result is output) is corrected.
【0008】請求項3の発明に係る複屈折測定装置は、
所定の偏光状態で光を被検物に入射させる波長の異なる
2つ以上のレーザ光源と、前記2つ以上のレーザ光源か
らの光の前記被検物への照射を切り替える手段と、前記
被検物からの透過光の偏光状態を変化させる偏光素子
と、該偏光素子をほぼ光の進行方向周りに回転させる手
段と、前記偏光素子の回転角度を検知する手段と、前記
偏光素子を透過した光を受光する受光素子と、前記受光
素子にて検出した出力から被検物の複屈折を求める演算
手段とを備えた構成としたものである。According to a third aspect of the present invention, there is provided a birefringence measuring apparatus,
Two or more laser light sources having different wavelengths for causing light to be incident on a test object in a predetermined polarization state; a unit for switching irradiation of the test object with light from the two or more laser light sources; A polarizing element for changing a polarization state of light transmitted from an object, a unit for rotating the polarizing element substantially around a traveling direction of light, a unit for detecting a rotation angle of the polarizing element, and a light transmitted through the polarizing element. And a calculating means for obtaining the birefringence of the test object from the output detected by the light receiving element.
【0009】請求項4の発明に係る複屈折測定方法は、
請求項1記載の複屈折測定装置と請求項3記載の複屈折
測定装置を用い、それぞれの複屈折測定装置により被検
物の複屈折を測定し、その測定値をもとに、光源波長を
越えるような大きな複屈折位相差及び複屈折位相差の分
布を測定するものである。According to a fourth aspect of the present invention, there is provided a method for measuring birefringence.
Using the birefringence measurement device according to claim 1 and the birefringence measurement device according to claim 3, the birefringence of the test object is measured by each of the birefringence measurement devices, and the light source wavelength is determined based on the measured values. It is to measure the birefringence phase difference and the distribution of the birefringence phase difference as large as possible.
【0010】[0010]
【発明の実施の形態】以下、本発明の実施の形態を図示
の実施例に基づいて詳細に説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail based on illustrated embodiments.
【0011】図1は請求項1の一実施例を示す複屈折測
定装置の概略構成図であり、複屈折位相差の大きい透明
な平板を被検物とした例を示している。図1において、
光源であるHeNeレーザ1からのランダム偏光の光ビ
ームは光量調整用のNDフィルター2を透過して、ミラ
ー3及びミラー4にて折り返される。その後、偏光板5
にて直線偏光にされ、λ/4板6にて円偏光に変換され
た後、ビームエキスパンダ7にて拡大されて、円偏光の
拡大コリメート光を被検物8に照射する。被検物8の複
屈折にて円偏光に近い楕円偏光になった光束をビームエ
キスパンダ9にて縮小した後、λ/4板10にて直線偏
光に近い楕円偏光に変換して、偏光板11、レンズ12
を介してCCDカメラ13にて受光する。レンズ12は
被検物8の近傍と結像関係が成立するようその位置を調
整してあり、また材質には、ガラスレンズのようにその
内部の複屈折が十分除去されたものを用いるのが好まし
い。14,15はそれぞれλ/4板10、偏光板11を
光線の進行方向周りに回転させるステッピングモータで
あり、ステッピングモータ14,15には図示しない回
転原点位置センサが取り付けられ、ステッピングモータ
14,15のパルス数をカウントしてλ/4板10、偏
光板11の回転角度を知ることができる。16はステッ
ピングモータ14,15を駆動するためのモータドライ
バで、パーソナルコンピュータ18及びパルス発生器1
7からのパルスを受けてステッピングモータ14,15
を駆動する。また、CCDカメラ13にて撮像される画
像データは画像入力器19を通してパーソナルコンピュ
ータ18のメモリに取り込まれ、画像データ及びステッ
ピングモータの回転角度データをもとに、所定の演算方
法によって被検物8の複屈折位相差及び主軸方位が計算
される。尚、CCDカメラ13にて撮像される画像はパ
ーソナルコンピュータ18のモニター18aに表示させ
るか、専用のモニターを別に設けてもよい。FIG. 1 is a schematic structural view of a birefringence measuring apparatus according to an embodiment of the present invention, in which a transparent flat plate having a large birefringence phase difference is used as a test object. In FIG.
A randomly polarized light beam from a HeNe laser 1 as a light source passes through an ND filter 2 for adjusting the amount of light, and is reflected by mirrors 3 and 4. Then, the polarizing plate 5
Is converted into circularly polarized light by the λ / 4 plate 6, then expanded by the beam expander 7, and the object 8 is irradiated with the expanded collimated light of circularly polarized light. After reducing the luminous flux that has become nearly circularly polarized light due to the birefringence of the test object 8 by the beam expander 9, the light beam is converted into nearly linearly polarized elliptically polarized light by the λ / 4 plate 10, and 11, lens 12
The light is received by the CCD camera 13 via the. The position of the lens 12 is adjusted so that an image-forming relationship is established with the vicinity of the test object 8, and a material whose internal birefringence has been sufficiently removed such as a glass lens should be used. preferable. Reference numerals 14 and 15 denote stepping motors for rotating the λ / 4 plate 10 and the polarizing plate 11 around the traveling direction of the light beam, respectively. A rotation origin position sensor (not shown) is attached to the stepping motors 14 and 15. By counting the number of pulses, the rotation angles of the λ / 4 plate 10 and the polarizing plate 11 can be known. Reference numeral 16 denotes a motor driver for driving the stepping motors 14 and 15, and the personal computer 18 and the pulse generator 1
7 and the stepping motors 14 and 15
Drive. Further, image data captured by the CCD camera 13 is taken into the memory of the personal computer 18 through the image input device 19, and based on the image data and the rotation angle data of the stepping motor, the test object 8 is obtained by a predetermined calculation method. Is calculated. The image picked up by the CCD camera 13 may be displayed on the monitor 18a of the personal computer 18 or a dedicated monitor may be separately provided.
【0012】上記偏光板5の方位は地面に対して水平な
方向に設定し、λ/4板6の方位は地面に対して45度
に設定されており、被検物8に円偏光を照射する。測定
を行う前に、λ/4板10の方位を地面に水平な方向に
対して45度にセットし、被検物8をセットしない状態
で、偏光板11の方位を回転させながら偏光板11から
の透過光強度が最も小さくなる(透過光が最も暗くな
る)偏光板11の方位角を決め、それを測定における回
転原点として記憶しておく。そして測定では、まず被検
物8を所定の位置にセットし、λ/4板10の方位が4
5度の状態で、偏光板11を回転原点から(180/
n)度ずつ回転させる。nはあらかじめ決めた測定ポイ
ント数である。偏光板11が(180/n)度回転する
毎にCCDカメラ13にて撮像された画像をパーソナル
コンピュータ18のメモリに取り込んで、偏光板11の
回転角度データとn枚のCCD画像データを取得する。The azimuth of the polarizing plate 5 is set in a direction horizontal to the ground, the azimuth of the λ / 4 plate 6 is set to 45 degrees with respect to the ground, and the object 8 is irradiated with circularly polarized light. I do. Before performing the measurement, the azimuth of the λ / 4 plate 10 is set at 45 degrees with respect to the direction parallel to the ground, and the azimuth of the polarizing plate 11 is rotated while the test object 8 is not set. The azimuth angle of the polarizing plate 11 in which the transmitted light intensity from the light source becomes the smallest (the transmitted light becomes the darkest) is determined and stored as the rotation origin in the measurement. In the measurement, first, the test object 8 is set at a predetermined position, and the direction of the λ / 4
In the state of 5 degrees, the polarizing plate 11 is moved (180/180) from the rotation origin.
n) Rotate by degrees. n is the number of measurement points determined in advance. Each time the polarizing plate 11 rotates by (180 / n) degrees, an image captured by the CCD camera 13 is loaded into the memory of the personal computer 18 to obtain rotation angle data of the polarizing plate 11 and n CCD image data. .
【0013】次にλ/4板10の方位を水平に対して0
度にセットし、前述と同様、偏光板11を回転原点から
(180/n)ずつ回転させながら、CCDカメラ13
にて撮像された画像データをパーソナルコンピュータ1
8のメモリに取り込んで偏光板11の回転角度データと
n枚の画像データを取得する。以上により取得した合計
2n枚の画像データと偏光板11の回転角のデータをも
とに、以下の手順にて演算処理して被検物8の複屈折を
求める。Next, the orientation of the λ / 4 plate 10 is set to 0 with respect to the horizontal.
And the CCD camera 13 while rotating the polarizing plate 11 (180 / n) from the rotation origin in the same manner as described above.
Image data captured by the personal computer 1
8 to obtain the rotation angle data of the polarizing plate 11 and the n-th image data. The birefringence of the test object 8 is calculated by the following procedure based on the total 2n image data and the rotation angle data of the polarizing plate 11 obtained as described above.
【0014】図1に示す複屈折測定装置における光学系
での偏光状態の変化の様子をミューラーマトリクスを用
いて表す。被検物8に入射する円偏光のミューラーマト
リクスをL、被検物8のミューラーマトリクスをT、λ
/4板10のミューラーマトリクスをQ、偏光板11の
ミューラーマトリクスをAとし、ストークスパラメータ
Sを求める。The state of change of the polarization state in the optical system in the birefringence measuring apparatus shown in FIG. 1 is represented using a Mueller matrix. L is the Mueller matrix of circularly polarized light incident on the test object 8, T is the Mueller matrix of the test object 8,
The Stokes parameter S is determined by defining the Mueller matrix of the 板 plate 10 as Q and the Mueller matrix of the polarizing plate 11 as A.
【0015】まずλ/4板10の方位を地面に水平な方
向に対して45度にセットしたときのストークスパラメ
ータS45は下記の(1)式となり、CCDカメラ13の
各画素にて検出される光強度I45は下記の(2)式のよ
うになる。First, the Stokes parameter S 45 when the azimuth of the λ / 4 plate 10 is set to 45 degrees with respect to the direction parallel to the ground is expressed by the following equation (1), and is detected by each pixel of the CCD camera 13. The light intensity I 45 is as shown in the following equation (2).
【0016】[0016]
【数1】 (Equation 1)
【0017】(1)、(2)式において、θは偏光板の
主軸方向、δは被検物の複屈折位相差、φは被検物の主
軸方位である。 (2)式における光強度I45は偏光板の主軸方位の回転
に伴い、図2のように変化する。偏光子の回転角度の読
み取り解像力をR(ステッピングモータの1パルスに相
当する回転角度)とすると、偏光板の主軸方位の回転に
伴う光強度変化の位相ψ45は、次のように求められる。In the equations (1) and (2), θ is the main axis direction of the polarizing plate, δ is the birefringence phase difference of the test object, and φ is the main axis direction of the test object. The light intensity I 45 in the expression (2) changes as shown in FIG. 2 with the rotation of the main axis direction of the polarizing plate. Assuming that the reading resolution of the rotation angle of the polarizer is R (the rotation angle corresponding to one pulse of the stepping motor), the phase ψ 45 of the light intensity change due to the rotation of the main axis direction of the polarizing plate is obtained as follows.
【0018】[0018]
【数2】 (Equation 2)
【0019】次にλ/4板10の方位を地面に水平な方
向に対して0度にセットしたときの光強度変化の位相ψ
0 を求める。このときのストークスパラメータS0 は、
同様にして下記の(5)式となり、CCDカメラ13の
各画素にて検出される光強度I0 は下記の(6)式のよ
うになる。Next, when the azimuth of the λ / 4 plate 10 is set to 0 ° with respect to the direction parallel to the ground, the phase of the light intensity change ψ
Find 0 . The Stokes parameter S 0 at this time is
Similarly, the following equation (5) is obtained, and the light intensity I 0 detected at each pixel of the CCD camera 13 is expressed by the following equation (6).
【0020】[0020]
【数3】 (Equation 3)
【0021】(5)、(6)式においても、θは偏光板
の主軸方位、δは被検物の複屈折位相差、φは被検物の
主軸方位である。偏光板の主軸方位の回転に伴う光強度
I0 の変化の位相ψ0は、(4)式と同様にして次のよ
うに求められる。In equations (5) and (6), θ is the main axis direction of the polarizing plate, δ is the birefringence phase difference of the test object, and φ is the main axis direction of the test object. The phase ψ 0 of the change in the light intensity I 0 due to the rotation of the main axis direction of the polarizing plate is obtained as follows in the same manner as the equation (4).
【0022】[0022]
【数4】 (Equation 4)
【0023】ここで、(2)式及び(6)式を変形して
位相ψ45、ψ0 を求めると、下記の(8)、(9)式の
ように表される。Here, when the phases ψ 45 and ψ 0 are obtained by modifying the equations (2) and (6), they are expressed as the following equations (8) and (9).
【0024】[0024]
【数5】 (Equation 5)
【0025】上記(4)、(7)、(8)、(9)式か
ら、下記の(10)、(11)式として、位相差δ、主
軸方位φが求められる(請求項1)。From the above equations (4), (7), (8) and (9), the phase difference δ and the principal axis azimuth φ are obtained as the following equations (10) and (11) (claim 1).
【0026】[0026]
【数6】 (Equation 6)
【0027】ここまでの方法にて測定を行った場合の、
位相差2次元分布の測定結果例を図3に示す。図3
(a)は測定値の二次元画像表示(測定値を画像強度の
階調に置き換えたもの)で、図3(b)は図3(a)に
おけるA−A’線断面での測定値の分布である。(1
0)式にて計算される位相差の測定値は位相角として求
められるが、図3では測定値にλ/(2・π)(λは光
源波長)を乗じて長さの単位に変換してある。図3の測
定結果について、(10)式にて計算される位相差の測
定値は0〜λ/4の範囲でしか出力されないため、0〜
λ/4の範囲を越えるような大きな位相差の分布がある
場合、本来の測定結果とは異なる値が出力される(以
下、このことを「位相とび」と表現する)。例えば本来
3λ/8の位相差はλ/8として、あるいは本来−λ/
8の位相差は+λ/8として出力される。したがって出
力される測定値から本来の位相差に戻す(以下、これを
「位相とびの補正」と表現する)必要があるが、CCD
の隣接画素での測定値を比較して位相とびを補正する方
法について図4,5,6,7にて説明する。When the measurement is performed by the method described above,
FIG. 3 shows an example of the measurement result of the two-dimensional phase difference distribution. FIG.
FIG. 3A is a two-dimensional image display of the measured values (in which the measured values are replaced with the gradation of the image intensity), and FIG. 3B is a graph showing the measured values in the cross section taken along line AA ′ in FIG. Distribution. (1
The measured value of the phase difference calculated by the equation (0) is obtained as a phase angle. In FIG. 3, the measured value is multiplied by λ / (2 · π) (λ is a light source wavelength) and converted into a unit of length. It is. With respect to the measurement result of FIG. 3, the measured value of the phase difference calculated by the equation (10) is output only in the range of 0 to λ / 4.
When there is a large phase difference distribution exceeding the range of λ / 4, a value different from the original measurement result is output (hereinafter, this is referred to as “phase skip”). For example, the phase difference of 3λ / 8 is originally λ / 8 or −λ /
The phase difference of 8 is output as + λ / 8. Therefore, it is necessary to return the output measurement value to the original phase difference (hereinafter, this is referred to as “phase jump correction”).
4, 5, 6, 7 will be described with reference to FIGS.
【0028】測定では位相差と主軸方位がCCDの各画
素について同時に求められるが、図4の画素Bにおいて
位相差の測定値が0〜λ/4の範囲を外れるとき、隣接
する画素Aの主軸方位の値に対して画素Bの主軸方位の
値が90度だけ変化する。位相差は楕円偏光の長軸と短
軸の比から、また主軸方位は楕円偏光の長軸の方向から
知ることができるが、例えば位相差が負の値をとるとき
を考えると、図5のように楕円偏光の長軸と短軸が入れ
替わることになるので、前述のように隣接画素間で主軸
方位が90度変化する(主軸方位の測定範囲は−90〜
+90度)。したがって位相とびの補正の第1段階とし
て隣接画素間での主軸方位の90度の変化を検知して、
同画素における位相差の測定値に(−1)を乗じること
で、位相差の測定値の範囲を−λ/4〜λ/4まで広げ
ることができる。次に位相とびの補正の第2段階として
隣接画素間で位相差の測定値がλ/2変化している画素
を検知する。この場合の位相差は、光源波長の1波長分
をオーバーしている。そして隣接画素間で位相差の測定
値がλ/2変化している画素の位相差の値にλ/2、あ
るいは−λ/2を加算してやる。そしてこれらの処理を
測定領域における全画素にて繰り返すことで、全画素に
渡って−λ/4〜λ/4を越える測定値を得ることがで
きる(請求項2)。尚、図6に位相とびの補正方法の一
例をフロー図で示し、図7に図6の処理に伴う測定値分
布の変化の様子を示す。In the measurement, the phase difference and the principal axis direction are simultaneously obtained for each pixel of the CCD. However, when the measured value of the phase difference is out of the range of 0 to λ / 4 at the pixel B in FIG. The value of the main axis direction of the pixel B changes by 90 degrees with respect to the direction value. The phase difference can be known from the ratio of the major axis to the minor axis of the elliptically polarized light, and the principal axis direction can be known from the direction of the major axis of the elliptically polarized light. For example, when the phase difference takes a negative value, FIG. As described above, since the major axis and the minor axis of the elliptically polarized light are switched, the principal axis direction changes by 90 degrees between adjacent pixels as described above (the measurement range of the principal axis direction is -90 to 90).
+90 degrees). Therefore, as a first stage of the phase jump correction, a change of the main axis direction by 90 degrees between adjacent pixels is detected, and
By multiplying the measured value of the phase difference in the same pixel by (−1), the range of the measured value of the phase difference can be expanded from −λ / 4 to λ / 4. Next, as a second stage of the phase jump correction, a pixel in which the measured value of the phase difference between adjacent pixels changes by λ / 2 is detected. In this case, the phase difference exceeds one wavelength of the light source wavelength. Then, λ / 2 or -λ / 2 is added to the value of the phase difference of the pixel in which the measured value of the phase difference between adjacent pixels changes by λ / 2. By repeating these processes for all the pixels in the measurement area, it is possible to obtain a measured value exceeding -λ / 4 to λ / 4 over all the pixels (claim 2). FIG. 6 is a flowchart showing an example of the phase jump correction method, and FIG. 7 shows how the measured value distribution changes with the processing of FIG.
【0029】請求項1,2に係る複屈折測定装置及びそ
の装置を用いた複屈折測定方法により、使用する光源の
波長を越えるような大きな複屈折位相差の分布が測定可
能になるが、請求項1,2に係る装置及び方法は隣接画
素での測定値を比較する比較測定であるため、位相差の
絶対測定を行うには基準となる位相差の測定値が必要で
ある。そこで以下に位相差の基準値を得る装置及び方法
について説明する。According to the birefringence measuring apparatus and the birefringence measuring method using the apparatus according to claims 1 and 2, a distribution of a large birefringence phase difference exceeding the wavelength of a light source to be used can be measured. Since the devices and methods according to the items 1 and 2 are comparative measurements for comparing the measured values of the adjacent pixels, the measured values of the reference phase difference are required to perform the absolute measurement of the phase difference. Therefore, an apparatus and a method for obtaining the reference value of the phase difference will be described below.
【0030】図8は請求項3の一実施例を示す複屈折測
定装置の概略構成図である。図8において波長λ1 の半
導体レーザ20、あるいは波長λ2 の半導体レーザ21
からの光ビームは光量調整用のNDフィルター23を透
過して、ミラー24,25にて折り返され、偏光子26
にて直線偏光になり、λ/4板27にて円偏光に変換さ
れる。尚、22は被検物28に照射する光を半導体レー
ザ20か半導体レーザ21かに切り替えるためのミラー
であり、切り替えのために図示しないホルダーごと着脱
可能となっている。またλ/4板は波長依存性があるの
で、λ/4板27は使用する光源の波長に合わせて着脱
して交換可能となっている。λ/4板27にて円偏光に
変換された光は被検物28(図示の例では複屈折位相差
の大きい透明な平板)に入射する。被検物28の複屈折
にて楕円偏光になった光をλ/4板29にて直線偏光に
近い楕円偏光に変換して、検光子30を介してフォトダ
イオード31にて受光する。λ/4板29はλ/4板2
7と同様、使用する光源の波長に合わせて交換可能であ
る。32は検光子30をほぼ光の進行方向周りに回転さ
せるステッピングモータであり、ステッピングモータ3
2には図示しない回転原点位置センサが取り付けられ、
ステッピングモータ32のパルス数をカウントして検光
子30の回転角度を知ることができる。33はフォトダ
イオード31からの出力を変換するAD変換器であり、
フォトダイオード31からの出力はAD変換された後、
パーソナルコンピュータ34に取り込まれる。FIG. 8 is a schematic structural view of a birefringence measuring apparatus according to a third embodiment of the present invention. In FIG. 8, the semiconductor laser 20 of wavelength λ 1 or the semiconductor laser 21 of wavelength λ 2
Is transmitted through an ND filter 23 for adjusting the amount of light, is turned back by mirrors 24 and 25, and is
Is converted into linearly polarized light, and is converted into circularly polarized light by the λ / 4 plate 27. Reference numeral 22 denotes a mirror for switching the light to be irradiated on the test object 28 between the semiconductor laser 20 and the semiconductor laser 21. The mirror 22 is detachable together with a holder (not shown) for the switching. Since the λ / 4 plate has wavelength dependence, the λ / 4 plate 27 can be detached and replaced according to the wavelength of the light source to be used. The light converted into circularly polarized light by the λ / 4 plate 27 is incident on the test object 28 (in the illustrated example, a transparent flat plate having a large birefringence phase difference). The elliptically polarized light due to the birefringence of the test object 28 is converted into elliptically polarized light close to linearly polarized light by the λ / 4 plate 29, and received by the photodiode 31 via the analyzer 30. λ / 4 plate 29 is λ / 4 plate 2
Like FIG. 7, it can be exchanged according to the wavelength of the light source used. Reference numeral 32 denotes a stepping motor for rotating the analyzer 30 substantially around the traveling direction of light.
2, a rotation origin position sensor (not shown) is attached,
By counting the number of pulses of the stepping motor 32, the rotation angle of the analyzer 30 can be known. An AD converter 33 converts an output from the photodiode 31.
After the output from the photodiode 31 is AD-converted,
The data is taken into the personal computer 34.
【0031】測定では、まず被検物28を所定の位置に
セットし、ステッピングモータ32を回転させ、検光子
30の回転角度を検知しながら、(180/n)度
(n:測定ポイント数)の回転角度毎にフォトダイオー
ド31の出力をサンプリングし、AD変換器33でAD
変換した後、サンプリングしたときの回転角度のデータ
と共にパーソナルコンピュータ34に取り込む。この構
成における光の偏光状態の遷移は、図1に示した請求項
1に係る装置において、λ/4板10の方位を地面と水
平な方向に対し45度に設置したときと同様であるた
め、フォトダイオード31で得られる光強度Iは、以下
のように表される。In the measurement, first, the test object 28 is set at a predetermined position, the stepping motor 32 is rotated, and while detecting the rotation angle of the analyzer 30, (180 / n) degrees (n: the number of measurement points) The output of the photodiode 31 is sampled for each rotation angle of
After the conversion, the data is taken into the personal computer 34 together with the rotation angle data at the time of sampling. The transition of the polarization state of light in this configuration is the same as when the direction of the λ / 4 plate 10 is set at 45 degrees with respect to the direction parallel to the ground in the apparatus according to claim 1 shown in FIG. , The light intensity I obtained by the photodiode 31 is expressed as follows.
【0032】[0032]
【数7】 (Equation 7)
【0033】(12)式において、δ、φはそれぞれ被
検物28の複屈折位相差、主軸方位を表し、θは検光子
30の方位の回転角度を表す。(12)式におけるcos
成分をα、sin 成分をβとし、回転検光子の角度読み取
りの解像力をR(ステッピングモータ32の1パルス分
に相当する回転角度)とすると、下記の(13)式が得
られる。In the equation (12), δ and φ represent the birefringence phase difference and the principal axis direction of the test object 28, respectively, and θ represents the rotation angle of the direction of the analyzer 30. Cos in equation (12)
If the component is α, the sin component is β, and the resolution for reading the angle of the rotary analyzer is R (the rotation angle corresponding to one pulse of the stepping motor 32), the following equation (13) is obtained.
【0034】[0034]
【数8】 (Equation 8)
【0035】そして以下の(14)、(15)式を用い
て被検物の複屈折位相差δ、主軸方位φをそれぞれ求め
ることができる。Then, the birefringence phase difference δ and the principal axis direction φ of the test object can be obtained by using the following equations (14) and (15).
【0036】[0036]
【数9】 (Equation 9)
【0037】ここで、光源に波長λ1 の半導体レーザを
用いて測定した位相差をδ1 、波長λ2 の半導体レーザ
を用いて測定した位相差をδ2 とし、位相差の真値をΔ
としたときの、δ1、δ2 、Δの関係を図示すると、図
9のようになる。波長λ1 、波長λ2 を用いた場合で測
定範囲が異なるため、図9のように測定値が真値からず
れる点が波長λ1 、波長λ2 を用いた場合で異なってく
る。そのため、下記の(16)、(17)式にて波数
m、nを徐々に増やしながらδ1m、δ2nを計算してい
き、δ1m、δ2nの値が最も近くなる波数m、nを決定す
ると、そのときのδ1m、δ2nの値が位相差の真値となる
(請求項3)。Here, the phase difference measured using a semiconductor laser of wavelength λ 1 as a light source is δ 1 , the phase difference measured using a semiconductor laser of wavelength λ 2 is δ 2, and the true value of the phase difference is Δ
FIG. 9 illustrates the relationship among δ 1 , δ 2 , and Δ when. Wavelength lambda 1, because the measuring range in case of using the wavelength lambda 2 are different, the measurement value becomes different when the point deviates from the true value with wavelength lambda 1, wavelength lambda 2 as shown in FIG. Therefore, δ 1m and δ 2n are calculated while gradually increasing the wave numbers m and n by the following equations (16) and (17), and the wave numbers m and n at which the values of δ 1m and δ 2n are closest are calculated. Once determined, the values of δ 1m and δ 2n at that time become the true values of the phase difference.
【0038】 δ1m=m・λ1−δ1 δ1m=m・λ1+δ1 (m=0,1,2,・・・) ・・・(16) δ2n=n・λ2−δ2 δ2n=n・λ2+δ2 (n=0,1,2,・・・) ・・・(17)Δ 1m = m · λ 1 −δ 1 δ 1m = m · λ 1 + δ 1 (m = 0,1,2,...) (16) δ 2n = n · λ 2 −δ 2 δ 2n = n · λ 2 + δ 2 (n = 0,1,2, ...) (17)
【0039】上記は細い平行ビームを被検物に照射す
る、いわゆる点測定であるため、被検物の一部の測定値
しか得られない。したがって被検物全体に渡っての位相
差の真値を得るために図1に示した請求項1記載の装置
と、図8に示した請求項3記載の装置を併せて利用す
る。The above-described method is a so-called point measurement in which a thin parallel beam is irradiated on the test object, and therefore, only a part of the measured value of the test object can be obtained. Therefore, in order to obtain the true value of the phase difference over the entire test object, the apparatus according to claim 1 shown in FIG. 1 and the apparatus according to claim 3 shown in FIG. 8 are used together.
【0040】まず、被検物上で測定の基準となる位置を
任意に設定し、その位置での位相差の真値を図8に示し
た請求項3の装置にて求める。その後、図1に示した請
求項1の装置にて被検物の全体に渡っての位相差の分布
を測定すると、被検物上のあらゆる位置において、基準
位置での測定値に対する位相差の変化を検知することが
できるので、被検物の全体に渡って位相差の真値が求め
られる(請求項4)。First, a reference position for measurement is set arbitrarily on the test object, and the true value of the phase difference at that position is determined by the apparatus according to claim 3 shown in FIG. Thereafter, when the distribution of the phase difference over the entire test object is measured by the apparatus according to claim 1 shown in FIG. 1, the position difference of the phase difference with respect to the measured value at the reference position is detected at any position on the test object. Since the change can be detected, the true value of the phase difference is obtained over the entire test object (claim 4).
【0041】尚、被検物がレンズの場合に、図8に示し
た請求項3の装置にて測定を行うときは、光線が被検物
であるレンズを透過するときに屈折して、透過光が受光
素子にたどり着かないため、透過光が屈折しないようレ
ンズのほぼ中央付近(光軸付近)に光を照射し、その位
置を位相とび補正の基準位置とするとよい。When the object to be measured is a lens and the measurement is performed by the apparatus according to claim 3 shown in FIG. 8, the light beam is refracted when passing through the lens which is the object and is transmitted. Since the light does not reach the light receiving element, it is preferable to irradiate light near the center of the lens (near the optical axis) so that transmitted light is not refracted, and set that position as a reference position for phase jump correction.
【0042】[0042]
【発明の効果】以上説明したように、本発明による複屈
折測定装置及び複屈折測定方法によると、使用する光源
の波長を越えるような大きな複屈折をもつ被検物でも、
被検物の全面に渡って高速、高精度の測定が可能とな
る。また面での測定であるため、被検物がレンズの場合
にも対応が可能である。As described above, according to the birefringence measuring apparatus and the birefringence measuring method according to the present invention, even a specimen having a large birefringence exceeding the wavelength of the light source used can be used.
High-speed, high-precision measurement is possible over the entire surface of the test object. Further, since the measurement is performed on a surface, it is possible to cope with a case where the test object is a lens.
【図1】請求項1の一実施例を示す複屈折測定装置の概
略構成図である。FIG. 1 is a schematic configuration diagram of a birefringence measuring apparatus according to an embodiment of the present invention.
【図2】図1の装置における検光子(偏光板)の回転角
度と光強度の関係の一例を示す図である。FIG. 2 is a view showing an example of a relationship between a rotation angle of an analyzer (polarizing plate) and light intensity in the apparatus of FIG.
【図3】図1の装置による位相差2次元分布の測定結果
例を示す図であって、(a)は測定値の二次元画像表示
(測定値を画像強度の階調に置き換えたもの)を示す
図、(b)は(a)におけるA−A’線断面での測定値
の分布を示す図である。3A and 3B are diagrams showing examples of measurement results of a two-dimensional phase difference distribution by the apparatus of FIG. 1, wherein FIG. 3A shows a two-dimensional image display of measured values (in which the measured values are replaced by image intensity gradations). (B) is a diagram showing a distribution of measured values in a cross section taken along line AA ′ in (a).
【図4】図1の装置における測定結果の一例を示す図で
あって、(a)は測定位置と位相差の関係を示す図、
(b)は測定位置と主軸方位の関係を示す図である。4A and 4B are diagrams illustrating an example of a measurement result in the apparatus of FIG. 1, wherein FIG. 4A illustrates a relationship between a measurement position and a phase difference;
(B) is a figure which shows the relationship between a measurement position and a principal axis direction.
【図5】位相とびにより隣接画素間で楕円偏光の長軸と
短軸が入れ替わった状態を示す図である。FIG. 5 is a diagram illustrating a state in which the major axis and the minor axis of elliptically polarized light are switched between adjacent pixels due to phase skipping.
【図6】位相とびの補正方法の一例を示すフロー図であ
る。FIG. 6 is a flowchart illustrating an example of a phase jump correction method.
【図7】図6の補正処理に伴う測定値分布の変化の様子
を示す図である。FIG. 7 is a diagram illustrating a state of a change in a measured value distribution accompanying the correction processing in FIG. 6;
【図8】請求項3の一実施例を示す複屈折測定装置の概
略構成図である。FIG. 8 is a schematic structural view of a birefringence measuring apparatus according to an embodiment of the present invention.
【図9】図8の装置における測定例を示す図であって、
波長の異なる2つの光源を用いて位相差を測定した場合
の測定値と、位相差の真値との関係を示す図である。9 is a diagram showing a measurement example in the device of FIG. 8,
It is a figure which shows the relationship between the measured value at the time of measuring a phase difference using two light sources with different wavelengths, and the true value of a phase difference.
1:HeNeレーザ 2:NDフィルター 3,4:ミラー 5,11:偏光板 6,10:λ/4板 7,9:ビームエキスパンダ 8:被検物 12:レンズ 13:CCDカメラ 14,15:ステッピングモータ 16:モータドライバ 17:パルス発生器 18:パーソナルコンピュータ 18a:モニター 20,21:半導体レーザ 22:光源切り替え用のミラー 23:NDフィルター 24,25:ミラー 26:偏光子 27,29:λ/4板 28:被検物 30:検光子 31:フォトダイオード 32:ステッピングモータ 33:AD変換器 34:パーソナルコンピュータ 1: HeNe laser 2: ND filter 3, 4: mirror 5, 11: polarizing plate 6, 10: λ / 4 plate 7, 9: beam expander 8: test object 12: lens 13: CCD camera 14, 15: Stepping motor 16: Motor driver 17: Pulse generator 18: Personal computer 18a: Monitor 20, 21: Semiconductor laser 22: Mirror for switching light source 23: ND filter 24, 25: Mirror 26: Polarizer 27, 29: λ / 4 plates 28: test object 30: analyzer 31: photodiode 32: stepping motor 33: AD converter 34: personal computer
Claims (4)
光源と、前記被検物からの透過光の偏光状態を変化させ
る偏光素子と、前記偏光素子をほぼ光の進行方向周りに
回転させる手段と、前記偏光素子の回転角度を検知する
手段と、複数の受光素子からなり前記偏光素子を透過し
た光を受光する受光素子アレイと、前記光源からの光を
拡大して前記被検物に照射し、該被検物からの透過光を
受光素子アレイのほぼ受光面上で結像させる光学系と、
前記受光素子にて検出した出力から被検物の複屈折を求
める演算手段とを備えたことを特徴とする複屈折測定装
置。1. A light source for causing light to enter a test object in a predetermined polarization state, a polarizing element for changing a polarization state of light transmitted from the test object, and a polarizing element disposed substantially around a traveling direction of light. Means for rotating, means for detecting the rotation angle of the polarizing element, a light receiving element array comprising a plurality of light receiving elements and receiving light transmitted through the polarizing element, and expanding the light from the light source to the test object. An optical system for irradiating an object and forming an image of transmitted light from the test object substantially on a light receiving surface of a light receiving element array;
A birefringence measuring device, comprising: calculating means for obtaining birefringence of the test object from an output detected by the light receiving element.
子アレイの隣接する各受光素子での測定値の差を検知す
ることにより、複屈折位相差分布における位相とび(所
定の範囲を越えるような大きな位相差の分布がある場合
に、本来の測定結果とは異なる値が出力されること)を
補正することを特徴とする複屈折測定方法。2. A phase jump in a birefringence phase difference distribution by detecting a difference between measured values of adjacent light receiving elements of a light receiving element array using the birefringent device according to claim 1. A birefringence measurement method, wherein a value different from the original measurement result is output when there is a large phase difference distribution that exceeds the value.
波長の異なる2つ以上のレーザ光源と、前記2つ以上の
レーザ光源からの光の前記被検物への照射を切り替える
手段と、前記被検物からの透過光の偏光状態を変化させ
る偏光素子と、該偏光素子をほぼ光の進行方向周りに回
転させる手段と、前記偏光素子の回転角度を検知する手
段と、前記偏光素子を透過した光を受光する受光素子
と、前記受光素子にて検出した出力から被検物の複屈折
を求める演算手段とを備えたことを特徴とする複屈折測
定装置。3. A laser light source comprising: two or more laser light sources having different wavelengths for causing light to enter a test object in a predetermined polarization state; and means for switching irradiation of the test object with light from the two or more laser light sources. A polarizing element that changes a polarization state of transmitted light from the test object, a unit that rotates the polarizing element substantially around a traveling direction of light, a unit that detects a rotation angle of the polarizing element, and the polarization unit. A birefringence measuring apparatus, comprising: a light receiving element for receiving light transmitted through the element; and a calculating means for obtaining birefringence of the test object from an output detected by the light receiving element.
記載の複屈折測定装置を用い、それぞれの複屈折測定装
置により被検物の複屈折を測定し、その測定値をもと
に、光源波長を越えるような大きな複屈折位相差及び複
屈折位相差の分布を測定することを特徴とする複屈折測
定方法。4. A birefringence measuring device according to claim 1, and
Using the birefringence measurement device described, the birefringence of the test object is measured by each birefringence measurement device, and based on the measured value, a large birefringence phase difference and a birefringence phase difference exceeding the light source wavelength are obtained. A birefringence measuring method, characterized by measuring the distribution of the birefringence.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31200897A JPH11142322A (en) | 1997-11-13 | 1997-11-13 | Double refraction measuring apparatus and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31200897A JPH11142322A (en) | 1997-11-13 | 1997-11-13 | Double refraction measuring apparatus and method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11142322A true JPH11142322A (en) | 1999-05-28 |
Family
ID=18024106
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31200897A Pending JPH11142322A (en) | 1997-11-13 | 1997-11-13 | Double refraction measuring apparatus and method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11142322A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007513342A (en) * | 2003-12-03 | 2007-05-24 | パルプ アンド ペーパー リサーチ インスチチュート オブ カナダ | Equipment for circular polarization and cell wall thickness and orientation of small fibers |
WO2007111159A1 (en) * | 2006-03-20 | 2007-10-04 | National University Corporation Tokyo University Of Agriculture And Technology | Optical characteristic measuring device, optical characteristic measuring method, and optical characteristic measuring unit |
JP2007298443A (en) * | 2006-05-01 | 2007-11-15 | Konica Minolta Holdings Inc | Method and device for estimating structure of microstructure and mold manufacturing method |
JP2013015443A (en) * | 2011-07-05 | 2013-01-24 | Fujifilm Corp | Method and device for measuring optical characteristics |
JP2014160175A (en) * | 2013-02-20 | 2014-09-04 | Seiko Epson Corp | Linear polarization purity improving unit, linear polarization purity improving device, optical measurement device and medical device |
-
1997
- 1997-11-13 JP JP31200897A patent/JPH11142322A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007513342A (en) * | 2003-12-03 | 2007-05-24 | パルプ アンド ペーパー リサーチ インスチチュート オブ カナダ | Equipment for circular polarization and cell wall thickness and orientation of small fibers |
WO2007111159A1 (en) * | 2006-03-20 | 2007-10-04 | National University Corporation Tokyo University Of Agriculture And Technology | Optical characteristic measuring device, optical characteristic measuring method, and optical characteristic measuring unit |
JPWO2007111159A1 (en) * | 2006-03-20 | 2009-08-13 | 国立大学法人東京農工大学 | Optical characteristic measuring device, optical characteristic measuring method, and optical characteristic measuring unit |
JP2007298443A (en) * | 2006-05-01 | 2007-11-15 | Konica Minolta Holdings Inc | Method and device for estimating structure of microstructure and mold manufacturing method |
JP2013015443A (en) * | 2011-07-05 | 2013-01-24 | Fujifilm Corp | Method and device for measuring optical characteristics |
JP2014160175A (en) * | 2013-02-20 | 2014-09-04 | Seiko Epson Corp | Linear polarization purity improving unit, linear polarization purity improving device, optical measurement device and medical device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107429990B (en) | No color differnece optical element-rotary-type ellipsometer and the Muller matrix detection method of the test piece using it | |
EP3765835B1 (en) | Instantaneous ellipsometer or scatterometer and associated measuring method | |
CN112469987B (en) | Orthogonal incidence ellipsometer and method for measuring optical properties of sample using the same | |
FR2539525A1 (en) | METHOD FOR CORRECTING THE INTENSITY OF A BEAM DURING THE ANALYSIS AND RECORDING OF A FIGURE | |
EP3161437B1 (en) | Measuring polarisation | |
US20040156051A1 (en) | Method and apparatus for measuring birefringence | |
FR2682473A1 (en) | Method and device for optical measurement of the topography of objects | |
CN109520625A (en) | A kind of Wavefront sensor | |
JPH11142322A (en) | Double refraction measuring apparatus and method | |
KR102139995B1 (en) | Normal-incidence and non-normal-incidence combination ellipsometer and method for measuring optical properties of the sample using the same | |
JP3365474B2 (en) | Polarizing imaging device | |
CN101246122B (en) | Ellipsometry imaging method and device adopting rotating compensator integration sampling | |
JP2003227754A (en) | Acquisition method for data from multielement detector in infrared image apparatus | |
JP4468153B2 (en) | Terahertz imaging apparatus and terahertz imaging method | |
JPH11119107A (en) | Interference microscope device | |
JP2000097805A (en) | Double refraction measuring method and device | |
JPH11132940A (en) | Apparatus and method for measurement of birefringence | |
CN201177599Y (en) | Ellipsometric imaging device adopting rotating compensator for integration and sampling | |
JP3436704B2 (en) | Birefringence measuring method and apparatus therefor | |
JP2006023295A (en) | Birefringence-measuring method and birefringence measuring apparatus using the same | |
JPH05281137A (en) | Double-refraction measuring apparatus | |
JPH0777490A (en) | Measuring method for double refraction | |
JP2007155480A (en) | Surface measurement apparatus | |
JP3209550B2 (en) | Polarimeter | |
JP2000258339A (en) | Birefringence-measuring device |