JP2014160175A - Linear polarization purity improving unit, linear polarization purity improving device, optical measurement device and medical device - Google Patents

Linear polarization purity improving unit, linear polarization purity improving device, optical measurement device and medical device Download PDF

Info

Publication number
JP2014160175A
JP2014160175A JP2013030873A JP2013030873A JP2014160175A JP 2014160175 A JP2014160175 A JP 2014160175A JP 2013030873 A JP2013030873 A JP 2013030873A JP 2013030873 A JP2013030873 A JP 2013030873A JP 2014160175 A JP2014160175 A JP 2014160175A
Authority
JP
Japan
Prior art keywords
light
purity
linear polarization
polarized light
linearly polarized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2013030873A
Other languages
Japanese (ja)
Inventor
Hiromi Ikeda
陽 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2013030873A priority Critical patent/JP2014160175A/en
Publication of JP2014160175A publication Critical patent/JP2014160175A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To propose a new method for improving the purity of linear polarization.SOLUTION: A linear polarization purity improving unit 1A comprises a circular polarization section 40, and a linear polarization section 50 that converts outgoing light from the circular polarization section 40 into linear polarization. The linear polarization purity improving unit 1A causes the linear polarization made incident upon the circular polarization section 40 to be ejected from the linear polarization section as linear polarization with higher linear polarization purity than the incident light.

Description

本発明は、直線偏光の純度を向上させる機器等に関する。   The present invention relates to an apparatus for improving the purity of linearly polarized light.

物質を透過した光を計測することで、その物質に直接触れることなく、物質の成分を知ることができる。例えば、旋光度を調べると、計測対象物に含有された所定成分の濃度を推定できる。旋光とは、例えばグルコースのような光学活性物質を直線偏光が通過するとき、その偏光面が回転する性質のことである。   By measuring the light that has passed through the substance, the components of the substance can be known without touching the substance directly. For example, when the optical rotation is examined, the concentration of a predetermined component contained in the measurement object can be estimated. Optical rotation refers to the property of rotating the plane of polarization when linearly polarized light passes through an optically active substance such as glucose.

この旋光性を利用した技術として、例えば特許文献1には、直線偏光が計測対象物を透過した透過光を偏光ビームスプリッターによって直交分離し、その直交分離された偏光成分それぞれを2つの受光素子で受光し、その受光レベルの差から旋光度を計測する技術が開示されている。   As a technique using this optical rotatory power, for example, Patent Document 1 discloses that transmitted light in which linearly polarized light is transmitted through a measurement object is orthogonally separated by a polarization beam splitter, and each of the orthogonally separated polarized light components is separated by two light receiving elements. A technique for receiving light and measuring the optical rotation based on the difference between the received light levels is disclosed.

国際公開第99/30132号International Publication No. 99/30132

特許文献1に代表される従来の技術では、計測対象物に入射される直線偏光は完全な直線偏光であることを前提としている。しかし、一般に、光源から射出される光(以下、「光源光」と称す。)は、常にその偏光状態が変動している。例えば、光源光の偏光面の成す角度は、常に微小に振動している。このため、偏光特性を有する光学素子によっては、光源光の偏光状態の変動によって透過率や反射率が変動し、偏光純度が低減する。   In the conventional technique represented by Patent Document 1, it is assumed that the linearly polarized light incident on the measurement target is completely linearly polarized light. However, in general, the polarization state of light emitted from a light source (hereinafter referred to as “light source light”) always fluctuates. For example, the angle formed by the polarization plane of the light source light always vibrates slightly. For this reason, depending on the optical element having the polarization characteristics, the transmittance and the reflectance vary due to the variation of the polarization state of the light source light, and the polarization purity is reduced.

ここで、偏光純度とは、直線偏光であれば、直線偏光成分と非直線偏光成分との割合であり、高精度の計測を行うためには、高い偏光純度の直線偏光を用いて計測を行うことが必要とされる。従って、偏光純度が一定以上にない光学素子を用いる場合には、この光学素子自体が原因となって計測上の誤差が生じ得る。   Here, the polarization purity is the ratio between the linearly polarized light component and the non-linearly polarized light component in the case of linearly polarized light. In order to perform high-accuracy measurement, measurement is performed using linearly polarized light with high polarization purity. Is needed. Therefore, when an optical element having a polarization purity not exceeding a certain level is used, a measurement error may occur due to the optical element itself.

これを未然に防ぐためには、その特性が光源光の偏光状態の変動にほとんど依存しない又はその傾向が少ない光学素子を用いるか、或いは、偏光状態の変動がほとんどない又はその傾向が少ない光源を用いる必要がある。しかし、何れも理想的なものではなく、僅かではあるが偏光状態が変動し得る。そのため、偏光純度を向上させることができれば至便である。   In order to prevent this, an optical element whose characteristics hardly depend on or hardly changes the polarization state of the light source light, or a light source that hardly changes or hardly changes the polarization state is used. There is a need. However, none of them are ideal, and the polarization state may fluctuate slightly. Therefore, it is convenient if the polarization purity can be improved.

本発明は上述した課題に鑑みてなされたものであり、その目的とするところは、直線偏光の純度を向上させるための新しい手法を提案することにある。   The present invention has been made in view of the above-described problems, and an object thereof is to propose a new technique for improving the purity of linearly polarized light.

以上の課題を解決するための第1の発明は、円偏光部と、前記円偏光部からの出射光を直線偏光化する直線偏光部と、を備え、前記円偏光部に入射された直線偏光を、当該入射光よりも高い直線偏光純度の直線偏光で前記直線偏光部から射出する直線偏光純度向上器である。   A first invention for solving the above-described problems includes a circularly polarized light portion and a linearly polarized light portion that linearly polarizes light emitted from the circularly polarized light portion, and is linearly polarized light incident on the circularly polarized light portion. Is a linearly polarized light purity improver that emits from the linearly polarized light section with linearly polarized light having a higher linearly polarized purity than the incident light.

この第1の発明によれば、円偏光部に入射された直線偏光が円偏光部によって円偏光化される。そして、円偏光部からの出射光が直線偏光部によって直線偏光化される。円偏光部により、入射光は電場強度が一定の等方的な円偏光に変換される。このため、円偏光部からの出射光を直線偏光部で直線偏光化することで、元の直線偏光に揺らぎが生じている場合であっても、その影響が補償された高純度の直線偏光を得ることができる。   According to the first aspect of the invention, the linearly polarized light incident on the circularly polarizing part is circularly polarized by the circularly polarizing part. And the emitted light from a circularly-polarizing part is linearly polarized by the linearly-polarizing part. Incident light is converted into isotropic circularly polarized light having a constant electric field intensity by the circularly polarizing portion. For this reason, even if there is a fluctuation in the original linearly polarized light, the output light from the circularly polarized light part is linearly polarized by the linearly polarized light part. Can be obtained.

また、第2の発明として、第1の発明の直線偏光純度向上器において、前記円偏光部に入射する光を直線偏光化する前記円偏光部の前段に設けられた前段直線偏光部を更に備え、前記円偏光部は、1/4波長板を有し、前記前段直線偏光部の光軸方向と当該1/4波長板の光軸方向との成す角度が45°に構成された、直線偏光純度向上器を構成することとしてもよい。   Further, as a second invention, the linear polarization purity improver of the first invention further includes a front-stage linear polarization section provided in a front stage of the circular polarization section that linearly polarizes light incident on the circular polarization section. The circularly polarized light part has a quarter wave plate, and the angle formed by the optical axis direction of the preceding linearly polarized light part and the optical axis direction of the quarter wave plate is 45 °. It is good also as comprising a purity improver.

第2の発明によれば、円偏光部の前段に設けられた直線偏光部によって、円偏光部に入射する光が直線偏光化される。ここで、円偏光部は、1/4波長板を有する。1/4波長板によって直線偏光を円偏光に適切に変換するためには、円偏光部への入射光の高速軸成分と低速軸成分とが等しくなるように円偏光部の角度を決める必要がある。そこで、第2の発明では、前段直線偏光部の光軸方向と1/4波長板の光軸方向との成す角度を45°に構成する。その結果、円偏光部において直線偏光が適切に円偏光化される。   According to the second aspect of the invention, the light incident on the circularly polarized light portion is linearly polarized by the linearly polarized light portion provided in the previous stage of the circularly polarized light portion. Here, the circularly polarizing part has a quarter-wave plate. In order to appropriately convert linearly polarized light into circularly polarized light by the quarter wave plate, it is necessary to determine the angle of the circularly polarized light portion so that the fast axis component and the slow axis component of the light incident on the circularly polarized light portion are equal. is there. Therefore, in the second aspect of the invention, the angle formed by the optical axis direction of the front-stage linearly polarizing portion and the optical axis direction of the quarter-wave plate is set to 45 °. As a result, the linearly polarized light is appropriately circularly polarized in the circular polarization portion.

また、第3の発明として、第1又は第2の発明の直線偏光純度向上器における前記円偏光部は、入射光の波長に応じた複数種類の1/4波長板を取り替え可能に有する、直線偏光純度向上器を構成することとしてもよい。   Further, as a third invention, the circularly polarizing section in the linear polarization purity improver of the first or second invention has a plurality of types of quarter-wave plates that can be replaced according to the wavelength of incident light, and is a straight line. A polarization purity improver may be configured.

この第3の発明によれば、直線偏光純度向上器における円偏光部は、入射光の波長に応じた複数種類の1/4波長板を取り替え可能に有する。一般に、1/4波長板は波長依存性を有する。このため、入射光の波長に応じた複数種類の1/4波長板を取り替え可能とすることで、入射光の波長に適合した高純度の直線偏光を得ることが可能となる。   According to the third aspect of the invention, the circular polarization unit in the linear polarization purity improver has a plurality of types of quarter-wave plates that can be replaced according to the wavelength of incident light. In general, a quarter wave plate has wavelength dependency. For this reason, by making it possible to replace a plurality of types of quarter-wave plates according to the wavelength of incident light, it is possible to obtain high-purity linearly polarized light that matches the wavelength of incident light.

また、第4の発明として、第1の発明の直線偏光純度向上器を複数段に具備した直線偏光純度向上装置を構成することとしてもよい。   In addition, as a fourth invention, a linear polarization purity improving apparatus including a plurality of linear polarization purity improvers according to the first invention may be configured.

一般に、直線偏光部は、透過軸方向以外の軸方向に対しても僅かながら光を透過させる性質がある。しかし、第4の発明のように、直線偏光純度向上器を複数段に具備した直線偏光純度向上装置を構成し、円偏光化と直線偏光化とを繰り返すことで、透過軸方向以外の軸方向に対する透過光量を段階的に低減させ、更に純度の高い直線偏光を得ることが可能となる。   In general, the linearly polarizing section has a property of transmitting light slightly in the axial direction other than the transmission axis direction. However, as in the fourth aspect of the invention, a linear polarization purity improving apparatus including a plurality of linear polarization purity improvers is configured, and by repeating circular polarization and linear polarization, axial directions other than the transmission axis direction Accordingly, it is possible to reduce the amount of transmitted light in a stepwise manner and to obtain linearly polarized light with higher purity.

また、第5の発明として、第1の発明の直線偏光純度向上器を複数段に具備し、初段の前記直線偏光純度向上器の前段に、当該初段の直線偏光純度向上器の円偏光部に入射する光を直線偏光化する前段直線偏光部を更に具備した、直線偏光純度向上装置を構成することとしてもよい。   In addition, as a fifth invention, the linear polarization purity improver of the first invention is provided in a plurality of stages, and the circular polarization portion of the linear polarization purity improver of the first stage is provided in the front stage of the linear polarization purity improver of the first stage. It is good also as comprising the linear polarization | polarized-light purity improvement apparatus further equipped with the front | former stage linearly-polarized-light part which makes incident light linearly polarized light.

この第5の発明によれば、直線偏光純度向上器を複数段に具備するばかりでなく、初段の直線偏光純度向上器の前段に、当該初段の直線偏光純度向上器の円偏光部に入射する光を直線偏光化する直線偏光部を備えることで、より一層純度の高い直線偏光を得ることが可能となる。   According to the fifth aspect of the invention, not only the linear polarization purity improvers are provided in a plurality of stages, but also enter the circular polarization portion of the first stage linear polarization purity improver before the first stage linear polarization purity improver. By providing a linearly polarizing portion that linearly polarizes light, it becomes possible to obtain linearly polarized light with even higher purity.

また、第6の発明として、第4又は第5の発明の直線偏光純度向上装置において、各段の前記直線偏光純度向上器の円偏光部は、1/4波長板を有し、当該円偏光部の直前に位置する直線偏光部の光軸方向と当該1/4波長板の光軸方向との成す角度が45°に構成された、直線偏光純度向上装置を構成することとしてもよい。   Further, as a sixth invention, in the linear polarization purity improving apparatus according to the fourth or fifth invention, the circularly polarized light portion of the linear polarization purity improver at each stage has a quarter wavelength plate, and the circularly polarized light A linear polarization purity improving apparatus may be configured in which an angle formed by the optical axis direction of the linearly polarizing unit located immediately before the optical axis direction and the optical axis direction of the ¼ wavelength plate is 45 °.

この第6の発明によれば、各段の直線偏光純度向上器の円偏光部は、1/4波長板を有し、当該円偏光部の直前に位置する直線偏光部の光軸方向と当該1/4波長板の光軸方向との成す角度が45°に構成されている。これにより、各直線偏光純度向上器の円偏光部において、入射される直線偏光を1/4波長板によって適切に円偏光化することが可能となる。   According to the sixth aspect of the invention, the circular polarization unit of each stage of the linear polarization purity improver has the quarter wavelength plate, the optical axis direction of the linear polarization unit located immediately before the circular polarization unit, and the The angle formed with the optical axis direction of the quarter-wave plate is 45 °. Thereby, in the circular polarization part of each linearly polarized light purity improver, it becomes possible to appropriately circularly polarize the incident linearly polarized light by the quarter wavelength plate.

また、第7の発明として、第1〜第3の何れかの発明の直線偏光純度向上器、或いは、第4〜第6の何れかの発明の直線偏光純度向上装置(以下、包括して「直線偏光純度向上器」という。)を具備し、当該直線偏光純度向上器からの出射光を計測対象物に透過させ、当該透過光に基づいて当該計測対象物の旋光度を計測する光計測装置を構成することとしてもよい。   Further, as a seventh invention, the linear polarization purity improver of any one of the first to third inventions, or the linear polarization purity improver of any of the fourth to sixth inventions (hereinafter collectively referred to as “ A linear polarization purity improver "), an optical measurement device that transmits the light emitted from the linear polarization purity improver to the measurement object and measures the optical rotation of the measurement object based on the transmitted light. It is good also as comprising.

この第7の発明によれば、上記の発明の直線偏光純度向上器からの出射光を計測対象物に透過させ、当該透過光に基づいて当該計測対象物の旋光度を計測する光計測装置を構成することができる。上記の発明の直線偏光純度向上器を用いることで高純度の直線偏光を得ることができるため、その出射光を用いることで、計測対象物の旋光度を高い精度で計測することが可能となる。   According to the seventh aspect of the invention, there is provided an optical measurement device that transmits the light emitted from the linear polarization purity improver of the above invention to the measurement target and measures the optical rotation of the measurement target based on the transmitted light. Can be configured. Since the highly purified linearly polarized light can be obtained by using the linearly polarized light purity improver of the present invention, the optical rotation of the measurement object can be measured with high accuracy by using the emitted light. .

また、第8の発明として、前記計測対象物を生体の透過性を有する所定部位あるいは当該生体の体液として旋光度を計測する第7に発明の光計測装置と、前記光計測装置により計測された旋光度を用いて所定物質の成分濃度を計測する成分濃度算出部と、を備えた医療機器を構成することとしてもよい。   Further, as an eighth invention, the measurement object is measured by the optical measurement device according to the seventh invention that measures the optical rotation as a predetermined part having the permeability of the living body or a body fluid of the living body, and the optical measurement device. It is good also as comprising the medical device provided with the component concentration calculation part which measures the component concentration of a predetermined substance using an optical rotation.

この第8の発明によれば、計測対象物を生体の透過性を有する所定部位あるいは当該生体の体液として旋光度を計測する。そして、計測された旋光度を用いて所定物質の成分濃度を算出する。これにより、生体や体液に含有された所定物質の成分濃度を正しく計測することが可能となる。   According to the eighth aspect of the invention, the optical rotation is measured using the measurement object as a predetermined part having permeability of the living body or a body fluid of the living body. Then, the component concentration of the predetermined substance is calculated using the measured optical rotation. This makes it possible to correctly measure the component concentration of the predetermined substance contained in the living body or body fluid.

直線偏光純度向上器の一構成例を示す図。The figure which shows the example of 1 structure of a linearly polarized light purity improver. 直線偏光純度向上器の他の構成例を示す図。The figure which shows the other structural example of a linearly polarized light purity improver. (1)入射光の偏光状態の説明図。(2)入射光を直線偏光化した場合の説明図。(1) Explanatory drawing of the polarization state of incident light. (2) Explanatory drawing when incident light is linearly polarized. (1)入射光の偏光状態を示す図。(2)入射光を円偏光化した場合の説明図。(3)円偏光を直線偏光化した場合の説明図。(1) The figure which shows the polarization state of incident light. (2) Explanatory drawing when incident light is circularly polarized. (3) Explanatory drawing when circularly polarized light is linearly polarized. (1)血糖値計測装置の構成例を示す図。(2)光学装置の構成例を示す図。(1) The figure which shows the structural example of a blood glucose level measuring apparatus. (2) The figure which shows the structural example of an optical apparatus. 直線偏光純度向上装置の一構成例を示す図。The figure which shows the example of 1 structure of a linearly polarized light purity improvement apparatus. 直線偏光純度向上装置の他の構成例を示す図。The figure which shows the other structural example of a linearly polarized light purity improvement apparatus. 変形例における光源の構成例を示す図。The figure which shows the structural example of the light source in a modification.

以下、図面を参照して、本発明の好適な実施形態の一例について説明する。但し、本発明を適用可能な実施形態が以下説明する実施形態に限定されるわけではないことは勿論である。   Hereinafter, an example of a preferred embodiment of the present invention will be described with reference to the drawings. However, it goes without saying that embodiments to which the present invention can be applied are not limited to the embodiments described below.

1.第1実施形態
図1は、第1実施形態における直線偏光純度向上器1Aの構成を示す図である。直線偏光純度向上器1Aは、円偏光部40と、直線偏光部50とを有して構成される。
1. 1st Embodiment FIG. 1: is a figure which shows the structure of 1 A of linear polarization purity improvers in 1st Embodiment. The linear polarization purity improver 1 </ b> A includes a circular polarization unit 40 and a linear polarization unit 50.

円偏光部40は、入射光を円偏光化する偏光素子であり、1/4波長板を有して構成される。1/4波長板は、例えば水晶波長板によって構成され、入射光の直交する偏光成分間に1/4波長分(=π/2)の位相差を与える複屈折素子である。位相板(リタデーションプレート)と呼ばれる場合もある。   The circular polarization unit 40 is a polarization element that circularly polarizes incident light, and is configured to include a quarter wavelength plate. The quarter-wave plate is a birefringent element that is constituted by, for example, a quartz wavelength plate and gives a phase difference of ¼ wavelength (= π / 2) between orthogonal polarization components of incident light. Sometimes referred to as a phase plate (retardation plate).

直線偏光部50は、円偏光部40からの出射光を直線偏光化する偏光素子であり、直線偏光子を有して構成される。直線偏光子としては、例えばグランタイプトムソンプリズムといった、複屈折性を持つ方解石プリズムなどの偏光用光学素子を用いることができる。   The linear polarization unit 50 is a polarization element that linearly polarizes the light emitted from the circular polarization unit 40, and includes a linear polarizer. As the linear polarizer, for example, a polarizing optical element such as a calcite prism having birefringence such as a Gran type Thomson prism can be used.

1/4波長板によって直線偏光を円偏光に適切に変換するためには、円偏光部40への入射光の高速軸成分と低速軸成分とが等しくなるように円偏光部40の角度を決める必要がある。これは、円偏光部40に入射させる直線偏光の偏光方向を1/4波長板の高速軸或いは低速軸に対して45°傾けることで実現できる。   In order to appropriately convert linearly polarized light into circularly polarized light by the quarter wavelength plate, the angle of the circularly polarizing unit 40 is determined so that the fast axis component and the slow axis component of the light incident on the circularly polarizing unit 40 are equal. There is a need. This can be realized by inclining the polarization direction of the linearly polarized light incident on the circularly polarizing unit 40 by 45 ° with respect to the fast axis or the slow axis of the quarter-wave plate.

図3及び図4は、上記の直線偏光純度向上器1Aを用いて直線偏光の純度を向上させる原理の説明図である。これらの各図において、Z軸は光の進行方向の軸を示し、X軸及びY軸は、Z軸に直交する軸を示す。Z軸を紙面に垂直な方向の軸とし、X軸を紙面向かって左右方向の軸とし、Y軸を紙面向かって上下方向の軸として図示する。また、図3及び図4では、理解を助けるために、グラフを一部誇張して図示している。   3 and 4 are explanatory diagrams of the principle of improving the purity of linearly polarized light using the linearly polarized light purity improver 1A. In each of these drawings, the Z axis indicates an axis in the light traveling direction, and the X axis and the Y axis indicate axes orthogonal to the Z axis. The Z-axis is shown as an axis perpendicular to the paper surface, the X-axis is shown as a left-right axis toward the paper surface, and the Y-axis is shown as an up-down axis toward the paper surface. In FIGS. 3 and 4, some graphs are exaggerated to help understanding.

図3は、従来の手法を用いて直線偏光を生成する場合の説明図である。ここでは、所定の光源(例えば半導体レーザー)から射出される光源光を直線偏光子に入射して直線偏光に変換する場合を例示する。また、光源光を直線偏光に近い楕円偏光として説明する。
光源光は楕円偏光であるが、その電場ベクトルの先端をX−Y平面に投影すると、Z軸を中心として楕円を描くように変化する。問題は、この光源光には微小な揺らぎが生じており、楕円の先端が微小に振動している点である。
FIG. 3 is an explanatory diagram in the case of generating linearly polarized light using a conventional method. Here, a case where light source light emitted from a predetermined light source (for example, a semiconductor laser) is incident on a linear polarizer and converted into linearly polarized light is illustrated. The light source light will be described as elliptically polarized light that is close to linearly polarized light.
The light source light is elliptically polarized light, but when the tip of the electric field vector is projected onto the XY plane, it changes so as to draw an ellipse with the Z axis as the center. The problem is that the light source light has a slight fluctuation, and the tip of the ellipse vibrates slightly.

図3(1)の光源光を直線偏光子に入射した場合の偏光状態の変化を図3(2)に示す。光源光は楕円偏光であり、その偏光状態を一点鎖線で示す。また、光源光の電場の強さ(以下、「電場強度」と称す。)を表すために、便宜的に楕円の長軸方向に一点鎖線で電場ベクトルを描いている。電場ベクトルの長さが電場強度であり、これを「E」として説明する。また、X軸と電場ベクトルとの成す角度(光源光の偏波面の成す角度)を「偏向角」として説明する。   FIG. 3 (2) shows a change in polarization state when the light source light of FIG. 3 (1) is incident on the linear polarizer. The light source light is elliptically polarized light, and its polarization state is indicated by a one-dot chain line. Further, in order to express the intensity of the electric field of the light source light (hereinafter referred to as “electric field intensity”), an electric field vector is drawn with a dashed line in the major axis direction of the ellipse for convenience. The length of the electric field vector is the electric field strength, which will be described as “E”. Further, the angle formed by the X axis and the electric field vector (the angle formed by the polarization plane of the light source light) will be described as a “deflection angle”.

直線偏光子は光の進行方向に対し一つの透過軸を有し、この透過軸に対して偏光を通過させることで直線偏光を生じさせる。しかし、実際には透過軸方向以外の方向に対しても僅かながら光を透過させてしまう。この透過軸方向以外の方向に透過した光のことを「漏れ光」と呼ぶことにする。漏れ光は、直線偏光子の透過軸に対して直交する軸(以下、「透過直交軸」と称す。)の方向に対して最小となる。透過軸方向の偏光成分と透過直交軸方向の偏光成分との比を「消光比」と呼び、この消光比が直線偏光子の性能を表す。   The linear polarizer has one transmission axis with respect to the traveling direction of light, and linearly polarized light is generated by passing polarized light through this transmission axis. However, light is actually transmitted slightly in directions other than the transmission axis direction. The light transmitted in a direction other than the transmission axis direction is referred to as “leakage light”. The leakage light is minimized with respect to the direction of an axis orthogonal to the transmission axis of the linear polarizer (hereinafter referred to as “transmission orthogonal axis”). The ratio between the polarization component in the transmission axis direction and the polarization component in the transmission orthogonal axis direction is called “extinction ratio”, and this extinction ratio represents the performance of the linear polarizer.

図3(2)に示すように、電場強度Eの楕円偏光である光源光が、X−Y軸から角度φだけ傾いた直線偏光子の透過軸を基準に角度Δθだけ傾いた偏光方向を持って透過する場合を考える。図3(1)で説明したように、光源光には微小な揺らぎが生じており、楕円偏光で表される光源光の偏向角が変動している。従って、光源光が直線偏光子に入射する際の透過軸を基準とする角度Δθは、光源光の偏向角の変動に依存して変化することになる。   As shown in FIG. 3 (2), the light source light, which is elliptically polarized with an electric field intensity E, has a polarization direction inclined by an angle Δθ with reference to the transmission axis of a linear polarizer inclined by an angle φ from the XY axis. Consider the case of transmission. As described with reference to FIG. 3A, minute fluctuations are generated in the light source light, and the deflection angle of the light source light represented by elliptically polarized light fluctuates. Therefore, the angle Δθ based on the transmission axis when the light source light is incident on the linear polarizer changes depending on the variation of the deflection angle of the light source light.

この場合、直線偏光子を透過する透過光の透過軸方向の電場強度は「E・cosΔθ」と表され、透過直交軸方向の電場強度は「E・sinΔθ」と表される。この透過光をX−Y軸で直交分離すると、電場ベクトルのX成分及びY成分は、それぞれ次式(1)及び(2)のように表すことができる。

Figure 2014160175
Figure 2014160175
In this case, the electric field strength in the transmission axis direction of the transmitted light that passes through the linear polarizer is expressed as “E · cos Δθ”, and the electric field strength in the transmission orthogonal axis direction is expressed as “E · sin Δθ”. When this transmitted light is orthogonally separated along the XY axis, the X component and the Y component of the electric field vector can be expressed by the following equations (1) and (2), respectively.
Figure 2014160175
Figure 2014160175

このとき、電場ベクトルのX成分及びY成分を用いて直線偏光の方位角χを算出すると、次式(3)のようになる。

Figure 2014160175
At this time, when the azimuth angle χ of linearly polarized light is calculated using the X component and Y component of the electric field vector, the following equation (3) is obtained.
Figure 2014160175

式(3)より、直線偏光の方位角χは、角度Δθに依存することがわかる。上記のように、角度Δθは光源光の揺らぎに依存して変化するため、方位角χも、光源光の揺らぎに依存して変化することがわかる。このような直線偏光を用いて計測対象物の光学的性質(例えば旋光度)を計測した場合、計測精度が低下してしまう。   From Equation (3), it can be seen that the azimuth angle χ of linearly polarized light depends on the angle Δθ. As described above, since the angle Δθ changes depending on the fluctuation of the light source light, it can be seen that the azimuth angle χ also changes depending on the fluctuation of the light source light. When the optical property (for example, optical rotation) of the measurement object is measured using such linearly polarized light, the measurement accuracy is lowered.

図4は、図1の直線偏光純度向上器1Aを用いて直線偏光を生成する場合の説明図である。図4(1)は、円偏光部40に入射する光源光の偏光状態を示しており、これは図3(1)と同じように楕円偏光で表される。   FIG. 4 is an explanatory diagram when linearly polarized light is generated using the linearly polarized light purity improver 1A of FIG. FIG. 4A shows the polarization state of the light source light incident on the circular polarization unit 40, which is expressed by elliptically polarized light as in FIG.

この楕円偏光である光源光は円偏光部40によって円偏光化される。円偏光部40は1/4波長板を有するため、光源光の直交成分のうちの一方の成分の位相を1/4波長分だけ進ませる(或いは遅らせる)。円偏光部40に入射する光源光(理想的には直線偏光)は、左右円偏光の合成とみなすことができる。このとき、光源光の偏向角は左右円偏光の位相差となる。このため、左右円偏光の位相差が変動すると、光源光の偏向角も変動することになる。しかし、円偏光は左右偏光の何れかである。従って、光源光が円偏光部40によって円偏光化されることにより、円偏光の位相が変動したとしても、光の進行方向に対して直交する平面において方位性を持った電場変動が生じなくなる。従って、光源光は円偏光部40を通過することにより等方的な電場強度「α・E」の円偏光に変換される(但し、0≦α≦1)。   The light source light that is elliptically polarized light is circularly polarized by the circular polarization unit 40. Since the circular polarization unit 40 has a quarter wavelength plate, the phase of one of the orthogonal components of the light source light is advanced (or delayed) by a quarter wavelength. The light source light (ideally, linearly polarized light) incident on the circular polarization unit 40 can be regarded as a combination of left and right circularly polarized light. At this time, the deflection angle of the light source light is the phase difference between the left and right circularly polarized light. For this reason, when the phase difference of the left and right circularly polarized light varies, the deflection angle of the light source light also varies. However, circularly polarized light is either left-right polarized light. Therefore, even if the phase of the circularly polarized light is changed by circularly polarizing the light source light by the circularly polarizing unit 40, the electric field fluctuation having azimuth does not occur in the plane orthogonal to the traveling direction of the light. Accordingly, the light source light is converted into circularly polarized light having an isotropic electric field intensity “α · E” by passing through the circularly polarizing portion 40 (where 0 ≦ α ≦ 1).

次に、円偏光部40からの出射光は直線偏光部50に入射する。このとき、円偏光部40からの出射光がX−Y軸から角度φだけ傾いた直線偏光部50の透過軸を基準に角度Δθの変位を持って透過する場合を考える。このとき、上記のように、光源光における偏向角の変動の要因であった左右円偏光の位相差の変動は、円偏光化によって左右何れかの円偏光の位相の変動に帰着するため、円偏光においては偏向角という概念がなくなる。すなわち、電場強度が光の進行方向軸に直交する平面において方位性を持たなくなる。このため、直線偏光部40の透過軸方向を透過する光の電場強度は「α・E」となり、透過直交軸方向を透過する光の電場強度は「R・α・E」となる(但し、0≦α≦1)。但し、「R」は消光比であり、「R=透過直交軸の透過光量/透過軸の透過光量」として表される。   Next, the outgoing light from the circular polarization unit 40 enters the linear polarization unit 50. At this time, let us consider a case where the light emitted from the circularly polarizing unit 40 is transmitted with a displacement of the angle Δθ with reference to the transmission axis of the linearly polarizing unit 50 inclined by the angle φ from the XY axis. At this time, as described above, the change in the phase difference of the left and right circularly polarized light, which was the cause of the change in the deflection angle in the light source light, results in the change in the phase of either the left or right circularly polarized light due to circular polarization, In polarization, the concept of deflection angle disappears. That is, the electric field intensity has no orientation in a plane orthogonal to the light traveling direction axis. For this reason, the electric field intensity of the light transmitted through the transmission axis direction of the linear polarization unit 40 is “α · E”, and the electric field intensity of the light transmitted through the transmission orthogonal axis direction is “R · α · E” (however, 0 ≦ α ≦ 1). However, “R” is an extinction ratio, and is expressed as “R = transmission light amount on the transmission orthogonal axis / transmission light amount on the transmission axis”.

この場合、直線偏光部50からの出射光をX−Y軸で直交成分分離すると、電場ベクトルのX成分及びY成分は、それぞれ次式(4)及び(5)のように表される。

Figure 2014160175
Figure 2014160175
In this case, when the outgoing light from the linear polarization unit 50 is separated into orthogonal components along the XY axis, the X component and the Y component of the electric field vector are expressed by the following equations (4) and (5), respectively.
Figure 2014160175
Figure 2014160175

このとき、電場ベクトルのX成分及びY成分を用いて直線偏光の方位角χを算出すると、次式(6)のようになる。

Figure 2014160175
At this time, when the azimuth angle χ of linearly polarized light is calculated using the X component and Y component of the electric field vector, the following equation (6) is obtained.
Figure 2014160175

式(6)から、直線偏光の方位角χは、角度Δθに依存せず、透過軸角度φによって定まることがわかる。方位角χが角度Δθに依存しないということは、直線偏光部40から出射する直線偏光は、光源光の揺らぎに依存しないことを意味する。従って、図1の直線偏光純度向上器1Aを用いることで、光源光の揺らぎに依存しない高純度の直線偏光を得ることができる。   From equation (6), it can be seen that the azimuth angle χ of linearly polarized light does not depend on the angle Δθ but is determined by the transmission axis angle φ. The fact that the azimuth angle χ does not depend on the angle Δθ means that the linearly polarized light emitted from the linear polarization unit 40 does not depend on the fluctuation of the light source light. Therefore, by using the linearly polarized light purity improver 1A shown in FIG. 1, high-purity linearly polarized light that does not depend on the fluctuation of the light source light can be obtained.

なお、本実施形態における直線偏光純度向上器1の構成は、図1に示した直線偏光純度向上器1Aの構成に限られるわけではない。例えば、円偏光部40に光源光を直接入射させるのではなく、直線偏光子によって光源光を直線偏光化した後に、円偏光部40に入射させるように直線偏光純度向上器1を構成することとしてもよい。   The configuration of the linear polarization purity improver 1 in the present embodiment is not limited to the configuration of the linear polarization purity improver 1A shown in FIG. For example, the linear polarization purity improver 1 is configured so that the light source light is not directly incident on the circular polarization unit 40 but is linearly polarized by a linear polarizer and then incident on the circular polarization unit 40. Also good.

図2は、この場合における直線偏光純度向上器1Bの構成を示す図である。
直線偏光純度向上器1Bは、前段直線偏光部30と、円偏光部40と、直線偏光部50とを有して構成される。円偏光部40に入射する光を直線偏光化する前段直線偏光部30が円偏光部40の前段部分に設けられている点が、図1の直線偏光純度向上器1Aとは異なる。
FIG. 2 is a diagram showing the configuration of the linear polarization purity improver 1B in this case.
The linear polarization purity improver 1 </ b> B includes a front-stage linear polarization unit 30, a circular polarization unit 40, and a linear polarization unit 50. 1 is different from the linear polarization purity improver 1A in FIG. 1 in that a front linear polarization unit 30 that linearly polarizes light incident on the circular polarization unit 40 is provided in a front part of the circular polarization unit 40.

前段直線偏光部30は、円偏光部40の前段で光源光を直線偏光化する偏光素子である。この前段直線偏光部30は、直線偏光部50と同様に、例えばグラントムソンプリズム等の偏光用光学素子を用いた直線偏光子を有して構成される。   The front-stage linear polarization unit 30 is a polarization element that linearly polarizes the light source light before the circular polarization unit 40. Like the linear polarization unit 50, the pre-stage linear polarization unit 30 includes a linear polarizer using a polarization optical element such as a Glan-Thompson prism.

前段直線偏光部30の光軸方向と円偏光部40が有する1/4波長板の光軸方向との成す角度が45°となるように、前段直線偏光部30が有する直線偏光子と円偏光部40が有する1/4波長板との配置角度が調整されている。これは、円偏光部40に入射する直線偏光の高速軸成分と低速軸成分とを等しくし、円偏光部40に入射する光源光が適切に円偏光に変換されるようにするためである。   The linear polarizer and circularly polarized light included in the front linear polarization unit 30 are set so that the angle formed by the optical axis direction of the front linear polarization unit 30 and the optical axis direction of the quarter-wave plate included in the circular polarization unit 40 is 45 °. The arrangement angle with the quarter-wave plate of the unit 40 is adjusted. This is because the fast axis component and the slow axis component of the linearly polarized light incident on the circular polarization unit 40 are equalized so that the light source light incident on the circular polarization unit 40 is appropriately converted to circular polarization.

前段直線偏光部30を透過した光は、元の光源光に比べ、前段直線偏光部30の消光比分だけ、透過軸以外の方向の偏光成分が低減されている。この光を円偏光部40によって円偏光化し、再び直線偏光部50を通過させることで、直線偏光部50の消光比分だけ、透過軸以外の方向の偏光成分をさらに低減させることができる。このため、直線偏光純度向上器1Bでは、直線偏光純度向上器1Aよりもさらに高純度の直線偏光を得ることができる。   The light transmitted through the front-stage linear polarization unit 30 is reduced in polarization components in directions other than the transmission axis by the extinction ratio of the front-stage linear polarization unit 30 compared to the original light source light. This light is circularly polarized by the circular polarization unit 40 and is allowed to pass through the linear polarization unit 50 again, whereby the polarization component in the direction other than the transmission axis can be further reduced by the extinction ratio of the linear polarization unit 50. For this reason, the linearly polarized light purity improver 1B can obtain higher-purity linearly polarized light than the linearly polarized light purity improver 1A.

2.第2実施形態
次に、上記の直線偏光純度向上器1を具備し、計測対象物の光学的特性を計測する装置として、血糖値計測装置3の実施形態について説明する。本実施形態の血糖値計測装置3は、生体内或いは生体の体液に含有された所定の既知物質の成分濃度を計測する医療機器の一種であり、被検者の血液中のグルコース濃度を非侵襲的に計測する装置である。
2. Second Embodiment Next, an embodiment of a blood glucose level measuring apparatus 3 will be described as an apparatus that includes the linear polarization purity improver 1 described above and measures an optical characteristic of a measurement object. The blood glucose level measuring device 3 of the present embodiment is a kind of medical device that measures the component concentration of a predetermined known substance contained in a living body or in a body fluid of the living body, and non-invasively determines the glucose concentration in the blood of a subject. It is a device that measures automatically.

2−1.機能構成
図5(1)は、血糖値計測装置3の一構成例を示す図である。
血糖値計測装置3は、主要な構成として、光学装置5と、制御部100と、操作部200と、表示部300と、音出力部400と、通信部500と、記憶部600とを有して構成される。
2-1. Functional Configuration FIG. 5A is a diagram illustrating a configuration example of the blood sugar level measuring apparatus 3.
The blood glucose level measuring device 3 includes, as main components, an optical device 5, a control unit 100, an operation unit 200, a display unit 300, a sound output unit 400, a communication unit 500, and a storage unit 600. Configured.

図5(2)は、光学装置5の構成例を示す図である。
光学装置5は、光源10と、光変換部20と、直線偏光純度向上器1Bと、偏光部60と、光検出部70と、信号処理部80とを有して構成される。直線偏光純度向上器1Bと偏光部60との間に計測対象物Sが配置される。本実施形態において、計測対象物Sは、被検者の耳たぶや指先、手の表皮等とされる。
FIG. 5B is a diagram illustrating a configuration example of the optical device 5.
The optical device 5 includes a light source 10, a light conversion unit 20, a linear polarization purity improver 1 </ b> B, a polarization unit 60, a light detection unit 70, and a signal processing unit 80. The measuring object S is disposed between the linear polarization purity improver 1 </ b> B and the polarization unit 60. In the present embodiment, the measurement object S is the subject's earlobe, fingertip, hand skin, or the like.

光源10は、複数の波長の計測光を生成して出射可能に構成された光生成装置であり、例えば多波長レーザー光源として構成される。光源10は、制御部100の制御の下、指示された波長の計測光を生成して出射する。   The light source 10 is a light generation device configured to generate and emit measurement light having a plurality of wavelengths, and is configured as a multi-wavelength laser light source, for example. The light source 10 generates and emits measurement light having an instructed wavelength under the control of the control unit 100.

光変換部20は、光源10から射出された計測光を平行光に変換する変換器であり、例えばコリメートレンズを有して構成される。   The light conversion unit 20 is a converter that converts measurement light emitted from the light source 10 into parallel light, and includes, for example, a collimator lens.

直線偏光純度向上器1Bは、光源10から出射されて光変換部20によって平行光に変換された計測光を直線偏光化する。本実施形態の直線偏光純度向上器1Bでは、円偏光部40が、計測光の波長に応じた複数種類の1/4波長板42(42−1,42−2,42−3,・・・)を取り替え可能に構成されている。   The linear polarization purity improver 1 </ b> B linearly polarizes the measurement light emitted from the light source 10 and converted into parallel light by the light conversion unit 20. In the linear polarization purity improver 1B of the present embodiment, the circular polarization unit 40 includes a plurality of types of quarter-wave plates 42 (42-1, 42-2, 42-3,...) Corresponding to the wavelength of the measurement light. ) Is configured to be replaceable.

一般的に、1/4波長板の屈折率は入射光の波長に依存して変化し、1/4波長板が与える位相差には波長依存性がある。本実施形態では、生体の血液に含有されているグルコースの濃度(血糖値)を計測するために、複数の波長の計測光を用いて旋光度を計測する。そこで、グルコース濃度の計測に使用する波長(以下、「計測波長」と称す。)毎に好適な1/4波長板42を用いて旋光度を計測することを可能にするために、計測波長に応じた複数種類の1/4波長板42を取り替え可能に構成している。   In general, the refractive index of a quarter wavelength plate changes depending on the wavelength of incident light, and the phase difference provided by the quarter wavelength plate is wavelength dependent. In this embodiment, in order to measure the concentration of glucose (blood glucose level) contained in blood of a living body, the optical rotation is measured using measurement light having a plurality of wavelengths. Therefore, in order to make it possible to measure the optical rotation using a suitable quarter-wave plate 42 for each wavelength (hereinafter referred to as “measurement wavelength”) used for measuring the glucose concentration, A plurality of types of ¼ wavelength plates 42 can be replaced.

偏光部60は、直線偏光純度向上器1Bから射出される直線偏光が計測対象物Sを透過した透過光を偏光化する偏光子である。この偏光部60としては、透過光を直交成分、すなわち互いに90度異なる偏光成分に分離する直交分離機能を有する光学素子を用いることができ、例えばウォラストンプリズムを適用することができる。   The polarization unit 60 is a polarizer that polarizes the transmitted light that is transmitted from the measurement object S by the linearly polarized light emitted from the linear polarization purity improver 1B. As the polarization unit 60, an optical element having an orthogonal separation function for separating transmitted light into orthogonal components, that is, polarized components different from each other by 90 degrees can be used. For example, a Wollaston prism can be applied.

光検出部70は、偏光部60によって偏光された透過光を受光する受光素子であり、フォトダイオード等の光検出器を有して構成される。光検出部70は、例えば2つの光検出器を有して構成され、偏光部60によって直交分離された互いに直交する偏光成分(P偏光成分及びS偏光成分)をそれぞれ受光する。なお、この場合の2つの光検出器は、同一規格の光検出器を用いることにすると好適である。   The light detection unit 70 is a light receiving element that receives the transmitted light polarized by the polarization unit 60 and includes a photodetector such as a photodiode. The light detection unit 70 includes, for example, two light detectors, and receives the mutually orthogonal polarization components (P polarization component and S polarization component) that are orthogonally separated by the polarization unit 60. In this case, it is preferable to use the photodetectors of the same standard as the two photodetectors.

信号処理部80は、光検出部70から出力される光検出信号を信号処理する回路(信号処理回路)を有して構成される。光検出部70が受光光量に応じた電圧の検出信号を出力するように構成されている場合は、例えば電圧を所定の増幅率で増幅した後、制御部100に出力する。また、光検出部70が受光光量に応じた電流の検出信号を出力するように構成されている場合は、電流電圧変換を行って電流を電圧に変換した後、これを増幅して制御部100に出力する。   The signal processing unit 80 includes a circuit (signal processing circuit) that performs signal processing on the light detection signal output from the light detection unit 70. When the light detection unit 70 is configured to output a detection signal having a voltage corresponding to the amount of received light, for example, the voltage is amplified at a predetermined amplification rate and then output to the control unit 100. When the light detection unit 70 is configured to output a detection signal of a current corresponding to the amount of received light, the current-voltage conversion is performed to convert the current into a voltage, which is then amplified and the control unit 100 Output to.

制御部100は、血糖値計測装置3の各部を統括的に制御する制御装置及び演算装置であり、CPU(Central Processing Unit)やDSP(Digital Signal Processor)等のマイクロプロセッサーやASIC(Application Specific Integrated Circuit)等を有して構成される。   The control unit 100 is a control device and an arithmetic device that comprehensively control each unit of the blood glucose level measuring device 3, and is a microprocessor such as a CPU (Central Processing Unit) or a DSP (Digital Signal Processor) or an ASIC (Application Specific Integrated Circuit). ) And the like.

制御部100は、複数の計測波長それぞれについて、当該計測波長の計測光を光源10に出射させるように制御する。この場合、計測波長に応じた1/4波長板42が挿入された状態で、当該計測波長の計測光を光源10に出射させる。1/4波長板42の取り替えは、手動又は自動で行うように構成することができる。   The control unit 100 controls the light source 10 to emit measurement light having the measurement wavelength for each of the plurality of measurement wavelengths. In this case, the measurement light of the measurement wavelength is emitted to the light source 10 with the quarter wavelength plate 42 corresponding to the measurement wavelength inserted. The replacement of the quarter wave plate 42 can be performed manually or automatically.

1/4波長板42の取り替えを手動で行う場合は、波長の異なる計測光を用いて計測を行う度に、その都度オペレーターが当該計測光の波長に対応する1/4波長板42を光学装置5の定位置に挿入して計測を行うようにする。   When the quarter-wave plate 42 is manually replaced, each time measurement is performed using measurement light having a different wavelength, the operator uses the quarter-wave plate 42 corresponding to the wavelength of the measurement light as the optical device. 5 is inserted at a fixed position to perform measurement.

また、1/4波長板42の取り替えを自動で行う場合は、1/4波長板42を光学装置5の定位置にスライド式に進退させる進退機構を光学装置5に具備させることとし、制御部100がこの進退機構を制御して、計測波長に応じた1/4波長板42を進退機構に進退させるようにすればよい。   When the quarter wavelength plate 42 is automatically replaced, the optical device 5 is provided with an advance / retreat mechanism that slides the quarter wavelength plate 42 forward and backward to a fixed position of the optical device 5. 100 may control the advance / retreat mechanism so that the quarter-wave plate 42 corresponding to the measurement wavelength is advanced / retreated by the advance / retreat mechanism.

制御部100は、複数の計測波長の計測光を計測対象物S(生体)に照射した場合の信号処理部80の処理結果を用いて、当該計測波長での計測対象物Sの旋光度を算出する。そして、各計測波長について算出した旋光度を用いて、生体の血液に含有されているグルコースの濃度を算出・計測する。本実施形態の血糖値計測装置3は旋光度を計測する機能を有するため、計測対象物Sの旋光度を計測する光計測装置を具備していると言うことができる。なお、旋光度の算出方法については従来公知の手法を適用することができるため、本明細書では説明を省略する。   The control unit 100 calculates the optical rotation of the measurement target S at the measurement wavelength using the processing result of the signal processing unit 80 when the measurement target S (biological body) is irradiated with measurement light having a plurality of measurement wavelengths. To do. Then, the concentration of glucose contained in the blood of the living body is calculated and measured using the optical rotation calculated for each measurement wavelength. Since the blood sugar level measuring apparatus 3 of the present embodiment has a function of measuring the optical rotation, it can be said that the blood glucose measuring apparatus 3 includes an optical measuring apparatus that measures the optical rotation of the measurement object S. In addition, since a conventionally well-known method can be applied about the calculation method of optical rotation, description is abbreviate | omitted in this specification.

一般に、旋光性を有する物質の旋光度は濃度に比例することが知られている。波長λにおける成分iの比旋光度(光路長10cm=1dm当たり、濃度1g/ml当たりの旋光角度)をα(λ)[(°・g)/(dm・ml)]、成分濃度をc[g/dl]、計測対象物Sの光軸に平行な長さをd[mm]とすると、複数成分からなる計測対象物Sの旋光度θ(λ)[°]は、次式(7)のように表すことができる。

Figure 2014160175
In general, it is known that the optical rotation of a substance having optical activity is proportional to the concentration. Α i (λ) [(° · g) / (dm · ml)] and component concentration c for specific rotation (wavelength 10 cm = 1 dm, optical rotation angle per concentration 1 g / ml) at wavelength λ When i [g / dl] and the length parallel to the optical axis of the measuring object S are d [mm], the optical rotation θ (λ) [°] of the measuring object S composed of a plurality of components is 7).
Figure 2014160175

本実施形態では、血液に含有されているグルコースの濃度(血糖値)を算出する。このため、血液に含有されている既知物質の比旋光度α(λ)を予め求めて記憶部600に記憶させておき、血液に含有されている峻別を希望する既知物質の数と同数又はそれ以上の計測波長について式(7)を連立させた連立方程式を解くことで、グルコースの濃度を求める。なお、血糖値の計測結果は、例えば表示部300に数値やグラフ形式で表示させるなどして被検者に報知する。 In this embodiment, the concentration of glucose (blood glucose level) contained in blood is calculated. Therefore, the specific rotation α i (λ) of the known substance contained in the blood is obtained in advance and stored in the storage unit 600, and the same number as the number of known substances desired to be distinguished in the blood or The glucose concentration is obtained by solving simultaneous equations obtained by simultaneous equations (7) for the measurement wavelengths longer than that. The blood glucose level measurement result is notified to the subject by, for example, displaying the blood glucose level on the display unit 300 in a numerical value or graph format.

操作部200は、ボタンスイッチ等を有して構成される入力装置であり、押下されたボタンの信号を制御部100に出力する。操作部200の操作により、血糖値の計測開始、計測終了等の指示操作がなされる。   The operation unit 200 is an input device that includes a button switch and the like, and outputs a signal of a pressed button to the control unit 100. By the operation of the operation unit 200, an instruction operation such as start of blood glucose level measurement or end of measurement is performed.

表示部300は、制御部100から入力される表示信号に基づく各種表示を行う表示装置である。表示部300には、計測された血糖値等の情報が表示される。   The display unit 300 is a display device that performs various displays based on display signals input from the control unit 100. Information such as the measured blood glucose level is displayed on the display unit 300.

音出力部400は、制御部100から入力される音出力信号に基づく各種音出力を行う音出力装置である。例えば、計測開始や計測終了、エラー発生等の報知音を出力する。   The sound output unit 400 is a sound output device that outputs various sounds based on a sound output signal input from the control unit 100. For example, notification sounds such as measurement start, measurement end, and error occurrence are output.

通信部500は、制御部100の制御に従って、装置内部で利用される情報を外部の情報制御装置との間で送受するための通信装置である。通信部500の通信方式としては、所定の通信規格に準拠したケーブルを介して有線接続する形式や、近距離無線通信を利用して無線接続する形式等、種々の方式を適用可能である。通信方式は、有線/無線を問わない。   The communication unit 500 is a communication device for transmitting / receiving information used inside the device to / from an external information control device under the control of the control unit 100. As a communication method of the communication unit 500, various methods such as a wired connection via a cable compliant with a predetermined communication standard and a wireless connection using short-range wireless communication can be applied. The communication method may be wired / wireless.

記憶部600は、血糖値計測装置3のシステムプログラムや、旋光度計測機能、血糖値計測機能といった各種機能を実現するための各種プログラム、データ等を記憶する。また、各種処理の処理中データ、処理結果などを一時的に記憶するワークエリアを有する。   The memory | storage part 600 memorize | stores the various programs, data, etc. for implement | achieving various functions, such as the system program of the blood glucose level measuring device 3, an optical rotation measuring function, and a blood glucose level measuring function. In addition, it has a work area for temporarily storing data being processed and results of various processes.

2−2.作用効果
血糖値計測装置3において、光学装置5は、光源10と、光変換部20と、直線偏光純度向上器1Bと、偏光部60と、光検出部70と、信号処理部80とを有して構成される。直線偏光純度向上器1Bの円偏光部40は、光源10から出射される計測光の波長に応じた複数種類の1/4波長板42を取り替え可能に構成されており、複数の計測波長それぞれについて、当該計測波長に応じた最適な1/4波長板42を用いて計測対象物Sの旋光度を計測可能に構成されている。
2-2. In the blood glucose level measuring device 3, the optical device 5 includes the light source 10, the light conversion unit 20, the linear polarization purity improver 1B, the polarization unit 60, the light detection unit 70, and the signal processing unit 80. Configured. The circular polarization unit 40 of the linear polarization purity improver 1B is configured to be able to replace a plurality of types of quarter wave plates 42 according to the wavelength of the measurement light emitted from the light source 10, and each of the plurality of measurement wavelengths. The optical rotation of the measuring object S can be measured using the optimum quarter wavelength plate 42 corresponding to the measurement wavelength.

直線偏光純度向上器1Bから出力される高純度の直線偏光を計測対象物Sに透過させ、その透過光を偏光部60で偏光して光検出部70で検出する。そして、光検出部70の検出結果を信号処理部80で信号処理し、その処理結果を用いて旋光度を算出することで、計測対象物Sの旋光度を高精度に計測することができる。そして、複数の計測波長それぞれについて得られた旋光度を用いて、例えば式(7)の演算式に従ってグルコースの濃度を算出することで、被検者の血糖値を高精度に計測することが可能となる。   The high-purity linearly polarized light output from the linearly polarized light purity improver 1 </ b> B is transmitted through the measurement object S, and the transmitted light is polarized by the polarization unit 60 and detected by the light detection unit 70. Then, the detection result of the light detection unit 70 is signal-processed by the signal processing unit 80, and the optical rotation is calculated using the processing result, whereby the optical rotation of the measurement object S can be measured with high accuracy. Then, by using the optical rotation obtained for each of the plurality of measurement wavelengths, for example, by calculating the glucose concentration according to the equation (7), the blood glucose level of the subject can be measured with high accuracy. It becomes.

3.変形例
本発明を適用可能な実施例は、上記の実施例に限定されることなく、本発明の趣旨を逸脱しない範囲で適宜変更可能であることは勿論である。以下、変形例について説明する。なお、上記実施形態と同一の構成については同一の符号を付して再度の説明を省略する。
3. Modifications Embodiments to which the present invention can be applied are not limited to the above-described embodiments, and can be changed as appropriate without departing from the spirit of the present invention. Hereinafter, modified examples will be described. In addition, about the structure same as the said embodiment, the same code | symbol is attached | subjected and repeated description is abbreviate | omitted.

3−1.直線偏光純度向上装置
上記の実施形態の直線偏光純度向上器1の応用例として、以下説明する直線偏光純度向上装置2を構成することとしてもよい。
3-1. Linear Polarization Purity Improvement Device As an application example of the linear polarization purity improver 1 of the above embodiment, a linear polarization purity improvement device 2 described below may be configured.

図6は、直線偏光純度向上装置2の一例である直線偏光純度向上装置2Aの構成を示す図である。
直線偏光純度向上装置2Aは、直線偏光純度向上器1A(1)及び1A(2)を有して構成される。直線偏光純度向上器1Aを直列2段に具備した構成である。各段の直線偏光純度向上器1Aの円偏光部40は、1/4波長板を有して構成される。また、1段目の直線純度向上器1A(1)の直線偏光部50(1)が有する直線偏光子の光軸方向と、2段目の直線偏光純度向上器1A(2)の円偏光部40(2)が有する1/4波長板の光軸方向との成す角度が45°に構成されている。
FIG. 6 is a diagram illustrating a configuration of a linearly polarized light purity improving apparatus 2 </ b> A that is an example of the linearly polarized light purity improving apparatus 2.
The linearly polarized light purity improving apparatus 2A includes linearly polarized light purity improvers 1A (1) and 1A (2). In this configuration, the linear polarization purity improver 1A is provided in two stages in series. The circular polarization unit 40 of the linear polarization purity improver 1A at each stage is configured to have a quarter wavelength plate. Further, the optical axis direction of the linear polarizer included in the linear polarization unit 50 (1) of the first-stage linear purity improver 1A (1) and the circular polarization unit of the second-stage linear purity improver 1A (2). The angle formed by the optical axis direction of the quarter wavelength plate of 40 (2) is 45 °.

直線偏光部50は、透過軸方向以外の方向にも僅かながら光を透過させるため、完全な直線偏光を得ることは難しい。しかし、直線偏光純度向上装置2Aでは、直線偏光純度向上器1Aが2段になっており、計測光の円偏光化と直線偏光化とが2回繰り返される。円偏光が直線偏光部50を通過するときには、直線偏光部50の透過軸方向を透過する光に対し、透過直交軸を透過する光の光量は消光比倍されて小さくなる。このため、円偏光化と直線偏光化とを繰り返すことで、より高純度の直線偏光を得ることが可能となる。   Since the linear polarization unit 50 transmits light slightly in directions other than the transmission axis direction, it is difficult to obtain complete linear polarization. However, in the linear polarization purity improving apparatus 2A, the linear polarization purity improver 1A has two stages, and the circular polarization and the linear polarization of the measurement light are repeated twice. When the circularly polarized light passes through the linear polarization unit 50, the amount of light transmitted through the transmission orthogonal axis is reduced by the extinction ratio with respect to the light transmitted through the transmission axis direction of the linear polarization unit 50. For this reason, it becomes possible to obtain higher-purity linearly polarized light by repeating circular polarization and linear polarization.

図7は、直線偏光純度向上装置2の別例である直線偏光純度向上装置2Bの構成を示す図である。
直線偏光純度向上装置2Bは、前段直線偏光部30と、直線偏光純度向上器1A(1)及び1A(2)とを有して構成される。つまり、直線偏光純度向上器1Aを2段に具備し、初段の直線偏光純度向上器1Aの前段に、当該初段の直線偏光純度向上器1Aの円偏光部40に入射する光を直線偏光化する前段直線偏光部30を追加した構成である。
FIG. 7 is a diagram illustrating a configuration of a linearly polarized light purity improving apparatus 2 </ b> B that is another example of the linearly polarized light purity improving apparatus 2.
The linearly polarized light purity improving apparatus 2B includes a front-stage linearly polarized light unit 30 and linearly polarized light purity improvers 1A (1) and 1A (2). That is, the linear polarization purity improver 1A is provided in two stages, and the light incident on the circular polarization unit 40 of the first stage linear polarization purity improver 1A is linearly polarized before the first stage linear polarization purity improver 1A. This is a configuration in which a front linear polarization unit 30 is added.

前段直線偏光部30が有する直線偏光子の光軸方向と、1段目の直線偏光純度向上器1A(1)の円偏光部40(1)が有する1/4波長板の光軸方向との成す角度が45°に構成されている。また、1段目の直線偏光純度向上器1A(1)の直線偏光部50(1)が有する直線偏光子の光軸方向と、2段目の直線偏光純度向上器1A(2)の円偏光部40(2)が有する1/4波長板の光軸方向との成す角度が45°に構成されている。   The optical axis direction of the linear polarizer included in the front linear polarization unit 30 and the optical axis direction of the quarter wavelength plate included in the circular polarization unit 40 (1) of the linear polarization purity improver 1A (1) in the first stage. The formed angle is 45 °. Further, the optical axis direction of the linear polarizer included in the linear polarization unit 50 (1) of the first stage linear polarization purity improver 1A (1) and the circular polarization of the second stage linear polarization purity improver 1A (2). The angle formed with the optical axis direction of the quarter-wave plate included in the portion 40 (2) is configured to be 45 °.

直線偏光純度向上装置2Bでは、入射光を前段直線偏光部30によって直線偏光化した後に、円偏光化と直線偏光化とを2回繰り返すため、図6の直線偏光純度向上装置2Aと比べて、より一層高純度の直線偏光を得ることができる。   In the linear polarization purity improving apparatus 2B, since the incident light is linearly polarized by the previous stage linear polarization unit 30, circular polarization and linear polarization are repeated twice. Compared to the linear polarization purity improvement apparatus 2A in FIG. Even higher purity linearly polarized light can be obtained.

なお、図6及び図7では、2段の直線偏光純度向上器1Aを有する直線偏光純度向上装置2として直線偏光純度向上装置2A,2Bを例に挙げて説明したが、3段以上の直線偏光純度向上器1Aを有する直線偏光純度向上装置2を構成することとしてもよいことは勿論である。   6 and 7, the linear polarization purity improvement devices 2A and 2B are described as examples of the linear polarization purity improvement device 2 having the two-stage linear polarization purity improver 1A. Of course, the linearly polarized light purity improving apparatus 2 having the purity improver 1A may be configured.

3−2.光計測装置
上記の第2実施形態では、計測対象物の旋光度を計測する光計測装置として、図2の直線偏光純度向上器1Bを具備する光計測装置を例に挙げて説明した。しかし、直線偏光純度向上器1Bに代えて、図1の直線偏光純度向上器1Aを光計測装置に具備させることとしてもよい。また、図6の直線偏光純度向上装置2Aや図7の直線偏光純度向上装置2Bを光計測装置に具備させることとしてもよい。
3-2. Optical Measurement Device In the second embodiment described above, the optical measurement device including the linear polarization purity improver 1B of FIG. 2 has been described as an example of the optical measurement device that measures the optical rotation of the measurement object. However, instead of the linear polarization purity improver 1B, the optical polarization device may be provided with the linear polarization purity improver 1A of FIG. Moreover, the linear polarization purity improving apparatus 2A in FIG. 6 and the linear polarization purity improving apparatus 2B in FIG. 7 may be provided in the optical measuring device.

また、光計測装置は、何も計測対象物の旋光度を計測する装置に限られるわけではない。例えば、吸光性を有する物質の吸光度を計測する吸光計測装置や、偏光偏波面を分析する偏光偏波面分析装置といった各種の光計測を行う装置とすることが可能である。   In addition, the optical measuring device is not limited to a device that measures the optical rotation of a measurement object. For example, it may be an apparatus that performs various optical measurements, such as an absorption measurement apparatus that measures the absorbance of a light-absorbing substance and a polarization polarization plane analysis apparatus that analyzes the polarization polarization plane.

また、上記の実施形態の血糖値計測装置に限らず、例えば、計測対象物を果物として旋光度を計測する光計測装置と、当該光計測装置により計測された旋光度を用いて果物の糖度を計測する糖度計測部とを備えた糖度計測装置を構成することも可能である。   In addition to the blood glucose level measuring device of the above embodiment, for example, an optical measuring device that measures the optical rotation using the measurement object as a fruit, and the sugar content of the fruit using the optical rotation measured by the optical measuring device. It is also possible to configure a sugar content measuring device including a sugar content measuring unit for measuring.

3−3.計測対象物
第2実施形態では、計測対象物を生体の耳たぶや指先、指の表皮部といった生体の透過性を有する所定部位としたが、計測対象物を当該生体の体液としてもよい。この場合の体液は血液に限らず、リンパ液や間質液、体腔液等としてもよい。計測対象物を体液とする場合は、体液をキュベット等の試料容器に封入し、この試料容器の直線偏光を入射させて、上記の実施形態と同様の手順で血液の旋光度の計測を行えばよい。
3-3. Measurement Object In the second embodiment, the measurement object is a predetermined part having biological permeability, such as a living earlobe, fingertip, or finger skin, but the measurement object may be a body fluid of the living body. The body fluid in this case is not limited to blood, but may be lymph fluid, interstitial fluid, body cavity fluid, or the like. When the measurement target is a body fluid, the body fluid is sealed in a sample container such as a cuvette, and linearly polarized light from the sample container is incident, and the blood optical rotation is measured in the same procedure as in the above embodiment. Good.

3−4.医療機器
また、第2実施形態では、医療機器として、血液に含有されているグルコースの濃度を計測する血糖値計測装置の実施形態について説明したが、医療機器はこれに限られないことは勿論である。例えば、血中に含まれるヘモグロビンの濃度を計測する医療機器を構成することも可能である。また、体液を間質液とする場合は、間質液に含まれるタンパク質やアミノ酸、脂肪酸等の成分の濃度を計測する医療機器を構成することも可能である。
3-4. In the second embodiment, the embodiment of the blood sugar level measuring device that measures the concentration of glucose contained in blood has been described as the medical device. However, the medical device is not limited to this. is there. For example, it is possible to configure a medical device that measures the concentration of hemoglobin contained in blood. When the body fluid is an interstitial fluid, it is also possible to configure a medical device that measures the concentration of components such as proteins, amino acids, and fatty acids contained in the interstitial fluid.

3−5.光源
上記の実施形態の直線偏光純度向上器1や直線偏光純度向上装置2を光源に内蔵させて、高純度の直線偏光を生成して出射する光源を構成することも可能である。
3-5. Light Source It is also possible to construct a light source that generates and emits high-purity linearly polarized light by incorporating the linearly polarized light purity improver 1 and the linearly polarized light purity improving apparatus 2 of the above-described embodiment in a light source.

図8は、この場合における光源12の構成例を示す図である。
光源12は、光生成部14と、直線偏光純度向上器1Aとを備えて構成される。出射光の出力段に直線偏光純度向上器1Aを具備した構成である。
FIG. 8 is a diagram illustrating a configuration example of the light source 12 in this case.
The light source 12 includes a light generation unit 14 and a linear polarization purity improver 1A. In this configuration, a linear polarization purity improver 1A is provided at the output stage of the emitted light.

光生成部14は、所定波長のレーザー光を生成する生成装置であり、例えばレーザー発振器を有して構成される。光生成部14で生成されたレーザー光は直線偏光純度向上器1Aに入射する。   The light generation unit 14 is a generation device that generates laser light having a predetermined wavelength, and includes, for example, a laser oscillator. The laser beam generated by the light generator 14 enters the linear polarization purity improver 1A.

直線偏光純度向上器1Aは、光生成部14から射出されるレーザー光を入射光として、上記の原理に従って高純度の直線偏光を生成する。つまり、光生成部14から射出されて円偏光部40に入射した入射光を、当該入射光よりも高い直線偏光純度の直線偏光で直線偏光部50から射出する。   The linearly polarized light purity improver 1A generates high-purity linearly polarized light according to the above principle using the laser light emitted from the light generation unit 14 as incident light. That is, the incident light emitted from the light generation unit 14 and incident on the circular polarization unit 40 is emitted from the linear polarization unit 50 with linearly polarized light having a higher linear polarization purity than the incident light.

この光源12は、例えば上記の実施形態で説明した血糖値計測装置等の光計測装置に具備させることができる。この場合は、光源12からの出射光を計測対象物に直接照射するように光計測装置を構成すればよい。   For example, the light source 12 can be included in an optical measurement device such as the blood glucose level measurement device described in the above embodiment. In this case, what is necessary is just to comprise an optical measurement apparatus so that the emitted light from the light source 12 may be directly irradiated to a measurement object.

なお、直線偏光純度向上器1Aの代わりに、図2の直線偏光純度向上器1Bや、図6の直線偏光純度向上装置2A、図7の直線偏光純度向上装置2Bを光源12に具備させることとしてもよいのは勿論である。   Instead of the linear polarization purity improver 1A, the light source 12 includes the linear polarization purity improver 1B of FIG. 2, the linear polarization purity improver 2A of FIG. 6, and the linear polarization purity improver 2B of FIG. Of course, it is good.

3−6.偏光用光学素子
上記の実施形態では、前段直線偏光部30や直線偏光部50が、例えばグラントムソンプリズムを有して構成されるものとして説明したが、これ以外の偏光用光学素子を有する構成としてもよいことは勿論である。例えば、同じグランタイプの偏光用光学素子であるグランテーラープリズムを有する構成としてもよい。
3-6. Polarization Optical Element In the above embodiment, the pre-stage linear polarization unit 30 and the linear polarization unit 50 are described as having, for example, a Glan-Thompson prism, but as a configuration having other polarization optical elements. Of course, it is also good. For example, it is good also as a structure which has the Grand Taylor prism which is the optical element for polarization | polarized-light of the same gran type.

また、上記の実施形態では、偏光部60が、例えばウォラストンプリズムを有して構成されるものとして説明したが、偏光部60を構成する偏光用光学素子も適宜変更可能である。例えば、グランレーザープリズムやローションプリズムといった直交分離機能を有する偏光用光学素子を有する構成としてもよい。   In the above-described embodiment, the polarizing unit 60 has been described as having a Wollaston prism, for example. However, the polarizing optical element forming the polarizing unit 60 can be changed as appropriate. For example, it is good also as a structure which has the optical element for polarization | polarized-light which has orthogonal separation function, such as a grand laser prism and a lotion prism.

1 直線偏光純度向上器、 2 直線偏光純度向上装置、 3 血糖値計測装置、 5 光学装置、 10,12 光源、 14 光生成部、 20 光変換部、 30 前段直線偏光部、 40 円偏光部、 50 直線偏光部、 60 偏光部、 70 光検出部、 80 信号処理部、 100 制御部、 200 操作部、 300 表示部、 400 音出力部、 500 通信部、 600 記憶部   DESCRIPTION OF SYMBOLS 1 Linear polarization purity improvement device, 2 Linear polarization purity improvement apparatus, 3 Blood glucose level measurement apparatus, 5 Optical apparatus, 10, 12 Light source, 14 Light generation part, 20 Light conversion part, 30 Pre-stage linear polarization part, 40 Circular polarization part, 50 linear polarization unit, 60 polarization unit, 70 light detection unit, 80 signal processing unit, 100 control unit, 200 operation unit, 300 display unit, 400 sound output unit, 500 communication unit, 600 storage unit

Claims (8)

円偏光部と、
前記円偏光部からの出射光を直線偏光化する直線偏光部と、
を備え、前記円偏光部に入射された直線偏光を、当該入射光よりも高い直線偏光純度の直線偏光で前記直線偏光部から射出する直線偏光純度向上器。
A circular polarization section;
A linear polarization unit that linearly polarizes the light emitted from the circular polarization unit;
A linearly polarized light purity improver that emits linearly polarized light incident on the circularly polarized light portion from the linearly polarized light portion as linearly polarized light having a higher linear polarization purity than the incident light.
前記円偏光部に入射する光を直線偏光化する前記円偏光部の前段に設けられた前段直線偏光部を更に備え、
前記円偏光部は、1/4波長板を有し、前記前段直線偏光部の光軸方向と当該1/4波長板の光軸方向との成す角度が45°に構成された、
請求項1に記載の直線偏光純度向上器。
A pre-stage linear polarization unit provided in a stage before the circular polarization unit that linearly polarizes light incident on the circular polarization unit;
The circular polarization unit has a quarter wavelength plate, and an angle formed between the optical axis direction of the front linear polarization unit and the optical axis direction of the quarter wavelength plate is configured to be 45 °.
The linearly polarized light purity improver according to claim 1.
前記円偏光部は、入射光の波長に応じた複数種類の1/4波長板を取り替え可能に有する、
請求項1又は2に記載の直線偏光純度向上器。
The circularly polarizing unit has a plurality of types of quarter wave plates that can be replaced according to the wavelength of incident light,
The linearly polarized light purity improver according to claim 1 or 2.
請求項1に記載の直線偏光純度向上器を複数段に具備した直線偏光純度向上装置。   A linear polarization purity improving apparatus comprising the linear polarization purity improver according to claim 1 in a plurality of stages. 請求項1に記載の直線偏光純度向上器を複数段に具備し、
初段の前記直線偏光純度向上器の前段に、当該初段の直線偏光純度向上器の円偏光部に入射する光を直線偏光化する前段直線偏光部を更に具備した、
直線偏光純度向上装置。
The linear polarization purity improver according to claim 1 is provided in a plurality of stages,
The front stage of the linear polarization purity improver in the first stage further comprises a front stage linear polarization section that linearly polarizes light incident on the circular polarization section of the first stage linear polarization purity improver.
Linear polarization purity improvement device.
各段の前記直線偏光純度向上器の円偏光部は、1/4波長板を有し、当該円偏光部の直前に位置する直線偏光部の光軸方向と当該1/4波長板の光軸方向との成す角度が45°に構成された、
請求項4又は5に記載の直線偏光純度向上装置。
The circular polarization part of the linear polarization purity improver at each stage has a quarter wavelength plate, the optical axis direction of the linear polarization part located immediately before the circular polarization part, and the optical axis of the quarter wavelength plate. The angle formed with the direction is 45 °,
The linearly polarized light purity improving apparatus according to claim 4 or 5.
請求項1〜3の何れか一項に記載の直線偏光純度向上器、或いは、請求項4〜6の何れか一項に記載の直線偏光純度向上装置(以下、包括して「直線偏光純度向上器」という。)を具備し、当該直線偏光純度向上器からの出射光を計測対象物に透過させ、当該透過光に基づいて当該計測対象物の旋光度を計測する光計測装置。   The linearly polarized light purity improver according to any one of claims 1 to 3, or the linearly polarized light purity improver according to any one of claims 4 to 6 (hereinafter collectively referred to as "linearly polarized purity improvement"). An optical measurement device that transmits the light emitted from the linear polarization purity improver to the measurement object and measures the optical rotation of the measurement object based on the transmitted light. 前記計測対象物を生体の透過性を有する所定部位あるいは当該生体の体液として旋光度を計測する請求項7に記載の光計測装置と、
前記光計測装置により計測された旋光度を用いて所定物質の成分濃度を計測する成分濃度算出部と、
を備えた医療機器。
The optical measurement device according to claim 7, wherein the optical rotation is measured using the measurement object as a predetermined part having permeability of a living body or a body fluid of the living body,
A component concentration calculator that measures the component concentration of a predetermined substance using the optical rotation measured by the optical measurement device;
With medical equipment.
JP2013030873A 2013-02-20 2013-02-20 Linear polarization purity improving unit, linear polarization purity improving device, optical measurement device and medical device Withdrawn JP2014160175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013030873A JP2014160175A (en) 2013-02-20 2013-02-20 Linear polarization purity improving unit, linear polarization purity improving device, optical measurement device and medical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013030873A JP2014160175A (en) 2013-02-20 2013-02-20 Linear polarization purity improving unit, linear polarization purity improving device, optical measurement device and medical device

Publications (1)

Publication Number Publication Date
JP2014160175A true JP2014160175A (en) 2014-09-04

Family

ID=51611899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013030873A Withdrawn JP2014160175A (en) 2013-02-20 2013-02-20 Linear polarization purity improving unit, linear polarization purity improving device, optical measurement device and medical device

Country Status (1)

Country Link
JP (1) JP2014160175A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5196337A (en) * 1975-02-21 1976-08-24
JPH11142322A (en) * 1997-11-13 1999-05-28 Ricoh Co Ltd Double refraction measuring apparatus and method
JP2004113434A (en) * 2002-09-26 2004-04-15 Masato Nakamura Blood sugar measuring instrument
JP2006258594A (en) * 2005-03-17 2006-09-28 Sumitomo Metal Mining Co Ltd Automatic double refraction measuring instrument and double refraction measuring method using it

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5196337A (en) * 1975-02-21 1976-08-24
JPH11142322A (en) * 1997-11-13 1999-05-28 Ricoh Co Ltd Double refraction measuring apparatus and method
JP2004113434A (en) * 2002-09-26 2004-04-15 Masato Nakamura Blood sugar measuring instrument
JP2006258594A (en) * 2005-03-17 2006-09-28 Sumitomo Metal Mining Co Ltd Automatic double refraction measuring instrument and double refraction measuring method using it

Similar Documents

Publication Publication Date Title
TWI597488B (en) Device and method for alignment
EP2745097B1 (en) Cavity enhanced laser based gas analyzer
JP5829784B1 (en) OFDR system
JP5365367B2 (en) Magnetic sensor
US8982346B2 (en) System and method for measuring the rotation angle of optical active substance
WO2013094362A1 (en) Measurement device, measurement method, program, and recording medium
JP2007040805A (en) Imaging polarizing measuring method
JP2007178409A (en) Apparatus for measuring optical image
TW201831882A (en) Method and system for sensing glucose concentration
JP2015194359A (en) Scatterer spectroscopic analyzer
US9713441B2 (en) Optical rotation measurement method and optical rotation measurement apparatus
ES2954238T3 (en) Procedure and device for reconstruction of a backscattered vector electromagnetic wave
JP5626005B2 (en) Optical component measuring device
US8842277B2 (en) Optical measurement device and optical measurement method
EP2363721A1 (en) Optical fiber type magnetic field sensor and sensing method
US8922760B2 (en) Defocused optical rotation measurement apparatus, optical rotation measurement method and defocused optical fiber system
JP2014160175A (en) Linear polarization purity improving unit, linear polarization purity improving device, optical measurement device and medical device
JP2012083311A (en) Polarimeter
JP6013102B2 (en) Circular dichroism measuring method and circular dichroic measuring device
JP2014032146A (en) Concentration measuring device, and method for controlling the concentration measuring device
JP2015225030A (en) Optical rotation characteristic measuring method of living body using polarization modulating interferometer system and optical rotation characteristic measuring device of living body
JP2012148034A (en) Apparatus for measuring component concentration in object to be measured
JP2014167392A (en) Phase difference measuring method and device
JP7411349B2 (en) Glucose measuring device and glucose measuring method
JP6603634B2 (en) Electric field sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161108

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20170106