JP2004113434A - Blood sugar measuring instrument - Google Patents

Blood sugar measuring instrument Download PDF

Info

Publication number
JP2004113434A
JP2004113434A JP2002280409A JP2002280409A JP2004113434A JP 2004113434 A JP2004113434 A JP 2004113434A JP 2002280409 A JP2002280409 A JP 2002280409A JP 2002280409 A JP2002280409 A JP 2002280409A JP 2004113434 A JP2004113434 A JP 2004113434A
Authority
JP
Japan
Prior art keywords
light
deflecting plate
semiconductor laser
blood glucose
laser diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002280409A
Other languages
Japanese (ja)
Other versions
JP3966796B2 (en
Inventor
Masato Nakamura
中村 真人
Norio Okubo
大久保 典雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2002280409A priority Critical patent/JP3966796B2/en
Publication of JP2004113434A publication Critical patent/JP2004113434A/en
Application granted granted Critical
Publication of JP3966796B2 publication Critical patent/JP3966796B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a blood sugar measuring instrument enabling the so-called non-invasive measurement for measuring the concentration of glucose in blood from the outside of a human body and having high precision and excellent reproducibility. <P>SOLUTION: The light emitted from a semiconductor laser diode 20 is incident on the sample 21 of a subject through a rotary deflecting plate 25 and subsequently detected by a photodetector 23 through a fixed deflecting plate 22. The reference light emitted from a reflection type sensor 24 passes through the fixed deflecting plate 22 and the rotary deflecting plate 25 to be incident on a rotary reflecting mirror 26 and the reflected light again passes through the rotary deflecting plate 25 and the fixed deflecting plate 22 to be incident on the reflection type sensor 24. The rotary deflecting plate 25 and the rotary reflecting mirror 26 are rotated by a motor driver 28 and a motor 27. The semiconductor laser diode 20 is controlled by a semiconductor laser diode control unit 29. The light signals detected by the photodetector 23 and the reflection type sensor 24 are sent to a measuring personal computer 30. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、血糖測定装置に関するものであり、さらに詳しくは採血を要することなく人体の外部から無侵襲的に血糖の測定が可能な生体偏光脈波計測による無侵襲血糖測定装置に関するものである。
【0002】
【従来の技術】
近年の糖尿病患者の著しい増加に対し、その管理に必要な血糖データを得るために簡易かつ迅速で正確な血糖の測定装置が要求されている。また、患者自身が安全かつ容易に使用可能な血糖計が提供されるならば血糖のコントロールに寄与するところも極めて大きいものといえる。
【0003】
現状の血糖測定は、注射器で採血する、あるいは針で皮膚を刺し血液を採取して測定する方法が用いられている。糖尿病、新生児医療などでは、合併症や予防改善のために、何度も採血による血糖測定が行われている。針をさす痛み、皮下出血、血液を介した感染事故等の問題から、無痛、非観血である無侵襲血糖測定の要望は極めて大きい。
【0004】
血糖は血液中に含まれるグルコース濃度を測定することで把握することが出来るが、従来の無侵襲血糖測定方法としては、グルコースの特定吸収波長である近赤外から赤外域の波長光の吸収を測定する方法、グルコースによる偏光の旋光角を測定する方法、ラマン光測定などいくつかの方法が報告されている。(例えば特許文献1参照)
【0005】
【特許文献1】
特開2002−202258
【0006】
しかし、グルコースの特定吸収波長の計測は、皮下組織や水による吸収が大きく、また、温度、プローブ接触条件の影響などが大きな障害となり、未だ実用にいたるものはない。
【0007】
偏光の旋光角測定では、眼の前眼房水での計測が報告されているが、光路長が特定できないことと、角膜による複屈折が問題で、やはり実用化には至っていない。他の方法はいまだ可能性を追求している段階である。
【0008】
【発明が解決しようとする課題】
従って本発明の課題は、前記の如き事情に鑑み人体の外部から血液中のグルコース濃度を測定する、いわゆる無侵襲測定の可能な装置であって、精度が高く再現性にも優れた血糖測定装置を提供することにある。
【0009】
【課題を解決するための手段】
発明者らは、血液試料または体外、例えば手の指から体内の血液に波長600〜1700nmの光を照射し、人体組織を透過した光を受光し、得られた透過光の旋光角を解析、演算し、血液中のグルコース濃度を算出することにより、測定精度、再現性の高い血糖測定が実現できることを見出した。
【0010】
すなわち、本発明は、照射光を発生するための光源手段と、生体を透過した光を受光するための受光手段と、前記光源手段と前記生体との間に位置された回転偏光板と、前記生体と前記受光手段の間に位置された偏光板とを具備する血糖測定装置において、生体の脈動による光強度の変動と旋光角の変化を測定および解析して血糖を測定することを特徴とする血糖測定装置に関するものである。
【0011】
【発明の実施の形態】
以下、本発明について詳細に説明する。グルコースは光の偏光を反時計方向に回転させる左旋光性の光学特性をもつ。この旋光角は光学的厚さとグルコース濃度に関係する。
【0012】
図3はグルコース濃度と旋光角の関係を測定した測定模式図を示す。発振波長787nmの半導体レーザダイオード1から出射された光は偏光板2を通過し、光学的厚さが一定の検体試料3へ入射され、検体中に含まれるグルコースによって反時計方向に旋光角5だけ旋光される。
【0013】
図7は旋光角を測定するための測定系を示す。半導体レーザダイオード20から出射された光は、回転偏光板25を通過して検体試料21に入射される。半導体レーザダイオード20は4分の1波長板を具備し、出射光は円偏光されている。検体試料21を透過した光は固定偏光板22を通過してフォトディテクター23で受光される。
【0014】
一方、反射型センサ24から出射されるリファレンス用の光は、固定偏光板22、回転偏光板25を通過して回転反射鏡26で反射される。反射された光は、再度回転偏光板25、固定偏光板22を通過して、反射型センサ24に入射される。回転偏光板25、回転反射鏡26は、モータドライバ28、モータ27で回転される。半導体レーザダイオード20は、半導体レーザダイオード制御装置29で制御される。フォトディテクター23、反射型センサ24で受光された光信号は、計測用のパソコン30に送られる。
【0015】
図8は図7で測定された信号光40とリファレンス光41の光強度の時間的変化(位相差)を示す。旋光角はリファレンス光と信号光の位相差で表される。
【0016】
図4は図3の測定系を用いて測定したグルコース濃度と旋光角の関係を示す。検体であるグルコース溶液は、人体組織(散乱体)を含まず、図3における光学的厚さ4が9mmで一定のものを用いた。
この図からグルコース濃度と旋光角は負の相関があることがわかる。このように光学的厚さを変数として、旋光角からグルコース濃度が求められる。
【0017】
次に、検体として散乱体を含む試料を用いた場合の測定結果を説明する。検体は散乱体として脂肪乳剤を0.02%含むものを用いた。図9はグルコース濃度と旋光角の関係を示す。この図からわかるように散乱体がある検体を用いた場合においても、グルコース濃度と旋光角の関係は負の相関を持つ。
【0018】
一方検体として人体の指を用いる場合、動脈の脈動で検体の光学的厚さが変化し、受光される光の旋光角は脈動をもつ。正確なグルコース濃度を測定するためには、この生体の脈動を考慮する必要がある。
【0019】
一般に、グルコースなどの光学活性体を含む媒体では、旋光角Aは光路長L と光学活性物質の濃度Cに比例する。すなわち、
A=αCL・・・(1)
と表される。αは比旋光度で、物質の種類、温度、波長によって決まっている。グルコースの比旋光度は、633nmの発振波長において4.562(度cm/g)である。Cは光学活性体の濃度でこの場合はグルコース濃度である。
【0020】
本血糖計測法では、血液以外の影響をできるだけ除外するため、動脈の脈動による変動成分のみに注目する。すなわち、(1)式は、
ΔA = α × ΔL × C・・・(2)
と変形され、これより
C = ΔA / α /ΔL・・・(3)
となる。
ここで、αは比旋光度で定数、ΔAは旋光角の変動、ΔLは透過光強度の変動から見積もられる光学的厚さの変動となる。
【0021】
したがって、血糖値(グルコース濃度)Cは、ΔLに対するΔAの比に相関することが分かる。このようにして、偏光脈波を計測することによって、グルコース濃度が算出できる。
【0022】
本発明では、高速高精度で旋光角を計測するハイスピードエルプソメトリを用いて、生体によって旋光角が脈動するする生体偏光脈波を計測し、グルコース濃度を測定する。
ハイスピードエリプソメトリは、脈動を測定するために1秒間に20回のデータサンプリングが必要であり、高速に回転できる偏光板が必要である。
【0023】
図1は生体(指など)のグルコース濃度を測定するための測定系の模式図を示す。発振波長805nmの半導体レーザダイオード10から出射された光は、エンコーダ付サーボ中空モータを有した回転偏光板11を通過して検体試料である指12に入射され、指12を透過した光は偏光板13を通過して高感度フォトダイオード14で受光される。また半導体レーザダイオード10は4分の1波長板を具備し、出射光は円偏光されている。回転偏光板11としてはファラデイ素子等を用いた電気式回転偏光板を用いてもよい。
【0024】
図2は、図1の測定系を用いて計測された検体試料である生体(指)の透過光波形を示す。サーボ中空モータのエンコーダ信号42は1パルス/1サイクルで、計測データ43は2波/1サイクル(周波数では28〜30Hz)であった。信号光の計測データ43の包絡線は脈拍による周期的変化を示す。この周波数は1〜2Hzであった。
【0025】
図6は旋光角の周期的変化の包絡線及び包絡線の最大領域、最小領域において信号光40とリファレンス光41の位相関係を示す。包絡線の最大領域は血液量が少なく、光学的厚さは薄い。一方包絡線の最小領域は血液量が多く、光学的厚さは厚い。光学的厚さが薄い(包絡線の最大領域)ときは旋光角が小さく、光学的厚さが厚い(包絡線の最小領域)ときは旋光角が大きい。
これらの計測データ(生体偏光脈波計測データ)を解析することで、旋光角の周期的変化が算出される。
【0026】
また生体偏光脈波計測データから脈拍による変化が1〜2Hzであることがわかる。これらのデータを解析することで、光学的厚さの周期的変化が算出される。
【0027】
これらの光学的厚さと偏光角の周期的変化を解析することで、グルコース濃度が算出できる。
【0028】
グルコース濃度の算出方法を図5に示す。光学的厚さL、旋光角Aをパラメータとしたグルコース濃度yの関数であるy=f(L,A)とy=f(ΔL、ΔA)を導出する。
【0029】
次に図1の測定装置を用いて透過光計測(包絡線、周波数解析など)と生体偏光脈波計測を行う。これらのデータを解析して、光学的厚さLの変動成分ΔL、旋光角Aの変動成分ΔAを解析し、ΔL、ΔAを抽出する。
【0030】
次に、ΔLとΔAの相関関係を解析する。最後に、グルコース濃度yを導出する。こうして、生体の脈動等による光学的厚さの変化による測定誤差のない、高精度なグルコース濃度を再現性よく測定できる。
【0031】
また、回転偏光板の回転数を増大させることで、より高精度なグルコース濃度を再現性よく測定できる。
【0032】
【発明の効果】
本発明により、人体の外部から血液中のグルコース濃度を測定する、いわゆる無侵襲測定の可能な装置であって、精度が高く再現性にも優れた血糖測定装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施形態の血糖測定の模式図を示す。
【図2】本発明の血糖測定装置で測定される透過光データを示す。
【図3】光学的厚さが一定の検体試料をもちいた測定模式図を示す。
【図4】図7の測定装置を用いて散乱体なしの場合のグルコース濃度と旋光角の関係を示す。
【図5】グルコース濃度の周期的変化を導出するフローチャートを示す。
【図6】旋光角の周期的変化の包絡線と包絡線の最大領域、最小領域において信号光40とリファレンス光41の位相関係を示す。
【図7】旋光角を測定するための測定系を示す。
【図8】信号光40とリファレンス光41の光強度の位相差を示す。
【図9】図7の測定装置を用いて散乱体ありの場合のグルコース濃度と旋光角の関係を示す。
【符号の説明】
1 半導体レーザダイオード
2 偏光板
3 検体試料
4 光学的厚さ
5 旋光角
10 半導体レーザダイオード
11 回転偏光板
12 指
13 偏光板
14 フォトダイオード
20 半導体レーザダイオード
21 検体試料
22 固定偏光板
23 フォトディテクター
24 反射型センサ
25 回転偏光板
26 回転反射鏡
27 モータ
28 モータドライバ
29 半導体レーザダイオード制御装置
30 計測用のパソコン
40 信号光
41 リファレンス光
42 エンコーダ信号
43 計測データ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a blood glucose measuring device, and more particularly, to a non-invasive blood glucose measuring device by means of a biological polarized pulse wave measurement capable of non-invasively measuring blood glucose from the outside of a human body without requiring blood collection.
[0002]
[Prior art]
With the remarkable increase in the number of diabetic patients in recent years, a simple, quick and accurate blood glucose measuring device is required to obtain blood glucose data necessary for the management. Further, if a blood glucose meter that can be used safely and easily by the patient himself is provided, it can be said that the contribution to blood glucose control is extremely large.
[0003]
At present, blood glucose measurement uses a method of collecting blood with a syringe or piercing the skin with a needle to collect and measure blood. In diabetes, neonatal medicine, and the like, blood glucose measurement is repeatedly performed by blood sampling for complications and improvement of prevention. Because of problems such as pain associated with needles, subcutaneous bleeding, and blood-borne infections, there is a great demand for painless, non-invasive, noninvasive blood glucose measurement.
[0004]
Blood glucose can be grasped by measuring the concentration of glucose contained in the blood.However, a conventional non-invasive blood glucose measurement method uses absorption of light having a wavelength in the near infrared to infrared region, which is a specific absorption wavelength of glucose. Several methods have been reported, such as a measuring method, a method for measuring the angle of rotation of polarized light by glucose, and a Raman light measurement. (For example, see Patent Document 1)
[0005]
[Patent Document 1]
JP-A-2002-202258
[0006]
However, the measurement of the specific absorption wavelength of glucose has large absorption by subcutaneous tissue and water, and the temperature and the effect of the probe contact condition are serious obstacles, and there is no practical use yet.
[0007]
In the measurement of the angle of polarization of the polarized light, measurement in the anterior aqueous humor of the eye has been reported. However, the optical path length cannot be specified and birefringence due to the cornea is a problem. Others are still exploring possibilities.
[0008]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a device capable of so-called non-invasive measurement for measuring glucose concentration in blood from the outside of the human body in view of the above-described circumstances, and which has high accuracy and excellent reproducibility. Is to provide.
[0009]
[Means for Solving the Problems]
The inventors irradiate the blood of the body with light having a wavelength of 600 to 1700 nm from the blood sample or the outside of the body, for example, from the finger of the hand, receive the light transmitted through the human body tissue, and analyze the angle of rotation of the obtained transmitted light, By calculating and calculating the glucose concentration in the blood, it has been found that blood glucose measurement with high measurement accuracy and high reproducibility can be realized.
[0010]
That is, the present invention provides a light source means for generating irradiation light, a light receiving means for receiving light transmitted through a living body, a rotating polarizer positioned between the light source means and the living body, In a blood glucose measuring device comprising a living body and a polarizing plate located between the light receiving means, a blood glucose is measured by measuring and analyzing a change in light intensity and a change in an optical rotation angle due to pulsation of the living body. The present invention relates to a blood glucose measurement device.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail. Glucose has left-handed optical properties that rotate the polarization of light counterclockwise. This angle of rotation is related to optical thickness and glucose concentration.
[0012]
FIG. 3 is a schematic diagram illustrating the measurement of the relationship between the glucose concentration and the optical rotation angle. The light emitted from the semiconductor laser diode 1 having an oscillation wavelength of 787 nm passes through the polarizing plate 2 and is incident on the specimen 3 having a constant optical thickness, and is rotated counterclockwise by an angle of rotation 5 by glucose contained in the specimen. Rotated.
[0013]
FIG. 7 shows a measurement system for measuring the optical rotation angle. The light emitted from the semiconductor laser diode 20 passes through the rotating polarizer 25 and enters the sample 21. The semiconductor laser diode 20 has a quarter-wave plate, and the emitted light is circularly polarized. Light transmitted through the sample 21 passes through the fixed polarizing plate 22 and is received by the photodetector 23.
[0014]
On the other hand, the reference light emitted from the reflection type sensor 24 passes through the fixed polarizing plate 22 and the rotating polarizing plate 25 and is reflected by the rotating reflecting mirror 26. The reflected light passes through the rotating polarizer 25 and the fixed polarizer 22 again, and is incident on the reflective sensor 24. The rotating polarizing plate 25 and the rotating reflecting mirror 26 are rotated by a motor driver 28 and a motor 27. The semiconductor laser diode 20 is controlled by a semiconductor laser diode control device 29. Optical signals received by the photodetector 23 and the reflection type sensor 24 are sent to a personal computer 30 for measurement.
[0015]
FIG. 8 shows a temporal change (phase difference) of the light intensity of the signal light 40 and the reference light 41 measured in FIG. The optical rotation angle is represented by the phase difference between the reference light and the signal light.
[0016]
FIG. 4 shows the relationship between the glucose concentration and the optical rotation angle measured using the measurement system of FIG. The glucose solution used as the specimen did not contain human body tissue (scatterers) and had a constant optical thickness 4 of 9 mm in FIG.
This figure shows that the glucose concentration and the optical rotation angle have a negative correlation. Thus, the glucose concentration is determined from the optical rotation angle with the optical thickness as a variable.
[0017]
Next, a measurement result when a sample containing a scatterer is used as a specimen will be described. The sample used was a scatterer containing 0.02% of a fat emulsion. FIG. 9 shows the relationship between the glucose concentration and the optical rotation angle. As can be seen from this figure, even when a sample having a scatterer is used, the relationship between the glucose concentration and the optical rotation angle has a negative correlation.
[0018]
On the other hand, when a finger of the human body is used as the specimen, the optical thickness of the specimen changes due to the pulsation of the artery, and the optical rotation angle of the received light has a pulsation. In order to measure an accurate glucose concentration, it is necessary to consider the pulsation of the living body.
[0019]
Generally, in a medium containing an optically active substance such as glucose, the optical rotation angle A is proportional to the optical path length L and the concentration C of the optically active substance. That is,
A = αCL (1)
It is expressed as α is the specific rotation, which is determined by the type of material, temperature, and wavelength. The specific rotation of glucose is 4.562 (degree cm 2 / g) at an oscillation wavelength of 633 nm. C is the concentration of the optically active substance, in this case the glucose concentration.
[0020]
In this blood glucose measurement method, in order to exclude influences other than blood as much as possible, attention is paid only to a fluctuation component due to arterial pulsation. That is, equation (1) is
ΔA = α × ΔL × C (2)
From this, C = ΔA / α / ΔL (3)
It becomes.
Here, α is a constant which is a specific rotation, ΔA is a fluctuation of the optical rotation angle, and ΔL is a fluctuation of an optical thickness estimated from a fluctuation of a transmitted light intensity.
[0021]
Therefore, it can be seen that the blood sugar level (glucose concentration) C correlates with the ratio of ΔA to ΔL. Thus, the glucose concentration can be calculated by measuring the polarized pulse wave.
[0022]
In the present invention, the glucose concentration is measured by measuring a biologically polarized pulse wave whose optical rotation angle pulsates by a living body, using a high-speed ellipsometry that measures the optical rotation angle with high speed and high accuracy.
High-speed ellipsometry requires 20 data samplings per second to measure pulsation, and requires a polarizing plate that can rotate at high speed.
[0023]
FIG. 1 is a schematic diagram of a measurement system for measuring the glucose concentration of a living body (such as a finger). Light emitted from the semiconductor laser diode 10 having an oscillation wavelength of 805 nm passes through a rotating polarizer 11 having a servo hollow motor with an encoder and is incident on a finger 12 which is a specimen sample. 13 and is received by the high-sensitivity photodiode 14. The semiconductor laser diode 10 has a quarter-wave plate, and the emitted light is circularly polarized. As the rotating polarizing plate 11, an electric rotating polarizing plate using a Faraday element or the like may be used.
[0024]
FIG. 2 shows a transmitted light waveform of a living body (finger) which is a specimen sample measured using the measurement system of FIG. The encoder signal 42 of the servo hollow motor was 1 pulse / 1 cycle, and the measurement data 43 was 2 waves / 1 cycle (28 to 30 Hz in frequency). The envelope of the measurement data 43 of the signal light indicates a periodic change due to the pulse. This frequency was 1-2 Hz.
[0025]
FIG. 6 shows the envelope of the periodic change in the optical rotation angle and the phase relationship between the signal light 40 and the reference light 41 in the maximum region and the minimum region of the envelope. The maximum area of the envelope is low in blood volume and has a low optical thickness. On the other hand, the minimum area of the envelope has a large blood volume and a large optical thickness. When the optical thickness is small (the maximum region of the envelope), the optical rotation angle is small, and when the optical thickness is large (the minimum region of the envelope), the optical rotation angle is large.
By analyzing these measurement data (biologically polarized pulse wave measurement data), a periodic change in the optical rotation angle is calculated.
[0026]
Further, it can be seen from the biological polarization pulse wave measurement data that the change due to the pulse is 1-2 Hz. By analyzing these data, a periodic change in the optical thickness is calculated.
[0027]
By analyzing the periodic changes in the optical thickness and the polarization angle, the glucose concentration can be calculated.
[0028]
FIG. 5 shows a method of calculating the glucose concentration. Deriving y = f (L, A) and y = f (ΔL, ΔA) which are functions of the glucose concentration y using the optical thickness L and the optical rotation angle A as parameters.
[0029]
Next, transmitted light measurement (envelope, frequency analysis, etc.) and biological polarization pulse wave measurement are performed using the measurement apparatus of FIG. By analyzing these data, the fluctuation component ΔL of the optical thickness L and the fluctuation component ΔA of the optical rotation angle A are analyzed, and ΔL and ΔA are extracted.
[0030]
Next, the correlation between ΔL and ΔA is analyzed. Finally, the glucose concentration y is derived. In this way, a highly accurate glucose concentration can be measured with good reproducibility without a measurement error due to a change in optical thickness due to pulsation of a living body or the like.
[0031]
In addition, by increasing the number of rotations of the rotating polarizer, a more accurate glucose concentration can be measured with good reproducibility.
[0032]
【The invention's effect】
According to the present invention, it is possible to provide a blood glucose measuring device which measures glucose concentration in blood from the outside of a human body, and is capable of so-called non-invasive measurement, and has high accuracy and excellent reproducibility.
[Brief description of the drawings]
FIG. 1 shows a schematic diagram of a blood glucose measurement according to an embodiment of the present invention.
FIG. 2 shows transmitted light data measured by the blood glucose measuring device of the present invention.
FIG. 3 shows a measurement schematic diagram using a specimen sample having a constant optical thickness.
FIG. 4 shows a relationship between a glucose concentration and an optical rotation angle when no scatterer is used, using the measuring apparatus of FIG. 7;
FIG. 5 shows a flowchart for deriving a periodic change in glucose concentration.
FIG. 6 shows the envelope of the periodic change in the optical rotation angle and the phase relationship between the signal light 40 and the reference light 41 in the maximum region and the minimum region of the envelope.
FIG. 7 shows a measurement system for measuring an optical rotation angle.
8 shows a phase difference between the light intensities of the signal light 40 and the reference light 41. FIG.
FIG. 9 shows the relationship between the glucose concentration and the optical rotation angle in the presence of a scatterer using the measurement device of FIG.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 semiconductor laser diode 2 polarizing plate 3 sample sample 4 optical thickness 5 optical rotation angle 10 semiconductor laser diode 11 rotating polarizing plate 12 finger 13 polarizing plate 14 photodiode 20 semiconductor laser diode 21 sample sample 22 fixed polarizing plate 23 photodetector 24 reflection Type sensor 25 Rotating polarizing plate 26 Rotating reflector 27 Motor 28 Motor driver 29 Semiconductor laser diode controller 30 Measurement personal computer 40 Signal light 41 Reference light 42 Encoder signal 43 Measurement data

Claims (5)

照射光を発生するための光源手段と、生体を透過した光を受光するための受光手段と、前記光源手段と前記生体との間に位置された回転偏光板と、前記生体と前記受光手段の間に位置された偏光板とを具備する血糖測定装置において、生体の脈動による光強度の変動と旋光角の変化を測定および解析して血糖を測定することを特徴とする血糖測定装置。Light source means for generating irradiation light, light receiving means for receiving light transmitted through the living body, a rotating polarizer positioned between the light source means and the living body, and the living body and the light receiving means What is claimed is: 1. A blood glucose measuring device comprising a polarizing plate interposed therebetween, wherein the blood glucose is measured by measuring and analyzing a change in light intensity and a change in an optical rotation angle due to pulsation of a living body. 前記回転偏光板は電気式回転偏光板を用いることを特徴とする請求項1に記載の血糖測定装置。The blood glucose measuring device according to claim 1, wherein an electric rotating polarizing plate is used as the rotating polarizing plate. 前記光源手段の発振波長が600〜1700nmであることを特徴とする請求項1または2のいずれか1項に記載の血糖測定装置。The blood glucose measuring device according to claim 1, wherein the light source has an oscillation wavelength of 600 to 1700 nm. 前記光源手段は半導体レーザダイオードであることを特徴とする請求項1〜3に記載の血糖測定装置。The blood glucose measuring device according to claim 1, wherein the light source is a semiconductor laser diode. 前記半導体レーザダイオードは円偏光していることを特徴とする請求項1〜4に記載の血糖測定装置。The blood glucose measuring device according to claim 1, wherein the semiconductor laser diode is circularly polarized.
JP2002280409A 2002-09-26 2002-09-26 Blood glucose measuring device Expired - Fee Related JP3966796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002280409A JP3966796B2 (en) 2002-09-26 2002-09-26 Blood glucose measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002280409A JP3966796B2 (en) 2002-09-26 2002-09-26 Blood glucose measuring device

Publications (2)

Publication Number Publication Date
JP2004113434A true JP2004113434A (en) 2004-04-15
JP3966796B2 JP3966796B2 (en) 2007-08-29

Family

ID=32275124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002280409A Expired - Fee Related JP3966796B2 (en) 2002-09-26 2002-09-26 Blood glucose measuring device

Country Status (1)

Country Link
JP (1) JP3966796B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006122579A (en) * 2004-11-01 2006-05-18 Aime Technology Co Ltd Noninvasive measurement method for trace component density in scattered medium, and apparatus therefor
JP2010117163A (en) * 2008-11-11 2010-05-27 Horiba Ltd Polarimeter and method for calibrating polarimeter
JP2010117164A (en) * 2008-11-11 2010-05-27 Horiba Ltd Polarimeter
CN101109709B (en) * 2006-06-30 2010-06-09 株式会社东芝 Color development reaction detector
WO2010100766A1 (en) * 2009-03-04 2010-09-10 有限会社グローバルファイバオプティックス Optical rotation measuring device and optical rotation measuring method
WO2011145652A1 (en) * 2010-05-19 2011-11-24 塩野義製薬株式会社 Defocused optical rotation measurement apparatus, optical rotation measurement method and defocused optical fiber system
WO2012070465A1 (en) * 2010-11-26 2012-05-31 株式会社グローバルファイバオプティックス Optical rotation measurement device, polarization conversion optical system that can be used for optical rotation measurement, and method for measuring optical rotation in optical rotation measurement system using said polarization conversion optical system
JP2013126509A (en) * 2011-12-19 2013-06-27 Sony Corp Measuring apparatus, measuring method, program, and recording medium
JP2014160175A (en) * 2013-02-20 2014-09-04 Seiko Epson Corp Linear polarization purity improving unit, linear polarization purity improving device, optical measurement device and medical device
US9433374B2 (en) 2012-08-06 2016-09-06 Seiko Epson Corporation Concentration measuring device and a method of controlling the concentration measuring device
WO2016147795A1 (en) * 2015-03-13 2016-09-22 国立大学法人信州大学 Non-invasive blood glucose level measurement method and non-invasive blood glucose level measurement device
US9713441B2 (en) 2014-01-31 2017-07-25 Seiko Epson Corporation Optical rotation measurement method and optical rotation measurement apparatus
WO2017175608A1 (en) * 2016-04-08 2017-10-12 京セラ株式会社 Electronic equipment and estimating system
JP2020108819A (en) * 2020-04-01 2020-07-16 京セラ株式会社 Electronic apparatus and estimation system
JP2020168571A (en) * 2020-07-22 2020-10-15 京セラ株式会社 Electronic apparatus and estimation system
JP2021041228A (en) * 2020-12-07 2021-03-18 京セラ株式会社 Electronic apparatus and estimation system
CN114041789A (en) * 2021-10-29 2022-02-15 中国科学院西安光学精密机械研究所 Highly-integrated portable polarization regulation and control blood glucose measuring device and method
US11583227B2 (en) 2018-11-11 2023-02-21 Biobeat Technologies Ltd. Wearable apparatus and method for monitoring medical properties

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107296616A (en) * 2017-05-20 2017-10-27 深圳市前海安测信息技术有限公司 Portable non-invasive blood sugar test device and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07506039A (en) * 1992-12-10 1995-07-06 サンシャイン メディカル インスツルメンツ インコーポレイテッド Non-invasive blood glucose measurement
JP2000037355A (en) * 1998-07-24 2000-02-08 Fuji Photo Film Co Ltd Method for measuring glucose concentration and apparatus therefor
JP2001524342A (en) * 1997-12-02 2001-12-04 アボット・ラボラトリーズ Multiple sensors and usage
JP2001356089A (en) * 2000-11-10 2001-12-26 Citizen Watch Co Ltd Concentration measuring instrument
JP2002224092A (en) * 2001-01-30 2002-08-13 Hitachi Ltd Organism monitoring system and light measuring probe

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07506039A (en) * 1992-12-10 1995-07-06 サンシャイン メディカル インスツルメンツ インコーポレイテッド Non-invasive blood glucose measurement
JP2001524342A (en) * 1997-12-02 2001-12-04 アボット・ラボラトリーズ Multiple sensors and usage
JP2000037355A (en) * 1998-07-24 2000-02-08 Fuji Photo Film Co Ltd Method for measuring glucose concentration and apparatus therefor
JP2001356089A (en) * 2000-11-10 2001-12-26 Citizen Watch Co Ltd Concentration measuring instrument
JP2002224092A (en) * 2001-01-30 2002-08-13 Hitachi Ltd Organism monitoring system and light measuring probe

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006122579A (en) * 2004-11-01 2006-05-18 Aime Technology Co Ltd Noninvasive measurement method for trace component density in scattered medium, and apparatus therefor
CN101109709B (en) * 2006-06-30 2010-06-09 株式会社东芝 Color development reaction detector
JP2010117163A (en) * 2008-11-11 2010-05-27 Horiba Ltd Polarimeter and method for calibrating polarimeter
JP2010117164A (en) * 2008-11-11 2010-05-27 Horiba Ltd Polarimeter
US20120071738A1 (en) * 2009-03-04 2012-03-22 Global Hero Systems, Inc. Methodology and equipment of optical rotation measurements
WO2010100766A1 (en) * 2009-03-04 2010-09-10 有限会社グローバルファイバオプティックス Optical rotation measuring device and optical rotation measuring method
JPWO2010100766A1 (en) * 2009-03-04 2012-09-06 株式会社グローバルファイバオプティックス Optical rotation measuring device and optical rotation measuring method
WO2011145652A1 (en) * 2010-05-19 2011-11-24 塩野義製薬株式会社 Defocused optical rotation measurement apparatus, optical rotation measurement method and defocused optical fiber system
US8922760B2 (en) 2010-05-19 2014-12-30 Global Fiberoptics, Ltd. Defocused optical rotation measurement apparatus, optical rotation measurement method and defocused optical fiber system
WO2012070465A1 (en) * 2010-11-26 2012-05-31 株式会社グローバルファイバオプティックス Optical rotation measurement device, polarization conversion optical system that can be used for optical rotation measurement, and method for measuring optical rotation in optical rotation measurement system using said polarization conversion optical system
JP2013126509A (en) * 2011-12-19 2013-06-27 Sony Corp Measuring apparatus, measuring method, program, and recording medium
WO2013094362A1 (en) * 2011-12-19 2013-06-27 ソニー株式会社 Measurement device, measurement method, program, and recording medium
CN103987316A (en) * 2011-12-19 2014-08-13 索尼公司 Measurement device, measurement method, program, and recording medium
US9867559B2 (en) 2011-12-19 2018-01-16 Sony Corporation Measurement device, measurement method, program and recording medium
US9433374B2 (en) 2012-08-06 2016-09-06 Seiko Epson Corporation Concentration measuring device and a method of controlling the concentration measuring device
JP2014160175A (en) * 2013-02-20 2014-09-04 Seiko Epson Corp Linear polarization purity improving unit, linear polarization purity improving device, optical measurement device and medical device
US9713441B2 (en) 2014-01-31 2017-07-25 Seiko Epson Corporation Optical rotation measurement method and optical rotation measurement apparatus
US10426386B2 (en) 2015-03-13 2019-10-01 Shinshu University Non-invasive blood glucose level measurement method and non-invasive blood glucose level measurement device
WO2016147795A1 (en) * 2015-03-13 2016-09-22 国立大学法人信州大学 Non-invasive blood glucose level measurement method and non-invasive blood glucose level measurement device
JPWO2016147795A1 (en) * 2015-03-13 2017-12-28 国立大学法人信州大学 Non-invasive blood sugar level measuring method and non-invasive blood sugar level measuring device
JP2017185131A (en) * 2016-04-08 2017-10-12 京セラ株式会社 Electronic device and estimation system
WO2017175608A1 (en) * 2016-04-08 2017-10-12 京セラ株式会社 Electronic equipment and estimating system
US11583227B2 (en) 2018-11-11 2023-02-21 Biobeat Technologies Ltd. Wearable apparatus and method for monitoring medical properties
JP2020108819A (en) * 2020-04-01 2020-07-16 京セラ株式会社 Electronic apparatus and estimation system
JP2020168571A (en) * 2020-07-22 2020-10-15 京セラ株式会社 Electronic apparatus and estimation system
JP2021041228A (en) * 2020-12-07 2021-03-18 京セラ株式会社 Electronic apparatus and estimation system
JP2021118913A (en) * 2020-12-07 2021-08-12 京セラ株式会社 Electronic apparatus, estimation system, estimation method, and estimation program
CN114041789A (en) * 2021-10-29 2022-02-15 中国科学院西安光学精密机械研究所 Highly-integrated portable polarization regulation and control blood glucose measuring device and method
CN114041789B (en) * 2021-10-29 2023-09-01 中国科学院西安光学精密机械研究所 High-integration portable polarization regulation blood sugar measurement device and method

Also Published As

Publication number Publication date
JP3966796B2 (en) 2007-08-29

Similar Documents

Publication Publication Date Title
JP3966796B2 (en) Blood glucose measuring device
US10188325B2 (en) Wearable, noninvasive glucose sensing methods and systems
JP6415606B2 (en) Blood substance concentration measuring device and blood substance concentration measuring method
JP4393705B2 (en) Noninvasive optical sensor with control of tissue temperature
US5370114A (en) Non-invasive blood chemistry measurement by stimulated infrared relaxation emission
US6424848B1 (en) Method for preparing skin surface and determining glucose levels from that surface
RU2453266C2 (en) Measurement of glucose concentration in pulsing blood
US6353226B1 (en) Non-invasive sensor capable of determining optical parameters in a sample having multiple layers
Weiss et al. Noninvasive continuous glucose monitoring using photoacoustic technology—results from the first 62 subjects
JP3212996B2 (en) Apparatus for measuring blood glucose level in a living body
JP2007510492A (en) Method and system for non-invasive measurement in the human body
JP2004077466A (en) Concentration measurement device and concentration measurement method
JP2001524342A (en) Multiple sensors and usage
WO1995022927A1 (en) Diagnostic system and method using an implanted reflective device
Losoya-Leal et al. State of the art and new perspectives in non-invasive glucose sensors
JP2007083028A (en) Noninvasive inspecting apparatus
US20040225206A1 (en) Non-invasive analyte measurement device having increased signal to noise ratios
US20050137469A1 (en) Single detector infrared ATR glucose measurement system
RU2295915C2 (en) Noninvasive method for measuring optically active substances concentrations in blood
JPS6157774B2 (en)
JPH0113852B2 (en)
IL272180B (en) An apparatus for non-invasive measurement of glucose in blood
Patel et al. A critical review on current devloping non-invasive glucose monitoring technologies and devices
Vashist et al. Non-invasive analytics for point-of-care testing of glucose
WO2023121497A1 (en) Method for non-invasively determining a change in a person&#39;s blood glucose concentration

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050506

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070529

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees