JPH0777490A - Measuring method for double refraction - Google Patents

Measuring method for double refraction

Info

Publication number
JPH0777490A
JPH0777490A JP22319293A JP22319293A JPH0777490A JP H0777490 A JPH0777490 A JP H0777490A JP 22319293 A JP22319293 A JP 22319293A JP 22319293 A JP22319293 A JP 22319293A JP H0777490 A JPH0777490 A JP H0777490A
Authority
JP
Japan
Prior art keywords
analyzer
polarizer
birefringence
light
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP22319293A
Other languages
Japanese (ja)
Inventor
Seizo Suzuki
清三 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP22319293A priority Critical patent/JPH0777490A/en
Publication of JPH0777490A publication Critical patent/JPH0777490A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To measure the double refraction of an optical element constituted of a material having large optical anisotropy such as a plastic lens two- dimensionally and quantitatively, CONSTITUTION:A laser beam from a laser light source 1 is expanded in width by a beam expander 2, linearly polarized by a polarizer 3, and radiated to an object 4. The beam transmitting the object 4 is converged by a beam compressor 6 through an analyzer 5 and received by an area sensor 7. The two-dimensional data of the light intensity of the optical elastic interference fringes detected by the area sensor 7 are fed to a computer 8 for an analysis. The polarizer 3 and the analyzer 5 are concurrently rotated while the plane of polarization by the polarizer 3 and the analyzer 5 respectively is kept constant. The maximum value and the minimum value of the light intensity changed in response to the rotation angle of the polarizer 3 and the analyzer 5 are obtained for each picture element of the two-dimensional light receiving face of the area sensor 7. The phase angle is obtained based on the difference between the maximum value and the minimum value, and the double refraction quantity is obtained based on the phase angle and the wavelength.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、レーザプリンタ等の光
書込用レンズ、カメラレンズあるいは光ピックアップ用
レンズ等のプラスチックレンズの評価を行うためにその
複屈折を測定する装置に係わり、その複屈折の測定方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring the birefringence of an optical writing lens for a laser printer or the like, a plastic lens such as a camera lens or an optical pickup lens for evaluating the birefringence thereof. It relates to a method of measuring refraction.

【0002】[0002]

【従来の技術】近年、レーザプリンタ等の書込用レン
ズ、カメラレンズ、光ピックアップ用レンズ等にプラス
チック材料が用いられるようになってきたが、プラスチ
ック材料はガラス材料に比べて光学異方性が大きいた
め、ストレス(応力)を受けた場合、複屈折を発生す
る。
2. Description of the Related Art In recent years, a plastic material has come to be used for a writing lens for a laser printer, a camera lens, an optical pickup lens and the like. However, the plastic material has an optical anisotropy as compared with a glass material. Since it is large, birefringence occurs when stress is applied.

【0003】特に、プラスチックレンズを射出成形で製
造する場合、軟化温度時に金型の温度変化による膨張・
収縮で発生する応力や、プラスチック凝固過程で発生す
る内部応力などが冷却時に応力凍結され、複屈折が生じ
るようになる。このような複屈折は種々の結像性能を劣
化させる。
In particular, when a plastic lens is manufactured by injection molding, expansion and
The stress generated by shrinkage, the internal stress generated in the plastic solidification process, etc. are frozen during cooling and birefringence occurs. Such birefringence deteriorates various imaging performances.

【0004】例えば、レーザプリンタのfθレンズにプ
ラスチック材料を用いた場合に、その内部に大きな複屈
折が生じていると、このfθレンズで照射されるレーザ
ビームの感光体上のスポット径は、複屈折量に応じて理
想スポット径よりも太くなったり細くなったりして変化
してしまう。
For example, when a plastic material is used for the fθ lens of a laser printer, and if a large birefringence occurs inside the plastic material, the spot diameter of the laser beam irradiated by this fθ lens on the photosensitive member is doubled. Depending on the amount of refraction, the spot diameter becomes thicker or thinner than the ideal spot diameter and changes.

【0005】特に、PC(ポリカーボネート)等の光学
的異方性の大きなプラスチック材料を用いる場合は大き
な複屈折を生じ易いため、この複屈折量を定量的に管理
することが重量である。
In particular, when a plastic material having a large optical anisotropy such as PC (polycarbonate) is used, a large birefringence is likely to occur. Therefore, it is important to quantitatively control this birefringence amount.

【0006】[0006]

【発明が解決しようとする課題】本発明は、プラスチッ
ク材料等の光学的異方性の大きい材料で構成される光学
素子の複屈折を2次元的に定量的に測定できるようにす
ることを課題とする。
SUMMARY OF THE INVENTION It is an object of the present invention to enable two-dimensional quantitative measurement of birefringence of an optical element made of a material having a large optical anisotropy such as a plastic material. And

【0007】[0007]

【課題を解決するための手段】上記の課題を解決するた
めになした本発明の複屈折の測定方法は、偏光子により
直線偏光に変換した光を透明被検物に入射し、該透明被
検物を透過した光を検光子を通すことにより光弾性干渉
縞を発生し、該光弾性干渉縞に基づいて前記透明被検物
の複屈折量を計測する複屈折の測定方法であって、前記
偏光子における偏光面と前記検光子における偏光面とが
任意の角度を成すように該偏光子と検光子の相対位置を
設定し、上記偏光面の成す角度を保持しながら上記偏光
子と検光子とを前記透明被検物に対して相対的に光軸回
りに同時に回転させ、該偏光子と検光子の回転に応じて
発生する前記光弾性干渉縞の光強度の2次元データに基
づいて、前記透明被検物の複屈折量を2次元的に計測す
るようにしたことを特徴とする。
The method for measuring birefringence of the present invention made to solve the above-mentioned problems is such that light converted into linearly polarized light by a polarizer is incident on a transparent test object and the transparent test object is A method for measuring birefringence, in which photoelastic interference fringes are generated by passing light passing through an analyzer through an analyzer, and the birefringence amount of the transparent test object is measured based on the photoelastic interference fringes, The relative position of the polarizer and the analyzer is set so that the polarization plane of the polarizer and the polarization plane of the analyzer form an arbitrary angle, and the polarizer and the detector are detected while maintaining the angle formed by the polarization plane. The photon and the transparent object are simultaneously rotated around the optical axis relative to the transparent object, and based on the two-dimensional data of the light intensity of the photoelastic interference fringes generated according to the rotation of the polarizer and the analyzer. The two-dimensional measurement of the birefringence amount of the transparent test object And it features.

【0008】[0008]

【作用】本発明の複屈折の測定方法において、光弾性干
渉縞の任意に点における強度は偏光子と検光子の回転角
度に対して周期的に変化し、その極大値または極小値の
ときの回転角度によって方位角が判明し、透明被検物が
受けているストレスの方向が判る。また、極大値と極小
値の差に基づいて、位相差を示す位相角と複屈折量を求
めることができる。
In the method for measuring birefringence of the present invention, the intensity at any point of the photoelastic interference fringe periodically changes with respect to the rotation angle of the polarizer and the analyzer, and the intensity at the maximum value or the minimum value is obtained. The azimuth angle can be determined from the rotation angle, and the direction of stress applied to the transparent test object can be determined. Further, the phase angle indicating the phase difference and the birefringence amount can be obtained based on the difference between the maximum value and the minimum value.

【0009】[0009]

【実施例】図1は本発明の実施例における光学系を示す
図である。図において、1はHe−Ne等のレーザ光を
出射するレーザ光源、2はレンズ系で構成されたビーム
エクスパンダ、3はポラロイド等の偏光板からなる偏光
子、4はプラスチックレンズ等の被検物、5はポラロイ
ド等の偏光板からなる検光子、6はレンズ系で構成され
たビームコンプレッサ、7はエリアセンサ、8は計算機
である。
FIG. 1 is a diagram showing an optical system according to an embodiment of the present invention. In the figure, 1 is a laser light source that emits laser light such as He-Ne, 2 is a beam expander composed of a lens system, 3 is a polarizer made of a polarizing plate such as Polaroid, and 4 is a test object such as a plastic lens. Reference numeral 5 is an analyzer composed of a polarizing plate such as Polaroid, 6 is a beam compressor composed of a lens system, 7 is an area sensor, and 8 is a calculator.

【0010】先ず、レーザ光源1から出射されるレーザ
光束はビームエクスパンダ2で適当な大きさに拡げられ
る。ここで、レーザ光源1の出射光束はランダム偏光か
円偏光がのぞましく、直線偏光または楕円偏光に偏って
いる場合は、図示しない1/4波長板もしくわ位相補償
板で円偏光に整えておき、ランダム偏光または円偏光の
レーザ光束をビームエクスパンダ2で適当な大きさに拡
げる。
First, the laser beam emitted from the laser light source 1 is expanded to an appropriate size by the beam expander 2. Here, when the outgoing light flux of the laser light source 1 is desired to be randomly polarized light or circularly polarized light and is deviated to linearly polarized light or elliptically polarized light, it is adjusted to circularly polarized light by a ¼ wavelength plate or phase compensator not shown. The randomly expanded or circularly polarized laser light beam is expanded by the beam expander 2 to an appropriate size.

【0011】このレーザ光束は偏光子3を通して直線偏
光に変され、この直線偏光のレーザ光束が被検物4に照
射される。被検物4を透過した光は検光子5を介してビ
ームコンプレッサ6によって適当な大きさの平行光束に
集束されてエリアセンサ7に導かれる。
This laser beam is converted into linearly polarized light through the polarizer 3, and this linearly polarized laser beam is applied to the object 4 to be inspected. The light transmitted through the object to be inspected 4 is focused by the beam compressor 6 via the analyzer 5 into a parallel light beam having an appropriate size and guided to the area sensor 7.

【0012】エリアセンサ7はその2次元の受光面が光
軸Lと直交するように配置されており、受光面上の2次
元配列された各画素における受光強度に応じた信号を出
力し、この出力信号に基づいて計算機8が被検物4の内
部歪の状態を2次元的に解析する。
The area sensor 7 is arranged so that its two-dimensional light-receiving surface is orthogonal to the optical axis L, and outputs a signal corresponding to the light-receiving intensity at each pixel arranged two-dimensionally on the light-receiving surface. The computer 8 two-dimensionally analyzes the state of internal strain of the test object 4 based on the output signal.

【0013】ここで、偏光子3で直線偏光にされた光
は、被検物4を透過するとき複屈折を受ける部分で一般
に楕円偏光となり、この楕円偏光が検光子5を透過する
とき、この検光子5の偏光子軸に応じた偏光成分のみが
通過する。このため、この検光子5を通過した平行光束
の断面における光強度の分布は、被検物4の2次元面
(光軸Lと直交する面)における複屈折量分布に対応し
たものとなり、例えば図2に示したように明暗の干渉縞
を発生する。なお、この干渉縞の同輝度の連なりは複屈
折量の等しい部分を示している。
Here, the light linearly polarized by the polarizer 3 is generally elliptically polarized at the portion that undergoes birefringence when passing through the object 4, and when this elliptically polarized light passes through the analyzer 5, this Only the polarization component corresponding to the polarizer axis of the analyzer 5 passes. Therefore, the distribution of the light intensity in the cross section of the parallel light flux that has passed through the analyzer 5 corresponds to the birefringence amount distribution in the two-dimensional surface (the surface orthogonal to the optical axis L) of the test object 4, for example, Bright and dark interference fringes are generated as shown in FIG. The series of interference fringes having the same brightness indicates a portion having the same amount of birefringence.

【0014】また、偏光子3と検光子5は後述説明する
機構により光軸Lを軸としてそれぞれ回転されるように
なっており、偏光子3における偏光面と検光子5におけ
る偏光面との成す角度は任意の角度で測定前に予め設定
され、この角度を保ったまま偏光子3と検光子5は同時
に回転される。
The polarizer 3 and the analyzer 5 are rotated about the optical axis L by a mechanism to be described later, and are formed by the polarization plane of the polarizer 3 and the polarization plane of the analyzer 5. The angle is preset to any angle before measurement, and the polarizer 3 and the analyzer 5 are simultaneously rotated while maintaining this angle.

【0015】偏光子3および検光子5が回転されると、
偏光子3および検光子5における各偏光面は被検物4に
おける歪方向に対して角度が変化するので、検光子5を
通過した平行光束の断面における光強度の分布が変化す
る。なお、この分布の変化は干渉縞の形を変えることな
く、その同輝度の連なりは複屈折量の等しい部分を示し
ている。
When the polarizer 3 and the analyzer 5 are rotated,
The angle of each polarization plane of the polarizer 3 and the analyzer 5 changes with respect to the strain direction of the test object 4, so that the distribution of the light intensity in the cross section of the parallel light flux passing through the analyzer 5 changes. The change in the distribution does not change the shape of the interference fringes, and the continuation of the same brightness indicates a portion having the same birefringence amount.

【0016】図3は偏光子3と検光子5の回転機構の一
例を示す図であり、偏光子3および検光子5は同じ直径
の円板状でそれぞれ周囲に歯車が形成されたものであ
る。同図(A) において、モータaは増幅器bの基準出力
によって駆動され、ピニオンcを介して偏光子3が一定
方向に回転され、さらに、偏光子3に隣接して配設され
たエンコーダdによって偏光子3の回転量が検出され
る。
FIG. 3 is a view showing an example of a rotating mechanism of the polarizer 3 and the analyzer 5, wherein the polarizer 3 and the analyzer 5 are disk-shaped having the same diameter and gears are formed around them. . In FIG. 3A, the motor a is driven by the reference output of the amplifier b, the polarizer 3 is rotated in a fixed direction via the pinion c, and further, the encoder d arranged adjacent to the polarizer 3 is used. The rotation amount of the polarizer 3 is detected.

【0017】一方、モータeは比較増幅器fによって駆
動され、ピニオンgを介して検光子5が偏光子3と同じ
方向に回転され、さらに、検光子5に隣接して配設され
たエンコーダhによって検光子5の回転量が検出され
る。なお、比較増幅器fの出力は反転入力端子(−)へ
の入力が0のときに増幅器bの出力と同じ基準出力とな
るように設定されている。
On the other hand, the motor e is driven by the comparison amplifier f, the analyzer 5 is rotated in the same direction as the polarizer 3 via the pinion g, and further, by the encoder h arranged adjacent to the analyzer 5. The rotation amount of the analyzer 5 is detected. The output of the comparison amplifier f is set to be the same reference output as the output of the amplifier b when the input to the inverting input terminal (-) is 0.

【0018】さらに、エンコーダdで検出される偏光子
3の回転量は計算機8と比較増幅器iの反転入力端子
(−)に供給され、エンコーダhで検出される検光子5
の回転量は比較器増幅器iの非反入力転端子(+)に供
給される。また、比較増幅器iの出力はモータeを駆動
する比較増幅器fの反転入力端子(−)供給される。
Further, the rotation amount of the polarizer 3 detected by the encoder d is supplied to the computer 8 and the inverting input terminal (-) of the comparison amplifier i, and the analyzer 5 detected by the encoder h.
Is supplied to the non-inverting input terminal (+) of the comparator amplifier i. The output of the comparison amplifier i is supplied to the inverting input terminal (-) of the comparison amplifier f that drives the motor e.

【0019】以上の構成により、偏光子3の回転量より
検光子5の回転量が少なくなると比較増幅器iの出力が
負になるので、比較増幅器fの出力が基準出力より大き
くなり、反対に、偏光子3の回転量より検光子5の回転
量が多くなると比較増幅器iの出力が正になるので、比
較増幅器fの出力が基準出力より小さくなる。したがっ
て、検光子5は偏光子3の回転量に同期して回転され、
偏光子3と検光子5は各々の偏光面の成す角度を一定に
保持しながら同じ方向に同時に回転される。
With the above configuration, when the rotation amount of the analyzer 5 is smaller than the rotation amount of the polarizer 3, the output of the comparison amplifier i becomes negative, so that the output of the comparison amplifier f becomes larger than the reference output, and conversely, When the rotation amount of the analyzer 5 is larger than the rotation amount of the polarizer 3, the output of the comparison amplifier i becomes positive, so that the output of the comparison amplifier f becomes smaller than the reference output. Therefore, the analyzer 5 is rotated in synchronization with the rotation amount of the polarizer 3,
The polarizer 3 and the analyzer 5 are simultaneously rotated in the same direction while keeping the angle formed by the respective polarization planes constant.

【0020】同図(B) において、モータpの駆動軸には
ピニオンq,rが同軸で取付けられており、モータpの
駆動によりピニオンqを介して偏光子3が回転され、ピ
ニオンrを介して検光子5が回転され、偏光子3と検光
子5は各々の偏光面の成す角度を一定に保持しながら同
じ方向に同時に回転される。なお、検光子5に隣接して
配設されたエンコーダsによって検光子5の回転量が検
出され、この回転量は計算機8に供給される。
In FIG. 1B, the pinion q and r are coaxially attached to the drive shaft of the motor p, and the polarizer 3 is rotated by the drive of the motor p via the pinion q and the pinion r. Thus, the analyzer 5 is rotated, and the polarizer 3 and the analyzer 5 are simultaneously rotated in the same direction while keeping the angles formed by the respective polarization planes constant. The amount of rotation of the analyzer 5 is detected by the encoder s arranged adjacent to the analyzer 5, and this amount of rotation is supplied to the computer 8.

【0021】次に、被検物4の内部歪を計算機8が2次
元的に解析する方法を説明する。偏光子3と検光子5は
任意の角度を保ったまま光軸を中心に同時に回転するの
で、エンコーダdまたはsの出力として得られる偏光子
3および検光子5の回転角θに応じて、それぞれエリア
センサ7が発生する干渉縞の2次元の電気信号、すなわ
ち、検光子5を透過した光束の断面における各点の光強
度のデータを取り込み、以下に説明する演算処理によ
り、複屈折によって生じた位相角Δと方位角ψを2次元
的に解析する。
Next, a method in which the computer 8 two-dimensionally analyzes the internal strain of the test object 4 will be described. Since the polarizer 3 and the analyzer 5 rotate about the optical axis at the same time while keeping an arbitrary angle, the polarizer 3 and the analyzer 5 are respectively rotated according to the rotation angle θ obtained as the output of the encoder d or s. The two-dimensional electric signal of the interference fringes generated by the area sensor 7, that is, the data of the light intensity at each point in the cross section of the light flux that has passed through the analyzer 5 is taken in, and is generated by the birefringence by the calculation processing described below. The phase angle Δ and the azimuth angle ψ are two-dimensionally analyzed.

【0022】先ず、偏光子3に対して検光子5を角度α
(偏光面の角度)だけ傾けて設置させたときのエリアセ
ンサ7上の任意の1点の電界ベクトルEはジョーンズベ
クトルより次式(1)のように表せる。
First, the analyzer 5 is set at an angle α with respect to the polarizer 3.
The electric field vector E at any one point on the area sensor 7 when installed by inclining by (angle of polarization plane) can be expressed by the following equation (1) from the Jones vector.

【数1】 [Equation 1]

【0023】ここで、簡単のためにα=90°(π/
2)すなわち偏光子3と検光子5をクロスニコルに設定
した場合を考えると、式(1)は次式(2)のようにな
る。
Here, for simplicity, α = 90 ° (π /
2) That is, considering the case where the polarizer 3 and the analyzer 5 are set to crossed Nicols, the equation (1) becomes the following equation (2).

【数2】 [Equation 2]

【0024】さらに、式(2)を展開して整理すると、
次式(3)のようになる。
Further, by expanding and rearranging equation (2),
It becomes like the following formula (3).

【数3】 [Equation 3]

【0025】一方、検出される光強度は、次式(4)と
なる。
On the other hand, the detected light intensity is given by the following equation (4).

【数4】 [Equation 4]

【0026】そして、式(3)を式(4)に代入して整
理すると次式(5)となる。
Then, by substituting the equation (3) into the equation (4) and rearranging, the following equation (5) is obtained.

【数5】 [Equation 5]

【0027】そこで、式(5)に基づいて偏光子3およ
び検光子5の回転角θに対する強度変化を図示すると例
えば図4のようになる。この図4からもわかるように、
θに対して、90°を周期として強度Iが変化し、図中
Iが最大、極小のところの角度は方位角ψまたは方位角
に直交する方向を示し、この方位角ψから被検物4がス
トレスを受けている方向が判る。
Therefore, the intensity change with respect to the rotation angle θ of the polarizer 3 and the analyzer 5 based on the equation (5) is shown in FIG. 4, for example. As you can see from Figure 4,
The intensity I changes in a cycle of 90 ° with respect to θ, the angle at which I is maximum and minimum in the figure indicates the azimuth angle ψ or the direction orthogonal to the azimuth angle. Understands the direction in which he is under stress.

【0028】ここで、次式(6)を定義する。Here, the following equation (6) is defined.

【数6】 ただし、 IP :偏光子と検光子の角度をα=0°(平行ニコル)
にして被検物を置かなときの検光子を透過した光強度 IC :偏光子と検光子の角度をα=90°(クロスニコ
ル)にして被検物を置かなときの検光子を透過した光強
度 Imax :偏光子と検光子の角度をα=90°(クロスニ
コル)に保ったまま偏光子と検光子を同時に回転して被
検物を置いたときの検光子を透過した光の最大光強度 Imin :偏光子と検光子の角度をα=90°(クロスニ
コル)に保ったまま偏光子と検光子を同時に回転して被
検物を置いたときの検光子を透過した光の最小光強度
[Equation 6] However, I P : The angle between the polarizer and the analyzer is α = 0 ° (parallel Nicol)
Intensity of light transmitted through the analyzer when the object to be inspected is not set I C : The angle between the polarizer and the analyzer is α = 90 ° (crossed Nicols) and the light is transmitted when the object to be inspected is not placed. Light intensity I max : Light transmitted through the analyzer when the polarizer and the analyzer are simultaneously rotated while the angle between the polarizer and the analyzer is maintained at α = 90 ° (crossed Nicols). Maximum light intensity I min : The polarizer and the analyzer were simultaneously rotated while the angle between the polarizer and the analyzer was maintained at α = 90 ° (crossed nicols), and the analyzer was transmitted when the test object was placed. Minimum light intensity of light

【0029】エリアセンサ7の出力信号に基づいて得ら
れる最大光強度Imax 、最小光強度Imin 、予め設定さ
れている既知の値IP ,IC および上式(6)とから任
意の1点のmを求めると、次式(7)により位相角Δを
求めることができる。
Any one of the maximum light intensity I max and the minimum light intensity I min obtained based on the output signal of the area sensor 7, preset known values I P and I C, and the above equation (6). When the point m is obtained, the phase angle Δ can be obtained by the following equation (7).

【数7】 [Equation 7]

【0030】1さらに、複屈折量BRは次式(8)によ
り算出することができる。
1. Furthermore, the birefringence amount BR can be calculated by the following equation (8).

【数8】 ただし、λ:光源の波長[Equation 8] Where λ is the wavelength of the light source

【0031】以上の説明は、簡単のためにα=90°の
場合について説明したが、αが他の角度の場合でも可能
である。
In the above description, the case where α = 90 ° is described for the sake of simplicity, but it is also possible when α is another angle.

【0032】以上のようにして、エリアセンサ7の2次
元受光面の任意の1点の出力信号に基づいて、被検物4
の任意の1点についての方位角ψ、位相角Δおよび複屈
折量BRを求め、そして、これらの処理をエリアセンサ
7の2次元の電気信号に基づいて被検物4の2次元平面
について行って、被検物4の内部歪の状態を2次元的に
解析する。
As described above, based on the output signal from any one point on the two-dimensional light receiving surface of the area sensor 7, the object to be inspected 4 is detected.
The azimuth angle ψ, the phase angle Δ, and the birefringence amount BR for any one point of are measured, and these processes are performed on the two-dimensional plane of the object 4 to be measured based on the two-dimensional electric signal of the area sensor 7. Then, the state of internal strain of the test object 4 is two-dimensionally analyzed.

【0033】図5は上記のような解析結果のグラフィッ
ク表示等による出力例を示す図であり、同図(A) は歪の
方向(光学軸方向)の出力例、同図(B) は複屈折量の等
光線図の出力例である。
FIG. 5 is a diagram showing an output example of the above-mentioned analysis result by graphic display and the like. FIG. 5A shows an output example in the direction of distortion (optical axis direction), and FIG. It is an output example of an isometric ray diagram of a refraction amount.

【0034】なお、前記のようにして得られる位相角Δ
は、照射するレーザ光束の波長に応じて異なった値とな
るが、所定波長を基準波長として測定することにより、
内部歪の状態を解析することができることはいうまでも
ない。
The phase angle Δ obtained as described above
Is a different value depending on the wavelength of the laser beam to be irradiated, but by measuring with a predetermined wavelength as the reference wavelength,
It goes without saying that the state of internal strain can be analyzed.

【0035】また、以上の実施例では、1台のレーザ光
源1による単波長の光を用いて解析を行っているが、次
の実施例のように、波長の異なる複数の光源かの光を用
いると、位相角(位相差)がπを越える場合でも測定す
ることができる。
Further, in the above embodiment, the analysis is performed by using the light of a single wavelength by one laser light source 1. However, as in the next embodiment, the light from a plurality of light sources having different wavelengths is analyzed. When used, it is possible to measure even when the phase angle (phase difference) exceeds π.

【0036】すなわち、前掲の式(7)からわかるよう
に、m=1の場合Δ=π、m=0の場合Δ=0となり、
位相角が0〜πの範囲のものについては測定することが
できるが、実際の位相角がこ範囲を超えているものにつ
いては測定することがきない。
That is, as can be seen from the above equation (7), when m = 1, Δ = π, and when m = 0, Δ = 0,
The phase angle can be measured in the range of 0 to π, but cannot be measured in the case of the actual phase angle exceeding this range.

【0037】そこで、図6の装置により2波長の光を用
いた実施例について説明する。図6は前記実施例のビー
ムエクスパンダ2に前段にレーザ光源1の代わりに設置
したものであり、11は波長λ1 のレーザ光束を直線偏
光で放射するレーザ光源、12は波長λ2 のレーザ光束
を直線偏光で放射するレーザ光源、13は偏光ビームス
プリッタ、14は1/4波長板である。
Therefore, an embodiment using light of two wavelengths by the device of FIG. 6 will be described. FIG. 6 shows the beam expander 2 of the above embodiment, which is installed in the preceding stage in place of the laser light source 1, 11 is a laser light source which emits a laser beam of wavelength λ 1 as linearly polarized light, and 12 is a laser of wavelength λ 2 . A laser light source that emits a light beam as linearly polarized light, 13 is a polarization beam splitter, and 14 is a quarter-wave plate.

【0038】図6に示したように、レーザ光源11から
のレーザ光束は偏光ビームスプリッタ13の反射透過面
に対してp偏光となるように設定され、レーザ光源12
からのレーザ光束はは偏光ビームスプリッタ13の反射
透過面に対してs偏光となるように設定され、レーザ光
源11,12の各光軸は偏光ビームスプリッタ13の反
射透過面で直交するように配置されている。
As shown in FIG. 6, the laser beam from the laser light source 11 is set so as to be p-polarized with respect to the reflection / transmission surface of the polarization beam splitter 13.
Is set so as to be s-polarized with respect to the reflection / transmission surface of the polarization beam splitter 13, and the optical axes of the laser light sources 11 and 12 are arranged so as to be orthogonal to the reflection / transmission surface of the polarization beam splitter 13. Has been done.

【0039】そして、偏光ビームスプリッタ13は、レ
ーザ光源11からのレーザ光の殆どを直線的に透過して
1/4波長板14に導き、レーザ光源12からのレーザ
光の殆どを直角に反射してレーザ光源11と同じ光軸で
1/4波長板14に導く。このように各レーザ光の直線
偏光の方向を互いに90°になるように配置すると偏光
ビームスプリッタ13で殆ど光量をロスすることなく同
一光路に導くことができる。
The polarization beam splitter 13 linearly transmits most of the laser light from the laser light source 11, guides it to the quarter-wave plate 14, and reflects most of the laser light from the laser light source 12 at a right angle. And guides it to the quarter-wave plate 14 with the same optical axis as the laser light source 11. By arranging the laser beams so that the directions of linear polarization of the laser beams are 90 ° to each other, the polarization beam splitter 13 can guide the laser beams to the same optical path with almost no loss.

【0040】偏光ビームスプリッタ13から導かれたレ
ーザ光は1/4波長板14で円偏光に変換され、ビーム
エクスパンダ2に入射される。また、レーザ光源11と
レーザ光源12は図示しないスイッチでオン/オフする
ことによりレーザ光が選択され、ビームエクスパンダ2
に入射されるレーザ光の波長がλ1 とλ2 とで切り替え
られる。
The laser light guided from the polarization beam splitter 13 is converted into circularly polarized light by the quarter-wave plate 14 and is incident on the beam expander 2. The laser light source 11 and the laser light source 12 are turned on / off by a switch (not shown) to select the laser light.
The wavelength of the laser light incident on is switched between λ 1 and λ 2 .

【0041】このようにレーザ光源11とレーザ光源1
2のオン/オフの切り替えによって波長を選択すること
ができるので、機械的な切り替えを必要としないため、
2つの光束の光路ずれが少なく、しかも、切り替えが容
易となる。
Thus, the laser light source 11 and the laser light source 1
Since the wavelength can be selected by switching on / off of 2, there is no need for mechanical switching,
There is little deviation in the optical paths of the two light fluxes, and switching is easy.

【0042】以上のように、レーザ光源11,12を切
り替えて、各波長λ1 ,λ2 について前記実施例と同様
に解析を行う。そして、波長λ1 、波長λ2 、波長λ1
についての位相各Δ1 、波長λ2 についての位相各Δ2
から、πを越える位相角を求める。
As described above, the laser light sources 11 and 12 are switched, and the analysis is performed for each wavelength λ 1 and λ 2 in the same manner as in the above-mentioned embodiment. Then, wavelength λ 1 , wavelength λ 2 , wavelength λ 1
For each phase Δ 1 for each wavelength λ 2 for each phase Δ 2
From, the phase angle exceeding π is obtained.

【0043】図7に示したように、所定波長である基準
波長λ0 に対する位相角Δ0 の任意の位相角Δrealに対
して波長λ1 と波長λ2 で測定される位相角Δは通常異
なり、それぞれΔ1 とΔ2 になる。そこで、図7の場
合、Δ1 ,Δ2 の値より、波長λ1 と基準波長λ0 にお
ける位相の関係および波長λ2 と基準波長λ0 における
位相に関係から、Δ1 ,Δ2 を基準波長における位相角
に変換し、同じ位相角となったものを真の位相角Δreal
として求めることができる。
[0043] As shown in FIG. 7, the phase angle delta, measured at a wavelength lambda 1 and wavelength lambda 2 for an arbitrary phase angle delta real phase angle delta 0 with respect to the reference wavelength lambda 0 is a predetermined wavelength typically Differently, Δ 1 and Δ 2 , respectively. Therefore, in the case of FIG. 7, delta 1, reference than delta 2 value, from the relation to the phase of the relationship and the wavelength lambda 2 and the reference wavelength lambda 0 of the phase at the wavelength lambda 1 and the reference wavelength λ 0, Δ 1, Δ 2 and It is converted to the phase angle at the wavelength, and the one with the same phase angle is the true phase angle Δ real
Can be asked as

【0044】また、λ1 とλ2 の2波長を用いた場合、
λ1 とλ2 の最小公倍数をλ1,2 とすれば、基準波長λ
0 に対し、
When two wavelengths λ 1 and λ 2 are used,
If the least common multiple of lambda 1 and lambda 2 and lambda 1, 2, the reference wavelength lambda
For 0 ,

【数9】 まで、測定が可能となる。[Equation 9] Up to the measurement is possible.

【0045】なお、上記の例は2波長を用いた場合の例
であるが、3波長、4波長と増やすことにより、測定範
囲と測定精度の向上が図れる。
The above example is an example in which two wavelengths are used, but the measurement range and the measurement accuracy can be improved by increasing the number of wavelengths to three and four.

【0046】[0046]

【発明の効果】以上説明したように本発明の複屈折の測
定方法によれば、偏光子により直線偏光に変換した光を
透明被検物に入射し、該透明被検物を透過した光を検光
子を通すことにより光弾性干渉縞を発生するとともに、
前記偏光子における偏光面と前記検光子における偏光面
とが任意の角度を成すように該偏光子と検光子の相対位
置を設定し、上記偏光面の成す角度を保持しながら上記
偏光子と検光子とを前記透明被検物に対して相対的に光
軸回りに同時に回転させ、該偏光子と検光子の回転に応
じて発生する前記光弾性干渉縞の光強度の2次元データ
に基づいて、前記透明被検物の複屈折量を計測するよう
にしたので、プラスチック材料等の光学的異方性の大き
い材料で構成される光学素子の複屈折を2次元的に定量
的に測定することができる。
As described above, according to the method for measuring birefringence of the present invention, the light converted into linearly polarized light by the polarizer is incident on the transparent test object, and the light transmitted through the transparent test object is detected. A photoelastic interference fringe is generated by passing an analyzer, and
The relative position of the polarizer and the analyzer is set so that the polarization plane of the polarizer and the polarization plane of the analyzer form an arbitrary angle, and the polarizer and the detector are detected while maintaining the angle formed by the polarization plane. The photon and the transparent object are simultaneously rotated around the optical axis relative to the transparent object, and based on the two-dimensional data of the light intensity of the photoelastic interference fringes generated according to the rotation of the polarizer and the analyzer. Since the amount of birefringence of the transparent test object is measured, the birefringence of an optical element made of a material having a large optical anisotropy such as a plastic material can be quantitatively measured two-dimensionally. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例における光学系を示す図であ
る。
FIG. 1 is a diagram showing an optical system in an example of the present invention.

【図2】本発明の実施例における光弾性干渉縞の一例を
示す図である。
FIG. 2 is a diagram showing an example of a photoelastic interference fringe according to the embodiment of the present invention.

【図3】本発明の実施例における偏光子と検光子の回転
機構の一例を示す図である。
FIG. 3 is a diagram showing an example of a rotation mechanism of a polarizer and an analyzer in the embodiment of the present invention.

【図4】本発明の実施例における偏光子と検光子5の回
転角に対する光強度変化の一例を示す図である。
FIG. 4 is a diagram showing an example of a change in light intensity with respect to a rotation angle of a polarizer and an analyzer 5 in an example of the present invention.

【図5】本発明の実施例における解析結果の出力例を示
す図である。
FIG. 5 is a diagram showing an output example of an analysis result in the example of the present invention.

【図6】本発明の2波長のレーザ光源を用いた実施例を
示す図である。
FIG. 6 is a diagram showing an embodiment using a two-wavelength laser light source of the present invention.

【図7】本発明の2波長のレーザ光源を用いた実施例の
場合の基準波長における位相角に対する2波長の測定位
相角の違いを示す図である。
FIG. 7 is a diagram showing a difference between measured phase angles of two wavelengths with respect to a phase angle at a reference wavelength in the case of an embodiment using a two-wavelength laser light source of the present invention.

【符号の説明】[Explanation of symbols]

1…レーザ光源、3…偏光子、4…被検物、5…検光
子、7…エリアセンサ、8…計算機。
1 ... Laser light source, 3 ... Polarizer, 4 ... Test object, 5 ... Analyzer, 7 ... Area sensor, 8 ... Calculator.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 偏光子により直線偏光に変換した光を透
明被検物に入射し、該透明被検物を透過した光を検光子
を通すことにより光弾性干渉縞を発生し、該光弾性干渉
縞に基づいて前記透明被検物の複屈折の特徴量を計測す
る複屈折の測定方法であって、 前記偏光子における偏光面と前記検光子における偏光面
とが任意の角度を成すように該偏光子と検光子の相対位
置を設定し、 上記偏光面の成す角度を保持しながら上記偏光子と検光
子とを前記透明被検物に対して相対的に光軸回りに同時
に回転させ、 該偏光子と検光子の回転に応じて発生する前記光弾性干
渉縞の光強度の2次元データに基づいて、前記透明被検
物の複屈折の特徴量を計測するようにしたことを特徴と
する複屈折の測定方法。
1. A photoelastic interference fringe is generated by making light, which is converted into linearly polarized light by a polarizer, incident on a transparent test object, and passing light passing through the transparent test object through an analyzer. A birefringence measuring method for measuring a birefringence characteristic amount of the transparent test object based on interference fringes, wherein the polarization plane of the polarizer and the polarization plane of the analyzer form an arbitrary angle. The relative position of the polarizer and the analyzer is set, and the polarizer and the analyzer are simultaneously rotated about the optical axis relative to the transparent object while maintaining the angle formed by the polarization plane. A feature amount of birefringence of the transparent test object is measured based on two-dimensional data of light intensity of the photoelastic interference fringes generated according to rotation of the polarizer and the analyzer. Method of measuring birefringence.
【請求項2】 前記偏光子と前記検光子を各々独立のモ
ータで回転し、該2つのモータの各々の回転角を2つの
エンコーダによってモニターするとともにそれぞれのモ
ータ間の同期をとりながら、該偏光子と該検光子を同時
に回転させるようにしたことを特徴とする請求項1記載
の複屈折の測定方法。
2. The polarization and the analyzer are rotated by independent motors, respectively, and the rotation angles of the two motors are monitored by two encoders, and the polarizations of the polarizations are synchronized with each other. The method for measuring birefringence according to claim 1, wherein the probe and the analyzer are simultaneously rotated.
【請求項3】 前記偏光子と前記検光子を1つのモータ
で同時に回転し、該モータの回転角度をエンコーダによ
ってモニターするようにしたことを特徴とする請求項1
記載の複屈折の測定方法。
3. The polarizer and the analyzer are simultaneously rotated by one motor, and the rotation angle of the motor is monitored by an encoder.
The method for measuring birefringence described.
【請求項4】 前記偏光子により直線偏光に変換される
光として複数波長の光を用いることにより、位相角πを
越える前記複屈折の特徴量を計測するようにしたことを
特徴とする請求項1記載の複屈折の測定方法。
4. The birefringence characteristic amount exceeding a phase angle π is measured by using light having a plurality of wavelengths as light converted into linearly polarized light by the polarizer. 1. The method for measuring birefringence according to 1.
【請求項5】 それぞれ波長の異なる直線偏光の光を出
射する2つのレーザ光源と、該2つのレーザ光源からの
光を同一光軸に導く偏光ビームスプリッタおよび該光軸
上に配設された1/4波長板を用い、上記2つのレーザ
光源のオン/オフの切り替えによって、前記複数波長の
光を生成するようにしたことを特徴とする請求項4記載
の複屈折の測定方法。
5. Two laser light sources that emit linearly polarized light having different wavelengths, a polarization beam splitter that guides the light from the two laser light sources to the same optical axis, and 1 provided on the optical axis. 5. The method for measuring birefringence according to claim 4, wherein a / 4 wavelength plate is used to generate the lights of the plurality of wavelengths by switching on / off of the two laser light sources.
JP22319293A 1993-09-08 1993-09-08 Measuring method for double refraction Withdrawn JPH0777490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22319293A JPH0777490A (en) 1993-09-08 1993-09-08 Measuring method for double refraction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22319293A JPH0777490A (en) 1993-09-08 1993-09-08 Measuring method for double refraction

Publications (1)

Publication Number Publication Date
JPH0777490A true JPH0777490A (en) 1995-03-20

Family

ID=16794247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22319293A Withdrawn JPH0777490A (en) 1993-09-08 1993-09-08 Measuring method for double refraction

Country Status (1)

Country Link
JP (1) JPH0777490A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007170866A (en) * 2005-12-19 2007-07-05 Nippon Telegr & Teleph Corp <Ntt> Spr measuring instrument
JP2014119680A (en) * 2012-12-19 2014-06-30 Dainippon Printing Co Ltd Retardation film inspection apparatus and retardation film inspection method
CN115808245A (en) * 2023-02-09 2023-03-17 青岛镭测创芯科技有限公司 Polarized laser radar system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007170866A (en) * 2005-12-19 2007-07-05 Nippon Telegr & Teleph Corp <Ntt> Spr measuring instrument
JP4625405B2 (en) * 2005-12-19 2011-02-02 日本電信電話株式会社 SPR measuring equipment
JP2014119680A (en) * 2012-12-19 2014-06-30 Dainippon Printing Co Ltd Retardation film inspection apparatus and retardation film inspection method
CN115808245A (en) * 2023-02-09 2023-03-17 青岛镭测创芯科技有限公司 Polarized laser radar system

Similar Documents

Publication Publication Date Title
CN102933944B (en) System and method for polarization measurement
US5257092A (en) Apparatus for measuring polarization and birefringence
JP6520951B2 (en) Birefringence measuring apparatus and birefringence measuring method
JPS6134442A (en) Ellipsometry measuring method for inspecting physical characteristic of sample surface or surface film layer of sample and device thereof
JP4455024B2 (en) Birefringence measuring device
JP5198980B2 (en) Optical anisotropy parameter measuring method and measuring apparatus
JPS60242308A (en) Method and device for measuring thickness of thin sample andmethod and device for measuring characteristic of thin sample
US5587793A (en) Birefringence distribution measuring method
US4842408A (en) Phase shift measuring apparatus utilizing optical meterodyne techniques
US5073025A (en) Independent polarization state measurements sensor
JPWO2007111159A1 (en) Optical characteristic measuring device, optical characteristic measuring method, and optical characteristic measuring unit
JPH10332533A (en) Birefringence evaluation system
JP2002107119A (en) Method and apparatus for measurement of thickness of specimen
US4762417A (en) Fringe scanning point diffraction interferometer by polarization
US7440108B2 (en) Imaging spectrometer including a plurality of polarizing beam splitters
JP2004020343A (en) Birefringence measuring apparatus
US5440390A (en) Optical fiber polarimeter
JP3209390B2 (en) Transmission interferometer
JPH0777490A (en) Measuring method for double refraction
JP2004037137A (en) Birefringence measuring device, strain removing device, polarization state detecting device and exposing device
US6317209B1 (en) Automated system for measurement of an optical property
JPH11337321A (en) Method and device for simultaneously measuring phase shift interference fringe
JP3670821B2 (en) Refractive index distribution measuring device
CN107356928A (en) Distance measuring device and distance measuring method thereof
CN220751236U (en) Measuring device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001128