JP2004020343A - Birefringence measuring apparatus - Google Patents

Birefringence measuring apparatus Download PDF

Info

Publication number
JP2004020343A
JP2004020343A JP2002174801A JP2002174801A JP2004020343A JP 2004020343 A JP2004020343 A JP 2004020343A JP 2002174801 A JP2002174801 A JP 2002174801A JP 2002174801 A JP2002174801 A JP 2002174801A JP 2004020343 A JP2004020343 A JP 2004020343A
Authority
JP
Japan
Prior art keywords
birefringence
optical signal
sample
light source
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002174801A
Other languages
Japanese (ja)
Other versions
JP3844222B2 (en
Inventor
Hiroyuki Takawa
高和 宏行
Yukitoshi Otani
大谷 幸利
Tsunehiro Umeda
梅田 倫弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UNIE OPT KK
Original Assignee
UNIE OPT KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UNIE OPT KK filed Critical UNIE OPT KK
Priority to JP2002174801A priority Critical patent/JP3844222B2/en
Publication of JP2004020343A publication Critical patent/JP2004020343A/en
Application granted granted Critical
Publication of JP3844222B2 publication Critical patent/JP3844222B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • G01N21/23Bi-refringence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • G01N2021/216Polarisation-affecting properties using circular polarised light

Abstract

<P>PROBLEM TO BE SOLVED: To inexpensively provide a birefringence measuring apparatus that can measure the amount of birefringence and the orientation of a birefringence principal axis by a relatively simple configuration even in a specimen such as a polymer material indicating a birefringence of λ/4 or more or the property of a strong scatterer. <P>SOLUTION: In the birefringence measuring apparatus, a light signal (a wavelength λ) from a light source 1 is detected by a photodetector 4 via a linear polarizer 21 and a quarter wavelength plate 22 that form a polarizer 2 on the light-source side, the sample OB, and a quarter wavelength plate 31 and a linear polarizer 32 that form a polarizer 3 on the detector side. Meanwhile, the linear polarizer 21 and quarter wavelength plate 22 on the light-source side maintain specific rotation ratio (1:2) and at the same time rotate around an optical axis by a motor driver 5, and the light signal detected by the photodetector 4 is fetched by a PC 7 via an A/D converter 6. The PC 7 calculates the amount of birefringence in the sample OB by the orientation of the birefringence principal axis and accuracy in a measurement range obtained by a tangent function, namely 0 to λ/2. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、複屈折測定装置に係り、特に偏光測定光学系の偏光素子配置及びその駆動方法を含む装置構成及び偏光解析アルゴリズムの工夫に関する。
【0002】
【従来の技術】
近年、オプトエレクトロニクスの発展に伴い、工学分野においては、射出成形品、光ディスク、薄膜製品、結晶を用いた光学素子、高分子フィルム、及び液晶等の製品に対する需要が急速に増加してきている。従って、これら工学分野では、各製品の品質を定量的に評価するための装置及び手法の1つとして、これらの持つ複屈折を計測する複屈折測定がより一層強く期待されるようになってきている。
【0003】
一方、高分子材料や結晶の多くは、その内部に存在する光学的な散乱体の影響で、光を入射させた場合に散乱を起こすものが少なくない。一般に、こういった散乱を起こす試料では、その散乱により光の多重反射等の現象が起こり、これが原因で複屈折測定の精度低下をもたらすと言われている。従って、このような被測定試料の場合では、とくに散乱による精度低下を回避するための複屈折測定の手法として、パルス光を用いた計測方法や、自己相関関数を利用した解析方法等の解析アルゴリズムが提案されている。
【0004】
その一方で、高分子フィルムに代表される様に厚さの薄いものや、高温、強電界、強磁界等の特殊な環境下で使用されるものでは、極力簡便な機器構成の測定装置を使用したいといった要求もある。従って、このような被測定試料の場合の複屈折測定手法としては、複雑な機器構成や特殊な装置によらずに、一般に知られている偏光解析方法等を用いることが期待されている。
【0005】
【発明が解決しようとする課題】
しかしながら、上述した従来例の複屈折測定では、以下のような問題があった。
【0006】
まず、一般に知られている偏光解析方法にあっては、例えば回転検光子法や回転位相子法等の手法では、被測定試料の複屈折主軸を測定光学系の偏光軸に対し所定角度にセットしなければならず、また回転偏光子法等の複屈折主軸を同時に測定する手法では、複屈折測定のダイナミックレンジ(測定精度)が正弦関数から得られる「0〜λ/4」(λは測定光の波長)の角度範囲に制限されるといった不都合があった。
【0007】
また、散乱の大きな試料に対して複屈折測定を試みる場合には、試料と光検出素子との間の距離をできるだけ近接させることがその測定精度を高める為に重要となるが、この距離に関しては、被測定試料と光検出素子との間の偏光素子を何らかの方法で動的に動かしたり、変調したりする手法では、その機構の物理的な大きさによって最短距離が決まってしまうといった制約があった。しかも、CCDカメラ等を用いて2次元分布測定を行う場合では、そのカメラ直前の素子(光学系)が大きくなってしまうことから、これらの素子を駆動することは、測定安定性を損ない易く、また機械的な大きさが大きくなり、製造コストが高くなるといった問題もあった。
【0008】
さらに、近年、高分子研究分野や生体研究分野等において、配向制御や分子配向状態を定量的に評価するために複屈折評価を行なわれるようになってきているが、これらの高分子材料は複屈折の大きさがλ/4(測定光の四分の一波長)以上になることもあり、しかも強散乱体であることが少なくない。従って、これら研究分野での複屈折評価においても、上述の複屈折測定上のダイナミックレンジの制約を受けたり、被測定試料及び光検出素子間の偏光素子の光学配置やその駆動方法で決まる測定精度上の制約を受けてしまうことが予想される。
【0009】
本発明は、上述の従来技術の問題を考慮してなされたもので、複屈折の大きさがλ/4(測定光の四分の一波長)以上を示したり、或いは強散乱体の性質を示したりする高分子材料等の被測定試料であっても、複屈折量及びその複屈折主軸の方位を比較的簡素な構成で測定できる複屈折測定装置を安価に提供することを目的とする。
【0010】
【課題を解決するための手段】
上記目的を達成するために、本発明に係る複屈折測定装置は、光信号を発生する光源と、この光源からの光信号を所定の偏光状態に変化させながら被測定試料に入射させる光源側の偏光素子と、前記被測定試料からの光信号を受ける受光側の偏光素子と、この受光側の偏光素子からの光信号を検出する光検出器と、この光検出器により前記光信号が検出される間、前記光源側の偏光素子の少なくとも一部を駆動することにより前記被測定試料に入射される光信号の偏光状態を制御する制御手段と、前記光検出器により検出された光信号の光強度に基づいて、前記被測定試料の複屈折量をその複屈折主軸の方位と共に正接関数で求まる測定範囲の精度で演算する処理手段とを備えたことを特徴とする。
【0011】
本発明において、複屈折量の正接関数で求まる測定範囲の精度とは、「0〜λ/2(λ:光源の光信号の波長)」のことを言う。この複屈折量を複屈折主軸の方位と共に演算できることから、その実質的な測定範囲の精度が「0〜λ」に向上することになる。
【0012】
本発明の好適な例として、前記受光側の偏光素子は、前記被測定試料からの光信号を受ける四分の一波長板と、この四分の一波長板からの光信号を受けて前記光検出器側に出射する直線偏光子とを備え、前記四分の一波長板の進相軸及び前記直線偏光子の偏光透過軸は、それぞれ所定方位の位置に固定されていることが好ましい。
【0013】
また、本発明の1つの側面として、前記光源側の偏光素子は、前記光源からの光信号を受ける直線偏光子と、この直線偏光子からの光信号を受けて前記被測定試料側に出射する四分の一波長板とを有し、前記制御手段は、前記直線偏光子及び四分の一波長板を互いに所定の回転比を保ちつつ光軸回りに回転させる駆動手段を備えることが可能である。
【0014】
この側面では、前記処理手段は、前記直線偏光子及び四分の一波長板の回転比を1対2としたときの当該直線偏光子の偏光透過軸及び四分の一波長板の進相軸の各方位をそれぞれθ及び2θとし、前記被測定試料の複屈折量及びその複屈折主軸の方位をそれぞれΔ及びφとし、前記光源で生成される光信号の光強度をaとし、前記光検出器により検出される光信号の光強度の内の前記直線偏光子の1回転θに対しn(n=2、6)倍周期で変化する正弦波成分及び余弦波成分の各振幅をそれぞれS(n)及びC(n)としたとき、前記被測定試料の複屈折量Δ及びその複屈折主軸の方位φを、
【数4】

Figure 2004020343
の算出式から求める演算手段を備えることが可能である。
【0015】
本発明の別の側面では、前記光源側の偏光素子は、前記光源からの光信号を受ける直線偏光子と、この直線偏光子からの光信号を受けて前記被測定試料側に出射する2つの四分の一波長板とを有し、前記制御手段は、前記2つの四分の一波長板を互いに所定の回転比を保ちつつ光軸回りに回転させる手段を備えることが可能である。
【0016】
この側面では、前記処理手段は、前記2つの四分の一波長板の回転比を1対2としたときの当該2つの四分の一波長板の進相軸の方位をそれぞれθ及び2θとし、前記被測定試料の複屈折量及びその複屈折主軸の方位をそれぞれΔ及びφとし、前記光源で生成される光信号の光強度をaとし、前記光検出器により検出される光信号の光強度の内の前記四分の一波長板の1回転θに対しn(n=2、4、6、8)倍周期で変化する正弦波成分及び余弦波成分の各振幅をそれぞれS(n)及びC(n)としたとき、前記被測定試料の複屈折量Δ及びその複屈折主軸の方位φを、
【数5】
Figure 2004020343
の算出式から求める演算手段を備えることが可能である。
【0017】
本発明のさらに別の側面では、前記光源側の偏光素子は、前記光源からの光信号を受ける直線偏光子と、この直線偏光子からの光信号を受けて前記被測定試料側に出射する2つの位相差可変の位相子とを有し、前記制御手段は、前記2つの位相子の位相差を互いに所定の割合で変化させる手段を備えることが可能である。
【0018】
この側面では、前記処理手段は、前記2つの位相子の位相差を変化させる割合を1対2としたときの当該2つの位相子の位相差をそれぞれδ及び2δとし、前記被測定試料の複屈折量及びその複屈折主軸の方位をそれぞれΔ及びφとし、前記光源で生成される光信号の光強度をaとし、前記光検出器により検出される光信号の光強度の内の前記位相子の位相変化δに対しn(n=1、2、3)倍周期で変化する正弦波成分及び余弦波成分の各振幅をそれぞれS(n)及びC(n)としたとき、前記被測定試料の複屈折量Δ及びその複屈折主軸の方位φを、
【数6】
Figure 2004020343
の算出式から求める演算手段を備えることができる。
【0019】
【発明の実施の形態】
以下、本発明に係る複屈折測定装置の実施の形態を添付図面を参照して説明する。
【0020】
(第1実施形態)
図1は、第1実施形態に係る複屈折測定装置を示す。
【0021】
図1に示す複屈折測定装置は、光信号を放出する光源1と、この光源1からの光信号を所定の偏光状態に変化させて被測定試料OBに入射させる光源側の偏光素子2と、被測定試料OBから射出される光信号を受ける検出器側(受光側)の偏光素子3と、この検出器側の偏光素子3からの光信号をその光強度に応じたアナログ量の電気信号に変換して検出する光検出器4と、この光検出器4による信号検出が行なわれる間、光源側の偏光素子2を駆動させて被測定試料OBに入射すべき光信号の偏光状態を制御するモータドライバ(本発明の制御手段の要部を成す)5と、光検出器4の信号出力側にA(Analog)/D(Digital)コンバータ(A/D変換器)6を介して接続されるPC(Personal Computer)(本発明の処理手段の要部を成す)7とを備える。PC7の出力側は図示しない信号線を介してモータドライバ5に接続される。
【0022】
光源1は、本例では所定波長(例えば、632nm)のレーザ光を生成するレーザ装置で構成されるが、これに限定されず、例えばLED(Light Emitting Device)等やその他のランプ等から出射した光束をレンズやミラーなど適当な光学系により平行光束とするタイプのものでも構わない。
【0023】
光源側の偏光素子2は、本例では光源1から出射される光信号の光路上に配置される直線偏光子(以下、「光源側の直線偏光子21」)及びその射出光の光路上に配置される四分の一波長板(以下、「光源側の四分の一波長板22)で構成され、いずれもモータドライバ5の駆動動作により図示しない回転機構を介して光軸回りに回転可能となっている。このときの光源側の直線偏光子21及びその四分の一波長板22の回転比は、例えば本例では「1:2」を保つ(光源側の直線偏光子21の偏光透過軸が基準方位(初期方位)に対し方位θの位置にあるときに光源側の四分の一波長板22の複屈折主軸(進相軸)が基準方位に対し方位2θの位置にある)ように設定されている。
【0024】
受光側の偏光素子3は、本例では被測定試料OBから射出される光信号の光路上に配置される四分の一波長板(以下、「検出器側の四分の一波長板31」)及びその射出光の光路上に配置される直線偏光子(以下、「検出器側の直線偏光子32」)で構成される。本例では、検出器側の四分の一波長板31はその主軸(進相軸)方位が光源側の直線偏光子21の基準方位に対し方位45度の位置に、また検出器側の直線偏光子32はその偏光透過軸方位が基準方位に対し方位0度の位置にそれぞれ固定配置される。
【0025】
PC7は、本例では本発明の複屈折測定原理に基づく偏光解析アルゴリズムを実行する制御・演算処理装置として機能するもので、図示しないCPUがその偏光解析アルゴリズム用のプログラムの命令を逐次実行することにより、複屈折測定時にはモータドライバ7に対しその駆動動作を制御するための制御指令を与えると共に、光検出器2から出力される光信号の光強度に相当するアナログ量の電気信号をA/Dコンバータ6を介してデジタル信号として取り込み、その波形解析(DFT解析等)による偏光解析により被測定試料OBの複屈折Δ及びその主軸方位φを演算するようになっている。
【0026】
ここで、本実施形態の全体動作を説明する。
【0027】
まず、光源1から出射した光は、光源側の直線偏光子21及びその四分の一波長板22、被測定試料OB、検出器側の四分の一波長板31及びその直線偏光子32を通過し、光検出器4にて検出される。この間、モータドライバ5の駆動により光源側の直線偏光子21及びその四分の一波長板22が互いに1:2の回転比を保ちながら回転し、これにより光検出器4にて検出された光信号が、逐次、A/Dコンバータ6を介してPC7に取り込まれる。
【0028】
このときの光検出器4で得られる光信号(光強度信号)は、ミューラー行列を用いたストークス・パラメータ(Stokes Parameter)による行列計算式では、次の(1)式で表現される。なお、ストークス・パラメータは、光の強度と偏りを表す4つの量、即ち光の強度S、水平垂直直線偏光成分S、±45度直線偏光成分S、及び左右円偏光成分Sを1組として光の全ての偏光状態を記述するもので、またミューラー行列は、各種の偏光素子を、入射偏光のストークス・パラメータを出射偏光のそれに変換する素子として考えた場合の4×4の行列に相当するものである。
【0029】
【数7】
Figure 2004020343
上記(1)式において、S’は最終的に得られるストークス・パラメータ(4つの成分、即ちS’〜S’から構成)、Sは光源1のストークス・パラメータ(4つの成分、即ちS〜Sから構成)、LPθ、QW2θ、XΔ、φ、QW45、及びLPは、それぞれ光源側の直線偏光子(方位θ度)21、光源側の四分の一波長板(方位2θ度)22、被測定試料(複屈折位相差Δ及び主軸方位φ)OB、検出器側の四分の一波長板(方位45度)31、及び検出器側の直線偏光子(方位0度)32の各ミューラー行列を示す。
【0030】
上記(1)式に従って逐次計算を行うと、ストークス・パラメータS’の光強度を表すS’項は、次の(2)式〜(7)式で求めることができる。
【0031】
【数8】
Figure 2004020343
上記(3)式〜(7)式において、aは、光源1から出射される光信号の光強度、DCは光検出器4で検出される光信号の光強度の内の直流成分、S(n)及びC(n)(n=2、6)は、光検出器4で検出される光信号の光強度の内の光源側の直線偏光子21の1回転に対しn倍周期で変化する正弦波成分及び余弦波成分の各振幅をそれぞれ示す。
【0032】
上記(3)式〜(7)式を連立して解くと、被測定試料OBの複屈折Δとその主軸方位φは、次の(8)式及び(9)式で求めることができる。
【0033】
【数9】
Figure 2004020343
【0034】
上記(8)式によれば、複屈折Δは、従来例のように正弦(sin)関数からではなく、正接関数(tan)から得ることができるため、その測定ダイナミックレンジを従来例の「0〜λ/4」(λ:測定光の波長)から「0〜λ/2」に拡大させることができる。しかも、複屈折Δと同時にその主軸方位φを測定できるため、この点を勘案すれば、実質的に「0〜λ」の測定(フルレンジの測定)が可能となる。
【0035】
また、上記(8)式によれば、DC成分を使用しないで複屈折Δを求めることができるため、光検出素子に迷光等が入射した場合や熱雑音等による光強度信号中のノイズ成分の影響を未然に防ぐことができ、明室内での光学系の設置も可能になるといった利点もある。
【0036】
従って、PC7の処理により、光検出器4で得られる光信号を入力して、上記各式に基づく偏光解析アルゴリズム用のプログラムを実行することにより、正接関数で得られる測定範囲(0〜λ/2)の精度で、被測定試料OBの複屈折Δをその主軸方位φと共に同時に演算することができる。
【0037】
また、本実施形態では、検出器側の四分の一波長板及びその直線偏光子は回転動作を伴わない構成に構築できるため、フィルム状の偏光素子(偏光子及び波長板)を採用して光検出器の入射側に直接貼り付ける等、光検出器に密着させることができ、これにより、散乱を生じる被測定試料でも、光検出器を被測定試料に近接させることで、より安定した計測ができるといった利点も得られる。
【0038】
上記複屈折測定原理の有効性を検証するため、被測定試料OBとして複屈折量を可変可能なバビネソレイユ補償子(BSC)を使用し、そのBSCの位相差を変化させて複屈折位相差量(リターデーション:Retardation)及びその複屈折主軸の方位を実測した。その測定結果を図2に示す。図2中の横軸は、BSCの位相差を変化させる調整ネジの送り量を、また縦軸は、そのBSC調整ネジ送り量に対応して実測された複屈折位相差量及び主軸方位をそれぞれ示す。
【0039】
図2に示す測定結果では、BSCの調整ネジの送り量に対して、複屈折量が線形に変化し、BSCの構造に起因する複屈折特性(調整ネジの送り量に対し複屈折量が線形に変化)とよく調和すると共に、複屈折位相差量が0〜316nm(測定光の波長632nmに対し2分の一波長)の範囲で線形に増加及び減少を繰り返し(0nm及び316nmの位置で折り返し)、その増減に応じて、主軸方位が90度(+40度、−50度)変化していることが確認された。従って、この測定結果からも、従来例の測定方法と比べ複屈折の測定ダイナミックレンジが広くとれていることが確認された。
【0040】
以上、本実施形態による複屈折測定の特徴をまとめると、次の通りである。
1)複屈折量(複屈折位相差)を正接関数を用いた算出式により求めることができるため、従来の回転偏光子法等の偏光解析法と比べ、複屈折測定のダイナミックレンジが広がる。
2)複屈折主軸方位を同時に求めることができる。
3)受光側の偏光子(被測定試料から検出器側に配置する素子)を回転させる必要がないため、検出部の小型化が可能である。
4)2次元測定に拡張しやすい。
【0041】
なお、本実施形態における計測方法は、光源側の偏光素子(直線偏光子及び四分の一波長板)を回転させながら逐次光強度を測定してDFT解析する方法のほか、偏光素子を1:2の回転比を保ちつつ高速に回転させて直線偏光子の1回転に対する2倍周期及び6倍周期の各成分をロックインアンプ等で同期検出する方法等を用いることが可能である。
【0042】
また、本実施形態では、回転すべき光源側の直線偏光子及び四分の一波長板の回転比を1:2としたが、本発明はこれに限らず、この回転比を任意に設定することが可能である。これは、回転比を変化させると、その回転に伴う透過光強度の変化の割合が変化するが、DFT解析で得られる情報(上記(3)〜(7)式)の内容は基本的に変わらないためである。
【0043】
さらに、本実施形態では、光源側の直線偏光子の初期方位と、検出器側の直線偏光子の固定方位との関係を平行ニコル(いずれも方位0度)となるように設定しているが、本発明はこれに限らず、両者をいずれも方位90度の位置にセットしても構わないし、互いに直交する位置(クロスニコルの関係となる位置)に配置しても構わない。これと同様に、検出器側の四分の一波長板の初期方位は、検出器側の直線偏光子に対し方位45度の位置に設定されているが、これは相対的な方位であればよく、例えば方位135度の位置でも構わない。これらの設定方位の違いは、上記(3)〜(7)式では、符号の違いとなって表れる。
【0044】
また、本実施形態では、光源にレーザを使用しているが、本発明はこれに限らず、例えばLEDやその他のランプ等から出射した光束をレンズやミラーなど適当な光学系を用いて平行光束にしたものでも構わない。また、光源側の直線偏光子と光源の間に拡散板を置き、検出器側にレンズを配置して光検出を行うような構成であっても構わない。
【0045】
(第2実施形態)
図3は、第2実施形態に係る複屈折測定装置を示す。図3に示す複屈折測定装置は、上記第1実施形態と比べると、光源側の偏光素子の構成及び検出器側の偏光素子の方位を一部変更したもので、その他の構成は実質的に同様である。
【0046】
すなわち、図3に示すように、光源側の偏光素子2aは、方位0度に固定される直線偏光子23と、モータドライバ5からの駆動により図示しない回転機構を介して所定の回転比(例えば1対2)で光軸回りに回転可能な2つの四分の一波長板24、25とから構成され、検出器側の偏光素子3aを成す四分の一波長板33及び直線偏光子34は、それぞれ方位45度及び方位90度の位置に固定される。
【0047】
この構成によれば、光源1から出射した光は、光源側の偏光素子2aを成す直線偏光子23及び2つの四分の一波長板24、25、被測定試料OB、検出器側の偏光素子3aを成す四分の一波長板33及び直線偏光子34を通過し、光検出器4にて検出される。この間、モータドライバ5からの駆動により図示しない回転機構を介して光源側の2つの四分の一波長板24、25が互いに1:2の回転比を保ちつつ光軸回りに回転し、これにより光検出器4にて検出される光信号が、逐次、A/Dコンバータ6を介してPC7に取り込まれる。
【0048】
このときの光検出器4で得られる光信号(光強度信号)は、前述したミューラー行列を用いたストークス・パラメータによる行列計算式では、次の(12)式で表現される。
【0049】
【数10】
Figure 2004020343
上記(12)式において、S’は最終的に得られるストークス・パラメータ(4つの成分、即ちS’〜S’から構成)、Sは光源1のストークス・パラメータ(4つの成分、即ちS〜Sから構成)、LP、QWθ、QW2θ、XΔ、φ、QW45、及びLP90は、それぞれ光源側の直線偏光子(方位0度)23、光源側の一方の四分の一波長板(方位θ)24、その他方の四分の一波長板(方位2θ)25、被測定試料(複屈折位相差Δ及び主軸方位φ)OB、検出器側の四分の一波長板(方位45度)33、及び検出器側の直線偏光子(方位90度)34の各ミューラー行列を示す。
【0050】
上記(12)式に従って逐次計算を行うと、ストークス・パラメータS’の光強度を表すS’項は、次の(13)式〜(22)式で求めることができる。
【0051】
【数11】
Figure 2004020343
上記(14)式〜(22)式において、aは、光源1から出射される光信号の光強度、DCは光検出器4で検出される光信号の光強度の内の直流成分、S(n)及びC(n)(n=2、4、6、8)は、光検出器4で検出される光信号の光強度の内の光源側側の四分の一波長板24の1回転に対しn倍周期で変化する正弦波成分及び余弦波成分の各振幅をそれぞれ示す。
【0052】
上記(14)式〜(22)式を連立して解くと、被測定試料OBの複屈折Δとその主軸方位φは、次の(23)式及び(24)式で求めることができる。
【0053】
【数12】
Figure 2004020343
【0054】
上記(23)式によれば、上記第1実施形態と同様に、複屈折Δを正弦関数ではなく、正接関数から得ることができ、これにより複屈折の測定ダイナミックレンジを拡大することができる。また、上記(23)式以外の方法でも同様に連立方程式を解く方法が複数存在することは、上記(14)〜(22)式を見れば明らかである。
【0055】
従って、本実施形態でも、PC7の処理により、光検出器4で得られる光信号を入力して、上記各式に基づく偏光解析アルゴリズム用のプログラムを実行することにより、正接関数で得られる測定範囲(λ/2)の精度で、被測定試料OBの複屈折Δとその主軸方位φを演算することができる。
【0056】
また、上記(23)式は、前述した(8)式と同様に、DC成分を使わないで複屈折が求められることを示し、これにより光検出素子に迷光等が入射した場合や熱雑音などのノイズ成分の影響を未然に防ぐことができ、明室内での光学系の設置が可能となるといった利点もある。
【0057】
さらに、本実施形態の計測方法は、2つの四分の一波長板を回転させながら逐次光強度を測定し、DFT解析する方法のほか、2つの四分の一波長板を1:2の回転比を保ちつつ高速に回転させて波長板の1回転に対する2倍周期、4倍周期、6倍周期、8倍周期の各成分をロックインアンプ等で同期検出する方法を用いることが可能である。
【0058】
(第3実施形態)
図4は、第3実施形態に係る複屈折測定装置を示す。図4に示す複屈折測定装置は、前記第1及び第2の実施形態と比べると、光源側の偏光素子として位相差板(直線偏光子、四分の一波長板)をPCに接続されたモータドライバにより光軸回りに回転させる構成の代わりに、位相差可変の素子(可変位相子、可変波長板)を配置し、その位相差をPCに接続された位相ドライバにより変化させる構成を採用したもので、その他の構成は実質的に同様である。
【0059】
すなわち、図4において、光源側の偏光素子2bは、方位0度に固定される直線偏光子26と、位相ドライバ5aからの駆動により所定の割合(例えば1:2)で位相差を可変可能な2つの可変位相子27、28とから構成される。
【0060】
2つの可変位相子27、28は、例えば液晶を用いたものや、バビネソレイユ補償子等で構成され、その進相軸(複屈折主軸)がそれぞれ方位45度及び0度の位置に固定される。また、検出器側の偏光素子3bは、上記第2実施形態と同様に、方位45度の位置に固定される四分の一波長板35と、方位90度の位置に固定される直線偏光子36とから構成される。
【0061】
この構成によれば、光源1から出射した光は、光源側の偏光素子2bを成す直線偏光子26及び2つの可変位相子27、28、被測定試料OB、検出器側の偏光素子3bを成す四分の一波長板35及び直線偏光子36を通過し、光検出器4にて検出される。この間、位相ドライバ5aの駆動制御により2つの可変位相子27、28の位相差が1:2の変化量の割合で変化し、これにより光検出器4にて検出される光信号が、逐次、A/Dコンバータ6を介してPC7に取り込まれる。
【0062】
このときの光検出器4で得られる光信号(光強度信号)は、前述したミューラー行列を用いたストークス・パラメータによる行列計算式では、次の(25)式で表現される。
【0063】
【数13】
Figure 2004020343
上記(25)式において、S’は最終的に得られるストークス・パラメータ(4つの成分、即ちS’〜S’から構成)、Sは光源1のストークス・パラメータ(4つの成分、即ちS〜Sから構成)、LP、Rδ、45、R2δ、0、XΔ、φ、QW45、及びLP90は、それぞれ光源側の直線偏光子(方位0度)26、光源側の一方の可変位相子(位相差δ)27、その他方の可変位相子(位相差2δ)28、被測定試料(複屈折位相差Δ及び主軸方位φ)OB、検出器側の四分の一波長板(方位45度)35、及び検出器側の直線偏光子(方位90度)36の各ミューラー行列を示す。
【0064】
上記(25)式に従って逐次計算を行うと、ストークス・パラメータS’の光強度を表すS’項は、次の(26)式〜(32)式で求めることができる。
【0065】
【数14】
Figure 2004020343
上記(27)〜(32)式において、aは、光源1から出射される光信号の光強度、DCは光検出器4で検出される光信号の光強度の内の直流成分、S(n)及びC(n)(n=1、2、3)は、光検出器4で検出される光信号の光強度の内の光源側の可変位相子27の位相変化δに対しn倍周期で変化する正弦波成分及び余弦波成分の各振幅をそれぞれ示す。
【0066】
上記(27)〜(32)式を連立して解くと、被測定試料OBの複屈折Δとその主軸方位φは、次の(33)式及び(34)式で求めることができる。
【0067】
【数15】
Figure 2004020343
【0068】
上記(33)式によれば、上記第1及び第2の実施形態と同様に、PC7の処理により、複屈折Δを正弦関数ではなく、正接関数から得ることができ、これにより複屈折の測定ダイナミックレンジを拡大することができる。また、上記(33)式以外の方法でも同様に連立方程式を解く方法が複数存在することは、上記(27)〜(32)式を見れば明らかである。
【0069】
従って、本実施形態でも、PC7の処理により、光検出器4で得られる光信号を入力して、上記各式に基づく偏光解析アルゴリズム用のプログラムを実行することにより、正接関数で得られる測定範囲(λ/2)の精度で、被測定試料OBの複屈折Δとその主軸方位φを演算することができる。
【0070】
また、上記(33)式は、前述した(8)式及び(23)式と同様に、DC成分を使わないで複屈折が求められることを示し、これにより光検出素子に迷光等が入射した場合や熱雑音などのノイズ成分の影響を未然に防ぐことができ、明室内での光学系の設置が可能となるといった利点もある。
【0071】
また、本実施形態の計測方法としては、2つの可変位相子の位相差を変化させながら逐次光強度を測定してDFT解析する方法を例示できる。また、2つの可変位相子における位相差の変化の割合は、上述の1:2に限らず、2:1でも、1:3でも同様の解析が可能である。
【0072】
(第4実施形態)
図5は、第4実施形態に係る複屈折測定装置を示す。図5に示す複屈折測定装置は、上記第1実施形態と比べると、計測原理は同じであるが、光検出器4の代わりにCCDカメラ等の2次元画像取得器4aを配置し、これに伴い、光源側の偏光素子2を成す直線偏光子21及び四分の一波長板22側にその光路を拡大させるためのビームエキスパンダ29を挿入配置し、さらに2次元画像取得器4aにて取得される画像をPC7に転送するのためにフレームメモリ8を配置した点が相違する。それ以外の構成(検出器側の偏光素子3を成す四分の一波長板31及び直線偏光子32、モータドライバ7等)は、上記第1実施形態と本質的に同様である。
【0073】
この構成によれば、光源1からの光信号は、光源側の直線偏光子21及びその四分の一波長板22を通過し、ビームエキスパンダ29にてその光路が拡大され、その拡大ビームがそのまま被測定試料OB、検出器側の四分の一波長板31、及び直線偏光子32を通過し、2次元画像取得器4aにて検出される。この間、モータドライバ5の駆動により光源側の直線偏光子21及びその四分の一波長板22が互いに1:2の回転比を保ちながら回転し、これにより2次元画像取得器4aにて検出された光信号の光強度を反映した2次元画像データが、逐次、A/Dコンバータ6を介してPC7に取り込まれる。
【0074】
従って、本実施形態でも、PC7の処理により、2次元画像取得器4aで得られる2次元画像データを入力して、上記各式に基づく偏光解析アルゴリズム用のプログラムを実行することにより、正接関数で得られる測定範囲(λ/2)の精度で、被測定試料OBの複屈折Δとその主軸方位φを2演算することができる。これにより、第1実施形態と同様の測定ダイナミックレンジを持つ2次元の複屈折測定を実施可能となる。
【0075】
なお、図5に示す光学配置例では、光源側の四分の一波長板22と被測定試料OBとの間の光路上にビームエキスパンダ29を配置しているが、これに限らず、例えば、図6に示すように、光源側の直線偏光子21と光源1の間にビームエキスパンダ29を配置しても原理的には上記と同様に考えることができる。
【0076】
また、本実施形態では、第1実施形態における光学配置を適用しているが、第2及び第3実施形態における光学配置でも同様に適用可能である。
【0077】
【発明の効果】
以上説明したように、本発明によれば、複屈折の大きさがλ/4(測定光の四分の一波長)以上を示したり、或いは強散乱体の性質を示したりする高分子材料等の被測定試料であっても、複屈折量及びその複屈折主軸の方位を比較的簡素な構成で測定できる複屈折測定装置を安価に提供できる。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係る複屈折測定装置の全体構成及びその偏光素子配置を示す概略図。
【図2】バビネソレイユ補償子(BSC)を用いた測定結果を示すグラフ。
【図3】本発明の第2実施形態に係る複屈折測定装置の全体構成及びその偏光素子配置を示す概略図。
【図4】本発明の第3実施形態に係る複屈折測定装置の全体構成及びその偏光素子配置を示す概略図。
【図5】本発明の第4実施形態に係る複屈折測定装置の全体構成及びその偏光素子配置を示す概略図。
【図6】図5に示す構成の変形例を示す概略図。
【符号の説明】
1 光源
2、2a、2b、2c 光源側の偏光素子
3、3a、3b、3c 検出器側の偏光素子
4 光検出器
4a 2次元画像取得器4a
5 モータドライバ
5a 位相ドライバ
6 A/Dコンバータ
7 PC
8 フレームメモリ
21 光源側の直線偏光子(回転)
22、24、25 光源側の四分の一波長板(回転)
23、26 光源側の直線偏光子(固定)
27、28 可変位相子
29 ビームエキスパンダ
31、33、35 検出器側の四分の一波長板
32、34、36 検出器側の直線偏光子[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a birefringence measurement device, and more particularly to a device configuration including a polarization element arrangement of a polarization measurement optical system and a driving method thereof, and a device for a polarization analysis algorithm.
[0002]
[Prior art]
In recent years, with the development of optoelectronics, in the field of engineering, demands for products such as injection molded products, optical disks, thin film products, optical elements using crystals, polymer films, and liquid crystals have been rapidly increasing. Therefore, in these engineering fields, birefringence measurement, which measures the birefringence of these products, is becoming more and more expected as one of devices and methods for quantitatively evaluating the quality of each product. I have.
[0003]
On the other hand, many polymer materials and crystals cause scattering when light is incident due to the influence of optical scatterers present inside. Generally, it is said that in a sample that causes such scattering, a phenomenon such as multiple reflection of light occurs due to the scattering, and this causes a decrease in the accuracy of birefringence measurement. Therefore, in the case of such a sample to be measured, analysis algorithms such as a measurement method using pulsed light and an analysis method using an autocorrelation function are used as a method of birefringence measurement to avoid a decrease in accuracy due to scattering. Has been proposed.
[0004]
On the other hand, if the thickness is small, as represented by a polymer film, or if it is used in a special environment such as high temperature, strong electric field, or strong magnetic field, use a measuring device with a simple device configuration as much as possible. There are also requests to do so. Therefore, as a method of measuring birefringence in the case of such a sample to be measured, it is expected to use a generally known polarization analysis method or the like without depending on a complicated device configuration or a special device.
[0005]
[Problems to be solved by the invention]
However, the conventional birefringence measurement described above has the following problems.
[0006]
First, in a commonly known polarization analysis method, for example, in a method such as a rotation analyzer method or a rotation phaser method, the principal axis of birefringence of a sample to be measured is set at a predetermined angle with respect to the polarization axis of the measurement optical system. In the method of simultaneously measuring the principal axes of birefringence such as the rotating polarizer method, the dynamic range (measurement accuracy) of the birefringence measurement is obtained as "0 to λ / 4" (where λ is (Wavelength of light).
[0007]
Also, when trying to measure birefringence for a sample with large scattering, it is important to increase the measurement accuracy by making the distance between the sample and the photodetector as close as possible. However, the method of dynamically moving or modulating the polarizing element between the sample to be measured and the light detecting element by some method has a limitation that the shortest distance is determined by the physical size of the mechanism. Was. Moreover, when a two-dimensional distribution measurement is performed using a CCD camera or the like, the elements (optical systems) immediately before the camera become large, so that driving these elements tends to impair the measurement stability. There is also a problem that the mechanical size increases and the manufacturing cost increases.
[0008]
Furthermore, in recent years, birefringence evaluation has been performed in polymer research fields, biological research fields, and the like in order to quantitatively evaluate orientation control and molecular alignment states. The magnitude of refraction may be λ / 4 (quarter wavelength of the measuring light) or more, and in many cases, it is a strong scatterer. Therefore, even in the evaluation of birefringence in these research fields, the measurement accuracy determined by the optical arrangement of the polarizing element between the sample to be measured and the light detecting element and the driving method thereof is limited by the dynamic range in the above-described birefringence measurement. It is expected that the above restrictions will apply.
[0009]
The present invention has been made in consideration of the above-described problems of the related art, and has a birefringence of λ / 4 (quarter wavelength of the measurement light) or more, or a property of a strong scatterer. An object of the present invention is to provide an inexpensive birefringence measuring apparatus capable of measuring the amount of birefringence and the direction of the main axis of birefringence with a relatively simple configuration even for a sample to be measured such as a polymer material to be shown.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, a birefringence measuring apparatus according to the present invention includes a light source that generates an optical signal, and a light source side that causes the optical signal from the light source to enter a sample to be measured while changing the optical signal to a predetermined polarization state. A polarizing element, a light-receiving-side polarizing element that receives an optical signal from the sample to be measured, a light detector that detects an optical signal from the light-receiving-side polarizing element, and the light signal is detected by the light detector. Control means for controlling the polarization state of the optical signal incident on the sample to be measured by driving at least a part of the polarizing element on the light source side, and the light of the optical signal detected by the photodetector. Processing means for calculating the amount of birefringence of the sample to be measured together with the azimuth of the principal axis of the birefringence with an accuracy of a measurement range determined by a tangent function based on the intensity.
[0011]
In the present invention, the accuracy of the measurement range obtained by the tangent function of the amount of birefringence refers to “0 to λ / 2 (λ: wavelength of the light signal of the light source)”. Since the amount of birefringence can be calculated together with the azimuth of the main axis of birefringence, the accuracy of the substantial measurement range is improved to “0 to λ”.
[0012]
As a preferred example of the present invention, the polarizing element on the light receiving side is a quarter-wave plate for receiving an optical signal from the sample to be measured, and receiving the optical signal from the quarter-wave plate to receive the light signal. Preferably, a linear polarizer that emits light to the detector side is provided, and the fast axis of the quarter-wave plate and the polarization transmission axis of the linear polarizer are preferably fixed at predetermined azimuth positions.
[0013]
Further, as one aspect of the present invention, the polarizing element on the light source side receives a light signal from the light source, and outputs the light signal from the linear polarizer to the sample to be measured. A control means for rotating the linear polarizer and the quarter-wave plate about the optical axis while maintaining a predetermined rotation ratio with respect to each other. is there.
[0014]
In this aspect, the processing means includes a polarization transmission axis of the linear polarizer and a fast axis of the quarter-wave plate when the rotation ratio of the linear polarizer and the quarter-wave plate is 1: 2. Are defined as θ and 2θ, respectively, the birefringence amount of the sample to be measured and the azimuth of the birefringent principal axis thereof are respectively Δ and φ, the light intensity of an optical signal generated by the light source is a, and the light detection is performed. The amplitudes of a sine wave component and a cosine wave component that change in a cycle of n (n = 2, 6) times with respect to one rotation θ of the linear polarizer in the light intensity of the optical signal detected by the optical signal are represented by S, respectively. (N) And C (N) When, the amount of birefringence Δ of the sample to be measured and the azimuth φ of the principal axis of the birefringence,
(Equation 4)
Figure 2004020343
It is possible to provide a calculation means for obtaining from the calculation formula.
[0015]
In another aspect of the present invention, the polarizing element on the light source side includes a linear polarizer that receives an optical signal from the light source, and two linear light polarizers that receive an optical signal from the linear polarizer and emit the optical signal to the sample to be measured. The control means may include means for rotating the two quarter-wave plates about an optical axis while maintaining a predetermined rotation ratio with respect to each other.
[0016]
In this aspect, the processing means sets the directions of the fast axes of the two quarter-wave plates to θ and 2θ when the rotation ratio of the two quarter-wave plates is 1: 2, respectively. , The birefringence amount of the sample to be measured and the azimuth of the birefringent principal axis thereof are Δ and φ, respectively, the light intensity of the optical signal generated by the light source is a, and the light of the optical signal detected by the photodetector is The amplitudes of a sine wave component and a cosine wave component that change in a cycle of n (n = 2, 4, 6, 8) times one rotation θ of the quarter-wave plate among the intensities are represented by S (N) And C (N) When, the amount of birefringence Δ of the sample to be measured and the azimuth φ of the principal axis of the birefringence,
(Equation 5)
Figure 2004020343
It is possible to provide a calculation means for obtaining from the calculation formula.
[0017]
In still another aspect of the present invention, the polarizing element on the light source side includes a linear polarizer that receives an optical signal from the light source, and an optical signal that receives the optical signal from the linear polarizer and emits the optical signal to the sample to be measured. And a control unit that changes the phase difference between the two phase shifters at a predetermined ratio from each other.
[0018]
In this aspect, the processing means sets the phase difference between the two phase shifters to δ and 2δ when the ratio of changing the phase difference between the two phase shifters is 1: 2, The amount of refraction and the azimuth of the birefringent main axis are respectively Δ and φ, the light intensity of the optical signal generated by the light source is a, and the phase shifter of the light intensity of the optical signal detected by the photodetector is The amplitudes of a sine wave component and a cosine wave component that change in a cycle of n (n = 1, 2, 3) times the phase change δ of (N) And C (N) When, the amount of birefringence Δ of the sample to be measured and the azimuth φ of the principal axis of the birefringence,
(Equation 6)
Figure 2004020343
Calculation means for obtaining from the calculation formula of
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of a birefringence measuring device according to the present invention will be described with reference to the accompanying drawings.
[0020]
(1st Embodiment)
FIG. 1 shows a birefringence measuring device according to the first embodiment.
[0021]
The birefringence measuring device shown in FIG. 1 includes a light source 1 that emits an optical signal, a light source-side polarizing element 2 that changes the optical signal from the light source 1 to a predetermined polarization state and causes the optical signal to enter the sample OB to be measured. A polarizing element 3 on the detector side (light receiving side) that receives an optical signal emitted from the sample OB to be measured, and an optical signal from the polarizing element 3 on the detector side is converted into an analog electrical signal corresponding to the light intensity. The photodetector 4 for conversion and detection, and while the signal detection by the photodetector 4 is performed, the polarization state of the optical signal to be incident on the sample OB is controlled by driving the polarization element 2 on the light source side. A motor driver (which forms a main part of the control means of the present invention) 5 is connected to a signal output side of the photodetector 4 via an A (Analog) / D (Digital) converter (A / D converter) 6. PC (Personal Computer) ( 7 which constitutes a main part of the processing means of the present invention. The output side of the PC 7 is connected to the motor driver 5 via a signal line (not shown).
[0022]
In this example, the light source 1 is configured by a laser device that generates a laser beam having a predetermined wavelength (for example, 632 nm), but is not limited to this. For example, the light source 1 emits light from an LED (Light Emitting Device) or another lamp. A type in which a light beam is converted into a parallel light beam by an appropriate optical system such as a lens or a mirror may be used.
[0023]
In this example, the light source-side polarizing element 2 includes a linear polarizer (hereinafter, “light source-side linear polarizer 21”) arranged on the optical path of an optical signal emitted from the light source 1 and an optical path of the emitted light. A quarter-wave plate (hereinafter referred to as a “quarter-wave plate 22 on the light source side”) is disposed, and can be rotated around the optical axis by a driving operation of the motor driver 5 via a rotation mechanism (not shown). At this time, the rotation ratio of the linear polarizer 21 on the light source side and the quarter-wave plate 22 thereof is maintained at, for example, “1: 2” in this example (the polarization of the linear polarizer 21 on the light source side). When the transmission axis is at the position of azimuth θ with respect to the reference azimuth (initial azimuth), the birefringent main axis (fast axis) of quarter-wave plate 22 on the light source side is at azimuth 2θ with respect to the reference azimuth. It is set as follows.
[0024]
In this example, the light-receiving-side polarizing element 3 is a quarter-wave plate (hereinafter, referred to as a “detector-side quarter-wave plate 31”) arranged on the optical path of an optical signal emitted from the sample OB to be measured. ) And a linear polarizer (hereinafter, “linear polarizer 32 on the detector side”) disposed on the optical path of the emitted light. In the present example, the quarter-wave plate 31 on the detector side has its main axis (fast axis) azimuth at 45 degrees with respect to the reference azimuth of the linear polarizer 21 on the light source side. The polarizer 32 is fixedly disposed at a position where its polarization transmission axis azimuth is 0 degree with respect to the reference azimuth.
[0025]
In this example, the PC 7 functions as a control / arithmetic processing unit that executes a polarization analysis algorithm based on the birefringence measurement principle of the present invention, and a CPU (not shown) sequentially executes instructions of a program for the polarization analysis algorithm. Thus, at the time of birefringence measurement, a control command for controlling the driving operation is given to the motor driver 7 and an analog electric signal corresponding to the light intensity of the light signal output from the photodetector 2 is A / D-converted. The birefringence Δ of the sample OB to be measured and its principal axis direction φ are calculated by a polarization analysis based on a waveform analysis (DFT analysis or the like) via the converter 6 as a digital signal.
[0026]
Here, the overall operation of the present embodiment will be described.
[0027]
First, the light emitted from the light source 1 passes through the linear polarizer 21 on the light source side and its quarter-wave plate 22, the sample to be measured OB, the quarter-wave plate 31 on the detector side, and its linear polarizer 32. It passes and is detected by the photodetector 4. During this time, the linear polarizer 21 and the quarter-wave plate 22 on the light source side rotate while maintaining a rotation ratio of 1: 2 with respect to each other by the driving of the motor driver 5, whereby the light detected by the photodetector 4 is rotated. The signal is sequentially taken into the PC 7 via the A / D converter 6.
[0028]
The optical signal (light intensity signal) obtained by the photodetector 4 at this time is expressed by the following equation (1) in a matrix calculation formula based on a Stokes parameter using a Mueller matrix. It should be noted that the Stokes parameters are four quantities representing light intensity and bias, ie, light intensity S 0 , Horizontal and vertical linearly polarized light components S 1 , ± 45 degree linearly polarized light component S 2 , And left and right circularly polarized light components S 3 Is described as a set, and all the polarization states of light are described. The Mueller matrix is a 4 × 4 matrix when various polarization elements are considered as elements for converting the Stokes parameter of incident polarization into that of output polarization. It is equivalent to a matrix.
[0029]
(Equation 7)
Figure 2004020343
In the above equation (1), S ′ is a Stokes parameter (four components, that is, S ′) finally obtained. 0 ~ S ' 3 ), S is the Stokes parameter of light source 1 (four components, ie, S 0 ~ S 3 ), LP θ , QW , X Δ, φ , QW 45 , And LP 0 Are a linear polarizer (azimuth θ degree) 21 on the light source side, a quarter-wave plate (azimuth 2θ degree) 22 on the light source side, a sample to be measured (birefringence phase difference Δ and principal axis direction φ) OB, a detector Each of the Mueller matrices of a quarter-wave plate (azimuth 45 degrees) 31 on the side and a linear polarizer (azimuth 0 degrees) 32 on the detector side is shown.
[0030]
By performing successive calculations according to the above equation (1), S ′ representing the light intensity of the Stokes parameter S ′ is obtained. 0 The term can be obtained by the following equations (2) to (7).
[0031]
(Equation 8)
Figure 2004020343
In the above equations (3) to (7), a is the light intensity of the optical signal emitted from the light source 1, DC is the DC component of the optical intensity of the optical signal detected by the photodetector 4, S (N) And C (N) (N = 2, 6) are a sine wave component and a cosine wave component that change at a period n times the rotation of the linear polarizer 21 on the light source side in the light intensity of the optical signal detected by the photodetector 4. Are shown, respectively.
[0032]
By simultaneously solving the above equations (3) to (7), the birefringence Δ of the sample OB to be measured and the principal axis direction φ can be obtained by the following equations (8) and (9).
[0033]
(Equation 9)
Figure 2004020343
[0034]
According to the above equation (8), the birefringence Δ can be obtained not from the sine function (sin) as in the conventional example but from the tangent function (tan). .About..lambda. / 4 "(.lambda .: wavelength of the measurement light) to" 0.lambda./2 ". Moreover, since the principal axis direction φ can be measured simultaneously with the birefringence Δ, taking this point into account, measurement of “0 to λ” (measurement in the full range) can be substantially performed.
[0035]
Further, according to the above equation (8), the birefringence Δ can be obtained without using the DC component. Therefore, the noise component of the light intensity signal due to stray light or the like incident on the photodetector or thermal noise due to thermal noise or the like can be obtained. There is also an advantage that the influence can be prevented beforehand, and the optical system can be installed in a bright room.
[0036]
Therefore, by inputting an optical signal obtained by the photodetector 4 by the processing of the PC 7 and executing a program for an ellipsometric algorithm based on the above equations, the measurement range (0 to λ / With the accuracy of 2), the birefringence Δ of the sample OB to be measured can be calculated simultaneously with the principal axis direction φ.
[0037]
Further, in the present embodiment, since the quarter-wave plate on the detector side and its linear polarizer can be constructed so as not to rotate, a film-shaped polarizing element (polarizer and wave plate) is employed. It can be stuck to the photodetector, for example, by directly attaching it to the incident side of the photodetector, so that even if the sample causes scattering, the measurement can be performed more stably by bringing the photodetector closer to the sample. The advantage that can be obtained is also obtained.
[0038]
In order to verify the effectiveness of the above-described birefringence measurement principle, a Babinet Soleil compensator (BSC) that can vary the amount of birefringence is used as the sample OB to be measured, and the phase difference of the BSC is changed to change the birefringence phase difference. (Retardation) and the orientation of its birefringent principal axis were measured. FIG. 2 shows the measurement results. The horizontal axis in FIG. 2 indicates the feed amount of the adjustment screw for changing the BSC phase difference, and the vertical axis indicates the birefringence phase difference amount and the principal axis direction actually measured corresponding to the BSC adjustment screw feed amount. Show.
[0039]
In the measurement results shown in FIG. 2, the amount of birefringence linearly changes with respect to the feed amount of the adjustment screw of the BSC, and the birefringence characteristic caused by the structure of the BSC (the amount of birefringence is linear with respect to the feed amount of the adjustment screw). ), And increase and decrease linearly in the range of the birefringence phase difference in the range of 0 to 316 nm (half the wavelength of the measurement light of 632 nm) (turning back at the positions of 0 nm and 316 nm). ), It was confirmed that the principal axis direction changed by 90 degrees (+40 degrees, -50 degrees) according to the increase or decrease. Therefore, from the measurement results, it was confirmed that the measurement dynamic range of the birefringence was wider than that of the conventional measurement method.
[0040]
The characteristics of the birefringence measurement according to the present embodiment are summarized as follows.
1) Since the amount of birefringence (birefringence phase difference) can be obtained by a calculation formula using a tangent function, the dynamic range of the birefringence measurement is expanded as compared with a conventional polarization analysis method such as a rotating polarizer method.
2) The birefringent principal axis direction can be determined simultaneously.
3) Since it is not necessary to rotate the light-receiving-side polarizer (the element arranged from the sample to be measured to the detector side), the size of the detection unit can be reduced.
4) Easy expansion to two-dimensional measurement.
[0041]
The measurement method according to the present embodiment includes a method of sequentially measuring the light intensity while rotating a polarizing element (a linear polarizer and a quarter-wave plate) on the light source side and performing DFT analysis. It is possible to use a method of rotating the linear polarizer at a high speed while maintaining the rotation ratio of 2 and synchronously detecting each component of the double period and the six times period with respect to one rotation of the linear polarizer using a lock-in amplifier or the like.
[0042]
In the present embodiment, the rotation ratio of the linear polarizer and the quarter-wave plate on the light source side to be rotated is set to 1: 2, but the present invention is not limited to this, and the rotation ratio is set arbitrarily. It is possible. This is because, when the rotation ratio is changed, the rate of change of the transmitted light intensity due to the rotation is changed, but the contents of the information (Equations (3) to (7)) obtained by the DFT analysis are basically changed. Because there is no.
[0043]
Furthermore, in the present embodiment, the relationship between the initial orientation of the linear polarizer on the light source side and the fixed orientation of the linear polarizer on the detector side is set to be parallel Nicols (both directions are 0 degrees). However, the present invention is not limited to this, and both of them may be set at a position of 90 degrees in azimuth, or may be arranged at positions orthogonal to each other (positions having a crossed Nicols relationship). Similarly, the initial direction of the quarter-wave plate on the detector side is set at a position of 45 degrees with respect to the linear polarizer on the detector side, but this is a relative direction. For example, a position at an azimuth of 135 degrees may be used. These differences in the set azimuths are represented by differences in the signs in the above equations (3) to (7).
[0044]
Further, in the present embodiment, a laser is used as a light source. However, the present invention is not limited to this. For example, a light beam emitted from an LED or another lamp is converted into a parallel light beam using an appropriate optical system such as a lens or a mirror. You can use anything you like. Further, a configuration may be adopted in which a diffusion plate is placed between the linear polarizer on the light source side and the light source, and a lens is disposed on the detector side to perform light detection.
[0045]
(2nd Embodiment)
FIG. 3 shows a birefringence measuring device according to the second embodiment. The birefringence measuring device shown in FIG. 3 is different from the first embodiment in that the configuration of the polarizing element on the light source side and the orientation of the polarizing element on the detector side are partially changed, and the other configurations are substantially the same. The same is true.
[0046]
That is, as shown in FIG. 3, the polarization element 2a on the light source side has a predetermined rotation ratio (for example, a rotation ratio not shown) through a rotation mechanism (not shown) driven by the motor driver 5 and the linear polarizer 23 fixed at an azimuth of 0 degree. The two-quarter wave plates 24 and 25 rotatable about the optical axis (1: 2), and the quarter wave plate 33 and the linear polarizer 34 that constitute the detector-side polarizing element 3a are: , Are fixed at positions of azimuth 45 degrees and azimuth 90 degrees, respectively.
[0047]
According to this configuration, the light emitted from the light source 1 is divided into the linear polarizer 23 and the two quarter-wave plates 24 and 25, which constitute the polarizing element 2a on the light source side, the sample OB to be measured, and the polarizing element on the detector side. The light passes through a quarter-wave plate 33 and a linear polarizer 34 forming 3a, and is detected by the photodetector 4. During this time, the two quarter-wave plates 24 and 25 on the light source side rotate around the optical axis while maintaining a rotation ratio of 1: 2 with each other via a rotation mechanism (not shown) by the drive from the motor driver 5. Optical signals detected by the photodetector 4 are sequentially taken into the PC 7 via the A / D converter 6.
[0048]
The optical signal (light intensity signal) obtained by the photodetector 4 at this time is expressed by the following equation (12) in the matrix calculation equation based on the Stokes parameter using the Mueller matrix described above.
[0049]
(Equation 10)
Figure 2004020343
In the above equation (12), S ′ is a Stokes parameter (four components, ie, S ′) finally obtained. 0 ~ S ' 3 ), S is the Stokes parameter of light source 1 (four components, ie, S 0 ~ S 3 ), LP 0 , QW θ , QW , X Δ, φ , QW 45 , And LP 90 Are a linear polarizer (azimuth 0 degree) 23 on the light source side, a quarter-wave plate (azimuth θ) 24 on one side of the light source side, a quarter-wave plate (azimuth 2θ) 25 on the other side, and a measured object. Each of the Mueller matrices of the sample (birefringence phase difference Δ and principal axis direction φ) OB, a quarter-wave plate (direction 45 degrees) 33 on the detector side, and a linear polarizer (direction 90 degrees) 34 on the detector side is Show.
[0050]
By performing the sequential calculation according to the above equation (12), S ′ representing the light intensity of the Stokes parameter S ′ is obtained. 0 The term can be obtained by the following equations (13) to (22).
[0051]
[Equation 11]
Figure 2004020343
In the above equations (14) to (22), a is the light intensity of the optical signal emitted from the light source 1, DC is the DC component of the optical intensity of the optical signal detected by the photodetector 4, S (N) And C (N) (N = 2, 4, 6, 8) is the light intensity of the optical signal detected by the photodetector 4 and changes at a period of n times with respect to one rotation of the quarter-wave plate 24 on the light source side. The respective amplitudes of the sine wave component and the cosine wave component are shown.
[0052]
When the above equations (14) to (22) are simultaneously solved, the birefringence Δ of the sample OB to be measured and the principal axis direction φ can be obtained by the following equations (23) and (24).
[0053]
(Equation 12)
Figure 2004020343
[0054]
According to the above equation (23), similarly to the first embodiment, the birefringence Δ can be obtained not from a sine function but from a tangent function, whereby the measurement dynamic range of birefringence can be expanded. It is apparent from the above equations (14) to (22) that there are a plurality of methods for solving the simultaneous equations in the same manner other than the equation (23).
[0055]
Therefore, also in the present embodiment, by inputting the optical signal obtained by the photodetector 4 by the processing of the PC 7 and executing the program for the polarization analysis algorithm based on each of the above equations, the measurement range obtained by the tangent function is obtained. With the accuracy of (λ / 2), the birefringence Δ of the sample OB to be measured and its principal axis direction φ can be calculated.
[0056]
Equation (23) indicates that birefringence can be obtained without using a DC component, similar to equation (8), whereby stray light or the like enters the photodetector, thermal noise, etc. There is also an advantage that the influence of the noise component can be prevented beforehand, and the optical system can be installed in a bright room.
[0057]
Further, the measurement method of the present embodiment measures the light intensity sequentially while rotating the two quarter-wave plates and performs DFT analysis. In addition, the two quarter-wave plates are rotated by 1: 2. It is possible to use a method of rotating at a high speed while maintaining the ratio and synchronously detecting each component of a double cycle, a quadruple cycle, a six-fold cycle, and an eight-fold cycle with respect to one rotation of the wave plate by a lock-in amplifier or the like. .
[0058]
(Third embodiment)
FIG. 4 shows a birefringence measuring device according to the third embodiment. The birefringence measuring device shown in FIG. 4 has a retardation plate (linear polarizer, quarter-wave plate) connected to a PC as a light source-side polarizing element as compared with the first and second embodiments. Instead of using a motor driver to rotate around the optical axis, a variable phase difference element (variable phase shifter, variable wavelength plate) is arranged, and the phase difference is changed by a phase driver connected to a PC. The other configuration is substantially the same.
[0059]
That is, in FIG. 4, the polarization element 2b on the light source side can change the phase difference at a predetermined ratio (for example, 1: 2) by driving from the linear polarizer 26 fixed at the azimuth of 0 degree and the phase driver 5a. It is composed of two variable phase shifters 27 and 28.
[0060]
The two variable phase shifters 27 and 28 are composed of, for example, one using liquid crystal, a Babinet Soleil compensator, and the like, and their fast axes (birefringent main axes) are fixed at positions of azimuth 45 degrees and 0 degrees, respectively. . The detector-side polarizing element 3b includes a quarter-wave plate 35 fixed at a position of 45 degrees azimuth and a linear polarizer fixed at a position of 90 degrees azimuth as in the second embodiment. 36.
[0061]
According to this configuration, the light emitted from the light source 1 forms the linear polarizer 26 and the two variable phase shifters 27 and 28 that form the polarizing element 2b on the light source side, the sample OB to be measured, and the polarizing element 3b on the detector side. The light passes through the quarter-wave plate 35 and the linear polarizer 36 and is detected by the photodetector 4. During this time, the phase difference between the two variable phase shifters 27 and 28 changes at a rate of a change amount of 1: 2 by the drive control of the phase driver 5a, whereby the optical signal detected by the photodetector 4 is sequentially changed. The data is taken into the PC 7 via the A / D converter 6.
[0062]
The optical signal (light intensity signal) obtained by the photodetector 4 at this time is expressed by the following equation (25) in the matrix calculation formula based on the Stokes parameter using the Mueller matrix described above.
[0063]
(Equation 13)
Figure 2004020343
In the above equation (25), S ′ is a Stokes parameter finally obtained (four components, that is, S ′). 0 ~ S ' 3 ), S is the Stokes parameter of light source 1 (four components, ie, S 0 ~ S 3 ), LP 0 , R δ, 45 , R 2δ, 0 , X Δ, φ , QW 45 , And LP 90 Are the linear polarizer (azimuth 0 degree) 26 on the light source side, one variable phase shifter (phase difference δ) 27 on the light source side, the other variable phase shifter (phase difference 2δ) 28, and the sample to be measured (birefringence). The Mueller matrix of the phase difference Δ and the principal axis direction φ) OB, the quarter-wave plate (direction 45 degrees) 35 on the detector side, and the linear polarizer (direction 90 degrees) 36 on the detector side are shown.
[0064]
By performing successive calculations according to the above equation (25), S ′ representing the light intensity of the Stokes parameter S ′ is obtained. 0 The term can be obtained by the following equations (26) to (32).
[0065]
[Equation 14]
Figure 2004020343
In the above equations (27) to (32), a is the light intensity of the optical signal emitted from the light source 1, DC is the DC component of the optical intensity of the optical signal detected by the photodetector 4, S (N) And C (N) (N = 1, 2, 3) is a sine wave component that changes at a period n times the phase change δ of the variable phase shifter 27 on the light source side in the light intensity of the optical signal detected by the photodetector 4 and Each amplitude of the cosine wave component is shown.
[0066]
When the above equations (27) to (32) are simultaneously solved, the birefringence Δ of the sample OB to be measured and the principal axis direction φ can be obtained by the following equations (33) and (34).
[0067]
[Equation 15]
Figure 2004020343
[0068]
According to the above equation (33), the birefringence Δ can be obtained not from the sine function but from the tangent function by the processing of the PC 7 as in the first and second embodiments. The dynamic range can be expanded. It is apparent from the above equations (27) to (32) that there are a plurality of methods for solving the simultaneous equations in a similar manner other than the equation (33).
[0069]
Therefore, also in the present embodiment, by inputting the optical signal obtained by the photodetector 4 by the processing of the PC 7 and executing the program for the polarization analysis algorithm based on each of the above equations, the measurement range obtained by the tangent function is obtained. With the accuracy of (λ / 2), the birefringence Δ of the sample OB to be measured and its principal axis direction φ can be calculated.
[0070]
In addition, the above equation (33) indicates that birefringence can be obtained without using a DC component, similarly to the above-described equations (8) and (23), whereby stray light or the like enters the photodetector. There is also an advantage that the influence of noise components such as noise and thermal noise can be prevented beforehand, and the optical system can be installed in a bright room.
[0071]
Further, as a measurement method of the present embodiment, a method of sequentially measuring the light intensity while changing the phase difference between two variable phase shifters and performing DFT analysis can be exemplified. Further, the same analysis is possible when the ratio of the change in the phase difference between the two variable phase shifters is not limited to 1: 2 as described above, but is 2: 1 or 1: 3.
[0072]
(Fourth embodiment)
FIG. 5 shows a birefringence measuring device according to a fourth embodiment. The measurement principle of the birefringence measuring apparatus shown in FIG. 5 is the same as that of the first embodiment, but a two-dimensional image acquisition device 4a such as a CCD camera is arranged in place of the photodetector 4, and Accordingly, a linear polarizer 21 constituting the polarizing element 2 on the light source side and a beam expander 29 for enlarging the optical path are inserted and arranged on the quarter wavelength plate 22 side, and further acquired by the two-dimensional image acquisition device 4a. The difference is that a frame memory 8 is arranged to transfer the image to be transmitted to the PC 7. Other configurations (the quarter-wave plate 31 and the linear polarizer 32, the motor driver 7, etc., constituting the detector-side polarizing element 3) are essentially the same as those in the first embodiment.
[0073]
According to this configuration, the optical signal from the light source 1 passes through the linear polarizer 21 on the light source side and the quarter-wave plate 22 thereof, the optical path is expanded by the beam expander 29, and the expanded beam is The light passes through the sample OB as it is, the quarter-wave plate 31 on the detector side, and the linear polarizer 32, and is detected by the two-dimensional image acquisition device 4a. During this time, the linear polarizer 21 and the quarter-wave plate 22 on the light source side rotate while maintaining a rotation ratio of 1: 2 with respect to each other by the driving of the motor driver 5, whereby the two-dimensional image acquisition unit 4 a detects the rotation. The two-dimensional image data reflecting the light intensity of the light signal is sequentially taken into the PC 7 via the A / D converter 6.
[0074]
Therefore, also in the present embodiment, by inputting the two-dimensional image data obtained by the two-dimensional image acquisition unit 4a by the processing of the PC 7, and executing the program for the polarization analysis algorithm based on the above equations, the tangent function is obtained. The birefringence Δ of the sample OB to be measured and its principal axis azimuth φ can be calculated twice with the accuracy of the obtained measurement range (λ / 2). This makes it possible to perform two-dimensional birefringence measurement having the same measurement dynamic range as in the first embodiment.
[0075]
In the example of the optical arrangement shown in FIG. 5, the beam expander 29 is arranged on the optical path between the quarter-wave plate 22 on the light source side and the sample OB to be measured, but is not limited to this. As shown in FIG. 6, even if a beam expander 29 is arranged between the light source side linear polarizer 21 and the light source 1, the same principle can be considered.
[0076]
Further, in the present embodiment, the optical arrangement in the first embodiment is applied, but the optical arrangement in the second and third embodiments can be similarly applied.
[0077]
【The invention's effect】
As described above, according to the present invention, a polymer material having a birefringence of λ / 4 (quarter wavelength of the measurement light) or more, or exhibiting the properties of a strong scatterer, etc. With respect to the sample to be measured, a birefringence measuring apparatus capable of measuring the amount of birefringence and the direction of the principal axis of the birefringence with a relatively simple configuration can be provided at low cost.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an entire configuration of a birefringence measuring device according to a first embodiment of the present invention and an arrangement of polarizing elements thereof.
FIG. 2 is a graph showing measurement results obtained using a Babinet Soleil compensator (BSC).
FIG. 3 is a schematic diagram showing an entire configuration of a birefringence measuring device according to a second embodiment of the present invention and an arrangement of polarizing elements thereof.
FIG. 4 is a schematic diagram showing an entire configuration of a birefringence measuring device according to a third embodiment of the present invention and an arrangement of polarizing elements thereof.
FIG. 5 is a schematic diagram showing an entire configuration of a birefringence measuring device according to a fourth embodiment of the present invention and an arrangement of polarizing elements thereof.
FIG. 6 is a schematic diagram showing a modification of the configuration shown in FIG. 5;
[Explanation of symbols]
1 light source
2, 2a, 2b, 2c Light source side polarizing element
3, 3a, 3b, 3c Polarizing element on the detector side
4 Photodetector
4a Two-dimensional image acquisition device 4a
5 Motor driver
5a Phase driver
6 A / D converter
7 PC
8 frame memory
21 Light source side linear polarizer (rotation)
22, 24, 25 Quarter-wave plate on the light source side (rotation)
23, 26 Linear polarizer on the light source side (fixed)
27, 28 Variable phase shifter
29 Beam Expander
31, 33, 35 Quarter-wave plate on the detector side
32, 34, 36 Linear polarizer on the detector side

Claims (8)

光信号を発生する光源と、
前記光源からの光信号を所定の偏光状態に変化させながら被測定試料に入射させる光源側の偏光素子と、
前記被測定試料からの光信号を受ける受光側の偏光素子と、
前記受光側の偏光素子からの光信号を検出する光検出器と、
前記光検出器により前記光信号が検出される間、前記光源側の偏光素子の少なくとも一部を駆動することにより前記被測定試料に入射される光信号の偏光状態を制御する制御手段と、
前記光検出器により検出された光信号の光強度に基づいて、前記被測定試料の複屈折量をその複屈折主軸の方位と共に正接関数で求まる測定範囲の精度で演算する処理手段とを備えたことを特徴とする複屈折測定装置。
A light source for generating an optical signal;
A polarizing element on the light source side that is incident on the sample to be measured while changing the optical signal from the light source to a predetermined polarization state,
A light-receiving-side polarizing element that receives an optical signal from the sample to be measured,
A photodetector for detecting an optical signal from the light-receiving side polarizing element,
While the optical signal is detected by the photodetector, control means for controlling the polarization state of the optical signal incident on the sample to be measured by driving at least a part of the polarizing element on the light source side,
Processing means for calculating the amount of birefringence of the sample to be measured with the accuracy of a measurement range determined by a tangent function together with the azimuth of the principal axis of the birefringence, based on the light intensity of the optical signal detected by the photodetector. A birefringence measuring device characterized by the above-mentioned.
前記受光側の偏光素子は、前記被測定試料からの光信号を受ける四分の一波長板と、この四分の一波長板からの光信号を受けて前記光検出器側に出射する直線偏光子とを備え、前記四分の一波長板の進相軸及び前記直線偏光子の偏光透過軸は、それぞれ所定方位の位置に固定されることを特徴とする請求項1記載の複屈折測定装置。The light-receiving side polarizing element is a quarter-wave plate that receives an optical signal from the sample to be measured, and a linearly polarized light that receives an optical signal from the quarter-wave plate and emits the light to the photodetector. 2. The birefringence measurement apparatus according to claim 1, wherein a fast axis of the quarter-wave plate and a polarization transmission axis of the linear polarizer are fixed at predetermined azimuth positions, respectively. . 前記光源側の偏光素子は、前記光源からの光信号を受ける直線偏光子と、この直線偏光子からの光信号を受けて前記被測定試料側に出射する四分の一波長板とを有し、前記制御手段は、前記直線偏光子及び四分の一波長板を互いに所定の回転比を保ちつつ光軸回りに回転させる駆動手段を備えたことを特徴とする請求項2記載の複屈折測定装置。The polarizing element on the light source side has a linear polarizer that receives an optical signal from the light source, and a quarter-wave plate that receives an optical signal from the linear polarizer and emits the optical signal to the sample to be measured. 3. The birefringence measurement according to claim 2, wherein the control unit includes a driving unit that rotates the linear polarizer and the quarter-wave plate around the optical axis while maintaining a predetermined rotation ratio with respect to each other. apparatus. 前記処理手段は、前記直線偏光子及び四分の一波長板の回転比を1対2としたときの当該直線偏光子の偏光透過軸及び四分の一波長板の進相軸の各方位をそれぞれθ及び2θとし、前記被測定試料の複屈折量及びその複屈折主軸の方位をそれぞれΔ及びφとし、前記光源で生成される光信号の光強度をaとし、前記光検出器により検出される光信号の光強度の内の前記直線偏光子の1回転θに対しn(n=2、6)倍周期で変化する正弦波成分及び余弦波成分の各振幅をそれぞれS(n)及びC(n)としたとき、前記被測定試料の複屈折量Δ及びその複屈折主軸の方位φを、
Figure 2004020343
の算出式から求める演算手段を備えたことを特徴とする請求項3記載の複屈折測定装置。
The processing means sets the respective directions of the polarization transmission axis of the linear polarizer and the fast axis of the quarter-wave plate when the rotation ratio of the linear polarizer and the quarter-wave plate is 1: 2. Θ and 2θ, respectively, the amount of birefringence of the sample to be measured and the azimuth of the main axis of the birefringence are Δ and φ, respectively, the light intensity of the optical signal generated by the light source is a, and the light intensity is detected by the photodetector. The amplitudes of a sine wave component and a cosine wave component that change in a cycle of n (n = 2, 6) times one rotation θ of the linear polarizer in the light intensity of the optical signal are represented by S (n) and C, respectively. When (n) , the birefringence amount Δ of the sample to be measured and the azimuth φ of the main axis of the birefringence are
Figure 2004020343
4. A birefringence measuring apparatus according to claim 3, further comprising a calculating means for calculating from a calculation formula.
前記光源側の偏光素子は、前記光源からの光信号を受ける直線偏光子と、この直線偏光子からの光信号を受けて前記被測定試料側に出射する2つの四分の一波長板とを有し、前記制御手段は、前記2つの四分の一波長板を互いに所定の回転比を保ちつつ光軸回りに回転させる手段を備えたことを特徴とする請求項2記載の複屈折測定装置。複屈折測定装置。The polarizing element on the light source side includes a linear polarizer that receives an optical signal from the light source, and two quarter-wave plates that receive the optical signal from the linear polarizer and emit the optical signal to the sample to be measured. 3. A birefringence measuring apparatus according to claim 2, wherein said control means includes means for rotating said two quarter-wave plates about an optical axis while maintaining a predetermined rotation ratio with respect to each other. . Birefringence measurement device. 前記処理手段は、前記2つの四分の一波長板の回転比を1対2としたときの当該2つの四分の一波長板の進相軸の方位をそれぞれθ及び2θとし、前記被測定試料の複屈折量及びその複屈折主軸の方位をそれぞれΔ及びφとし、前記光源で生成される光信号の光強度をaとし、前記光検出器により検出される光信号の光強度の内の前記四分の一波長板の1回転θに対しn(n=2、4、6、8)倍周期で変化する正弦波成分及び余弦波成分の各振幅をそれぞれS(n)及びC(n)としたとき、前記被測定試料の複屈折量Δ及びその複屈折主軸の方位φを、
Figure 2004020343
の算出式から求める演算手段を備えたことを特徴とする請求項3記載の複屈折測定装置。
The processing means sets the azimuths of the fast axes of the two quarter-wave plates to θ and 2θ when the rotation ratio of the two quarter-wave plates is 1: 2, The amount of birefringence of the sample and the azimuth of the birefringent principal axis are respectively Δ and φ, the light intensity of the optical signal generated by the light source is a, and the light intensity of the optical signal detected by the photodetector is The amplitudes of a sine wave component and a cosine wave component that change in a cycle of n (n = 2, 4, 6, 8) times one rotation θ of the quarter-wave plate are S (n) and C (n ) , The birefringence amount Δ of the sample to be measured and the azimuth φ of the principal axis of the birefringence are
Figure 2004020343
4. A birefringence measuring apparatus according to claim 3, further comprising a calculating means for calculating from a calculation formula.
前記光源側の偏光素子は、前記光源からの光信号を受ける直線偏光子と、この直線偏光子からの光信号を受けて前記被測定試料側に出射する2つの位相差可変の位相子とを有し、前記制御手段は、前記2つの位相子の位相差を互いに所定の割合で変化させる手段を備えたことを特徴とする請求項2記載の複屈折測定装置。The polarizing element on the light source side includes a linear polarizer that receives an optical signal from the light source, and two phase difference variable phasers that receive an optical signal from the linear polarizer and emit the optical signal to the sample to be measured. 3. The birefringence measuring apparatus according to claim 2, wherein the control means includes means for changing a phase difference between the two phase shifters at a predetermined ratio. 前記処理手段は、前記2つの位相子の位相差を変化させる割合を1対2としたときの当該2つの位相子の位相差をそれぞれδ及び2δとし、前記被測定試料の複屈折量及びその複屈折主軸の方位をそれぞれΔ及びφとし、前記光源で生成される光信号の光強度をaとし、前記光検出器により検出される光信号の光強度の内の前記位相子の位相変化δに対しn(n=1、2、3)倍周期で変化する正弦波成分及び余弦波成分の各振幅をそれぞれS(n)及びC(n としたとき、前記被測定試料の複屈折量Δ及びその複屈折主軸の方位φを、
Figure 2004020343
の算出式から求める演算手段を備えたことを特徴とする請求項3記載の複屈折測定装置。
The processing means sets the phase difference between the two phase shifters to δ and 2δ when the ratio of changing the phase difference between the two phase shifters is 1: 2, and the birefringence amount of the sample to be measured and its The directions of the birefringent principal axes are respectively Δ and φ, the light intensity of the optical signal generated by the light source is a, and the phase change δ of the phaser in the light intensity of the optical signal detected by the photodetector. When the amplitudes of a sine wave component and a cosine wave component that change in a cycle of n (n = 1, 2, 3) times are S (n) and C (n ) , respectively, the birefringence of the sample to be measured is Δ and the orientation φ of the birefringent principal axis,
Figure 2004020343
4. A birefringence measuring apparatus according to claim 3, further comprising a calculating means for calculating from a calculation formula.
JP2002174801A 2002-06-14 2002-06-14 Birefringence measuring device Expired - Lifetime JP3844222B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002174801A JP3844222B2 (en) 2002-06-14 2002-06-14 Birefringence measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002174801A JP3844222B2 (en) 2002-06-14 2002-06-14 Birefringence measuring device

Publications (2)

Publication Number Publication Date
JP2004020343A true JP2004020343A (en) 2004-01-22
JP3844222B2 JP3844222B2 (en) 2006-11-08

Family

ID=31173681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002174801A Expired - Lifetime JP3844222B2 (en) 2002-06-14 2002-06-14 Birefringence measuring device

Country Status (1)

Country Link
JP (1) JP3844222B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007139722A (en) * 2005-11-22 2007-06-07 Tokyo Univ Of Agriculture & Technology Instrument and method for measuring optical characteristic
JP2007212455A (en) * 2006-02-08 2007-08-23 Carl Zeiss Smt Ag Method for approximating influence of optical system with respect to state of polarization of optical radiation
WO2007099791A1 (en) * 2006-02-28 2007-09-07 National University Corporation Tokyo University Of Agriculture And Technology Measuring instrument and measuring method
JP2007232550A (en) * 2006-02-28 2007-09-13 Tokyo Univ Of Agriculture & Technology Optical characteristic measuring instrument and optical characteristic measuring method
WO2007111159A1 (en) * 2006-03-20 2007-10-04 National University Corporation Tokyo University Of Agriculture And Technology Optical characteristic measuring device, optical characteristic measuring method, and optical characteristic measuring unit
JP2009186256A (en) * 2008-02-05 2009-08-20 Fujifilm Corp Double refraction measuring method, double refraction measuring instrument and program
JP2010230565A (en) * 2009-03-27 2010-10-14 Saitama Medical Univ Apparatus and method for measurement of polarization characteristics
JP2012103222A (en) * 2010-11-15 2012-05-31 Mitsubishi Electric Corp Evaluation method and evaluation device for optical anisotropy
JP2012141311A (en) * 2010-12-30 2012-07-26 Samsung Corning Precision Materials Co Ltd Apparatus for measuring transmissivity of patterned glass substrate
JP2013015443A (en) * 2011-07-05 2013-01-24 Fujifilm Corp Method and device for measuring optical characteristics
CN103604751A (en) * 2013-11-22 2014-02-26 宁波大学 Device and corresponding method for measuring optical rotation of transparent film with periodic chiral structure
CN113624690A (en) * 2021-07-19 2021-11-09 清华大学深圳国际研究生院 Polarizer capable of realizing modulation of any polarization state and optimization method thereof
WO2023001121A1 (en) * 2021-07-19 2023-01-26 清华大学深圳国际研究生院 Method for configuration optimization of polarizer and polarization analyzer, and polarization and polarization analysis system
CN115900535A (en) * 2023-01-04 2023-04-04 北京佰为深科技发展有限公司 Interferometric demodulation device and interferometric measurement system

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4639335B2 (en) * 2005-11-22 2011-02-23 国立大学法人東京農工大学 Optical characteristic measuring apparatus and optical characteristic measuring method
JP2007139722A (en) * 2005-11-22 2007-06-07 Tokyo Univ Of Agriculture & Technology Instrument and method for measuring optical characteristic
JP2007212455A (en) * 2006-02-08 2007-08-23 Carl Zeiss Smt Ag Method for approximating influence of optical system with respect to state of polarization of optical radiation
JP4677570B2 (en) * 2006-02-28 2011-04-27 国立大学法人東京農工大学 Measuring device and measuring method
JPWO2007099791A1 (en) * 2006-02-28 2009-07-16 国立大学法人東京農工大学 Measuring device and measuring method
JP2007232550A (en) * 2006-02-28 2007-09-13 Tokyo Univ Of Agriculture & Technology Optical characteristic measuring instrument and optical characteristic measuring method
WO2007099791A1 (en) * 2006-02-28 2007-09-07 National University Corporation Tokyo University Of Agriculture And Technology Measuring instrument and measuring method
WO2007111159A1 (en) * 2006-03-20 2007-10-04 National University Corporation Tokyo University Of Agriculture And Technology Optical characteristic measuring device, optical characteristic measuring method, and optical characteristic measuring unit
JPWO2007111159A1 (en) * 2006-03-20 2009-08-13 国立大学法人東京農工大学 Optical characteristic measuring device, optical characteristic measuring method, and optical characteristic measuring unit
JP2009186256A (en) * 2008-02-05 2009-08-20 Fujifilm Corp Double refraction measuring method, double refraction measuring instrument and program
JP2010230565A (en) * 2009-03-27 2010-10-14 Saitama Medical Univ Apparatus and method for measurement of polarization characteristics
JP2012103222A (en) * 2010-11-15 2012-05-31 Mitsubishi Electric Corp Evaluation method and evaluation device for optical anisotropy
JP2012141311A (en) * 2010-12-30 2012-07-26 Samsung Corning Precision Materials Co Ltd Apparatus for measuring transmissivity of patterned glass substrate
JP2013015443A (en) * 2011-07-05 2013-01-24 Fujifilm Corp Method and device for measuring optical characteristics
CN103604751A (en) * 2013-11-22 2014-02-26 宁波大学 Device and corresponding method for measuring optical rotation of transparent film with periodic chiral structure
CN103604751B (en) * 2013-11-22 2015-12-02 宁波大学 The device of property measuring period chiral structure transparent membrane optical activity and corresponding method
CN113624690A (en) * 2021-07-19 2021-11-09 清华大学深圳国际研究生院 Polarizer capable of realizing modulation of any polarization state and optimization method thereof
WO2023001121A1 (en) * 2021-07-19 2023-01-26 清华大学深圳国际研究生院 Method for configuration optimization of polarizer and polarization analyzer, and polarization and polarization analysis system
CN113624690B (en) * 2021-07-19 2023-10-13 清华大学深圳国际研究生院 Polarizer capable of realizing arbitrary polarization state modulation and optimization method thereof
CN115900535A (en) * 2023-01-04 2023-04-04 北京佰为深科技发展有限公司 Interferometric demodulation device and interferometric measurement system

Also Published As

Publication number Publication date
JP3844222B2 (en) 2006-11-08

Similar Documents

Publication Publication Date Title
JP3844222B2 (en) Birefringence measuring device
US7889339B1 (en) Complementary waveplate rotating compensator ellipsometer
KR100765709B1 (en) Spectroscopic polarimetry
JP4480653B2 (en) Polarization state measuring device, circular dichroism measuring device and method thereof
EP3187856B1 (en) Birefringence measurement device and birefringence measurement method
WO2015101352A1 (en) Optical polarisation modulation and detection apparatus and detection method
JP5198980B2 (en) Optical anisotropy parameter measuring method and measuring apparatus
US20100103417A1 (en) Optical Characteristic Measuring Apparatus, Optical Characteristic Measuring Method, and Optical Characteristic Measuring Unit
JP2005274380A (en) Double refraction measuring instrument
KR101267119B1 (en) Measuring instrument and measuring method
CN110132852A (en) A kind of Transflective Mueller matrix polarization micro imaging system
TW201018888A (en) Phase retardance inspection instrument
JP2004205500A (en) Apparatus and method for measuring birefringence
KR100195397B1 (en) Method and apparatus for measuring thickness of birefringence layer
JP2007514164A (en) System and method for measuring birefringence in optical materials
JP2007232550A (en) Optical characteristic measuring instrument and optical characteristic measuring method
US6348966B1 (en) Measuring method of liquid crystal pretilt angle and measuring equipment of liquid crystal pretilt angle
JP2007139722A (en) Instrument and method for measuring optical characteristic
KR20150031827A (en) Ellipsometer for detecting surface
ITCS20070024A1 (en) METHOD AND DEVICE FOR THE REAL TIME MEASUREMENT OF CIRCULAR DICROISM
KR101936792B1 (en) Optical Meter for Measuring of Film Structures based on Ellipsometry and Interferometer
JP3813800B2 (en) Liquid crystal cell parameter detector
Han et al. Dynamic Stokes polarimetric imaging system with dual-wavelength operation
JP2009085853A (en) Measurement device and method
Arteaga et al. Mueller Matrix Imaging

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060810

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3844222

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130825

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term