JPH11139854A - Admixture for mortar or concrete and mortar or concrete - Google Patents
Admixture for mortar or concrete and mortar or concreteInfo
- Publication number
- JPH11139854A JPH11139854A JP30834197A JP30834197A JPH11139854A JP H11139854 A JPH11139854 A JP H11139854A JP 30834197 A JP30834197 A JP 30834197A JP 30834197 A JP30834197 A JP 30834197A JP H11139854 A JPH11139854 A JP H11139854A
- Authority
- JP
- Japan
- Prior art keywords
- admixture
- molten slag
- sewage sludge
- mortar
- concrete
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
- C04B28/04—Portland cements
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明はモルタル・コンクリ
ート用混和材及びモルタル・コンクリート組成物に関す
る。特に、ダム等のマスコンクリートに好適な混和材及
びこれを用いた組成物に関する。The present invention relates to a mortar / concrete admixture and a mortar / concrete composition. In particular, it relates to an admixture suitable for mass concrete such as a dam and a composition using the same.
【0002】[0002]
【従来の技術】下水道の整備に伴い、下水汚泥の発生量
は増加の一途を辿っている。因みに、1993年度で
は、固形物に換算して、156万トンにも達している。
尚、今後も増える一方である。従って、下水汚泥の最終
処分場の確保は困難である。ところで、衛生面から、下
水汚泥を焼却、或いは溶融化処理することが試みられて
いる。2. Description of the Related Art With the improvement of sewage systems, the amount of sewage sludge generated continues to increase. By the way, in 1993, it has reached 1.56 million tons in terms of solid matter.
In addition, it is increasing in the future. Therefore, it is difficult to secure a final disposal site for sewage sludge. By the way, from a sanitary viewpoint, incineration or melting treatment of sewage sludge has been attempted.
【0003】しかし、下水汚泥を焼却、或いは溶融化処
理しても、ここから排出される焼却灰や溶融パウダーに
は、多量使用に至る格別な用途が考えられていない。例
えば、タイルや煉瓦などに一部では試みられているが、
その量は極く僅かであり、大部分は、単に、埋め立て地
に埋立て処分することが考えられているに過ぎない。[0003] However, even if sewage sludge is incinerated or melted, there is no particular use of the incinerated ash or molten powder discharged therefrom which leads to a large amount of use. For example, some have tried on tiles and bricks,
The amount is negligible and for the most part it is simply considered to be landfilled in landfills.
【0004】[0004]
【発明が解決しようとする課題】従って、本発明が解決
しようとする課題は、下水汚泥の有効活用を提案するこ
とである。Accordingly, an object of the present invention is to propose an effective use of sewage sludge.
【0005】[0005]
【課題を解決するための手段】下水汚泥の処理方法の一
つとして、下水汚泥を溶融スラグ化することが考えられ
た。これは次のような技術である。すなわち、下水処理
場で発生する下水汚泥を1100〜1600℃に加熱す
ると、下水汚泥中の有機質分が熱分解、燃焼し、無機質
分が溶融する。そして、溶融物を水中で急冷したり、空
気中で徐冷することによって、下水汚泥溶融スラグが得
られる。尚、溶融処理工程は、例えばコークスベット方
式、表面溶融方式、旋回溶融方式など各種の溶融炉を用
いることで実施できる。そして、得られた下水汚泥の溶
融物スラグを粉砕することによって、中空状のものでは
ない密実な下水汚泥溶融スラグ粉末が得られる。Means for Solving the Problems As one method of treating sewage sludge, it has been considered to convert sewage sludge into molten slag. This is the following technique. That is, when sewage sludge generated in a sewage treatment plant is heated to 1100 to 1600 ° C., organic components in sewage sludge are thermally decomposed and burned, and inorganic components are melted. Then, the sewage sludge molten slag is obtained by rapidly cooling the melt in water or gradually cooling it in air. The melting treatment step can be performed by using various melting furnaces such as a coke bed method, a surface melting method, and a swirling melting method. Then, by crushing the obtained sewage sludge melt slag, a solid sewage sludge molten slag powder that is not hollow is obtained.
【0006】尚、下水汚泥溶融スラグのうち、急冷した
ものは、図1のX線回折パターンから判る通り、非晶質
なものであるのに対して、徐冷したものは、一部が結晶
化したものとなっている。尚、熱条件を積極的に調整す
ることにより、結晶量を増加させることが出来る。とこ
ろで、上記下水汚泥溶融スラグと下水汚泥焼却灰とを比
べると、減容化や重金属の不溶化において溶融スラグは
優れているので、溶融スラグの技術の拡大が望まれてい
る。[0006] Of the sewage sludge molten slag, the rapidly cooled one is amorphous, as can be seen from the X-ray diffraction pattern in FIG. 1, while the slowly cooled one is partially crystalline. It has become. The amount of crystals can be increased by actively adjusting the thermal conditions. By the way, when comparing the sewage sludge molten slag with the sewage sludge incineration ash, the molten slag is superior in volume reduction and insolubilization of heavy metals. Therefore, it is desired to expand the technology of the molten slag.
【0007】又、石炭火力発電所で発生するフライアッ
シュ等のガラスバルーンは、中が中空であり、比重がセ
メント粒子の1/2〜2/3であるのに対して、下水汚
泥溶融スラグは、密実な為、比重が大きい特徴を有して
いる。すなわち、下水汚泥の溶融スラグは比重が約2.
3〜4.1と大きなものである。従って、このような特
徴の下水汚泥溶融スラグを、建材、アスファルト混合
材、路盤材、或いはコンクリート骨材とする有効利用が
考えられた。A glass balloon such as fly ash generated in a coal-fired power plant is hollow and has a specific gravity of 1/2 to 2/3 of that of cement particles. It has the characteristic that the specific gravity is large because it is dense. That is, the specific gravity of the molten slag of sewage sludge is about 2.
It is as large as 3 to 4.1. Therefore, it has been considered that the sewage sludge molten slag having such characteristics is effectively used as a building material, an asphalt mixture, a roadbed material, or a concrete aggregate.
【0008】しかし、単に、下水汚泥溶融スラグをコン
クリート骨材として利用した場合、微粉分が欠除する
為、単位水量比や、コンクリート硬化後に生じる浮き水
(ブリージング)量が多く、硬化後のコンクリート物性
は悪いものであった。従って、単に、下水汚泥溶融スラ
グをコンクリート骨材として利用することは適切でな
く、通常は石灰石粉末などの鉱物質粉末を添加しなけれ
ばならなかった。However, when sewage sludge molten slag is simply used as concrete aggregate, since the fine powder content is lost, the unit water ratio and the amount of floating water (breathing) generated after hardening the concrete are large, and the concrete after hardening is hardened. Physical properties were bad. Therefore, it is not appropriate to simply use the sewage sludge molten slag as a concrete aggregate, and usually a mineral powder such as a limestone powder has to be added.
【0009】そこで、更なる検討を押し進めて行った。
先ず、下水汚泥溶融スラグの化学組成や比重などを調べ
たので、その結果を下記の表−1,−2に示す。 表−1 化学成分(wt%) SiO2 Al2O3 Fe2O3 CaO MgO R2O P2O5 Ig.loss 焼却灰A 15.2 9.6 19.7 35.5 4.0 0.8 8.6 -2.5 焼却灰B 30.3 16.0 5.0 11.2 4.4 3.1 23.2 -1.0 急冷スラグA 36.6 19.1 6.4 11.9 3.7 2.9 13.2 +0.2 急冷スラグB 45.6 11.2 9.4 9.1 3.6 1.8 16.3 +1.5 徐冷スラグ 34.9 15.6 12.8 8.3 1.9 3.1 17.1 +2.2 急冷高炉スラグ 33.1 14.2 0.3 42.9 5.2 0.2 0.0 +0.2 石灰石粉末 0.4 0.3 0.1 55.7 0.2 0.2 0.0 -43.2 フライアッシュ 56.2 26.7 4.1 5.4 1.7 2.0 0.0 -2.1 普通セメント 22.7 5.3 3.2 64.1 1.5 0.8 14.4 表−2 比重 平均粒径 比表面積 比表面積 BET法 ブレーン法 (μm) (m2 /g) (cm2 /g) 焼却灰A 3.10 14.2 3.9 3460 焼却灰B 2.00 21.7 6.9 1800 急冷スラグA 2.98 43.2 0.3 1380 2.99 14.9 1.2 3070 3.00 7.4 1.4 5860 急冷スラグB 2.84 15.0 0.9 3240 2.86 7.2 1.6 5720 徐冷スラグ 2.76 13.8 1.4 3060 急冷高炉スラグ 2.91 12.4 0.9 3840 石灰石粉末 2.79 12.1 1.1 3320 フライアッシュ 2.10 17.1 2.4 3320 これから、下水汚泥の処理物にはP2 O5 成分の多いこ
とが判る。又、下水汚泥溶融スラグ粉末は、高炉スラグ
と同様に、Ig.Lossの測定結果にあっては減量し
ておらず、未燃焼カーボンを含んでいないことが窺え
る。Therefore, further studies were conducted.
First, the chemical composition and specific gravity of the sewage sludge molten slag were examined, and the results are shown in Tables 1 and 2 below. Table 1 Chemical composition (wt%) SiO 2 Al 2 O 3 Fe 2 O 3 CaO MgO R 2 OP 2 O 5 Ig.loss Incinerated ash A 15.2 9.6 19.7 35.5 4.0 0.8 8.6 -2.5 Incinerated ash B 30.3 16.0 5.0 11.2 4.4 3.1 23.2 -1.0 Quenched slag A 36.6 19.1 6.4 11.9 3.7 2.9 13.2 +0.2 Quenched slag B 45.6 11.2 9.4 9.1 3.6 1.8 16.3 +1.5 Slowly cooled slag 34.9 15.6 12.8 8.3 1.9 3.1 17.1 +2.2 Quenched blast furnace slag 33.1 14.2 0.3 42.9 5.2 0.2 0.0 +0.2 Limestone powder 0.4 0.3 0.1 55.7 0.2 0.2 0.0 -43.2 Fly ash 56.2 26.7 4.1 5.4 1.7 2.0 0.0 -2.1 Ordinary cement 22.7 5.3 3.2 64.1 1.5 0.8 14.4 Table-2 Specific gravity Average particle size Specific surface area Specific surface area BET method Brain method (μm (M 2 / g) (cm 2 / g) Incinerated ash A 3.10 14.2 3.9 3460 Incinerated ash B 2.00 21.7 6.9 1800 Quenched slag A 2.98 43.2 0. 3 1380 2.99 14.9 1.2 3070 3.00 7.4 1.4 5860 Rapid Slag B 2.84 15.0 0.9 3240 2.86 7.2 1.6 5720 Slowly cooled slag 2.76 13.8 1.4 3060 Quenched blast furnace slag 2.91 12.4 0.9 3840 Limestone powder 2.79 12.1 1.1 3320 Fly ash 2.10 17.1 2.4 3320 From this, it can be seen that the treated sewage sludge has a large P 2 O 5 component. Further, similarly to the blast furnace slag, the sewage sludge molten slag powder is made of Ig. The measurement result of Loss indicates that the weight has not been reduced and that no unburned carbon is contained.
【0010】又、比重なども石炭灰(フライアッシュ)
に比べて大きなことが判る。このような特徴についての
考察を進めて行くうちに、上記の下水汚泥溶融スラグ粉
末はモルタル・コンクリートの混和材として好適なもの
ではないかとの啓示を得るに至った。この啓示を基にし
て実験を押し進めて行った。先ず、これまで、混和材と
して用いられて来たフライアッシュ等にあっては、AE
(空気連行)剤を吸着し、コンクリート中の空気量を低
下(悪化)させることが知られている。従って、この点
について如何なる特徴を示すか調べた。配合割合が、普
通セメント:混和材:細骨材(静岡県小笠町産):蒸留
水:1%AE減水剤(アルキルアリルスルフォン酸系の
AE剤)=536.0:134.0:2010.0:2
81.4:20.1(重量比)のモルタルを用意した。
その結果は、フライアッシュを用いた場合のモルタル空
気連行量が約10%程度に大幅に低下するのに対して、
下水汚泥溶融スラグ粉末を用いた場合のモルタル空気連
行量は約20%程度と全く低下しておらず、下水汚泥溶
融スラグ粉末の方が格段に優れていることが判った。[0010] The specific gravity is also coal ash (fly ash)
It turns out that it is bigger than. As we proceeded to study these features, we came to the foresight that the above-mentioned sewage sludge molten slag powder is suitable as an admixture for mortar and concrete. Based on this revelation, we proceeded with the experiment. First, in the case of fly ash which has been used as an admixture, AE
It is known that a (air entraining) agent is adsorbed to lower (deteriorate) the amount of air in concrete. Therefore, what kind of characteristics are exhibited in this regard was examined. The mixing ratio is: ordinary cement: admixture: fine aggregate (from Ogasa-machi, Shizuoka Prefecture): distilled water: 1% AE water reducing agent (alkylallylsulfonic acid-based AE agent) = 536.0: 134.0: 2010. 0: 2
Mortar of 81.4: 20.1 (weight ratio) was prepared.
The result is that the amount of mortar air entrained when fly ash is used is greatly reduced to about 10%,
The mortar air entrainment amount when the sewage sludge molten slag powder was used was not reduced at all to about 20%, and it was found that the sewage sludge molten slag powder was much more excellent.
【0011】又、上記配合割合のモルタルの圧縮強度
(材齢28日)を調べると、混和材として石灰石粉末や
フライアッシュを用いた場合に比べて遜色ないものであ
った。又、下水汚泥溶融スラグに含まれている重金属な
どが溶出し、環境汚染の恐れがあるか否かについて調べ
た処、すなわち環境庁告示46号法による溶出試験を下
水汚泥溶融スラグ粉末に対して行った処、いずれもPb
やCr等の重金属の溶出は認められなかった。従って、
下水汚泥溶融スラグ粉末を混和材として用いても差し支
えないことが判った。Further, the mortar having the above mixing ratio was examined for compressive strength (age: 28 days). As a result, it was inferior to the case where limestone powder or fly ash was used as the admixture. In addition, it was examined whether or not heavy metals and the like contained in the sewage sludge molten slag were eluted and there was a risk of environmental pollution, that is, an elution test according to the Environment Agency Notification No. 46 method was conducted on the sewage sludge molten slag powder Where we went, all Pb
Elution of heavy metals such as Cr and Cr was not observed. Therefore,
It was found that sewage sludge molten slag powder could be used as an admixture.
【0012】このような知見を基にして本発明が達成さ
れたものであり、前記の課題は、下水汚泥溶融スラグ粉
末からなることを特徴とするモルタル・コンクリート用
混和材によって解決される。特に、下水汚泥溶融スラグ
粉末からなり、前記下水汚泥溶融スラグ粉末の平均粒径
が5〜30μmであることを特徴とするモルタル・コン
クリート用混和材によって解決される。The present invention has been achieved based on such knowledge, and the above-mentioned problems are solved by an admixture for mortar / concrete, which is characterized by comprising sewage sludge molten slag powder. In particular, the problem is solved by a mortar / concrete admixture comprising sewage sludge molten slag powder, wherein the sewage sludge molten slag powder has an average particle size of 5 to 30 μm.
【0013】又、上記の混和材と、セメントとを含むこ
とを特徴とするモルタル・コンクリート組成物によって
解決される。本発明において、平均粒径が5〜30μm
の下水汚泥溶融スラグ粉末が好ましいとしたのは、平均
粒径が30μmを越えて大きくなり過ぎると、水量比が
100%を越えるようになったからである。従って、平
均粒径が30μm以下のものとした。下限値は5μm未
満のものであっても、水量比は問題ないと考えられた。
しかし、平均粒径が5μm未満のものを得ようとする
と、粉砕コストが高くなり過ぎることから、平均粒径が
5μm以上のものとした。A mortar / concrete composition characterized by containing the above-mentioned admixture and cement. In the present invention, the average particle size is 5 to 30 μm
The reason why the sewage sludge molten slag powder is preferable is that when the average particle size exceeds 30 μm and becomes too large, the water content ratio exceeds 100%. Therefore, the average particle diameter is set to 30 μm or less. Even if the lower limit was less than 5 μm, it was considered that there was no problem with the water content ratio.
However, in order to obtain a powder having an average particle diameter of less than 5 μm, the pulverization cost becomes too high.
【0014】[0014]
【発明の実施の形態】本発明になるモルタル・コンクリ
ート用混和材は、下水汚泥溶融スラグ粉末からなる。特
に、平均粒径が5〜30μmの下水汚泥溶融スラグ粉末
からなる。本発明になるモルタル・コンクリート組成物
は、上記の混和材と、セメントとを含む。特に、セメン
ト100重量部に対して上記の混和材を1〜60重量部
含む。BEST MODE FOR CARRYING OUT THE INVENTION The admixture for mortar and concrete according to the present invention comprises sewage sludge molten slag powder. In particular, it is composed of a sewage sludge molten slag powder having an average particle size of 5 to 30 μm. The mortar / concrete composition according to the present invention contains the above-mentioned admixture and cement. Particularly, the admixture is contained in an amount of 1 to 60 parts by weight based on 100 parts by weight of cement.
【0015】以下、更に、詳しく説明する。本発明にな
るモルタル・コンクリート用混和材は、下水汚泥を溶融
処理した後、粉砕したものである。特に、下水処理場で
発生する下水汚泥を1100〜1600℃に加熱し、下
水汚泥中の有機質分を熱分解、燃焼させ、無機質分を溶
融させた後、この溶融物を水中で急冷したり、空気中で
徐冷することによって下水汚泥溶融スラグを得、この下
水汚泥溶融スラグを、例えばボールミルで粉砕すること
によって、中空状のものではない密実な下水汚泥溶融ス
ラグ粉末が得られる。The details will be described below. The admixture for mortar and concrete according to the present invention is obtained by melting sewage sludge and then pulverizing it. In particular, sewage sludge generated in a sewage treatment plant is heated to 1100 to 1600 ° C., the organic matter in the sewage sludge is thermally decomposed and burned, and the inorganic matter is melted. The sewage sludge molten slag is obtained by gradually cooling in air, and the sewage sludge molten slag is pulverized by, for example, a ball mill to obtain a solid sewage sludge molten slag powder that is not hollow.
【0016】そして、粉砕時に、その粒度を調整するこ
とによって、平均粒径が5〜30μmの下水汚泥溶融ス
ラグ粉末が得られる。尚、下水汚泥は、凝集沈降処理の
際に、無機系(消石灰+塩化鉄など)若しくは高分子系
凝集剤が添加される。その違いにより、CaO含有量を
中心に化学組成が変化する。本実施形態での下水汚泥溶
融スラグ粉末は、高分子系凝集剤を添加した下水汚泥を
原料としたものである。尚、無機系凝集剤を添加した下
水汚泥を原料とした下水汚泥溶融スラグ粉末も混和材と
して同様に使用できる。By adjusting the particle size at the time of pulverization, a sewage sludge molten slag powder having an average particle size of 5 to 30 μm can be obtained. The sewage sludge is added with an inorganic (eg, slaked lime + iron chloride) or polymer-based flocculant during the flocculation and sedimentation treatment. Due to the difference, the chemical composition changes around the CaO content. The sewage sludge molten slag powder in the present embodiment is made from sewage sludge to which a polymer-based flocculant has been added. In addition, sewage sludge molten slag powder using sewage sludge to which an inorganic coagulant has been added can also be used as an admixture.
【0017】この下水汚泥溶融スラグ粉末を混和材とし
て用いたモルタル(普通セメント:下水汚泥溶融スラグ
粉末:細骨材(静岡県小笠町産):蒸留水:1%AE減
水剤(アルキルアリルスルフォン酸系のAE剤)=53
6.0:134.0:2010.0:281.4:2
0.1(重量比))の単位水量比を調べたので、その結
果を図2に示す。Mortar using this sewage sludge molten slag powder as an admixture (ordinary cement: sewage sludge molten slag powder: fine aggregate (from Ogasa-cho, Shizuoka Prefecture): distilled water: 1% AE water reducing agent (alkylallyl sulfonic acid) AE agent) = 53
6.0: 134.0: 2011.0: 281.4: 2
Since the unit water ratio of 0.1 (weight ratio) was examined, the result is shown in FIG.
【0018】これによれば、下水汚泥溶融スラグ粉末の
平均粒径が30μm以下の場合には、単位水量比が10
0%以下であることから、混和材として好適に用いるこ
とが出来る。又、28日材齢におけるモルタルの圧縮強
度は20N/mm2 以上あり、フライアッシュを用いた
従来のモルタルに遜色ないものであった。According to this, when the average particle size of the sewage sludge molten slag powder is 30 μm or less, the unit water ratio is 10%.
Since it is 0% or less, it can be suitably used as an admixture. Further, the compressive strength of the mortar at the age of 28 days was 20 N / mm 2 or more, which was comparable to the conventional mortar using fly ash.
【0019】又、モルタルエアメータで測定したモルタ
ルエア量(空気連行量)は約20%あり、フライアッシ
ュを用いた場合のものよりも大きな値を示した。更に、
環境庁告示46号法により溶出試験を行った処、下水汚
泥溶融スラグ粉末からPbやCr等の重金属の溶出は認
められなかった。又、下水汚泥溶融スラグは、焼却灰と
異なり、全体が溶融ガラス化している為、表面が滑らか
で、比表面積も小さく、密実であり、吸水性が低い。か
つ、フライアッシュ等に比べて比重が大きいことから、
セメント粒子間に充填され易い。The mortar air amount (air entrainment amount) measured by a mortar air meter was about 20%, which was larger than that obtained when fly ash was used. Furthermore,
When an elution test was performed according to the Environment Agency Notification No. 46 method, no elution of heavy metals such as Pb and Cr was found from the sewage sludge molten slag powder. Also, unlike incineration ash, sewage sludge molten slag has a smooth surface, a small specific surface area, is dense, and has low water absorption because it is entirely molten and vitrified. And because the specific gravity is larger than fly ash,
It is easy to fill between cement particles.
【0020】又、下水汚泥溶融スラグ粉末を用いた場合
と用いなかった場合との水和熱を調べると、下水汚泥溶
融スラグ粉末を用いた場合の水和熱は10〜30%程度
低いものであった。従って、ダム等のマスコンクリート
用の混和材として好適なことが判る。又、下水汚泥など
P2 O5 成分を大量に含む粉体は、リンが溶出すると、
モルタル凝結時間に影響を与えると予想される。しか
し、下水汚泥溶融スラグ粉末をセメント量に対して20
%置換した結果では、影響はなかった。Investigation of the heat of hydration between the case where the sewage sludge melting slag powder was used and the case where the sewage sludge melting slag powder was not used showed that the heat of hydration when using the sewage sludge melting slag powder was about 10 to 30% lower. there were. Therefore, it turns out that it is suitable as an admixture for mass concrete such as dams. Also, powder containing a large amount of P 2 O 5 components such as sewage sludge, when phosphorus elutes,
It is expected to affect mortar setting time. However, the amount of sewage sludge molten slag powder is
The result of% substitution had no effect.
【0021】[0021]
【発明の効果】下水汚泥溶融スラグ粉末はモルタルやコ
ンクリートの混和剤として極めて有効である。すなわ
ち、下水汚泥溶融スラグ粉末を添加したモルタルやコン
クリートは、低水セメント比でも高流動性が確保でき、
かつ、空気連行量の大幅な低下がない。The sewage sludge molten slag powder is extremely effective as an admixture for mortar and concrete. In other words, mortar and concrete to which sewage sludge molten slag powder is added can ensure high fluidity even at a low water cement ratio,
In addition, there is no significant decrease in air entrainment amount.
【0022】又、下水汚泥に含まれるP2 O5 成分につ
いても大きな問題はなかった。又、下水汚泥溶融スラグ
粉末を添加したモルタルやコンクリートは、硬化の初期
における反応熱が低く、ひび割れが起きにくいものであ
った。そして、発生量が今後、益々増加すると考えられ
る下水汚泥の有効利用が図られる。There was no major problem with the P 2 O 5 component contained in the sewage sludge. In addition, mortar and concrete to which sewage sludge molten slag powder was added had low reaction heat in the early stage of hardening and hardly cracked. And effective utilization of sewage sludge, which is expected to increase in the future, will be achieved.
【図1】X線回折パターンFIG. 1 X-ray diffraction pattern
【図2】下水汚泥溶融スラグ粉末の粒径と水量比との関
係を示すグラフFIG. 2 is a graph showing the relationship between the particle size of sewage sludge molten slag powder and the water content ratio.
フロントページの続き (72)発明者 尾崎 正明 茨城県つくば市大字旭1番地 建設省土木 研究所内 (72)発明者 久保 忠雄 茨城県つくば市大字旭1番地 建設省土木 研究所内 (72)発明者 古北 克 東京都中央区日本橋室町三丁目1番3号 株式会社クボタ汚泥焼却溶融技術部内 (72)発明者 林 雅樹 東京都中央区日本橋室町三丁目1番3号 株式会社クボタ汚泥焼却溶融技術部内 (72)発明者 西田 克範 東京都中央区佃二丁目17番15号 月島機械 株式会社環境装置技術部内 (72)発明者 小川 重治 東京都中央区佃二丁目17番15号 月島機械 株式会社環境装置技術部内 (72)発明者 田野崎 隆雄 千葉県佐倉市大作二丁目4番2号 秩父小 野田株式会社中央研究所内 (72)発明者 松本 匡史 千葉県佐倉市大作二丁目4番2号 秩父小 野田株式会社中央研究所内Continuing from the front page (72) Inventor Masaaki Ozaki 1 Asahi, Oaza, Tsukuba, Ibaraki Prefecture Within the Public Works Research Institute, Ministry of Construction (72) Inventor Tadao Kubo 1 Asahi Asahi 1, Tsukuba, Ibaraki Prefecture, Public Works Research Institute, Ministry of Construction (72) Inventor Old Kitakatsu 3-3-1 Nihombashi Muromachi, Chuo-ku, Tokyo Inside Kubota Sludge Incineration and Melting Technology Department (72) Inventor Masaki Hayashi 3-3-1 Nihonbashi Muromachi 3-chome, Nihonbashi Chuo-ku, Tokyo Inside Kubota Sludge Incineration and Melting Technology Department ( 72) Inventor Katsunori Nishida 2--17-15 Tsukushima Machinery, Chuo-ku, Tokyo Inside Tsukishima Machinery Co., Ltd.Environmental Equipment Engineering Department (72) Inventor Takao Tanozaki 2-4-2 Daisaku, Sakura City, Chiba Prefecture Chichibu Onoda Central Research Laboratory Co., Ltd. (72) Inventor Masafumi Matsumoto 2-4-2 Daisaku, Sakura City, Chiba Prefecture Chichibu Onoda Co., Ltd. Central Research Laboratory
Claims (3)
特徴とするモルタル・コンクリート用混和材。1. A mortar / concrete admixture comprising sewage sludge molten slag powder.
下水汚泥溶融スラグ粉末の平均粒径が5〜30μmであ
ることを特徴とするモルタル・コンクリート用混和材。2. An admixture for mortar / concrete, comprising sewage sludge molten slag powder, wherein said sewage sludge molten slag powder has an average particle size of 5 to 30 μm.
クリート用混和材と、セメントとを含むことを特徴とす
るモルタル・コンクリート組成物。3. A mortar / concrete composition comprising the admixture for mortar / concrete according to claim 1 or 2 and cement.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30834197A JPH11139854A (en) | 1997-11-11 | 1997-11-11 | Admixture for mortar or concrete and mortar or concrete |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30834197A JPH11139854A (en) | 1997-11-11 | 1997-11-11 | Admixture for mortar or concrete and mortar or concrete |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11139854A true JPH11139854A (en) | 1999-05-25 |
Family
ID=17979903
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30834197A Pending JPH11139854A (en) | 1997-11-11 | 1997-11-11 | Admixture for mortar or concrete and mortar or concrete |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11139854A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001354465A (en) * | 2000-04-13 | 2001-12-25 | Tokyoto Gesuido Service Kk | Concrete |
JP2011116657A (en) * | 2000-04-13 | 2011-06-16 | Tokyo Metropolitan Sewerage Service Corp | Concrete |
JP2011144070A (en) * | 2010-01-14 | 2011-07-28 | Kyushu Electric Power Co Inc | Flocculating-caking resistant fly ash, method for deciding the flocculating-caking resistant fly ash, and method for mixing the flocculating-caking resistant fly ash |
JP2011230949A (en) * | 2010-04-27 | 2011-11-17 | Taiheiyo Cement Corp | Cement additive and cement composition |
JP2012126913A (en) * | 2012-02-27 | 2012-07-05 | Kyushu Electric Power Co Inc | Method for producing pulverized coal, and method for determining fly ash |
-
1997
- 1997-11-11 JP JP30834197A patent/JPH11139854A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001354465A (en) * | 2000-04-13 | 2001-12-25 | Tokyoto Gesuido Service Kk | Concrete |
JP2011116657A (en) * | 2000-04-13 | 2011-06-16 | Tokyo Metropolitan Sewerage Service Corp | Concrete |
JP2011144070A (en) * | 2010-01-14 | 2011-07-28 | Kyushu Electric Power Co Inc | Flocculating-caking resistant fly ash, method for deciding the flocculating-caking resistant fly ash, and method for mixing the flocculating-caking resistant fly ash |
JP2011230949A (en) * | 2010-04-27 | 2011-11-17 | Taiheiyo Cement Corp | Cement additive and cement composition |
JP2012126913A (en) * | 2012-02-27 | 2012-07-05 | Kyushu Electric Power Co Inc | Method for producing pulverized coal, and method for determining fly ash |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2006074946A3 (en) | Synthetic aggregates comprising sewage sludge and other waste materials and methods for producing such aggregates | |
JP5636718B2 (en) | CEMENT COMPOSITION, METHOD FOR PRODUCING THE SAME, AND METHOD FOR TREATING ARS Arsenic-Containing Waste | |
JP5800387B2 (en) | Soil improvement material | |
JP2002003248A (en) | Method of manufacturing artificial aggregate by using municipal refuse incinerator ash | |
KR101889783B1 (en) | Solidified agent and making method of it using high-calcium fly ash and steel making slags | |
CN100564301C (en) | Hydraulic-composition | |
JP5583429B2 (en) | Hydraulic composition | |
JPWO2006098202A1 (en) | Fired product | |
JP2004292307A (en) | Hydraulic composition | |
JP2006143990A (en) | Solidifying material | |
JP2000302498A (en) | Production of artificial light-weight aggregate and artificial light-weight aggregate produced thereby | |
JP2008075270A (en) | Water-retentive block | |
JP2013023422A (en) | Method of manufacturing burned product | |
JPH11139854A (en) | Admixture for mortar or concrete and mortar or concrete | |
JP2630665B2 (en) | How to use slag and coal ash | |
JP6333690B2 (en) | Cement clinker, manufacturing method thereof, and solidified material | |
JP2007331976A (en) | Cement admixture and cement composition | |
JPS63108093A (en) | Solidifying material for waste or soft ground soil | |
KR100660386B1 (en) | Concrete compositions using bottom ash and method of making | |
JP2007169099A (en) | Fired body | |
Yen et al. | Properties of cement mortar produced from mixed waste materials with pozzolanic characteristics | |
JP4567504B2 (en) | Fired product | |
JP6683025B2 (en) | Cement composition and method for producing the same | |
JP4154359B2 (en) | concrete | |
JP3653300B2 (en) | Artificial aggregate and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A072 | Dismissal of procedure |
Free format text: JAPANESE INTERMEDIATE CODE: A073 Effective date: 20040616 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050601 |
|
A256 | Written notification of co-pending application filed on the same date by different applicants |
Free format text: JAPANESE INTERMEDIATE CODE: A2516 Effective date: 20050601 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050729 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050818 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051124 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20051111 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051228 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20071024 |