JP2004292307A - Hydraulic composition - Google Patents

Hydraulic composition Download PDF

Info

Publication number
JP2004292307A
JP2004292307A JP2004066733A JP2004066733A JP2004292307A JP 2004292307 A JP2004292307 A JP 2004292307A JP 2004066733 A JP2004066733 A JP 2004066733A JP 2004066733 A JP2004066733 A JP 2004066733A JP 2004292307 A JP2004292307 A JP 2004292307A
Authority
JP
Japan
Prior art keywords
gypsum
hydraulic composition
powder
mortar
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004066733A
Other languages
Japanese (ja)
Other versions
JP4176660B2 (en
Inventor
Daisuke Sawaki
大介 沢木
Susumu Sano
奨 佐野
Shuichi Harasawa
修一 原澤
Kenichi Honma
健一 本間
Yukiteru Ichinotsubo
幸輝 一坪
Kenichi Matsumoto
健一 松本
Makihiko Ichikawa
牧彦 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2004066733A priority Critical patent/JP4176660B2/en
Publication of JP2004292307A publication Critical patent/JP2004292307A/en
Application granted granted Critical
Publication of JP4176660B2 publication Critical patent/JP4176660B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/24Cements from oil shales, residues or waste other than slag
    • C04B7/246Cements from oil shales, residues or waste other than slag from waste building materials, e.g. waste asbestos-cement products, demolition waste
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydraulic composition from which mortar or concrete having good flowability or strength development can be produced although an inorganic powder such as a blast furnace slag powder having a small Blaine specific surface area (≤5,000 cm<SP>2</SP>/g) is used in the composition. <P>SOLUTION: The hydraulic composition contains a pulverized material of a fired material having a hydraulic modulus (H.M.) of 1.8-2.3 , a silica modulus (S.M.) of 1.3-2.3 and an iron modulus(I.M.) of 1.3-1.8, gypsum, and at least one inorganic powder selected from a blast furnace slag powder, fly ash, a limestone powder, and a silica stone powder. The fired material can be produced by using at lest one selected from industrial waste materials, municipal waste materials and soil generated by construction as a raw material. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、流動性や強度発現性に優れるモルタルやコンクリートを製造することができる水硬性組成物に関するものである。   TECHNICAL FIELD The present invention relates to a hydraulic composition capable of producing mortar and concrete excellent in fluidity and strength.

高炉スラグ粉末をポルトランドセメントクリンカーおよび石膏と配合して得られる高炉セメントを使用したモルタルやコンクリートは、普通ポルトランドセメントを使用したモルタルやコンクリートと比べてアルカリ骨材反応の抑制効果や耐硫酸塩性が優れているとともに長期強度が高いという利点がある。しかし、高炉セメントを使用したモルタルやコンクリートでは、初期強度が普通ポルトランドセメントを使用したモルタルやコンクリートと比べて劣るという欠点があった。そこで、ブレーン比表面積が6000cm2/g以上、特に8000cm2/g以上の粉末度の大きい高炉スラグ粉末を使用することにより、モルタルやコンクリートの初期強度を改善することが試みられている(例えば、特許文献1)。 Mortar and concrete using blast furnace cement obtained by blending blast furnace slag powder with Portland cement clinker and gypsum are more effective in suppressing alkali-aggregate reaction and sulfate resistance than mortar and concrete using ordinary Portland cement. It has the advantage of being excellent and having high long-term strength. However, mortar and concrete using blast furnace cement have a disadvantage that the initial strength is inferior to mortar and concrete using ordinary Portland cement. Therefore, the Blaine specific surface area of 6000 cm 2 / g or more, in particular by using a large blast furnace slag powder 8000 cm 2 / g or more fineness, attempts to improve the initial strength of mortar and concrete (for example, Patent Document 1).

特開昭61−242942号公報JP-A-61-242942

しかしながら、上記特許文献1では、高炉スラグをブレーン比表面積が6000cm2/g以上に粉砕する必要があり、その粉砕に手間がかかるという問題がある。
また、粉末度の大きい高炉スラグ粉末を使用することにより、モルタルやコンクリートの初期強度は改善されるが、その後の強度が増進せず、十分な長期強度が得られない場合があるという問題もある。
さらに、粉末度の大きい高炉スラグ粉末を使用するので、モルタルやコンクリートの流動性が低下するという問題もある。
However, in Patent Document 1, it is necessary to pulverize the blast furnace slag to have a Blaine specific surface area of 6000 cm 2 / g or more, and there is a problem that the pulverization takes time.
In addition, by using a blast furnace slag powder having a high degree of fineness, the initial strength of mortar and concrete is improved, but the subsequent strength does not increase, and there is a problem that sufficient long-term strength may not be obtained. .
Further, since blast furnace slag powder having a high degree of fineness is used, there is a problem that the fluidity of mortar and concrete is reduced.

本発明は、上記従来技術の問題点、知見に鑑みなされたものであって、その目的は、ブレーン比表面積が小さい(5000cm2/g以下)高炉スラグ粉末等の無機粉末を含む水硬性組成物であっても、流動性や強度発現性の良好なモルタルやコンクリートを製造することができる水硬性組成物を提供することにある。 The present invention has been made in view of the problems and findings of the prior art described above, and an object thereof is to provide a hydraulic composition containing an inorganic powder such as a blast furnace slag powder having a small Blaine specific surface area (5000 cm 2 / g or less). Even so, an object of the present invention is to provide a hydraulic composition capable of producing mortar and concrete having good fluidity and strength.

本発明者らは、ブレーン比表面積が小さい(5000cm2/g以下)高炉スラグ粉末等の無機粉末を含む水硬性組成物であっても、流動性や強度発現性の良好なモルタルやコンクリートを製造することができる水硬性組成物について鋭意研究した結果、特定の水硬率、ケイ酸率および鉄率を有する焼成物の粉砕物と石膏と高炉スラグ粉末等の混和材を組み合わせることにより、上記課題を解決することができることを見いだし、本発明を完成させたものである。 The present inventors have produced mortars and concretes having good fluidity and strength, even with hydraulic compositions containing inorganic powder such as blast furnace slag powder having a small Blaine specific surface area (5000 cm 2 / g or less). As a result of diligent research on hydraulic compositions that can be made, the above problems can be solved by combining a pulverized product of a fired product having a specific hydraulic modulus, a silicic acid content and an iron content with an admixture such as gypsum and blast furnace slag powder. Can be solved, and the present invention has been completed.

即ち、本発明は、水硬率(H.M.)が1.8〜2.3、ケイ酸率(S.M.)が1.3〜2.3、鉄率(I.M.)が1.3〜2.8である焼成物の粉砕物と、石膏と、高炉スラグ粉末、フライアッシュ、石灰石粉末、珪石粉末から選ばれる1種以上の無機粉末を含むことを特徴とする水硬性組成物である(請求項1)。このような構成の水硬性組成物であれば、ブレーン比表面積が小さい(5000cm2/g以下)高炉スラグ粉末等の無機粉末を使用しながらも、流動性や強度発現性が良好なモルタルやコンクリートを製造することができる。
上記焼成物は、産業廃棄物、一般廃棄物及び建設発生土から選ばれる一種以上を原料として製造した焼成物とすることができる(請求項2)。焼成物の原料として、産業廃棄物、一般廃棄物及び建設発生土から選ばれる一種以上のものを使用することにより、廃棄物の有効利用を促進させることができる。
That is, the present invention provides a pulverized product of a calcined product having a hydraulic modulus (HM) of 1.8 to 2.3, a silicic acid ratio (SM) of 1.3 to 2.3, and an iron ratio (IM) of 1.3 to 2.8, gypsum, and a blast furnace. A hydraulic composition comprising one or more inorganic powders selected from slag powder, fly ash, limestone powder, and silica stone powder (claim 1). Hydraulic compositions having such a composition can be used for mortars and concretes having good fluidity and strength while using inorganic powders such as blast furnace slag powder having a small Blaine specific surface area (5000 cm 2 / g or less). Can be manufactured.
The fired product can be a fired product manufactured using at least one material selected from industrial waste, general waste, and soil generated from construction (claim 2). By using one or more materials selected from industrial waste, general waste and construction waste soil as the raw material of the fired product, it is possible to promote effective use of the waste.

本発明においては、水硬性組成物中の2水石膏及び半水石膏の合量に対する半水石膏の割合は、SO3換算で30質量%以上であることが好ましい(請求項3)。半水石膏の割合を高めることによって、さらなる流動性の向上を図ることができるとともに、水硬性組成物の水和熱を低減することもできる。
また、本発明においては、水硬性組成物中の全SO3に対する2水石膏及び半水石膏中のSO3の割合が、40質量%以上であることが好ましい(請求項4)。水硬性組成物中の全SO3に対する2水石膏及び半水石膏中のSO3の割合を高めることによって、さらなる流動性の向上を図ることができるとともに、水硬性組成物の水和熱を低減することもできる。
In the present invention, the ratio of the gypsum hemihydrate to the total amount of the gypsum dihydrate and the gypsum hemihydrate in the hydraulic composition is preferably 30% by mass or more in terms of SO 3 (claim 3). By increasing the proportion of hemihydrate gypsum, it is possible to further improve the fluidity and also to reduce the heat of hydration of the hydraulic composition.
In the present invention, the ratio of SO 3 in the gypsum dihydrate and hemihydrate gypsum to the total SO 3 in the hydraulic composition is preferably 40% by mass or more (claim 4). By increasing the ratio of SO 3 in dihydrate gypsum and hemihydrate gypsum to the total SO 3 in the hydraulic composition, it is possible to further improve the fluidity and reduce the heat of hydration of the hydraulic composition. You can also.

本発明の水硬性組成物では、ブレーン比表面積が小さい(5000cm2/g以下)高炉スラグ粉末等の無機粉末を使用しながらも、流動性や強度発現性が良好なモルタルやコンクリートを製造することができる。
また、本発明の水硬性組成物では、産業廃棄物、一般廃棄物及び建設発生土から選ばれる一種以上を原料として使用することができるので、廃棄物の有効利用の促進にも貢献することができる。
In the hydraulic composition of the present invention, it is possible to produce mortar and concrete having good fluidity and strength while using inorganic powder such as blast furnace slag powder having a small Blaine specific surface area (5000 cm 2 / g or less). Can be.
Further, in the hydraulic composition of the present invention, one or more kinds selected from industrial waste, general waste and construction waste soil can be used as a raw material, which can contribute to promotion of effective use of waste. it can.

以下、本発明について詳細に説明する。
本発明で使用する焼成物は、水硬率(H.M.)が1.8〜2.3、ケイ酸率(S.M.)が1.3〜2.3、鉄率(I.M.)が1.3〜2.8のものである。
焼成物の水硬率(H.M.)が小さくなると、該焼成物中の3CaO・Al2O3(以降、C3Aと略す)と4CaO・Al2O3・Fe2O3(以降、C4AFと略す)の含有量が多くなり、モルタルやコンクリートの流動性が低下する傾向にある。また、焼成物の焼成も困難となる。一方、水硬率(H.M.)が大きくなると、モルタルやコンクリートの初期強度は向上するが、長期強度の伸びが鈍くなる傾向にある。そのため、水硬率(H.M.)は1.8〜2.3が好ましく、より好ましくは2.0〜2.2である。
焼成物のケイ酸率(S.M.)が小さくなると、該焼成物中のC3AとC4AFの含有量が多くなり、モルタルやコンクリートの流動性が低下する傾向にある。また、焼成物の焼成も困難となる。一方、ケイ酸率(S.M.)が大きくなると、モルタルやコンクリートの流動性面では好ましいが、C3AとC4AFの含有量が少なくなり、焼成物の焼成が困難になる。そのため、ケイ酸率(S.M.)は1.3〜2.3が好ましい。
焼成物の鉄率(I.M.)が小さくなると、モルタルやコンクリートの流動性面では好ましいが、焼成物の粉砕性が低下する。一方、鉄率(I.M.)が大きくなると、焼成物中のC3Aの含有量が多くなり、モルタルやコンクリートの流動性が低下する傾向にある。そのため、鉄率(I.M.)は1.3〜2.8が好ましい。
Hereinafter, the present invention will be described in detail.
The calcined product used in the present invention has a hydraulic modulus (HM) of 1.8 to 2.3, a silicic acid ratio (SM) of 1.3 to 2.3, and an iron ratio (IM) of 1.3 to 2.8.
When the hydraulic hardness (HM) of the calcined product decreases, 3CaO.Al 2 O 3 (hereinafter abbreviated as C 3 A) and 4CaO.Al 2 O 3 .Fe 2 O 3 (hereinafter C 4 A) (Abbreviated as AF) content tends to increase, and the fluidity of mortar and concrete tends to decrease. Further, it becomes difficult to fire the fired product. On the other hand, when the hydraulic modulus (HM) increases, the initial strength of the mortar or concrete increases, but the elongation of the long-term strength tends to be slow. Therefore, the hydraulic hardness (HM) is preferably 1.8 to 2.3, and more preferably 2.0 to 2.2.
When the silicic acid ratio (SM) of the calcined product decreases, the content of C 3 A and C 4 AF in the calcined product increases, and the fluidity of mortar and concrete tends to decrease. Further, it becomes difficult to fire the fired product. On the other hand, when the silicic acid ratio (SM) is large, it is preferable in terms of fluidity of mortar and concrete, but the content of C 3 A and C 4 AF is small, and it becomes difficult to fire the fired product. Therefore, the silicic acid ratio (SM) is preferably 1.3 to 2.3.
When the iron ratio (IM) of the fired product is small, it is preferable in terms of fluidity of mortar and concrete, but the crushability of the fired product is reduced. On the other hand, when the iron ratio (IM) increases, the content of C 3 A in the fired product increases, and the fluidity of mortar and concrete tends to decrease. Therefore, the iron ratio (IM) is preferably 1.3 to 2.8.

焼成物の原料としては、一般のポルトランドセメントクリンカー原料、すなわち石灰石、生石灰、消石灰等のCaO原料、珪石、粘土等のSiO2原料、粘土等のAl2O3原料、鉄滓、鉄ケーキ等のFe2O3原料を使用することができる。
なお、本発明においては、焼成物の原料として、前記原料に加えて、産業廃棄物、一般廃棄物及び建設発生土から選ばれる一種以上を使用することができる。焼成物の原料として、産業廃棄物、一般廃棄物及び建設発生土から選ばれる一種以上のものを使用することは、廃棄物の有効利用を促進させることができ好ましいことである。ここで、産業廃棄物としては、例えば、生コンスラッジ、各種汚泥(例えば、下水汚泥、浄水汚泥、建設汚泥、製鉄汚泥等)、建設廃材、コンクリート廃材、ボーリング廃土、各種焼却灰、鋳物砂、ロックウール、廃ガラス、高炉2次灰等が挙げられる。一般廃棄物としては、例えば、下水汚泥乾粉、都市ごみ焼却灰、貝殻等が挙げられる。建設発生土としては、建設現場や工事現場等から発生する土壌や残土、さらには廃土壌等が挙げられる。
As a raw material of the burned material, generally of Portland cement clinker raw material, i.e. limestone, quicklime, CaO raw material such as slaked lime, silica, SiO 2 raw clay such as Al 2 O 3 raw material such as clay, Tetsukasu, such as iron cake Fe 2 O 3 raw materials can be used.
In the present invention, as the raw material of the fired product, in addition to the raw material, at least one selected from industrial waste, general waste, and construction soil can be used. It is preferable to use one or more materials selected from industrial waste, general waste, and construction waste soil as a raw material of the fired product because effective use of the waste can be promoted. Here, as the industrial waste, for example, raw corn sludge, various sludges (for example, sewage sludge, purified water sludge, construction sludge, iron making sludge, etc.), construction waste material, concrete waste material, boring waste soil, various incineration ash, molding sand, Examples include rock wool, waste glass, blast furnace secondary ash, and the like. Examples of the general waste include sewage sludge dry powder, municipal waste incineration ash, shells, and the like. Examples of the soil generated from construction include soil and residual soil generated from construction sites and construction sites, and waste soil.

上記各原料を所定のH.M.、S.M.、I.M.となるように混合し、好ましくは1200〜1550℃で焼成することにより、焼成物が製造される。より好ましい焼成温度は1350〜1450℃である。
各原料を混合する方法は、特に限定するものではなく、慣用の装置等で行えばよい。
また、焼成に使用する装置も特に限定するものではなく、例えば、ロータリーキルン等を使用することができる。ロータリーキルンで焼成する際には、燃料代替廃棄物、例えば、廃油、廃タイヤ、廃プラスチック等を使用することができる。
なお、本発明で使用する焼成物においては、モルタルやコンクリートの強度発現性、特に初期強度発現性を向上させる観点から、フリーライム量が0.5〜1.0質量%であることが好ましい。
The above raw materials are mixed so as to have predetermined HM, SM, and IM, and are preferably fired at 1200 to 1550 ° C. to produce a fired product. A more preferred firing temperature is 1350 to 1450 ° C.
The method of mixing the respective raw materials is not particularly limited, and may be performed using a conventional apparatus or the like.
The apparatus used for firing is not particularly limited, and for example, a rotary kiln or the like can be used. When firing in a rotary kiln, a fuel substitute waste, for example, waste oil, waste tire, waste plastic, or the like can be used.
In the fired product used in the present invention, the amount of free lime is preferably 0.5 to 1.0% by mass from the viewpoint of improving the strength developing property of mortar and concrete, particularly the initial strength developing property.

石膏としては、ニ水石膏、α型又はβ型半水石膏、無水石膏等を単独又は2種以上組み合わせて使用することができる。
なお、本発明においては、水硬性組成物中の2水石膏及び半水石膏の合量に対する半水石膏の割合は、SO3換算で30質量%以上であることが好ましい。水硬性組成物中の2水石膏及び半水石膏の合量に対する半水石膏の割合をSO3換算で30質量%以上にすることにより、モルタルやコンクリートの流動性のさらなる向上や、水硬性組成物の水和熱の低減等を図ることができる。2水石膏及び半水石膏の合量に対する半水石膏のより好ましい割合は、SO3換算で60質量%以上であり、特に好ましくは70質量%以上である。
As gypsum, dihydrate gypsum, α-type or β-type hemihydrate gypsum, anhydrous gypsum and the like can be used alone or in combination of two or more.
In the present invention, the ratio of gypsum hemihydrate to the total amount of gypsum dihydrate and hemihydrate gypsum in the hydraulic composition is preferably 30% by mass or more in terms of SO 3 . By increasing the ratio of gypsum hemihydrate to the total amount of gypsum dihydrate and gypsum hemihydrate in the hydraulic composition to 30% by mass or more in terms of SO 3 , the fluidity of mortar and concrete is further improved, and the hydraulic composition The heat of hydration of the product can be reduced. A more preferable ratio of the gypsum hemihydrate to the total amount of the gypsum dihydrate and the gypsum hemihydrate is 60% by mass or more, particularly preferably 70% by mass or more in terms of SO 3 .

また、本発明においては、水硬性組成物中の全SO3に対する2水石膏及び半水石膏中のSO3の割合が40質量%以上であることが好ましい。水硬性組成物中の全SO3に対する2水石膏及び半水石膏中のSO3の割合を40質量%以上にすることにより、モルタルやコンクリートの流動性のさらなる向上や、水硬性組成物の水和熱の低減等を図ることができる。水硬性組成物中の全SO3に対する2水石膏及び半水石膏中のSO3のより好ましい割合は、50〜95質量%であり、特に好ましくは60〜90質量%である。
なお、2水石膏・半水石膏の定量は、特開平6-242035号公報に記載される試料容器を使用した熱分析(熱重量測定等)により行うことができる。また、水硬性組成物中の全SO3量の定量は、化学分析により行うことができる。
Further, in the present invention, the ratio of SO 3 in gypsum dihydrate and hemihydrate gypsum to all SO 3 in the hydraulic composition is preferably 40% by mass or more. By increasing the ratio of SO 3 in the dihydrate gypsum and hemihydrate gypsum to the total SO 3 in the hydraulic composition to 40% by mass or more, it is possible to further improve the fluidity of the mortar or concrete and to increase the water content of the hydraulic composition. Reduction of sum heat can be achieved. The more preferable ratio of SO 3 in gypsum dihydrate and hemihydrate gypsum to the total SO 3 in the hydraulic composition is 50 to 95% by mass, particularly preferably 60 to 90% by mass.
The amount of gypsum dihydrate / hemihydrate gypsum can be determined by thermal analysis (thermogravimetry or the like) using a sample container described in JP-A-6-242035. Further, the quantification of the total amount of SO 3 in the hydraulic composition can be performed by chemical analysis.

水硬性組成物中の石膏量は、モルタルやコンクリートの流動性や強度発現性等から、焼成物の粉砕物100質量部に対して、SO3換算で1〜5質量部であることが好ましく、2〜3.5質量部であることがより好ましい。 Gypsum amount of hydraulic composition is from mortar or concrete fluidity and strength development, etc., with respect to the pulverized product 100 parts by weight of the baked product, preferably 1 to 5 parts by weight converted to SO 3, More preferably, it is 2 to 3.5 parts by mass.

本発明の水硬性組成物は、高炉スラグ粉末、フライアッシュ、石灰石粉末、珪石粉末から選ばれる1種以上の無機粉末を含むものである。無機粉末としては、モルタルやコンクリートの流動性や強度発現性、さらにはアルカリ骨材反応の抑制効果や耐硫酸塩性等から、高炉スラグ粉末、高炉スラグ粉末と石灰石粉末の組み合わたものを使用することが好ましい。
本発明において、水硬性組成物中の無機粉末量は、該無機粉末の種類により異なる。例えば、高炉スラグ粉末であれば、モルタルやコンクリートの流動性や強度発現性、さらにはアルカリ骨材反応の抑制効果、耐硫酸塩性等から、焼成物の粉砕物100質量部に対して、10〜150質量部であることが好ましく、20〜100質量部であることがより好ましい。フライアッシュ、石灰石粉末や珪石粉末であれば、焼成物の粉砕物100質量部に対して、10〜100質量部であることが好ましく、20〜80質量部であることがより好ましい。なお、高炉スラグ粉末と石灰石粉末を組み合わせて使用する場合は、モルタルやコンクリートの流動性や強度発現性等から、高炉スラグ粉末は焼成物の粉砕物100質量部に対して10〜150質量部が好ましく、石灰石粉末は焼成物の粉砕物100質量部に対して1〜20質量部であることが好ましい。
The hydraulic composition of the present invention contains one or more inorganic powders selected from blast furnace slag powder, fly ash, limestone powder, and silica stone powder. As the inorganic powder, blast furnace slag powder, or a combination of blast furnace slag powder and limestone powder is used because of the fluidity and strength development of mortar and concrete, as well as the effect of suppressing alkali-aggregate reaction and sulfate resistance. Is preferred.
In the present invention, the amount of the inorganic powder in the hydraulic composition varies depending on the type of the inorganic powder. For example, if the blast furnace slag powder, the fluidity and strength development of mortar and concrete, furthermore, the effect of suppressing alkali-aggregate reaction, sulfate resistance, etc. It is preferably from 150 to 150 parts by mass, more preferably from 20 to 100 parts by mass. In the case of fly ash, limestone powder or silica stone powder, the amount is preferably from 10 to 100 parts by mass, more preferably from 20 to 80 parts by mass, based on 100 parts by mass of the fired material. When blast furnace slag powder and limestone powder are used in combination, the blast furnace slag powder is used in an amount of 10 to 150 parts by mass with respect to 100 parts by mass of the baked material due to the fluidity and strength development of mortar and concrete. Preferably, the limestone powder is used in an amount of 1 to 20 parts by mass with respect to 100 parts by mass of the pulverized fired product.

本発明の水硬性組成物の製造方法について説明する。
水硬性組成物の製造方法としては、例えば、
1)焼成物と石膏を同時に粉砕し、該粉砕物に、高炉スラグ粉末、フライアッシュ、石灰石粉末、珪石粉末から選ばれる1種以上の無機粉末を混合する方法、
2)焼成物を粉砕し、該粉砕物に、石膏と、高炉スラグ粉末、フライアッシュ、石灰石粉末、珪石粉末から選ばれる1種以上の無機粉末を混合する方法、
3)焼成物と、石膏と、高炉スラグ粉末、フライアッシュ、石灰石粉末、珪石粉末から選ばれる1種以上の無機粉末を同時に粉砕する方法、
等が挙げられる。
The method for producing the hydraulic composition of the present invention will be described.
As a method for producing a hydraulic composition, for example,
1) a method of simultaneously pulverizing the calcined product and gypsum, and mixing the pulverized product with one or more inorganic powders selected from blast furnace slag powder, fly ash, limestone powder, and silica powder;
2) a method of pulverizing the calcined product, mixing the gypsum with one or more inorganic powders selected from gypsum, blast furnace slag powder, fly ash, limestone powder, and silica stone powder;
3) a method of simultaneously pulverizing one or more inorganic powders selected from a calcined product, gypsum, blast furnace slag powder, fly ash, limestone powder, and silica stone powder,
And the like.

上記1)の場合は、焼成物と石膏はブレーン比表面積2500〜4500cm2/gに粉砕することが好ましく、3000〜4500cm2/gに粉砕することがより好ましい。また、無機粉末としてはブレーン比表面積2500〜5000cm2/gのものを使用するのが好ましく、3000〜4500cm2/gのものを使用するのがより好ましい。
上記2)の場合は、焼成物はブレーン比表面積2500〜4500cm2/gに粉砕することが好ましく、3000〜4500cm2/gに粉砕することがより好ましい。また、石膏と無機粉末としてはブレーン比表面積2500〜5000cm2/gのものを使用するのが好ましく、3000〜4500cm2/gのものを使用するのがより好ましい。
なお、本発明において、水硬性組成物のブレーン比表面積は、モルタルやコンクリートの流動性や強度発現性等から、2500〜4500cm2/gであることが好ましく、3000〜4500cm2/gであることがより好ましい。
In the case of the above 1), the calcined product and the gypsum are preferably pulverized to a Blaine specific surface area of 2500 to 4500 cm 2 / g, more preferably to 3000 to 4500 cm 2 / g. Further, it is preferable as the inorganic powder to use a Blaine specific surface area 2500~5000cm 2 / g, and more preferred to use those 3000~4500cm 2 / g.
In the case of the above 2), the fired product is preferably pulverized to a Blaine specific surface area of 2500 to 4500 cm 2 / g, more preferably to 3000 to 4500 cm 2 / g. Further, it is preferable as a plaster and an inorganic powder to use a Blaine specific surface area 2500~5000cm 2 / g, and more preferred to use those 3000~4500cm 2 / g.
In the present invention, the specific surface area of the hydraulic composition is preferably 2500 to 4500 cm 2 / g, and more preferably 3000 to 4500 cm 2 / g, from the viewpoint of fluidity and strength development of mortar and concrete. Is more preferred.

本発明の水硬性組成物は、ペースト、モルタル又はコンクリートの状態で使用される。減水剤としては、リグニン系、ナフタレンスルホン酸系、メラミン系、ポリカルボン酸系の減水剤(AE減水剤、高性能減水剤、高性能AE減水剤も含む)が使用できる。
モルタル又はコンクリートの状態で使用する場合は、通常モルタル、コンクリートの製造に使用されている細骨材・粗骨材、すなわち、川砂、陸砂、砕砂等や、川砂利、山砂利、砕石等を使用することができる。また、都市ゴミ、都市ゴミ焼却灰、下水汚泥焼却灰の一種以上を溶融して製造した溶融スラグ、あるいは高炉スラグ、製鋼スラグ、銅スラグ、碍子屑、ガラスカレット、陶磁器廃材、クリンカーアッシュ、廃レンガ、コンクリート廃材等の廃棄物を細骨材・粗骨材の一部または全部に使用することができる。
なお、必要に応じて、支障のない範囲内で、空気連行剤、消泡剤等の混和剤を使用することは差し支えない。
The hydraulic composition of the present invention is used in a paste, mortar or concrete state. As the water reducing agent, a lignin-based, naphthalenesulfonic acid-based, melamine-based, or polycarboxylic acid-based water reducing agent (including an AE water reducing agent, a high-performance water reducing agent, and a high-performance AE water reducing agent) can be used.
When used in the form of mortar or concrete, fine aggregates and coarse aggregates usually used in the production of mortar and concrete, that is, river sand, land sand, crushed sand, river gravel, mountain gravel, crushed stone, etc. Can be used. In addition, molten slag produced by melting at least one of municipal garbage, municipal garbage incineration ash, and sewage sludge incineration ash, or blast furnace slag, steelmaking slag, copper slag, insulator waste, glass cullet, ceramic waste, clinker ash, waste brick In addition, waste such as concrete waste can be used for part or all of fine aggregate and coarse aggregate.
In addition, if necessary, an admixture such as an air entraining agent and an antifoaming agent may be used within a range that does not cause any trouble.

ペースト、モルタル又はコンクリートの混練方法は、特に限定するものではなく、例えば、1)各材料を一括してミキサに投入して1分以上混練する方法、2)水以外の材料をミキサに投入して空練りした後に、水を投入して1分以上混練する方法等で行うことができる。混練に用いるミキサは、特に限定するものではなく、ホバートミキサ、パンタイプミキサ、二軸ミキサ等の慣用のミキサで混練すれば良い。
ペースト、モルタル又はコンクリートの成形方法は、特に限定するものではなく、例えば、振動成形等を行えば良い。
また、養生条件も、特に限定するものではなく、例えば、気中養生、蒸気養生等を行えば良い。
The method of kneading the paste, mortar or concrete is not particularly limited, and, for example, 1) a method in which each material is collectively charged into a mixer and kneaded for 1 minute or more, and 2) a material other than water is charged into the mixer. After kneading, it can be carried out by a method of adding water and kneading for 1 minute or more. The mixer used for kneading is not particularly limited, and may be kneaded with a conventional mixer such as a Hobart mixer, a pan-type mixer, and a twin-screw mixer.
The method for forming the paste, mortar, or concrete is not particularly limited, and for example, vibration molding or the like may be performed.
The curing conditions are not particularly limited, and for example, air curing, steam curing, or the like may be performed.

以下、実施例により本発明を説明する。
1.焼成物の製造
原料として、下水汚泥、建設発生土と、石灰石等の一般のポルトランドセメントクリンカー原料を使用して、表1に示す水硬率(H.M.)、ケイ酸率(S.M.)および鉄率(I.M.)となるように原料を調合した。調合原料を小型ロータリーキルンで1400〜1450℃で焼成して、焼成物を製造した。この際、燃料として一般的な重油のほかに、廃油や廃プラスチックを使用した。使用した下水汚泥、建設発生土の化学組成(質量%)は、表2に示すとおりである。
なお、各焼成物中のフリーライム量は0.6〜1.0質量%であった。
Hereinafter, the present invention will be described with reference to examples.
1. Manufacture of calcined products Using raw materials such as sewage sludge, construction waste soil, and general Portland cement clinker materials such as limestone, the hydraulic hardness (HM), silicate ratio (SM) and iron ratio ( IM). The prepared raw material was fired at 1400 to 1450 ° C. in a small rotary kiln to produce a fired product. At this time, waste oil and waste plastic were used as fuel in addition to general heavy oil. The chemical composition (% by mass) of the used sewage sludge and construction waste soil is as shown in Table 2.
The amount of free lime in each fired product was 0.6 to 1.0% by mass.

Figure 2004292307
Figure 2004292307

Figure 2004292307
Figure 2004292307

2.焼成物と石膏の粉砕物(以下、粉砕物と略す)の調製
表1の各焼成物100質量部に対して、排脱ニ水石膏(住友金属社製)を140℃で加熱して得た半水石膏をSO3換算で3.0質量部となるように添加し、バッチ式ボールミルでブレーン比表面積が3250±50cm2/gとなるように同時粉砕して、粉砕物を調製した。
2. Preparation of crushed product of calcined product and gypsum (hereinafter abbreviated as crushed product) Exhausted dehydrated gypsum (manufactured by Sumitomo Metal Co., Ltd.) was heated at 140 ° C. to 100 parts by mass of each calcined product in Table 1. Gypsum hemihydrate was added so as to be 3.0 parts by mass in terms of SO 3 , and was simultaneously pulverized with a batch-type ball mill so that the Blaine specific surface area became 3250 ± 50 cm 2 / g to prepare a pulverized product.

3.モルタル用材料
上記粉砕物以外の材料を以下に示す。
1)高炉スラグ粉末;ブレーン比表面積4000cm2/g
2)石灰石粉末;ブレーン比表面積4230cm2/g
3)細骨材;「JIS R 5201(セメントの物理試験方法)」に定める標準砂
4)水;水道水
5)減水剤;ポリカルボン酸系高性能AE減水剤(エヌエムビー社製「レオビルドSP8N」)
3. Materials for mortar Materials other than the above pulverized materials are shown below.
1) Blast furnace slag powder; Blaine specific surface area 4000cm 2 / g
2) Limestone powder; Blaine specific surface area 4230cm 2 / g
3) Fine aggregate; standard sand specified in "JIS R 5201 (Physical test method for cement)"
4) Water; tap water
5) Water reducing agent: polycarboxylic acid-based high-performance AE water reducing agent (NMEB "Leobuild SP8N")

4.モルタルの製造および評価
上記粉砕物と高炉スラグ粉末を表3に示す割合で混合して水硬性組成物を調製した。該水硬性組成物と、上記の細骨材、水および減水剤を使用して、モルタルを調製し、以下の測定を行った。
1)フロー値
混練直後のモルタルをフローコーン(上面直径5cm、下面直径10cm、高さ15cm)に投入し、フローコーンを上方へ取り去った際のモルタルの広がりを測定し、フロー値を求めた。なお、モルタルの配合は、水/水硬性組成物(質量)比=0.35、細骨材/水硬性組成物(質量)比=2.0、減水剤/水硬性組成物(質量)比=0.0065とした。
2)圧縮強度
モルタルの圧縮強度(3日、7日および28日)を「JIS R 5201(セメントの物理試験方法)」に準じて測定した。なお、モルタルの配合は、水/水硬性組成物(質量)比=0.5、細骨材/水硬性組成物(質量)比=3.0とした。
その結果を表3に示す。
4. Production and evaluation of mortar The pulverized product and the blast furnace slag powder were mixed at a ratio shown in Table 3 to prepare a hydraulic composition. A mortar was prepared using the hydraulic composition, the fine aggregate, water and a water reducing agent, and the following measurement was performed.
1) Flow value The mortar immediately after kneading was put into a flow cone (upper diameter 5 cm, lower diameter 10 cm, height 15 cm), and the spread of the mortar when the flow cone was removed upward was measured to obtain a flow value. The mortar was mixed with a water / hydraulic composition (mass) ratio of 0.35, a fine aggregate / hydraulic composition (mass) ratio of 2.0, and a water reducing agent / hydraulic composition (mass) ratio of 0.0065. .
2) Compressive strength The compressive strength of mortar (3 days, 7 days and 28 days) was measured according to "JIS R 5201 (Physical test method of cement)". The mortar was mixed with a water / hydraulic composition (mass) ratio of 0.5 and a fine aggregate / hydraulic composition (mass) ratio of 3.0.
Table 3 shows the results.

Figure 2004292307
Figure 2004292307

表3より、本発明の水硬性組成物を使用したモルタル(実施例1〜8)では、流動性と強度発現性が良好であることが分かる。   Table 3 shows that the mortar using the hydraulic composition of the present invention (Examples 1 to 8) has good fluidity and strength.

5.焼成物と石膏の粉砕物(以下、粉砕物と略す)の調製
表1の焼成物(No.3)100質量部に対して、排脱ニ水石膏(住友金属社製)及び前記排脱ニ水石膏を140℃で加熱して得た半水石膏を表4に示す量添加し、バッチ式ボールミルでブレーン比表面積が3250±50cm2/gとなるように同時粉砕して、粉砕物を調製した。
5. Preparation of crushed product of calcined product and gypsum (hereinafter abbreviated as crushed product) For 100 parts by mass of calcined product (No. 3) in Table 1, drained water gypsum (manufactured by Sumitomo Metal Co., Ltd.) The hemihydrate gypsum obtained by heating water gypsum at 140 ° C. was added in the amount shown in Table 4 and simultaneously pulverized so as to have a Blaine specific surface area of 3250 ± 50 cm 2 / g by a batch type ball mill to prepare a pulverized product. did.

Figure 2004292307
Figure 2004292307

6.モルタルの製造および評価
表4の各粉砕物55質量部、上記高炉スラグ粉末45質量部と上記石灰石粉末5質量部を混合して水硬性組成物を調製した。該水硬性組成物と、上記細骨材、水および減水剤を使用して、モルタルを調製し、実施例1と同様の方法でフロー値及び圧縮強度を測定した。また、以下の方法で水硬性組成物の水和熱を測定した。
1)水和熱
「JIS R 5201(セメントの物理試験方法)」に準じて測定した。
その結果を表5に示す。
6. Production and evaluation of mortar 55 parts by mass of each pulverized material shown in Table 4, 45 parts by mass of the blast furnace slag powder and 5 parts by mass of the limestone powder were mixed to prepare a hydraulic composition. A mortar was prepared using the hydraulic composition, the fine aggregate, water and a water reducing agent, and the flow value and the compressive strength were measured in the same manner as in Example 1. The heat of hydration of the hydraulic composition was measured by the following method.
1) Heat of hydration Measured according to “JIS R 5201 (physical test method for cement)”.
Table 5 shows the results.

Figure 2004292307
Figure 2004292307

表5より、2水石膏及び半水石膏の合量に対する半水石膏の割合が高いほど、モルタルの流動性が高く、水和熱が小さいことが分かる。   Table 5 shows that the higher the ratio of gypsum hemihydrate to the total amount of gypsum dihydrate and gypsum hemihydrate, the higher the fluidity of the mortar and the lower the heat of hydration.

Claims (4)

水硬率(H.M.)が1.8〜2.3、ケイ酸率(S.M.)が1.3〜2.3、鉄率(I.M.)が1.3〜2.8である焼成物の粉砕物と、石膏と、高炉スラグ粉末、フライアッシュ、石灰石粉末、珪石粉末から選ばれる1種以上の無機粉末を含むことを特徴とする水硬性組成物。   Hydraulic modulus (HM) is 1.8-2.3, silicic acid rate (SM) is 1.3-2.3, iron rate (IM) is 1.3-2.8, pulverized material, gypsum, blast furnace slag powder, fly ash, A hydraulic composition comprising one or more inorganic powders selected from limestone powder and silica stone powder. 焼成物が、産業廃棄物、一般廃棄物及び建設発生土から選ばれる一種以上を原料として製造した焼成物である請求項1記載の水硬性組成物。   The hydraulic composition according to claim 1, wherein the calcined product is a calcined product produced using at least one material selected from industrial waste, general waste, and construction soil as a raw material. 水硬性組成物中の2水石膏及び半水石膏の合量に対する半水石膏の割合が、SO3換算で30質量%以上である請求項1又は2に記載の水硬性組成物。 3. The hydraulic composition according to claim 1, wherein the ratio of gypsum hemihydrate to the total amount of gypsum dihydrate and hemihydrate gypsum in the hydraulic composition is 30% by mass or more in terms of SO 3. 4. 水硬性組成物中の全SO3に対する2水石膏及び半水石膏中のSO3の割合が、40質量%以上である請求項1〜3のいずれかに記載の水硬性組成物。 Ratio of SO 3 2 dihydrate gypsum and hemihydrate gypsum to the total SO 3 hydraulic composition is, hydraulic composition according to any one of claims 1 to 3 is 40 mass% or more.
JP2004066733A 2003-03-11 2004-03-10 Hydraulic composition Expired - Lifetime JP4176660B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004066733A JP4176660B2 (en) 2003-03-11 2004-03-10 Hydraulic composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003065543 2003-03-11
JP2004066733A JP4176660B2 (en) 2003-03-11 2004-03-10 Hydraulic composition

Publications (2)

Publication Number Publication Date
JP2004292307A true JP2004292307A (en) 2004-10-21
JP4176660B2 JP4176660B2 (en) 2008-11-05

Family

ID=33421552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004066733A Expired - Lifetime JP4176660B2 (en) 2003-03-11 2004-03-10 Hydraulic composition

Country Status (1)

Country Link
JP (1) JP4176660B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031174A (en) * 2005-07-22 2007-02-08 Ube Ind Ltd Cement composition for alkali-silica reaction suppression and cement-containing composition
US20080308012A1 (en) * 2005-03-16 2008-12-18 Taiheiyo Cement Corporation Burnt Product
WO2010024260A1 (en) * 2008-08-25 2010-03-04 新日本製鐵株式会社 Sulfate-resisting ground granulated blast furnce slag, sulfate-resisting cement and process for production of same
JP2011132111A (en) * 2009-11-30 2011-07-07 Taiheiyo Cement Corp Hydraulic composition
JP2012254909A (en) * 2011-06-10 2012-12-27 Taiheiyo Cement Corp Cement composition
JP2013189377A (en) * 2013-07-02 2013-09-26 Ube Industries Ltd Cement composition
US8641819B2 (en) 2010-06-01 2014-02-04 Ube Industries, Ltd. Cement composition and process for producing cement composition
JP2015010009A (en) * 2013-06-27 2015-01-19 太平洋セメント株式会社 Mixed cement
JP2015101527A (en) * 2013-11-28 2015-06-04 太平洋セメント株式会社 Cement composition
JP2016507464A (en) * 2013-02-18 2016-03-10 ムスタファ オズストゥ Lower heat treated calcium sulfate for early strength cement and general applications
JP2016088768A (en) * 2014-10-30 2016-05-23 宇部興産株式会社 Cement composition and manufacturing method therefor
JP2016169262A (en) * 2015-03-11 2016-09-23 太平洋セメント株式会社 Solidifying material and production method therefor
JP2019137586A (en) * 2018-02-13 2019-08-22 太平洋セメント株式会社 Cement composition
KR20190135907A (en) 2017-04-28 2019-12-09 스미토모 오사카 세멘토 가부시키가이샤 Cement composition, its manufacturing method, and manufacturing method of fly ash for cement composition

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080308012A1 (en) * 2005-03-16 2008-12-18 Taiheiyo Cement Corporation Burnt Product
JP2007031174A (en) * 2005-07-22 2007-02-08 Ube Ind Ltd Cement composition for alkali-silica reaction suppression and cement-containing composition
WO2010024260A1 (en) * 2008-08-25 2010-03-04 新日本製鐵株式会社 Sulfate-resisting ground granulated blast furnce slag, sulfate-resisting cement and process for production of same
US8440016B2 (en) 2008-08-25 2013-05-14 Nippon Steel & Sumitomo Metal Corporation Sulfate resistant ground granulated blast furnace slag, sulfate resistant cement, and method of production of same
JP5574956B2 (en) * 2008-08-25 2014-08-20 新日鐵住金株式会社 Sulfur-resistant blast furnace slag fine powder, sulfate-resistant cement and method for producing the same
JP2011132111A (en) * 2009-11-30 2011-07-07 Taiheiyo Cement Corp Hydraulic composition
US8641819B2 (en) 2010-06-01 2014-02-04 Ube Industries, Ltd. Cement composition and process for producing cement composition
JP2012254909A (en) * 2011-06-10 2012-12-27 Taiheiyo Cement Corp Cement composition
JP2016507464A (en) * 2013-02-18 2016-03-10 ムスタファ オズストゥ Lower heat treated calcium sulfate for early strength cement and general applications
JP2019135209A (en) * 2013-02-18 2019-08-15 ムスタファ オズストゥ Lower heat treated calcium sulfate for early strength cement and general use
JP2015010009A (en) * 2013-06-27 2015-01-19 太平洋セメント株式会社 Mixed cement
JP2013189377A (en) * 2013-07-02 2013-09-26 Ube Industries Ltd Cement composition
JP2015101527A (en) * 2013-11-28 2015-06-04 太平洋セメント株式会社 Cement composition
JP2016088768A (en) * 2014-10-30 2016-05-23 宇部興産株式会社 Cement composition and manufacturing method therefor
JP2016169262A (en) * 2015-03-11 2016-09-23 太平洋セメント株式会社 Solidifying material and production method therefor
KR20190135907A (en) 2017-04-28 2019-12-09 스미토모 오사카 세멘토 가부시키가이샤 Cement composition, its manufacturing method, and manufacturing method of fly ash for cement composition
JP2019137586A (en) * 2018-02-13 2019-08-22 太平洋セメント株式会社 Cement composition
JP7042643B2 (en) 2018-02-13 2022-03-28 太平洋セメント株式会社 Cement composition

Also Published As

Publication number Publication date
JP4176660B2 (en) 2008-11-05

Similar Documents

Publication Publication Date Title
JP6021753B2 (en) Mixed cement
JP4166178B2 (en) Hydraulic composition
JP6947501B2 (en) Cement composition
JP7218083B2 (en) Method for producing cement composition
JP5535111B2 (en) Cement composition
JP4176660B2 (en) Hydraulic composition
JP2004292285A (en) Concrete
JP5583429B2 (en) Hydraulic composition
JP2007055843A (en) Cement additive
JP2014051433A (en) Hydraulic composition
JP2011184253A (en) Hydraulic composition
JP6316576B2 (en) Cement composition
JP4176668B2 (en) concrete
JP2020001954A (en) Cement composition
JP2010168256A (en) Cement additive and cement composition
JP4166183B2 (en) concrete
JP4166180B2 (en) concrete
JP2019137588A (en) Cement composition
JP7042643B2 (en) Cement composition
JP4154359B2 (en) concrete
JP4116987B2 (en) Hydraulic composition
JP7198604B2 (en) Firing products, cement additives, and cement compositions
JP5474604B2 (en) Hydraulic composition
JP6045328B2 (en) Cement and manufacturing method thereof
JP2013087036A (en) Low hydration heat cement clinker and low hydration heat cement composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080530

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080812

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080820

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4176660

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term