JP2011132111A - Hydraulic composition - Google Patents

Hydraulic composition Download PDF

Info

Publication number
JP2011132111A
JP2011132111A JP2010035542A JP2010035542A JP2011132111A JP 2011132111 A JP2011132111 A JP 2011132111A JP 2010035542 A JP2010035542 A JP 2010035542A JP 2010035542 A JP2010035542 A JP 2010035542A JP 2011132111 A JP2011132111 A JP 2011132111A
Authority
JP
Japan
Prior art keywords
mass
hydraulic composition
content
gypsum
hydration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010035542A
Other languages
Japanese (ja)
Other versions
JP5583429B2 (en
Inventor
Kenichi Honma
健一 本間
Chu Hirao
宙 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2010035542A priority Critical patent/JP5583429B2/en
Publication of JP2011132111A publication Critical patent/JP2011132111A/en
Application granted granted Critical
Publication of JP5583429B2 publication Critical patent/JP5583429B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/14Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
    • C04B28/145Calcium sulfate hemi-hydrate with a specific crystal form
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/345Hydraulic cements not provided for in one of the groups C04B7/02 - C04B7/34
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydraulic composition which, even when made from a raw material such as industrial wastes, general wastes, or surplus construction soil, can produce mortar or concrete having reduced heat of hydration, excellent fluidity, and good long-term strength development. <P>SOLUTION: The hydraulic composition comprises a ground product from a fired product having a hydraulic modulus (H.M.) of 1.8-2.3, a silica modulus (S.M.) of 1.0-2.4, an iron modulus (I.M.) of 1.3-2.8, and a 3CaO-Al<SB>2</SB>O<SB>3</SB>content of 9.0-18.0 mass%, and having a B<SB>2</SB>O<SB>3</SB>content of 0.01 mass% or more and gypsum. It is desirable that the fired product satisfies the relationship: 0.0017X-0.005≤Y≤0.0667X-0.2 between the 3CaO-Al<SB>2</SB>O<SB>3</SB>content X (mass%) and B<SB>2</SB>O<SB>3</SB>content Y (mass%) during the firing. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、水和熱を小さくすることができ、かつ流動性に優れるモルタルやコンクリートを製造することができる水硬性組成物に関するものである。   The present invention relates to a hydraulic composition that can reduce the heat of hydration and can produce mortar and concrete having excellent fluidity.

わが国では、経済成長、人口の都市部への集中に伴い、産業廃棄物や一般廃棄物等が急増している。従来から、前記廃棄物の大半は、焼却によって十分の一程度に減容化し埋め立て処分されているが、最近では埋め立て処分場の残余容量が逼迫していることから、新しい廃棄物処理方法の確率が緊急課題になっている。この課題に対処するために、従来よりセメント産業では、産業廃棄物、一般廃棄物等をセメント原料として再資源化している(特許文献1、2)。   In Japan, industrial waste, general waste, etc. are rapidly increasing with economic growth and population concentration in urban areas. Conventionally, most of the above waste has been reduced to a tenth volume by incineration and landfilled. Has become an urgent issue. In order to cope with this problem, the cement industry has conventionally recycled industrial waste, general waste, and the like as cement raw materials (Patent Documents 1 and 2).

特開昭56−120552号公報JP-A 56-120552 特開2000−281395号公報JP 2000-281395 A

しかしながら、廃棄物をセメント原料として大量に使用すると、セメント中の3CaO・Al2O3量が増加し、その結果、セメントの水和熱が上昇するという問題があった。また、そのようなセメントと混和剤を用いてモルタルやコンクリートを製造する場合には、モルタルフローやスランプが小さくなり、フローロスやスランプロスも大きくなるという問題もあった。さらに、カルシウムシリケート量が減るために、特に長期材齢での強度発現性が低下することもあった。 However, when a large amount of waste is used as a cement raw material, the amount of 3CaO · Al 2 O 3 in the cement increases, resulting in a problem that the heat of hydration of the cement increases. Moreover, when manufacturing mortar and concrete using such a cement and an admixture, there also existed a problem that a mortar flow and slump became small and a flow loss and slump loss also became large. Furthermore, since the amount of calcium silicate is reduced, the strength development property at long-term material age may be lowered.

そこで、本発明においては、産業廃棄物、一般廃棄物や建設発生土等を原料としたものであっても、水和熱を小さくすることができ、流動性に優れ、かつ長期強度発現性が良好なモルタルやコンクリートを製造することができる水硬性組成物を提供する。   Therefore, in the present invention, even if the raw material is industrial waste, general waste or construction generated soil, the heat of hydration can be reduced, the fluidity is excellent, and the long-term strength development is A hydraulic composition capable of producing good mortar and concrete is provided.

本発明者らは、斯かる実情に鑑み、鋭意検討した結果、特定の水硬率、ケイ酸率および鉄率を有し、かつ、特定量の3CaO・Al2O3とB2O3を含有する焼成物の粉砕物と、石膏とを組み合わせることにより、水硬性組成物の水和熱を小さくすることができ、流動性に優れ、かつ長期強度発現性も良好になることを見いだし、本発明を完成させたものである。
すなわち、本発明は、水硬率(H.M.)が1.8〜2.3、ケイ酸率(S.M.)が1.0〜2.4、鉄率(I.M.)が1.3〜2.8で、3CaO・Al2O3含有量が9.0〜18.0質量%であり、かつ、B2O3含有量が0.01質量%以上である焼成物の粉砕物と、石膏を含むことを特徴とする水硬性組成物を提供するものである。
As a result of intensive studies in view of such circumstances, the present inventors have a specific hydraulic modulus, silicic acid rate and iron rate, and a specific amount of 3CaO · Al 2 O 3 and B 2 O 3 . It has been found that by combining the pulverized product of the fired product and gypsum, the heat of hydration of the hydraulic composition can be reduced, the fluidity is excellent, and the long-term strength development is also improved. The invention has been completed.
That is, the present invention has a hydraulic modulus (HM) of 1.8 to 2.3, a silicic acid rate (SM) of 1.0 to 2.4, an iron rate (IM) of 1.3 to 2.8, and a 3CaO · Al 2 O 3 content of 9.0 to The present invention provides a hydraulic composition characterized by containing a ground product of 18.0% by mass and a baked product having a B 2 O 3 content of 0.01% by mass or more and gypsum.

本発明の水硬性組成物は、水和熱を小さくすることができ、流動性に優れ、かつ長期強度発現性が良好なモルタルやコンクリートを製造することができる。
また、本発明の水硬性組成物では、産業廃棄物、一般廃棄物及び建設発生土から選ばれる一種以上を原料として使用することができるので、廃棄物の有効利用の促進にも貢献することができる。
The hydraulic composition of the present invention can reduce the heat of hydration, can produce mortar and concrete having excellent fluidity and good long-term strength development.
Further, in the hydraulic composition of the present invention, one or more selected from industrial waste, general waste and construction generated soil can be used as a raw material, which can contribute to promotion of effective use of waste. it can.

以下、本発明について詳細に説明する。
本発明で使用する焼成物は、水硬率(H.M.)が1.8〜2.3、ケイ酸率(S.M.)が1.0〜2.4、鉄率(I.M.)が1.3〜2.8のものである。
焼成物の水硬率(H.M.)が小さくなると、該焼成物中の3CaO・Al2O3(以降、C3Aと略す)と4CaO・Al2O3・Fe2O3(以降、C4AFと略す)の含有量が多くなり、水硬性組成物の水和熱が上昇するうえ、モルタルやコンクリートの流動性が低下する傾向にある。また、焼成物の焼成も困難となる。一方、水硬率(H.M.)が大きくなると、モルタルやコンクリートの初期強度は向上するが、長期強度の伸びが鈍くなる傾向にある。そのため、水硬率(H.M.)は1.8〜2.3が好ましく、より好ましくは2.0〜2.2である。
焼成物のケイ酸率(S.M.)が小さくなると、該焼成物中のC3AとC4AFの含有量が多くなり、水硬性組成物の水和熱が上昇するうえ、モルタルやコンクリートの流動性が低下する傾向にある。また、焼成物の焼成も困難となる。一方、ケイ酸率(S.M.)が大きくなると、モルタルやコンクリートの流動性面では好ましいが、C3AとC4AFの含有量が少なくなり、焼成物の焼成が困難になる。また、廃棄物をセメント原料として大量に使用することも困難になる。そのため、ケイ酸率(S.M.)は1.0〜2.4が好ましく、より好ましくは1.05〜2.3であり、特に好ましくは1.1〜2.2である。
焼成物の鉄率(I.M.)が小さくなると、モルタルやコンクリートの流動性面では好ましいが、焼成物の粉砕性が低下する。一方、鉄率(I.M.)が大きくなると、焼成物中のC3Aの含有量が多くなり、水硬性組成物の水和熱が上昇するうえ、モルタルやコンクリートの流動性が低下する傾向にある。そのため、鉄率(I.M.)は1.3〜2.8が好ましく、より好ましくは1.5〜2.6であり、特に好ましくは1.6〜2.4である。
Hereinafter, the present invention will be described in detail.
The fired product used in the present invention has a hydraulic modulus (HM) of 1.8 to 2.3, a silicic acid rate (SM) of 1.0 to 2.4, and an iron rate (IM) of 1.3 to 2.8.
When the hydraulic modulus (HM) of the fired product decreases, 3CaO · Al 2 O 3 (hereinafter abbreviated as C 3 A) and 4CaO · Al 2 O 3 · Fe 2 O 3 (hereinafter referred to as C 4 ) in the fired product are reduced. The abundance of (AF) is increased, the heat of hydration of the hydraulic composition is increased, and the fluidity of mortar and concrete tends to be decreased. Moreover, it becomes difficult to fire the fired product. On the other hand, when the hydraulic modulus (HM) is increased, the initial strength of mortar and concrete is improved, but the elongation of long-term strength tends to be dull. Therefore, the hydraulic modulus (HM) is preferably 1.8 to 2.3, more preferably 2.0 to 2.2.
When the silicic acid ratio (SM) of the fired product decreases, the content of C 3 A and C 4 AF in the fired product increases, the heat of hydration of the hydraulic composition increases, and the flow of mortar and concrete Tend to decrease. Moreover, it becomes difficult to fire the fired product. On the other hand, an increase in the silicic acid ratio (SM) is preferable in terms of fluidity of mortar and concrete, but the contents of C 3 A and C 4 AF are reduced, making it difficult to fire the fired product. In addition, it becomes difficult to use a large amount of waste as a cement raw material. Therefore, the silicic acid ratio (SM) is preferably 1.0 to 2.4, more preferably 1.05 to 2.3, and particularly preferably 1.1 to 2.2.
When the iron ratio (IM) of the fired product is small, it is preferable in terms of fluidity of mortar and concrete, but the grindability of the fired product is lowered. On the other hand, when the iron ratio (IM) increases, the content of C 3 A in the fired product increases, the heat of hydration of the hydraulic composition increases, and the fluidity of mortar and concrete tends to decrease. . Therefore, the iron ratio (IM) is preferably 1.3 to 2.8, more preferably 1.5 to 2.6, and particularly preferably 1.6 to 2.4.

本発明で使用する焼成物は、C3A含有量が9.0〜18.0質量%のものである。
C3A含有量が小さくなると、モルタルやコンクリートの流動性面では好ましいが、廃棄物をセメント原料として大量に使用することも困難になる。一方、C3A含有量が大きくなると、水硬性組成物の水和熱が上昇するうえ、モルタルやコンクリートの流動性が低下する傾向にある。そのため、C3A含有量は9.0〜17.0質量%が好ましく、より好ましくは10.0〜16.0質量%であり、特に好ましくは11.0〜15.0質量%である。
なお、本発明において、C3A含有量はボーグ式で算出される値である。
The fired product used in the present invention has a C 3 A content of 9.0 to 18.0% by mass.
When the C 3 A content is small, it is preferable in terms of fluidity of mortar and concrete, but it becomes difficult to use a large amount of waste as a cement raw material. On the other hand, when the C 3 A content increases, the heat of hydration of the hydraulic composition increases and the fluidity of mortar and concrete tends to decrease. Therefore, the C 3 A content is preferably 9.0 to 17.0% by mass, more preferably 10.0 to 16.0% by mass, and particularly preferably 11.0 to 15.0% by mass.
In the present invention, the C 3 A content is a value calculated by the Borg equation.

本発明で使用する焼成物は、B2O3含有量が0.01質量%以上のものである。
B2O3含有量が小さくなると、水硬性組成物の水和熱が上昇するうえ、モルタルやコンクリートの流動性が低下する傾向にある。一方、B2O3含有量が大きくなると、モルタルやコンクリートの凝結が遅延するうえ、初期強度が低下する傾向にある。そのため、B2O3含有量は0.01〜1.0質量%が好ましく、より好ましくは0.02〜0.8質量%である。
The fired product used in the present invention has a B 2 O 3 content of 0.01% by mass or more.
When the B 2 O 3 content decreases, the heat of hydration of the hydraulic composition increases, and the fluidity of mortar and concrete tends to decrease. On the other hand, when the B 2 O 3 content is increased, the setting of the mortar and concrete is delayed and the initial strength tends to decrease. Therefore, the B 2 O 3 content is preferably 0.01 to 1.0% by mass, more preferably 0.02 to 0.8% by mass.

なお、本発明で使用する焼成物においては、水硬性組成物の水和熱、モルタルやコンクリートの凝結、流動性や強度発現性等から、焼成物中の3CaO・Al2O3含有量X(質量%)とB2O3含有量Y(質量%)との関係が、0.0017X−0.005≦Y≦0.0667X−0.2を満足することが好ましい。 In the fired product used in the present invention, the content of 3CaO · Al 2 O 3 in the fired product X (from the heat of hydration of the hydraulic composition, the setting of mortar and concrete, the fluidity and strength development, etc. (Mass%) and the B 2 O 3 content Y (mass%) preferably satisfy 0.0017X−0.005 ≦ Y ≦ 0.0667X−0.2.

本発明で使用する焼成物は、産業廃棄物、一般廃棄物及び建設発生土から選ばれる1種以上を原料とし、これを焼成することにより製造することができる。産業廃棄物としては、例えば石炭灰;生コンスラッジ、下水汚泥、浄水汚泥、建設汚泥、製鉄汚泥等の各種汚泥;ボーリング廃土、各種焼却灰、鋳物砂、ロックウール、廃ガラス、高炉2次灰、建設廃材、コンクリート廃材などが挙げられ;一般廃棄物としては、例えば下水汚泥乾粉、都市ごみ焼却灰、貝殻等が挙げられる。建設発生土としては、建設現場や工事現場等から発生する土壌や残土、さらには廃土壌等が挙げられる。
B2O3の原料としては、ホウ石、ホウ砂等の天然原料や廃ホウ珪酸ガラス等の廃棄物を使用することができる。
また、一般のポルトランドセメントクリンカー原料、例えば、石灰石、生石灰、消石灰等のCaO原料、珪石、粘土等のSiO2原料、粘土等のAl2O3原料、鉄滓、鉄ケーキ等のFe2O3原料も使用することができる。
The fired product used in the present invention can be produced by firing at least one selected from industrial waste, general waste, and construction generated soil. Industrial wastes include, for example, coal ash; raw sludge, sewage sludge, purified water sludge, construction sludge, various types of sludge such as iron sludge; boring waste, various incineration ash, foundry sand, rock wool, waste glass, blast furnace secondary ash General wastes include, for example, sewage sludge dry powder, municipal waste incinerated ash, shells, and the like. Examples of construction generated soil include soil and residual soil generated from construction sites and construction sites, and waste soil.
As raw materials for B 2 O 3 , natural raw materials such as borolith and borax and waste such as waste borosilicate glass can be used.
Also, general Portland cement clinker raw materials, for example, CaO raw materials such as limestone, quicklime and slaked lime, SiO 2 raw materials such as silica and clay, Al 2 O 3 raw materials such as clay, Fe 2 O 3 such as iron cake and iron cake Raw materials can also be used.

上記各原料を所定のH.M.、S.M.、I.M.で、所定のC3A含有量、B2O3含有量となるように混合し、好ましくは1200〜1550℃で焼成することにより、焼成物が製造される。より好ましい焼成温度は1350〜1450℃である。
各原料を混合する方法は、特に限定するものではなく、慣用の装置等で行えばよい。
また、焼成に使用する装置も特に限定するものではなく、例えば、ロータリーキルン等を使用することができる。ロータリーキルンで焼成する際には、燃料代替廃棄物、例えば、廃油、廃タイヤ、廃プラスチック等を使用することができる。
なお、本発明で使用する焼成物においては、モルタルやコンクリートの強度発現性、特に初期強度発現性を向上させる観点から、フリーライム量が0.5〜1.0質量%であることが好ましい。
The above raw materials are mixed with predetermined HM, SM, and IM so as to have predetermined C 3 A content and B 2 O 3 content, and preferably fired at 1200 to 1550 ° C. to produce a fired product. Is done. A more preferable firing temperature is 1350 to 1450 ° C.
The method of mixing each raw material is not particularly limited, and may be performed with a conventional apparatus or the like.
Moreover, the apparatus used for baking is not specifically limited, For example, a rotary kiln etc. can be used. When firing in a rotary kiln, alternative fuel wastes such as waste oil, waste tires, waste plastics, etc. can be used.
In the fired product used in the present invention, the amount of free lime is preferably 0.5 to 1.0% by mass from the viewpoint of improving the strength development of mortar and concrete, particularly the initial strength development.

本発明の水硬性組成物は上記焼成物の粉砕物と、石膏を含むものである。石膏としては、2水石膏、α型又はβ型半水石膏、無水石膏等を単独又は2種以上組み合わせてを使用することができる。
本発明においては、水硬性組成物中の全SO3に対する2水石膏及び半水石膏中のSO3の割合は40質量%以上であることが好ましい。水硬性組成物中の全SO3に対する2水石膏及び半水石膏中のSO3の割合が40質量%未満では、水硬性組成物の水和熱が大きくなり、またモルタルやコンクリートの流動性が低下するので好ましくない。水硬性組成物中の全SO3に対する2水石膏及び半水石膏中のSO3の割合は、モルタルやコンクリートの流動性向上の観点や減水剤との相性等から、50〜95質量%が好ましく、60〜90質量%がより好ましい。
The hydraulic composition of the present invention contains the pulverized product of the fired product and gypsum. As the gypsum, dihydrate gypsum, α-type or β-type hemihydrate gypsum, anhydrous gypsum and the like can be used alone or in combination of two or more.
In the present invention, the proportion of SO 3 in dihydrate gypsum and hemihydrate gypsum relative to total SO 3 in the hydraulic composition is preferably 40% by mass or more. If the ratio of SO 3 in dihydric gypsum and hemihydrate gypsum to the total SO 3 in the hydraulic composition is less than 40% by mass, the heat of hydration of the hydraulic composition increases, and the fluidity of the mortar and concrete increases. Since it falls, it is not preferable. The proportion of SO 3 in dihydrate gypsum and hemihydrate gypsum relative to total SO 3 in the hydraulic composition is preferably 50 to 95% by mass from the viewpoint of improving the fluidity of mortar and concrete and compatibility with water reducing agents. 60 to 90% by mass is more preferable.

また、本発明においては、水硬性組成物中の2水石膏及び半水石膏の合量に対する半水石膏の割合はSO3換算で30質量%以上であることが好ましい。2水石膏及び半水石膏の合量に対する半水石膏の割合がSO3換算で30質量%未満では、水硬性組成物の水和熱が大きくなり、またモルタルやコンクリートの凝結時間が極端に短くなる、流動性が低下する、硬化体の寸法安定性が低下する等の理由から好ましくない。2水石膏及び半水石膏の合量に対する半水石膏の割合は、モルタルやコンクリートの水和熱低減や流動性向上の観点から、40〜90質量%が好ましい。
なお、2水石膏・半水石膏の定量は、特開平6-242035号公報に記載される試料容器を使用した熱分析(熱重量測定等)により行うことができる。また、水硬性組成物中の全SO3の定量は、化学分析により行うことができる。
In the present invention, the ratio of hemihydrate gypsum to the total amount of dihydrate gypsum and hemihydrate gypsum in the hydraulic composition is preferably 30% by mass or more in terms of SO 3 . If the ratio of hemihydrate gypsum to the total amount of dihydrate gypsum and hemihydrate gypsum is less than 30% by mass in terms of SO 3 , the heat of hydration of the hydraulic composition will increase, and the setting time of mortar and concrete will be extremely short. This is not preferable for reasons such as low fluidity and reduced dimensional stability of the cured product. The ratio of hemihydrate gypsum to the total amount of 2-hydrate gypsum and hemihydrate gypsum is preferably 40 to 90% by mass from the viewpoint of reducing heat of hydration and improving fluidity of mortar and concrete.
The quantification of dihydrate gypsum and hemihydrate gypsum can be performed by thermal analysis (thermogravimetric measurement or the like) using a sample container described in JP-A-62-242035. Further, the quantification of total SO 3 in the hydraulic composition can be performed by chemical analysis.

本発明の水硬性組成物は、高炉スラグ粉末、フライアッシュ、石灰石粉末、珪石粉末から選ばれる1種以上の無機粉末を含むことができる。これらの無機粉末を含むことにより、さらなる水和熱の低減や流動性の向上を図ることができる。無機粉末としては、モルタルやコンクリートの流動性や強度発現性、さらにはアルカリ骨材反応の抑制効果や耐硫酸塩性等から、高炉スラグ粉末、高炉スラグ粉末と石灰石粉末の組み合わたものを使用することが好ましい。
本発明において、水硬性組成物中の無機粉末量は、該無機粉末の種類により異なる。例えば、高炉スラグ粉末であれば、モルタルやコンクリートの流動性や強度発現性、さらにはアルカリ骨材反応の抑制効果、耐硫酸塩性等から、焼成物の粉砕物100質量部に対して、0.1〜150質量部であることが好ましく、0.5〜100質量部であることがより好ましい。フライアッシュ、石灰石粉末や珪石粉末であれば、焼成物の粉砕物100質量部に対して、0.1〜100質量部であることが好ましく、0.5〜80質量部であることがより好ましい。なお、高炉スラグ粉末と石灰石粉末を組み合わせて使用する場合は、モルタルやコンクリートの流動性や強度発現性等から、高炉スラグ粉末は焼成物の粉砕物100質量部に対して0.1〜150質量部が好ましく、石灰石粉末は焼成物の粉砕物100質量部に対して0.1〜20質量部であることが好ましい。
The hydraulic composition of the present invention can contain one or more inorganic powders selected from blast furnace slag powder, fly ash, limestone powder, and quartzite powder. By containing these inorganic powders, it is possible to further reduce heat of hydration and improve fluidity. As the inorganic powder, blast furnace slag powder, a combination of blast furnace slag powder and limestone powder is used because of the fluidity and strength development of mortar and concrete, as well as the effect of suppressing alkali-aggregate reaction and sulfate resistance. It is preferable.
In the present invention, the amount of inorganic powder in the hydraulic composition varies depending on the type of the inorganic powder. For example, in the case of blast furnace slag powder, the flowability and strength development of mortar and concrete, further the inhibitory effect of alkali-aggregate reaction, sulfate resistance, etc. It is preferable that it is -150 mass parts, and it is more preferable that it is 0.5-100 mass parts. If it is a fly ash, a limestone powder, or a quartzite powder, it is preferable that it is 0.1-100 mass parts with respect to 100 mass parts of pulverized products of a baked product, and it is more preferable that it is 0.5-80 mass parts. In addition, when using a combination of blast furnace slag powder and limestone powder, the blast furnace slag powder is 0.1 to 150 parts by mass with respect to 100 parts by mass of the pulverized product of the fired product because of fluidity and strength development of mortar and concrete. The limestone powder is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the pulverized product of the fired product.

なお、本発明において、水硬性組成物中の石膏量は、モルタルやコンクリートの流動性や強度発現性等から、焼成物の粉砕物100質量部に対して、SO3換算で1〜5質量部であることが好ましく、1.5〜3.5質量部であることがより好ましい。 In the present invention, the amount of gypsum in the hydraulic composition is 1 to 5 parts by mass in terms of SO 3 with respect to 100 parts by mass of the pulverized product of the fired product from the fluidity and strength development of mortar and concrete. It is preferable that it is 1.5-3.5 mass parts.

本発明の水硬性組成物の製造方法について説明する。
焼成物の粉砕物と石膏とからなる水硬性組成物の製造方法としては、例えば、
(1)焼成物と石膏を同時に粉砕する方法、
(2)焼成物を粉砕し、該粉砕物に、石膏を混合する方法、
等が挙げられる。
上記(1)の場合は、焼成物と石膏はブレーン比表面積2500〜4800cm2/gに粉砕することが好ましく、3000〜4600cm2/gに粉砕することがより好ましい。
上記(2)の場合は、焼成物はブレーン比表面積2500〜4800cm2/gに粉砕することが好ましく、3000〜4600cm2/gに粉砕することがより好ましい。また、石膏としてはブレーン比表面積2500〜5000cm2/gのものを使用するのが好ましく、3000〜4500cm2/gのものを使用するのがより好ましい。
The manufacturing method of the hydraulic composition of this invention is demonstrated.
As a method for producing a hydraulic composition comprising a pulverized product of a fired product and gypsum, for example,
(1) A method of pulverizing the fired product and gypsum simultaneously
(2) A method of pulverizing the fired product and mixing gypsum with the pulverized product,
Etc.
In the case of (1) above, the fired product and gypsum are preferably pulverized to a Blaine specific surface area of 2500 to 4800 cm 2 / g, more preferably 3000 to 4600 cm 2 / g.
In the case of (2) above, the fired product is preferably pulverized to a Blaine specific surface area of 2500 to 4800 cm 2 / g, more preferably 3000 to 4600 cm 2 / g. The gypsum is preferably one having a specific surface area of 2500 to 5000 cm 2 / g, more preferably 3000 to 4500 cm 2 / g.

焼成物の粉砕物と石膏と無機粉末とからなる水硬性組成物の製造方法としては、例えば、
(1)焼成物と石膏を同時に粉砕し、該粉砕物に、高炉スラグ粉末、フライアッシュ、石灰石粉末、珪石粉末から選ばれる1種以上の無機粉末を混合する方法、
(2)焼成物を粉砕し、該粉砕物に、石膏と、高炉スラグ粉末、フライアッシュ、石灰石粉末、珪石粉末から選ばれる1種以上の無機粉末を混合する方法、
(3)焼成物と、石膏と、高炉スラグ粉末、フライアッシュ、石灰石粉末、珪石粉末から選ばれる1種以上の無機粉末を同時に粉砕する方法、
等が挙げられる。
上記(1)の場合は、焼成物と石膏はブレーン比表面積2500〜4800cm2/gに粉砕することが好ましく、3000〜4600cm2/gに粉砕することがより好ましい。また、無機粉末としてはブレーン比表面積2500〜5000cm2/gのものを使用するのが好ましく、3000〜4500cm2/gのものを使用するのがより好ましい。
上記(2)の場合は、焼成物はブレーン比表面積2500〜4800cm2/gに粉砕することが好ましく、3000〜4600cm2/gに粉砕することがより好ましい。また、石膏と無機粉末としてはブレーン比表面積2500〜5000cm2/gのものを使用するのが好ましく、3000〜4500cm2/gのものを使用するのがより好ましい。
As a method for producing a hydraulic composition comprising a pulverized product of calcined product, gypsum and inorganic powder, for example,
(1) A method of simultaneously pulverizing a fired product and gypsum, and mixing the pulverized product with one or more inorganic powders selected from blast furnace slag powder, fly ash, limestone powder, and quartzite powder,
(2) A method of pulverizing a fired product and mixing the pulverized product with gypsum and one or more inorganic powders selected from blast furnace slag powder, fly ash, limestone powder, and silica stone powder,
(3) A method of simultaneously pulverizing one or more inorganic powders selected from a calcined product, gypsum, blast furnace slag powder, fly ash, limestone powder, and silica powder,
Etc.
In the case of (1) above, the fired product and gypsum are preferably pulverized to a Blaine specific surface area of 2500 to 4800 cm 2 / g, more preferably 3000 to 4600 cm 2 / g. The inorganic powder preferably has a Blaine specific surface area of 2500 to 5000 cm 2 / g, more preferably 3000 to 4500 cm 2 / g.
In the case of (2) above, the fired product is preferably pulverized to a Blaine specific surface area of 2500 to 4800 cm 2 / g, more preferably 3,000 to 4600 cm 2 / g. Further, as the gypsum and the inorganic powder, those having a specific surface area of 2500 to 5000 cm 2 / g are preferable, and those having 3000 to 4500 cm 2 / g are more preferable.

なお、本発明において、水硬性組成物のブレーン比表面積は、モルタルやコンクリートの流動性や強度発現性等から、2500〜4800cm2/gであることが好ましく、3000〜4600cm2/gであることがより好ましい。 In the present invention, the brane specific surface area of the hydraulic composition is preferably 2500 to 4800 cm 2 / g, preferably 3000 to 4600 cm 2 / g in view of fluidity and strength development of mortar and concrete. Is more preferable.

本発明の水硬性組成物は、ペースト、モルタル又はコンクリートの状態で使用される。 減水剤としては、リグニン系、ナフタレンスルホン酸系、メラミン系、ポリカルボン酸系の減水剤(AE減水剤、高性能減水剤、高性能AE減水剤も含む)が使用できる。
モルタル又はコンクリートの状態で使用する場合は、通常モルタル、コンクリートの製造に使用されている細骨材・粗骨材、すなわち、川砂、陸砂、砕砂等や、川砂利、山砂利、砕石等を使用することができる。また、都市ゴミ、都市ゴミ焼却灰、下水汚泥焼却灰の一種以上を溶融して製造した溶融スラグ、あるいは高炉スラグ、製鋼スラグ、銅スラグ、碍子屑、ガラスカレット、陶磁器廃材、クリンカーアッシュ、廃レンガ、コンクリート廃材等の廃棄物を細骨材・粗骨材の一部または全部に使用することができる。
なお、必要に応じて、支障のない範囲内で、空気連行剤、消泡剤等の混和剤を使用することは差し支えない。
The hydraulic composition of the present invention is used in the state of paste, mortar or concrete. As the water reducing agent, lignin-based, naphthalenesulfonic acid-based, melamine-based, and polycarboxylic acid-based water reducing agents (including AE water reducing agents, high-performance water reducing agents, and high-performance AE water reducing agents) can be used.
When used in the state of mortar or concrete, fine aggregates and coarse aggregates that are usually used in the production of mortar and concrete, that is, river sand, land sand, crushed sand, river gravel, mountain gravel, crushed stone, etc. Can be used. In addition, molten slag produced by melting one or more of municipal waste, municipal waste incineration ash, and sewage sludge incineration ash, or blast furnace slag, steelmaking slag, copper slag, coconut scrap, glass cullet, ceramic waste, clinker ash, waste brick In addition, waste such as concrete waste can be used for some or all of fine aggregate and coarse aggregate.
If necessary, an admixture such as an air entraining agent or an antifoaming agent may be used within a range that does not hinder the operation.

ペースト、モルタル又はコンクリートの混練方法は、特に限定するものではなく、例えば、(1)各材料を一括してミキサに投入して1分以上混練する方法、(2)水以外の材料をミキサに投入して空練りした後に、水を投入して1分以上混練する方法等で行うことができる。混練に用いるミキサは、特に限定するものではなく、ホバートミキサ、パンタイプミキサ、二軸ミキサ等の慣用のミキサで混練すれば良い。
ペースト、モルタル又はコンクリートの成形方法は、特に限定するものではなく、例えば、振動成形等を行えば良い。
また、養生条件も、特に限定するものではなく、例えば、気中養生、水中養生、蒸気養生等を行えば良い。
The method of kneading paste, mortar, or concrete is not particularly limited. For example, (1) a method in which each material is put into a mixer at once and kneaded for 1 minute or more, and (2) a material other than water is mixed in the mixer. After adding and kneading, water can be added and mixed for 1 minute or longer. The mixer used for kneading is not particularly limited, and may be kneaded with a conventional mixer such as a Hobart mixer, a pan type mixer, or a biaxial mixer.
The method for forming the paste, mortar or concrete is not particularly limited, and for example, vibration molding or the like may be performed.
Further, the curing conditions are not particularly limited, and for example, air curing, underwater curing, steam curing, or the like may be performed.

以下、実施例により本発明を説明する。
1.実施例1
(1)焼成物の製造:
原料として、下水汚泥、建設発生土、廃ホウ珪酸ガラス(SiO2:81.0質量%、Al2O3:2.0質量%、R2O:4.0質量%、B2O3:13質量%)と、石灰石等の一般のポルトランドセメントクリンカー原料を使用して、水硬率;2.2、ケイ酸率;2.35、鉄率;1.8、C3A含有量;9.5質量%、B2O3含有量;0.03質量%、SO3含有量;0.5質量%の焼成物を、電気炉を用いて1450℃で焼成して製造した。
なお、該焼成物中のフリーライム量は0.6質量%であった。
Hereinafter, the present invention will be described by way of examples.
1. Example 1
(1) Production of fired product:
As raw materials, sewage sludge, construction generated soil, waste borosilicate glass (SiO 2 : 81.0 mass%, Al 2 O 3 : 2.0 mass%, R 2 O: 4.0 mass%, B 2 O 3 : 13 mass%), Using general Portland cement clinker raw materials such as limestone, hydraulic rate: 2.2, silicic acid rate: 2.35, iron rate: 1.8, C 3 A content: 9.5 mass%, B 2 O 3 content: 0.03 mass %, SO 3 content; 0.5% by mass of the fired product was produced by firing at 1450 ° C. using an electric furnace.
The amount of free lime in the fired product was 0.6% by mass.

(2)水硬性組成物の製造
上記焼成物に、排脱ニ水石膏(住友金属社製)及び前記排脱ニ水石膏を140℃で加熱して得た半水石膏を添加し、バッチ式ボールミルでブレーン比表面積が3250cm2/gとなるように同時粉砕して、水硬性組成物を製造した。
なお、該水硬性組成物中のニ水石膏量(SO3換算)は焼成物の粉砕物100質量部に対して0.8質量部であり、半水石膏量(SO3換算)は焼成物の粉砕物100質量部に対して0.8質量部である。
(2) Manufacture of hydraulic composition To the above-mentioned baked product, drained dihydrate gypsum (manufactured by Sumitomo Metals) and hemihydrate gypsum obtained by heating the drained dihydrate gypsum at 140 ° C. are added, batch type A hydraulic composition was produced by simultaneous grinding with a ball mill so that the specific surface area of the brain was 3250 cm 2 / g.
The amount of dihydrate gypsum (in terms of SO 3 ) in the hydraulic composition is 0.8 parts by mass with respect to 100 parts by mass of the pulverized product of the baked product, and the amount of hemihydrate gypsum (in terms of SO 3 ) is pulverized of the baked product. 0.8 parts by mass with respect to 100 parts by mass of the product.

(3)評価
上記水硬性組成物について、以下の方法で水和熱、フロー値と圧縮強度を測定した。
(1)水和熱
「JIS R 5201(セメントの物理試験方法)」に準じて測定した。
(2)フロー値
上記水硬性組成物および細骨材(JIS R 5201に定める標準砂)、水およびポリカルボン酸系高性能AE減水剤(BASFポゾリス社製「レオビルドSP8N」)を使用して、モルタルを調製し、混練直後のモルタルフロー値を測定した。モルタルの配合は、水/水硬性組成物(質量)比=0.35、細骨材/水硬性組成物(質量)比=2.0、減水剤/水硬性組成物(質量)比=0.0065とした。混練は7分間行い、混練直後のモルタルをフローコーン(上面直径5cm、下面直径10cm、高さ15cm)に投入し、フローコーンを上方へ取り去った際のモルタルの広がりを測定し、フロー値とした。
(3)圧縮強度
モルタルの圧縮強度(3日、7日および28日)を「JIS R 5201(セメントの物理試験方法)」に準じて測定した。なお、モルタルの配合は、水/水硬性組成物(質量)比=0.5、細骨材/水硬性組成物(質量)比=3.0とした。
その結果、7日の水和熱は330(J/g)、28日の水和熱は380(J/g)で、フロー値は281(mm)で、3日の圧縮強度は31.2(N/mm2)、7日の圧縮強度は46.0(N/mm2)、28日の圧縮強度は62.8(N/mm2)であった。
(3) Evaluation About the said hydraulic composition, the hydration heat, the flow value, and the compressive strength were measured with the following method.
(1) Heat of hydration Measured according to “JIS R 5201 (physical test method for cement)”.
(2) Flow value Using the above hydraulic composition and fine aggregate (standard sand defined in JIS R 5201), water and polycarboxylic acid-based high-performance AE water reducing agent (BASF Pozzolith "Reobuild SP8N"), Mortar was prepared and the mortar flow value immediately after kneading was measured. The mortar was formulated such that the water / hydraulic composition (mass) ratio = 0.35, the fine aggregate / hydraulic composition (mass) ratio = 2.0, and the water reducing agent / hydraulic composition (mass) ratio = 0.0005. Kneading was carried out for 7 minutes. The mortar immediately after kneading was put into a flow cone (top diameter 5 cm, bottom diameter 10 cm, height 15 cm), and the spread of the mortar when the flow cone was removed upward was measured to obtain a flow value. .
(3) Compressive strength The compressive strength (3 days, 7 days and 28 days) of mortar was measured according to "JIS R 5201 (Cement physical test method)". The mortar was mixed with a water / hydraulic composition (mass) ratio of 0.5 and a fine aggregate / hydraulic composition (mass) ratio of 3.0.
As a result, the heat of hydration on the 7th was 330 (J / g), the heat of hydration on the 28th was 380 (J / g), the flow value was 281 (mm), and the compression strength on the 3rd was 31.2 (N / mm 2 ), the compression strength on the 7th was 46.0 (N / mm 2 ), and the compression strength on the 28th was 62.8 (N / mm 2 ).

2.実施例2
実施例1の焼成物に、排脱ニ水石膏(住友金属社製)及び前記排脱ニ水石膏を140℃で加熱して得た半水石膏を添加し、バッチ式ボールミルでブレーン比表面積が3250cm2/gとなるように同時粉砕した後、高炉スラグ粉末(ブレーン比表面積4000cm2/g)を混合して、水硬性組成物を製造した。
なお、該水硬性組成物中の高炉スラグ粉末量は焼成物の粉砕物100質量部に対して65質量部であり、ニ水石膏量(SO3換算)は焼成物の粉砕物100質量部に対して0.6質量部であり、半水石膏量(SO3換算)は焼成物の粉砕物100質量部に対して0.6質量部である。
該水硬性組成物について、水和熱、フロー値と圧縮強度を実施例1と同様にして測定した。
その結果、7日の水和熱は304(J/g)、28日の水和熱は340(J/g)で、フロー値は330(mm)で、3日の圧縮強度は23.3(N/mm2)、7日の圧縮強度は34.2(N/mm2)、28日の圧縮強度は59.0(N/mm2)であった。
2. Example 2
To the fired product of Example 1, drained dihydrate gypsum (manufactured by Sumitomo Metals) and hemihydrate gypsum obtained by heating the drained dihydrate gypsum at 140 ° C. were added. After simultaneous grinding to 3250 cm 2 / g, blast furnace slag powder (Brain specific surface area 4000 cm 2 / g) was mixed to produce a hydraulic composition.
The amount of blast furnace slag powder in the hydraulic composition is 65 parts by mass with respect to 100 parts by mass of the pulverized product of the fired product, and the amount of dihydrate gypsum (in terms of SO 3 ) is 100 parts by mass of the pulverized product of the calcined product. The amount of hemihydrate gypsum (in terms of SO 3 ) is 0.6 parts by mass with respect to 100 parts by mass of the pulverized product of the fired product.
The hydraulic composition was measured for heat of hydration, flow value and compressive strength in the same manner as in Example 1.
As a result, the heat of hydration on the 7th was 304 (J / g), the heat of hydration on the 28th was 340 (J / g), the flow value was 330 (mm), and the compression strength on the 3rd was 23.3 (N / mm 2 ), the compression strength on the 7th was 34.2 (N / mm 2 ), and the compression strength on the 28th was 59.0 (N / mm 2 ).

3.実施例3
実施例1と同じ原料を使用して焼成物(水硬率;2.05、ケイ酸率;1.32、鉄率;1.81、C3A含有量;14.5質量%、B2O3含有量;0.1質量%、SO3含有量;0.2質量%)を製造した。
上記焼成物に、排脱ニ水石膏(住友金属社製)及び前記排脱ニ水石膏を140℃で加熱して得た半水石膏を添加し、バッチ式ボールミルでブレーン比表面積が4200cm2/gとなるように同時粉砕して、水硬性組成物を製造した。
なお、該水硬性組成物中のニ水石膏量(SO3換算)は焼成物の粉砕物100質量部に対して1.2質量部であり、半水石膏量(SO3換算)は焼成物の粉砕物100質量部に対して1.5質量部である。
該水硬性組成物について、水和熱、フロー値と圧縮強度を実施例1と同様にして測定した。
その結果、7日の水和熱は350(J/g)、28日の水和熱は418(J/g)で、フロー値は240(mm)で、3日の圧縮強度は29.0(N/mm2)、7日の圧縮強度は44.8(N/mm2)、28日の圧縮強度は57.0(N/mm2)であった。
3. Example 3
A fired product (hydraulic modulus: 2.05, silicic acid rate: 1.32, iron rate: 1.81, C 3 A content: 14.5% by mass, B 2 O 3 content: 0.1% by mass using the same raw materials as in Example 1. , SO 3 content; 0.2% by mass).
To the calcined product, drained dihydrate gypsum (manufactured by Sumitomo Metals) and hemihydrate gypsum obtained by heating the drained dihydrate gypsum at 140 ° C. were added, and the specific surface area of the brain was 4200 cm 2 / A hydraulic composition was produced by simultaneous grinding to g.
The amount of dihydrate gypsum in the hydraulic composition (in terms of SO 3 ) is 1.2 parts by mass with respect to 100 parts by mass of the pulverized product of the fired product, and the amount of hemihydrate gypsum (in terms of SO 3 ) It is 1.5 parts by mass with respect to 100 parts by mass of the object.
The hydraulic composition was measured for heat of hydration, flow value and compressive strength in the same manner as in Example 1.
As a result, the heat of hydration on the 7th was 350 (J / g), the heat of hydration on the 28th was 418 (J / g), the flow value was 240 (mm), and the compression strength on the 3rd was 29.0 (N / mm 2 ), the compression strength on the 7th was 44.8 (N / mm 2 ), and the compression strength on the 28th was 57.0 (N / mm 2 ).

4.実施例4
実施例1と同じ原料を使用して焼成物(水硬率;2.05、ケイ酸率;1.32、鉄率;1.81、C3A含有量;14.5質量%、B2O3含有量;0.3質量%、SO3含有量;0.3質量%)を製造した。
上記実施例3と同様にして水硬性組成物を製造した。
該水硬性組成物について、水和熱、フロー値と圧縮強度を実施例1と同様にして測定した。
その結果、7日の水和熱は339(J/g)、28日の水和熱は398(J/g)で、フロー値は260(mm)で、3日の圧縮強度は27.9(N/mm2)、7日の圧縮強度は43.8(N/mm2)、28日の圧縮強度は59.5(N/mm2)であった。
4). Example 4
A fired product (hydraulic modulus: 2.05, silicic acid ratio: 1.32, iron ratio: 1.81, C 3 A content: 14.5 mass%, B 2 O 3 content: 0.3 mass% using the same raw materials as in Example 1. , SO 3 content; 0.3% by mass).
A hydraulic composition was produced in the same manner as in Example 3 above.
The hydraulic composition was measured for heat of hydration, flow value and compressive strength in the same manner as in Example 1.
As a result, the heat of hydration on the 7th was 339 (J / g), the heat of hydration on the 28th was 398 (J / g), the flow value was 260 (mm), and the compression strength on the 3rd was 27.9 (N / mm 2 ), the compression strength on the 7th was 43.8 (N / mm 2 ), and the compression strength on the 28th was 59.5 (N / mm 2 ).

5.実施例5
実施例4の焼成物に、排脱ニ水石膏(住友金属社製)及び前記排脱ニ水石膏を140℃で加熱して得た半水石膏を添加し、バッチ式ボールミルでブレーン比表面積が4200cm2/gとなるように同時粉砕した後、高炉スラグ粉末(ブレーン比表面積4000cm2/g)を混合して、水硬性組成物を製造した。
なお、該水硬性組成物中の高炉スラグ粉末量は焼成物の粉砕物100質量部に対して65質量部であり、ニ水石膏量(SO3換算)は焼成物の粉砕物100質量部に対して1.2質量部であり、半水石膏量(SO3換算)は焼成物の粉砕物100質量部に対して1.5質量部である。
該水硬性組成物について、水和熱、フロー値と圧縮強度を実施例1と同様にして測定した。
その結果、7日の水和熱は310(J/g)、28日の水和熱は360(J/g)で、フロー値は340(mm)で、3日の圧縮強度は23.0(N/mm2)、7日の圧縮強度は34.9(N/mm2)、28日の圧縮強度は59.5(N/mm2)であった。
5. Example 5
To the fired product of Example 4, drained dihydrate gypsum (manufactured by Sumitomo Metals Co., Ltd.) and hemihydrate gypsum obtained by heating the drained dihydrate gypsum at 140 ° C. were added. After simultaneous pulverization to 4200 cm 2 / g, blast furnace slag powder (Brain specific surface area 4000 cm 2 / g) was mixed to produce a hydraulic composition.
The amount of blast furnace slag powder in the hydraulic composition is 65 parts by mass with respect to 100 parts by mass of the pulverized product of the fired product, and the amount of dihydrate gypsum (in terms of SO 3 ) is 100 parts by mass of the pulverized product of the fired product. The amount of hemihydrate gypsum (in terms of SO 3 ) is 1.5 parts by mass with respect to 100 parts by mass of the pulverized product.
The hydraulic composition was measured for heat of hydration, flow value and compressive strength in the same manner as in Example 1.
As a result, the heat of hydration on the 7th was 310 (J / g), the heat of hydration on the 28th was 360 (J / g), the flow value was 340 (mm), and the compression strength on the 3rd was 23.0 (N / mm 2 ), the compression strength on the 7th was 34.9 (N / mm 2 ), and the compression strength on the 28th was 59.5 (N / mm 2 ).

6.実施例6
実施例4の焼成物に、排脱ニ水石膏(住友金属社製)及び前記排脱ニ水石膏を140℃で加熱して得た半水石膏を添加し、バッチ式ボールミルでブレーン比表面積が4200cm2/gとなるように同時粉砕した後、高炉スラグ粉末(ブレーン比表面積4000cm2/g)と石灰石粉末(ブレーン比表面積4000cm2/g)を混合して、水硬性組成物を製造した。
なお、該水硬性組成物中の高炉スラグ粉末量は焼成物の粉砕物100質量部に対して65質量部、石灰石粉末量は焼成物の粉砕物100質量部に対して5質量部であり、ニ水石膏量(SO3換算)は焼成物の粉砕物100質量部に対して1.2質量部であり、半水石膏量(SO3換算)は焼成物の粉砕物100質量部に対して1.5質量部である。
該水硬性組成物について、水和熱、フロー値と圧縮強度を実施例1と同様にして測定した。
その結果、7日の水和熱は305(J/g)、28日の水和熱は350(J/g)で、フロー値は342(mm)で、3日の圧縮強度は24.0(N/mm2)、7日の圧縮強度は35.8(N/mm2)、28日の圧縮強度は60.5(N/mm2)であった。
6). Example 6
To the fired product of Example 4, drained dihydrate gypsum (manufactured by Sumitomo Metals Co., Ltd.) and hemihydrate gypsum obtained by heating the drained dihydrate gypsum at 140 ° C. were added. After simultaneous grinding to 4200 cm 2 / g, blast furnace slag powder (Blaine specific surface area 4000 cm 2 / g) and limestone powder (Blaine specific surface area 4000 cm 2 / g) were mixed to produce a hydraulic composition.
The amount of blast furnace slag powder in the hydraulic composition is 65 parts by weight with respect to 100 parts by weight of the pulverized product of the fired product, and the amount of limestone powder is 5 parts by weight with respect to 100 parts by weight of the pulverized product of the fired product, two water gypsum weight (SO 3 equivalent) of 1.2 parts by mass based on the pulverized product 100 parts by weight of the baked product, 1.5 mass relative to pulverized product 100 parts by weight of hemihydrate gypsum weight (SO 3 equivalent) fired product Part.
The hydraulic composition was measured for heat of hydration, flow value and compressive strength in the same manner as in Example 1.
As a result, the heat of hydration on the 7th was 305 (J / g), the heat of hydration on the 28th was 350 (J / g), the flow value was 342 (mm), and the compression strength on the 3rd was 24.0 (N / mm 2 ), the compression strength on the 7th was 35.8 (N / mm 2 ), and the compression strength on the 28th was 60.5 (N / mm 2 ).

7.比較例1
市販普通ポルトランドセメント(水硬率;2.1、ケイ酸率;2.5、鉄率;1.8、C3A含有量;8.8質量%、B2O3含有量;0.006質量%で、ニ水石膏量(SO3換算)はクリンカー粉砕物100質量部に対して0.8質量部であり、半水石膏量(SO3換算)はクリンカー粉砕物100質量部に対して0.9質量部)について、水和熱、フロー値と圧縮強度を実施例1と同様にして測定した。
その結果、7日の水和熱は340(J/g)、28日の水和熱は400(J/g)で、フロー値は262(mm)で、3日の圧縮強度は30.8(N/mm2)、7日の圧縮強度は46.0(N/mm2)、28日の圧縮強度は61.0(N/mm2)であった。
7). Comparative Example 1
Commercial Portland cement (hydraulic modulus: 2.1, silicic acid rate: 2.5, iron rate: 1.8, C 3 A content: 8.8% by mass, B 2 O 3 content: 0.006% by mass, dihydrate gypsum content (SO 3 conversion) is 0.8 parts by mass with respect to 100 parts by mass of the clinker pulverized product, and the amount of hemihydrate gypsum (SO 3 conversion is 0.9 part by mass with respect to 100 parts by mass of the clinker pulverized product). The compressive strength was measured in the same manner as in Example 1.
As a result, the heat of hydration on the 7th was 340 (J / g), the heat of hydration on the 28th was 400 (J / g), the flow value was 262 (mm), and the compression strength on the 3rd was 30.8 (N / mm 2 ), the compression strength on the 7th was 46.0 (N / mm 2 ), and the compression strength on the 28th was 61.0 (N / mm 2 ).

8.比較例2
市販高炉セメントB種(高炉スラグ粉末含有量は40質量%)について、水和熱、フロー値と圧縮強度を実施例1と同様にして測定した。
その結果、7日の水和熱は308(J/g)、28日の水和熱は360(J/g)で、フロー値は310(mm)で、3日の圧縮強度は20.5(N/mm2)、7日の圧縮強度は34.0(N/mm2)、28日の圧縮強度は58.0(N/mm2)であった。
8). Comparative Example 2
The heat of hydration, flow value and compressive strength were measured in the same manner as in Example 1 for commercially available Blast Furnace Cement B (content of blast furnace slag powder was 40% by mass).
As a result, the heat of hydration on the 7th was 308 (J / g), the heat of hydration on the 28th was 360 (J / g), the flow value was 310 (mm), and the compression strength on the 3rd was 20.5 (N / mm 2 ), the compression strength on the 7th was 34.0 (N / mm 2 ), and the compression strength on the 28th was 58.0 (N / mm 2 ).

9.比較例3
市販エコセメント(水硬率;2.05、ケイ酸率;1.40、鉄率;1.81、C3A含有量;13.5質量%、B2O3含有量;0.009質量%で、ニ水石膏量(SO3換算)はクリンカー粉砕物100質量部に対して1.5質量部であり、半水石膏量(SO3換算)はクリンカー粉砕物100質量部に対して1.5質量部、ブレーン比表面積4200cm2/g)について、水和熱、フロー値と圧縮強度を実施例1と同様にして測定した。
その結果、7日の水和熱は366(J/g)、28日の水和熱は426(J/g)で、フロー値は200(mm)で、3日の圧縮強度は31.1(N/mm2)、7日の圧縮強度は44.0(N/mm2)、28日の圧縮強度は55.5(N/mm2)であった。
9. Comparative Example 3
Commercially available eco-cement (hydraulic rate: 2.05, silicic acid rate: 1.40, iron rate: 1.81, C 3 A content: 13.5% by mass, B 2 O 3 content: 0.009% by mass, dihydrate gypsum content (SO 3 equivalent) of 1.5 parts by mass based on clinker ground product 100 parts by mass, the hemihydrate gypsum weight (SO 3 equivalent) 1.5 parts by weight with respect to clinker pulverized product 100 parts by mass, Blaine specific surface area of 4200cm 2 / g) The heat of hydration, flow value and compressive strength were measured in the same manner as in Example 1.
As a result, the heat of hydration on the 7th was 366 (J / g), the heat of hydration on the 28th was 426 (J / g), the flow value was 200 (mm), and the compression strength on the 3rd was 31.1 (N / mm 2 ), the compression strength on the 7th was 44.0 (N / mm 2 ), and the compression strength on the 28th was 55.5 (N / mm 2 ).

上記のように、本発明の水硬性組成物では、廃棄物等を原料としたものであっても、水水和熱は小さく、流動性は良好であった。また、本発明の水硬性組成物を使用したモルタルでは、強度発現性も良好であった。   As described above, in the hydraulic composition of the present invention, the heat of water hydration was small and the fluidity was good even when the waste composition was used as a raw material. Moreover, in the mortar using the hydraulic composition of the present invention, strength development was also good.

Claims (4)

水硬率(H.M.)が1.8〜2.3、ケイ酸率(S.M.)が1.0〜2.4、鉄率(I.M.)が1.3〜2.8で、3CaO・Al2O3含有量が9.0〜18.0質量%であり、かつ、B2O3含有量が0.01質量%以上である焼成物の粉砕物と、石膏を含むことを特徴とする水硬性組成物。 Hydraulic ratio (HM) is 1.8 to 2.3, silicic acid ratio (SM) is 1.0 to 2.4, iron ratio (IM) is 1.3 to 2.8, 3CaO · Al 2 O 3 content is 9.0 to 18.0 mass%, and, B 2 O 3 and pulverized content fired product is at least 0.01 mass%, hydraulic composition, which comprises a gypsum. 焼成物が、焼成物中の3CaO・Al2O3含有量X(質量%)とB2O3含有量Y(質量%)との関係が、0.0017X−0.005≦Y≦0.0667X−0.2を満足する焼成物である請求項1記載の水硬性組成物。 The relationship between the 3CaO · Al 2 O 3 content X (mass%) and the B 2 O 3 content Y (mass%) in the calcined product is 0.0017X−0.005 ≦ Y ≦ 0.0667X−0.2. The hydraulic composition according to claim 1, wherein the hydraulic composition is a satisfactory fired product. 高炉スラグ粉末、フライアッシュ、石灰石粉末、珪石粉末から選ばれる1種以上の無機粉末を含む請求項1又は2記載の水硬性組成物。   The hydraulic composition according to claim 1 or 2, comprising at least one inorganic powder selected from blast furnace slag powder, fly ash, limestone powder, and silica powder. 水硬性組成物中の全SO3に対する2水石膏及び半水石膏中のSO3の割合が40質量%以上であり、かつ、2水石膏及び半水石膏の合量に対する半水石膏の割合がSO3換算で30質量%以上である請求項1〜3のいずれかに記載の水硬性組成物。 Ratio of SO 3 2 dihydrate gypsum and hemihydrate gypsum to the total SO 3 hydraulic composition is 40 mass% or more and the proportion of hemihydrate gypsum for the total amount of 2 dihydrate gypsum and hemihydrate gypsum the hydraulic composition according to claim 1 converted to SO 3 is 30 mass% or more.
JP2010035542A 2009-11-30 2010-02-22 Hydraulic composition Active JP5583429B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010035542A JP5583429B2 (en) 2009-11-30 2010-02-22 Hydraulic composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009271206 2009-11-30
JP2009271206 2009-11-30
JP2010035542A JP5583429B2 (en) 2009-11-30 2010-02-22 Hydraulic composition

Publications (2)

Publication Number Publication Date
JP2011132111A true JP2011132111A (en) 2011-07-07
JP5583429B2 JP5583429B2 (en) 2014-09-03

Family

ID=44345280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010035542A Active JP5583429B2 (en) 2009-11-30 2010-02-22 Hydraulic composition

Country Status (1)

Country Link
JP (1) JP5583429B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013077378A1 (en) * 2011-11-24 2013-05-30 電気化学工業株式会社 Quick-hardening cement
JP2014097918A (en) * 2012-10-15 2014-05-29 Tokuyama Corp Hydraulic composition
WO2014097938A1 (en) * 2012-12-18 2014-06-26 太平洋セメント株式会社 Cement and blended cement
JP2014118337A (en) * 2012-12-18 2014-06-30 Taiheiyo Cement Corp Cement
JP2015010009A (en) * 2013-06-27 2015-01-19 太平洋セメント株式会社 Mixed cement
KR20190135907A (en) 2017-04-28 2019-12-09 스미토모 오사카 세멘토 가부시키가이샤 Cement composition, its manufacturing method, and manufacturing method of fly ash for cement composition

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004292307A (en) * 2003-03-11 2004-10-21 Taiheiyo Cement Corp Hydraulic composition
JP2004532311A (en) * 2001-04-03 2004-10-21 クラリアント・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング Transparent aqueous coatings containing glass powder
JP2005255456A (en) * 2004-03-11 2005-09-22 Taiheiyo Cement Corp Hydraulic composition
JP2008222503A (en) * 2007-03-13 2008-09-25 Taiheiyo Cement Corp Concrete composition, concrete hardened body and expansive admixture
JP2009084105A (en) * 2007-09-28 2009-04-23 Sumitomo Osaka Cement Co Ltd Cement clinker and method of producing the same
JP2011063460A (en) * 2009-09-15 2011-03-31 Taiheiyo Cement Corp Cement additive and cement composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004532311A (en) * 2001-04-03 2004-10-21 クラリアント・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング Transparent aqueous coatings containing glass powder
JP2004292307A (en) * 2003-03-11 2004-10-21 Taiheiyo Cement Corp Hydraulic composition
JP2005255456A (en) * 2004-03-11 2005-09-22 Taiheiyo Cement Corp Hydraulic composition
JP2008222503A (en) * 2007-03-13 2008-09-25 Taiheiyo Cement Corp Concrete composition, concrete hardened body and expansive admixture
JP2009084105A (en) * 2007-09-28 2009-04-23 Sumitomo Osaka Cement Co Ltd Cement clinker and method of producing the same
JP2011063460A (en) * 2009-09-15 2011-03-31 Taiheiyo Cement Corp Cement additive and cement composition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
中村ら: "ホウ素含有量がセメント物性に与える影響", 第62回セメント技術大会講演要旨2008, JPN6013046769, 20 May 2008 (2008-05-20), pages 200 - 201, ISSN: 0002635853 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013077378A1 (en) * 2011-11-24 2013-05-30 電気化学工業株式会社 Quick-hardening cement
JPWO2013077378A1 (en) * 2011-11-24 2015-04-27 電気化学工業株式会社 Rapid hardening cement
JP2014097918A (en) * 2012-10-15 2014-05-29 Tokuyama Corp Hydraulic composition
WO2014097938A1 (en) * 2012-12-18 2014-06-26 太平洋セメント株式会社 Cement and blended cement
JP2014118337A (en) * 2012-12-18 2014-06-30 Taiheiyo Cement Corp Cement
JP2015010009A (en) * 2013-06-27 2015-01-19 太平洋セメント株式会社 Mixed cement
KR20190135907A (en) 2017-04-28 2019-12-09 스미토모 오사카 세멘토 가부시키가이샤 Cement composition, its manufacturing method, and manufacturing method of fly ash for cement composition

Also Published As

Publication number Publication date
JP5583429B2 (en) 2014-09-03

Similar Documents

Publication Publication Date Title
KR101176184B1 (en) hydraulic composition
JP6947501B2 (en) Cement composition
JP7218083B2 (en) Method for producing cement composition
JP5535111B2 (en) Cement composition
JP5583429B2 (en) Hydraulic composition
JP4176660B2 (en) Hydraulic composition
JP5441768B2 (en) Hydraulic composition
JP5425697B2 (en) Hydraulic composition
JP2011219341A (en) Hydraulic composition
JP2014051433A (en) Hydraulic composition
JP5474649B2 (en) Hydraulic composition
JP4842211B2 (en) Sintered product for cement additive, cement additive and cement composition
JP6316576B2 (en) Cement composition
JP4166183B2 (en) concrete
JP4176668B2 (en) concrete
JP4166180B2 (en) concrete
JP4154359B2 (en) concrete
JP4116987B2 (en) Hydraulic composition
JP4944750B2 (en) Cement additive and cement composition
JP5474604B2 (en) Hydraulic composition
JP2011225393A (en) Hydraulic composition
JP5506367B2 (en) Hydraulic composition
JP4190387B2 (en) Cement admixture and cement composition
JP2009203121A (en) Cement composition
JP2020019668A (en) Fired product, cement additive, and cement composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140715

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140716

R150 Certificate of patent or registration of utility model

Ref document number: 5583429

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250