WO2014097938A1 - Cement and blended cement - Google Patents

Cement and blended cement Download PDF

Info

Publication number
WO2014097938A1
WO2014097938A1 PCT/JP2013/083158 JP2013083158W WO2014097938A1 WO 2014097938 A1 WO2014097938 A1 WO 2014097938A1 JP 2013083158 W JP2013083158 W JP 2013083158W WO 2014097938 A1 WO2014097938 A1 WO 2014097938A1
Authority
WO
WIPO (PCT)
Prior art keywords
cement
mass
mixed
gypsum
waste
Prior art date
Application number
PCT/JP2013/083158
Other languages
French (fr)
Japanese (ja)
Inventor
修 久保田
大亮 黒川
宙 平尾
秀幸 菅谷
Original Assignee
太平洋セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012275980A external-priority patent/JP6045328B2/en
Priority claimed from JP2013135434A external-priority patent/JP6021753B2/en
Application filed by 太平洋セメント株式会社 filed Critical 太平洋セメント株式会社
Publication of WO2014097938A1 publication Critical patent/WO2014097938A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/24Cements from oil shales, residues or waste other than slag
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • This invention relates to the cement which can increase the usage-amount of the waste used as a raw material of a baked material (clinker), and the mixed cement containing this cement.
  • Patent Document 1 discloses that in the production of a cement clinker using 150 to 350 kg of coal ash per ton of clinker as a raw material, the hydraulic modulus (HM) is 1.8 to 2.3, silicic acid.
  • a cement raw material containing coal ash was blended so that the rate (SM) was 1.3 to 2.3 and the iron rate (IM) was 1.8 to 2.8.
  • Gypsum is mixed with a cement clinker so that the total SO 3 amount is 2.0 to 10.0% and pulverized or separated and pulverized from each other and mixed to obtain a Blaine specific surface area of 3,000 to 4,500 cm 2.
  • a method for producing a cement composition of / g is described.
  • Patent Document 2 discloses a base material for early-strength cement-based solidified material and early-strength cement, and the proportion of mineral composition in the Borg formula is 3CaO ⁇ SiO 2 (also referred to as “Alite” (hereinafter “C 3 S”).
  • ⁇ Mixed cement uses a large amount of blast furnace slag fine powder, fly ash, etc., so the amount of clinker added can be greatly reduced. Therefore, the “Kyoto Protocol Target Achievement Plan” states that the proportion of mixed cement production in Japan's cement production in 2010 will be 24.8% from the viewpoint of reducing carbon dioxide emissions in the cement industry. Has set goals. However, since mixed cement has problems such as poor initial strength, its production has been flat for about 21% of the total cement production in recent years.
  • Patent Document 3 discloses that the mineral composition calculated by the Borg formula has C 3 S> 70% and C 2 S ⁇ 5%.
  • S. D. Is obtained by adding gypsum to 1.5 to 4.0% by weight in terms of SO 3 to a highly active cement clinker having a free lime content of more than 1 and 0.5 to 7.5% by weight.
  • a neutralization-suppressing type early-strength cement composition characterized by comprising 3% to 40% by weight of an inorganic admixture composed of at least one of blast furnace slag, anhydrous gypsum, fine limestone powder, and pozzolanic material is described. Has been.
  • blast furnace slag fine powder, coal ash (for example, fly ash), etc. used for the cement mixed material constituting the mixed cement those that satisfy the JIS standard are used from the viewpoint of ensuring the quality of the mixed cement. Yes.
  • Low quality blast furnace slag fine powder is used as a cement clinker raw material even if it is outside the JIS standard or within the JIS standard, but if these can be used as a cement mixture, it will be fired (cement clinker (Heating for obtaining) is unnecessary, which is preferable from the viewpoint of environmental load.
  • the present invention can increase the amount of waste used as a raw material of the baked product (clinker), and has physical properties equivalent to those of early-strength Portland cement (specifically, setting properties and strength development). And fluidity) and a mixed cement that is excellent in initial strength development and that can use a low-quality cement mixed material.
  • the inventors of the present invention have found that the calcination product of the calcined product having a hydraulic rate, silicic acid rate, iron rate, and C 3 S content within a specific numerical range
  • the present inventors have found that the above object can be achieved by using a cement containing a specific gypsum at a specific blending ratio, thereby completing the present invention. That is, the present invention provides the following [1] to [8].
  • HM Hydraulic modulus
  • SM Silicic acid ratio
  • IM Iron ratio Is a pulverized product of a calcined product in which the ratio of 3CaO.SiO 2 in 100% by mass of the calcined product is 70.0% by mass or less as calculated by the Borg formula, and gypsum In which the proportion of gypsum in 100% by mass of the cement is 1.2% by mass or more in terms of SO 3 , and half of the total amount of dihydrate gypsum and hemihydrate gypsum in the cement Cement characterized in that the ratio of hydropaste is 30% by mass or more in terms of SO 3 .
  • [2] The cement according to [1], wherein the fired product is fired using at least one of waste and generated soil as part of a raw material.
  • [3] The method for producing a cement according to [1] or [2], wherein at least one of waste of 300 kg or less and generated soil is used as a part of raw material per 1 ton of the fired product.
  • a method for producing cement which is characterized.
  • [4] A mixed cement comprising the cement according to [1] or [2] and (B) a cement mixed material including at least one of blast furnace slag fine powder and coal ash.
  • [5] The mixed cement according to [4], wherein the proportion of the cement mixture in the mixed cement is 5 to 80% by mass.
  • the cement of the present invention has physical properties equivalent to those of early-strength Portland cement (specifically, setting properties, strength development, and fluidity). Moreover, since the cement of this invention can increase the usage-amount of the waste used as a raw material of a baked material (clinker) and generated soil, it can promote the effective utilization of a waste more. Furthermore, the cement of the present invention and the mixed cement containing blast furnace slag fine powder and coal ash as a cement mixture are excellent in initial strength development. Further, the mixed cement is excellent in strength development even when low quality blast furnace slag fine powder or coal ash is used as a cement mixed material.
  • the cement of the present invention has a hydraulic modulus (HM) of 2.10 to 2.30, a silicic acid ratio (SM) of 1.80 to 2.48, and an iron ratio (IM). Is 1.3 to 2.6, and the amount of C 3 S in 100% by mass of the calcined product is 70.0% by mass or less as calculated by the Borg formula, and includes a pulverized product of gypsum
  • the ratio of gypsum in 100% by mass of cement is 1.2% by mass or more in terms of SO 3
  • hemihydrate gypsum with respect to the total amount of dihydrate gypsum and hemihydrate gypsum in the cement Is a cement having a proportion of 30% by mass or more in terms of SO 3 .
  • each coefficient of the said baked product (clinker) can be adjusted by mixing the raw material mentioned later so that it may become in the said numerical range.
  • the hydraulic modulus (HM) of the fired product used in the cement of the present invention is 2.10 to 2.30, preferably 2.15 to 2.25, more preferably 2.20 to 2.24. is there.
  • the hydraulic modulus exceeds 2.30, the content of C 3 S in the fired product increases, and the short-term strength (within 3 days of age) of the cement becomes excessive.
  • strength expression property of cement worsens.
  • the hydration heat value of cement becomes excessive.
  • the easy baking property at the time of manufacturing a baked product worsens, and free lime (CaO) tends to remain in the obtained baked product.
  • the hydraulic modulus is less than 2.10, the content of C 3 S in the fired product is reduced, and the short-term strength development of the cement is deteriorated.
  • the silicic acid ratio (SM) of the fired product is 1.80 to 2.48, preferably 2.00 to 2.47, more preferably 2.20 to 2.46, and particularly preferably 2.30 to 2.45.
  • SM silicic acid ratio
  • the silicic acid ratio exceeds 2.48, it is difficult to perform calcination when producing a baked product, and free lime (CaO) tends to remain in the obtained baked product.
  • the amount of waste used cannot be increased.
  • the silicic acid ratio is less than 1.80, the content of C 3 A and C 4 AF in the fired product increases, and the strength development of the cement over a long period of time (for example, age 28 days) deteriorates.
  • the iron ratio (IM) of the fired product is 1.3 to 2.6, preferably 1.6 to 2.5, and more preferably 1.8 to 2.4.
  • the iron ratio exceeds 2.6, the content of C 3 A in the fired product increases, and the fluidity and workability of mortar and the like deteriorate.
  • the ratio of gypsum required in order to ensure the quality of cement increases, manufacturing cost becomes high.
  • the hydration heat value of cement becomes excessive.
  • the iron ratio is less than 1.3, the content of C 3 AF in the fired product is increased, and the pulverizability of the fired product is deteriorated, resulting in an increase in production cost.
  • the content of C 3 S in the fired product is 70.0% by weight or less, preferably 50.0 to 70.0% by weight, more preferably as a ratio in 100% by weight of the fired product. It is 60.0-70.0% by mass. When the proportion of C 3 S exceeds 70.0% by mass, the setting time of cement is shortened.
  • C 3 S, C 2 S , C 3 A, each content of C 4 AF in calcined product, as a percentage of the calcined product in 100% by mass (mass%), raw or baked product Based on the chemical composition of the above, it is calculated using the following Borg formula.
  • C 3 S (%) (4.07 ⁇ CaO (%)) ⁇ (7.60 ⁇ SiO 2 (%)) ⁇ (6.72 ⁇ Al 2 O 3 (%)) ⁇ (1.43 ⁇ Fe 2 O 3 (%)
  • C 2 S (%) (2.87 ⁇ SiO 2 (%)) ⁇ (0.754 ⁇ C 3 S (%))
  • C 3 A (%) (2.65 ⁇ Al 2 O 3 (%)) ⁇ (1.69 ⁇ Fe 2 O 3 (%))
  • C 4 AF (%) 3.04 ⁇ Fe 2 O 3 (%)
  • the general raw material used for manufacture of a Portland cement clinker can be used.
  • CaO raw materials such as limestone, quicklime and slaked lime
  • SiO 2 raw materials such as silica and clay
  • Al 2 O 3 raw materials such as clay
  • Fe 2 O 3 raw materials such as iron cake and iron cake
  • waste and generated soil can be used as a part of the raw material.
  • waste refers to industrial waste or general waste.
  • Industrial waste refers to waste generated from business activities.
  • Examples of industrial waste include raw consludge, various sludges (eg, sewage sludge, purified water sludge, steelmaking sludge, etc.), building wastes, concrete wastes, various incineration ash (eg, coal ash), foundry sand, rock wool, waste Examples thereof include glass and blast furnace secondary ash.
  • General waste refers to waste other than industrial waste. Examples of general waste include sewage sludge dry powder, municipal waste incineration ash, and shells. Note that “waste” does not include “deposited soil” to be described later.
  • development soil means earth and sand generated secondary to construction work (for example, boring waste soil generated by excavation of the ground) and sludge (construction sludge; for example, cement generated by ground improvement work) A mixture of milk and excavated soil.
  • sludge construction sludge; for example, cement generated by ground improvement work
  • coal ash is preferably used from the viewpoint of ease of use.
  • the amount of waste or generated soil used (the total amount when waste and generated soil are used in combination) is a fired product from the viewpoint of promoting effective use of waste and ensuring the quality of cement. It is preferably 300 kg or less, more preferably 170 to 300 kg, further preferably 180 to 280 kg, further preferably 183 to 280 kg, further preferably 185 to 280 kg, and particularly preferably 190 to 260 kg per ton.
  • the above-described raw materials are mixed so as to have a desired hydraulic modulus (HM), silicic acid rate (SM), and iron rate (IM).
  • the resulting mixture is preferably fired at 1,200 to 1,600 ° C., more preferably 1,350 to 1,500 ° C.
  • the method of mixing each raw material is not particularly limited, and may be performed by a common apparatus such as an air blending silo.
  • the apparatus used for baking is not specifically limited, For example, conventional apparatuses, such as a rotary kiln, can be used.
  • fuel alternative waste specifically wood waste, waste oil, waste tire, waste plastic, etc. can be used. By using fuel alternative waste, the use of waste can be further promoted.
  • the cement of the present invention includes the pulverized product of the fired product and gypsum.
  • the proportion of gypsum in 100% by mass of cement is 1.2% by mass or more, preferably 1.3 to 5.0% by mass, more preferably 1.4 to 4.0% by mass in terms of SO 3 .
  • the amount of gypsum is less than 1.2% by mass, the strength development property of cement and the fluidity of mortar and the like deteriorate.
  • the gypsum include dihydrate gypsum, ⁇ -type or ⁇ -type hemihydrate gypsum, and anhydrous gypsum. These can be used alone or in combination of two or more.
  • the amount of SO 3 in the cement can be determined by chemical analysis (“JIS R 5202 (chemical analysis method of cement)”) or fluorescent X-ray analysis (“JIS R 5204 (fluorescence X-ray analysis method of cement)”. ).
  • JIS R 5202 chemical analysis method of cement
  • JIS R 5204 fluorescent X-ray analysis method of cement
  • the quantification of dihydrate gypsum and hemihydrate gypsum can be carried out, for example, by the method described in JP-A-6-242035.
  • the ratio of hemihydrate gypsum to the total amount (100% by mass) of dihydrate gypsum and hemihydrate gypsum in cement is 30% by mass or more, preferably 50% by mass or more, more preferably 70% by mass or more in terms of SO 3. is there. When the ratio is 30% by mass or more, fluidity such as mortar can be improved.
  • the kind of gypsum depending on the origin is not particularly limited, and for example, natural gypsum, flue gas desulfurization gypsum, phosphate gypsum, titanium gypsum, hydrofluoric gypsum, refined gypsum, and the like can be used. These can be used alone or in combination of two or more.
  • the method for producing the cement of the present invention for example, (i) a method of simultaneously pulverizing a baked product (clinker) and gypsum, (ii) a method of pulverizing a baked product (clinker) and mixing the pulverized product and gypsum, etc. Is mentioned.
  • the fired product and gypsum are pulverized until the Blaine specific surface area is preferably 3,000 to 6,000 cm 2 / g, more preferably 3,500 to 5,500 cm 2 / g. .
  • the fired product is pulverized until the Blaine specific surface area is preferably 3,000 to 5,500 cm 2 / g, more preferably 3,500 to 5,000 cm 2 / g.
  • the specific surface area of glaine of gypsum used in the method (ii) is preferably 3,500 to 7,000 cm 2 / g, more preferably 4,000 to 6,500 cm 2 / g.
  • the Blaine specific surface area can be measured by “JIS R 5201 (Cement physical test method)”.
  • the cement of the present invention is based on “JIS R 5210 (Portland cement)”, and other materials in powder form (specifically, blast furnace slag powder, silica fume, fly ash, limestone powder, etc.) are 100% by mass of cement. It can contain in the ratio of 5 mass% or less as a ratio in.
  • the mixed cement of the present invention includes the above-mentioned (A) cement and (B) a cement mixed material containing at least one of blast furnace slag fine powder and coal ash.
  • the proportion of the cement mixed material in 100% by mass of the mixed cement is preferably 5 to 80% by mass, more preferably 30 to 70% by mass, and particularly preferably 40 to 60% by mass. If this ratio is 5 mass% or more, the usage-amount of baking products (clinker) can be reduced more. If this ratio is 80 mass% or less, the strength development property of a cement will improve more.
  • component cement containing the pulverized material and gypsum of a baked product
  • component and component cement mixed material;
  • the mixed cement containing limestone fine powder or the like is a powdery mixture.
  • the 28-day activity index of the cement mixture is preferably 50% or more, more preferably 55% or more, and particularly preferably 60% or more. If the 28-day activity index is 50% or more, the strength development of the mixed cement is further improved.
  • the 28-day activity index is based on the compressive strength of a mortar produced using ordinary Portland cement at the age of 28 days, and produced using a mixed material and ordinary Portland cement with respect to the compressive strength. The ratio of the compressive strength of the test mortar at the age of 28 days is expressed as a percentage.
  • blast furnace slag fine powder used as a cement mixture molten slag produced as a by-product in the production of pig iron in the blast furnace is quenched with water and granulated slag obtained by crushing, or slowly cooled and crushed. The obtained slow cooling slag is mentioned.
  • the 28-day activity index of the blast furnace slag fine powder is preferably 50% or more, more preferably 55% or more, and particularly preferably 60% or more from the viewpoint of promoting the utilization of low-quality blast furnace slag fine powder. If the 28-day activity index is 50% or more, the strength development of the mixed cement is further improved.
  • the 28-day activity index of the blast furnace slag fine powder is preferably 75% or more, more preferably 80% or more, and particularly preferably 90% or more.
  • the 28-day activity index of blast furnace slag fine powder should be determined according to “JIS A 6206 Annex (normative) (Activity index and flow value ratio test method using mortar of blast furnace slag fine powder)”. it can.
  • the 28-day activity index of “blast furnace slag fine powder 4000” defined in “JIS A 6206” is 75% or more.
  • the mixed cement of the present invention containing fine blast furnace slag powder is excellent in strength development (particularly, initial strength development).
  • the above mixed cement has a standard value of “JIS R 5211 (blast furnace cement)” for compressive strength. Satisfied.
  • the vitrification rate of the blast furnace slag fine powder is not particularly limited, but is preferably 2% or more, more preferably 3% or more. When the vitrification rate is 2% or more, the strength development of the mixed cement is further improved.
  • the said vitrification rate can be calculated
  • the extracted particles are immersed in a bromonaphthalene solution, the number of glass particles is counted through a polarizing microscope, and the vitrification ratio is determined as the ratio of the number of glass particles to the total number of particles.
  • the specific surface area of the blast furnace slag fine powder is preferably 3,000 to 10,000 cm 2 / g, more preferably 4,000 to 8,000 cm 2 / g. If the Blaine specific surface area is 3,000 cm 2 / g or more, the initial strength development of the mixed cement is further improved. Moreover, if a Blaine specific surface area is 10,000 cm ⁇ 2 > / g or less, acquisition will be easy and fluidity
  • the blast furnace slag fine powder can be obtained by pulverizing blast furnace slag with a pulverizer such as a ball mill or a jet mill.
  • the basicity of the blast furnace slag fine powder is preferably 1.7 or more, more preferably 1.8 or more, and particularly preferably 1.9 or more. When the basicity is 1.7 or more, the strength expression of the mixed cement is further improved.
  • the basicity is calculated using the following formula (1).
  • Basicity (CaO + MgO + Al 2 O 3 ) / SiO 2 (1) (The chemical formula in the formula represents the content (mass%) in the blast furnace slag fine powder.)
  • the blast furnace slag fine powder may contain gypsum (gypsum-containing blast furnace slag fine powder).
  • gypsum gypsum-containing blast furnace slag fine powder
  • examples of the gypsum contained in the blast furnace slag fine powder include anhydrous gypsum, hemihydrate gypsum, dihydrate gypsum, etc., and at least one of these may be contained.
  • the content of gypsum in the blast furnace slag fine powder is preferably 2 to 4% by mass, more preferably 2 to 3% by mass in terms of SO 3 .
  • the proportion of fine blast furnace slag powder in 100% by mass of the mixed cement is preferably 30 to 80% by mass, more preferably 35 to 75% by mass. Even within the above range, the proportion of fine blast furnace slag powder in 100% by mass of the mixed cement is preferably 50% by mass or less, more preferably 45% by mass or less from the viewpoint of strength development. Further, from the viewpoint of promoting utilization of the blast furnace slag fine powder, the ratio of the blast furnace slag fine powder in 100% by mass of the mixed cement is preferably 50% by mass or more, and more preferably 55% by mass or more.
  • Examples of the coal ash used as the cement mixed material include fly ash.
  • Fly ash refers to fine powder collected by an electrostatic precipitator among coal ash generated when coal is fired.
  • the 28-day activity index of coal ash is preferably 50% or more, more preferably 60% or more, and particularly preferably 70% or more, from the viewpoint of promoting utilization of low-quality coal ash. If it is 50% or more, the strength expression of the mixed cement is further improved. Even within the above range, from the viewpoint of strength development, the 28-day activity index of coal ash is preferably 75% or more, more preferably 80% or more.
  • the 28-day activity index of coal ash can be determined according to “JIS A 6201 Appendix 2 (normative) (flow value ratio and activity index test method using fly ash mortar)”.
  • the 28-day activity index of “fly ash type II” defined in “JIS A 6201” is 80% or more.
  • the mixed cement of the present invention containing coal ash is excellent in strength development (particularly, initial strength development). Moreover, even if low quality coal ash having a low 28-day activity index is used as the coal ash, the mixed cement satisfies the standard value of “JIS R 5213 (fly ash cement)” for compressive strength.
  • the 45-micrometer sieve residue amount of coal ash becomes like this. Preferably it is 17 mass% or less, More preferably, it is 16.5 mass% or less, Most preferably, it is 16.0 mass% or less.
  • the 45 ⁇ m sieve residue is 17% by mass or less, the long-term strength development of the mixed cement is further improved.
  • the 45-micrometer sieve residue amount can be measured according to the screen sieve method of "JIS A6201 (fly ash for concrete)".
  • the content of free lime in the coal ash is preferably 1.5% by mass or less, more preferably 0.1 to 1.0% by mass. When the free lime content is 1.5% by mass or less, the strength development of the mixed cement is further improved.
  • the content of free lime can be measured according to “JIS R 5202 (Portland cement chemical analysis method)”.
  • the amount of water-soluble boron in the coal ash is preferably 120 mg / kg or less, more preferably 110 mg / kg or less, still more preferably 100 mg / kg or less, and particularly preferably 90 mg / kg or less. When the amount of the water-soluble boron is 120 mg / kg or less, the initial strength development of the mixed cement is further improved.
  • the mass ratio of the amount of free lime to the amount of water-soluble boron in coal ash is preferably 8 or more, more preferably 9 or more, and particularly preferably 10 or more. When the mass ratio is 8 or more, the initial strength development of the mixed cement is improved.
  • the amount of water-soluble boron can be measured by the following procedure. (1) 25 g of coal ash is added to 75 cm 3 of distilled water and stirred for 10 minutes while adjusting the pH to 8.5 ⁇ 0.2. In addition, hydrochloric acid or sodium hydroxide aqueous solution is used for pH adjustment. (2) After stirring, solid-liquid separation is performed, and the boron concentration in the liquid is quantified by ICP to calculate the amount of water-soluble boron.
  • the vitrification rate of coal ash is preferably 60% by mass or more, more preferably 65% by mass or more, and particularly preferably 70% by mass or more.
  • the basicity of the glass phase of coal ash is preferably 0.4 or more, more preferably 0.5 or more, and particularly preferably 0.6 or more.
  • the vitrification rate of coal ash and the basicity of the glass phase can be calculated by the method described in JP 2011-132046.
  • the Blaine specific surface area of the coal ash is preferably 3,300 to 8,000 cm 2 / g, more preferably 3,500 to 5,000, from the viewpoint of fluidity of mortar using mixed cement and strength development of the mixed cement. 7,000 cm 2 / g.
  • the proportion of coal ash in 100% by mass of the mixed cement is preferably 5 to 60% by mass, more preferably 10 to 55% by mass, and particularly preferably 15 to 58% by mass. Even within the above range, from the viewpoint of strength development, the proportion of coal ash in 100% by mass of the mixed cement is preferably 45% by mass or less, more preferably 40% by mass or less. From the viewpoint of promoting the use of coal ash, the proportion of coal ash in 100% by mass of the mixed cement is preferably 40% by mass or more, and more preferably 45% by mass or more.
  • the mixed cement of the present invention can increase the blending amount of coal ash while maintaining the quality of the mixed cement.
  • the mixed cement of the present invention may further contain limestone fine powder as a cement mixed material.
  • the content of calcium carbonate in the limestone fine powder is preferably 90% by mass or more, more preferably 95% by mass or more, and the content of aluminum oxide is preferably 1.0% by mass or less. If the calcium carbonate content is 90% by mass or more and the aluminum oxide content is 1.0% by mass or less, the strength development of the mixed cement is further improved.
  • the Blaine specific surface area of the limestone fine powder is preferably 4,000 cm 2 / g or more, more preferably 5,000 to 12,000 cm 2 / g, still more preferably 6,000 to 11,000 cm 2 / g, particularly preferably. 8,000 to 11,000 cm 2 / g.
  • the proportion of fine limestone powder in 100% by mass of the mixed cement is preferably 20% by mass or less, more preferably 15% by mass or less, and further preferably 12% by mass or less.
  • the total proportion of the cement mixed material for example, blast furnace slag fine powder and The total proportion of coal ash is preferably 5 to 80% by mass, more preferably 30 to 80% by mass, and particularly preferably 40 to 60% by mass.
  • the method of mixing the cement and the cement mixed material is not particularly limited, and (i) a method of mixing the fired product (clinker), gypsum and the cement mixed material while pulverizing them simultaneously, (ii) Examples thereof include a method of mixing pulverized cement with a previously pulverized cement mixed material.
  • a paste, mortar or concrete is prepared by mixing the cement or mixed cement of the present invention, water, and other materials blended as required (for example, fine aggregate, coarse aggregate, water reducing agent, etc.). can do.
  • fine aggregate eg river sand, land sand, crushed sand, etc.
  • coarse aggregate eg river gravel, mountain gravel, etc.
  • lignin-based, naphthalenesulfonic acid-based, melamine-based, and polycarboxylic acid-based water reducing agents can be used as the water reducing agent.
  • admixtures such as an air entrainment agent and an antifoamer, in the range which does not have trouble if needed.
  • the fired product 11 is a fired product having a hydraulic modulus (HM), a silicic acid rate (SM), and an iron rate (IM) equivalent to those of a commercially available early strong Portland cement clinker.
  • the raw material substitute waste used for other fired products is the raw material substitute waste shown in Table 1 in order to obtain a fired product having the desired hydraulic modulus.
  • wastes other than coal ash and recycled iron raw materials recycled limestone, recycled clay, construction generated soil, and recycled silica
  • Table 1 shows a breakdown of raw material substitute waste (used amount: 165 kg / t (fired product)) that is generally used as a raw material of the fired product that is a material of early strong cement.
  • the usage amount of the raw material alternative waste represents an increased amount based on the usage amount of the raw material alternative waste used in Firing Example 11.
  • the evaluation of the setting property is based on the setting start time and the setting time of the cement of Comparative Example 4 (cement using the burned material 11 equivalent to the commercial product), and the setting start time is 100 minutes or more, and the setting is completed. Those with a time of 150 minutes or more were evaluated as “ ⁇ ”. The results are shown in Table 4.
  • Examples 8 to 13, Comparative Examples 14 to 17 the fired product 6 in Table 2 was used as a fired product (clinker). To 100 parts by mass of the fired product, drained dihydrate gypsum (manufactured by Sumitomo Metals Co., Ltd.) and hemihydrate gypsum obtained by heating the drained dihydrate gypsum at 140 ° C. are added at a ratio shown in Table 5. Then, cement was prepared by simultaneous grinding for 118 minutes in a batch type ball mill. The specific surface area of Blaine is more varied than Examples 1 to 8 and Comparative Examples 1 to 12 due to the effect of the amount of gypsum added, but the variation is similar to the normal variation of commercial products.
  • the amount of raw material substitute waste can be increased, and quality equivalent to that of commercially available early strong Portland cement can be secured.
  • Cement 1 was prepared by adding an amount such that the proportion of gypsum (dihydrate gypsum and hemihydrate gypsum) was 2.2% by mass in terms of SO 3 and simultaneously grinding using a batch-type ball mill.
  • Cements 2 and 3 were prepared in the same manner as cement 1 except that the gypsum ratio was changed from 2.2% by mass to 2.7% by mass in terms of SO 3 .
  • the ratio of hemihydrate gypsum to the total amount of dihydrate gypsum and hemihydrate gypsum was 50% by mass in terms of SO 3 in all cements.
  • blast furnace cement B type cement in which blast furnace slag fine powder in 100% by mass of cement exceeds 30% by mass and 60% by mass or less
  • blast furnace cement C type in 100% by mass of cement
  • fly ash cement A type cement in which 100% by mass of coal ash exceeds 5% by mass and less than 10% by mass
  • Table 11 shows JIS standard values of mortar compressive strength of fly ash cement type C (cement in which coal ash in cement of 100% by mass exceeds 20% by mass and is 30% by mass or less).
  • blast furnace slag fine powder 1 is a common blast furnace slag fine powder for cement mixture
  • blast furnace slag fine powder 2 is a pulverized product of slow-cooled slag.
  • the 28-day activity index of blast furnace slag fine powder in Table 7 was determined in accordance with “JIS A 6206 Annex (normative) (Activity index and flow value ratio test method by mortar of blast furnace slag fine powder)”.
  • coal ash 1 is a fly ash type II equivalent of “JIS A 6201 (fly ash for concrete)” which is a general coal ash for cement mixture
  • coal ash 2 is “JIS A 6201 (fly ash for concrete) "is a fly ash type IV equivalent product.
  • the 28-day activity index of coal ash in Table 8 was determined according to “JIS A 6201 Annex 2 (normative) (flow value ratio and activity index test method using fly ash mortar)”.
  • Example 14 and Comparative Example 18 are compared, the proportion of general blast furnace slag fine powder (blast furnace slag fine powder 1 shown in Table 7) is 40% by mass in 100% by mass of the mixed cement. It can be seen that the mixed cement (Example 14) has the same strength development as the ordinary cement (Comparative Example 18).
  • Example 15 and Comparative Example 21 are compared, a mixed cement (implementation) in which the proportion of low-quality blast furnace slag fine powder (blast furnace slag fine powder 2 shown in Table 7) is 40% by mass in 100% by mass of the mixed cement.
  • Example 15 has an initial strength development property (a mortar compressive strength of 3 days and 7 days of age) equivalent to the normal blast furnace cement of Comparative Example 21 (a mixture of ordinary cement and blast furnace slag 1).
  • an initial strength development property a mortar compressive strength of 3 days and 7 days of age
  • Comparative Example 21 a mixture of ordinary cement and blast furnace slag 1.
  • the mixed cement (Example 20) in which the ratio of the low-grade blast furnace slag fine powder is 70% by mass in 100% by mass of the mixed cement is “JIS R 5211 (blast furnace cement)”.
  • JIS R 5211 blast furnace cement
  • Example 21 When Example 21 and Comparative Example 18 are compared, the mixed cement (Example 21) in which the proportion of general coal ash (coal ash 1 shown in Table 8) is 30% by mass in 100% by mass of the mixed cement. It can be seen that it has an initial strength development property (a mortar compressive strength of 3 days and 7 days of age) equivalent to that of ordinary cement (Comparative Example 18). From Examples 22 to 23 and Reference Example 3, mixed cement (Examples 22 to 30) in which the proportion of low-quality coal ash (coal ash 2 shown in Table 8) is 30% by mass in 100% by mass of the mixed cement. It can be seen that No.
  • the fly ash cement 23 has a strength developability equal to or higher than the standard value (reference example 3) of the fly ash cement A type of “JIS R 5213 (fly ash cement)”. From Examples 24-27 and Reference Example 4, the mixed cement (Examples 24-27) in which the proportion of low-quality coal ash is 40 or 50% by mass in 100% by mass of the mixed cement is “JIS R 5213 ( It can be seen that the fly ash cement has a strength development property equal to or higher than the standard value of the fly ash cement C type (Reference Example 4).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

Provided are: a cement which enables the increase in the use amount of a waste material that can be used as a raw material for a burned material (clinker) and which has the same physical properties as those of high-early-strength portland cement; and a blended cement containing the cement. A cement which comprises a pulverized product of a burned material having a hydraulic modulus (H.M.) of 2.10 to 2.30, a silica modulus (S.M.) of 1.80 to 2.48, an iron modulus (I.M.) of 1.3 to 2.6, and a 3CaO·SiO2 content of 70.0 mass% or less in 100 mass% of the burned material as calculated in accordance with the Bogue formula and gypsum, wherein the content ratio of the gypsum in 100 mass% of the cement is 1.2 mass% or more in terms of SO3 content, and the amount of gypsum hemihydrate relative to the total amount of gypsum dihydrate and the gypsum hemihydrate in the cement is 30 mass% or more in terms of SO3 content; and a blended cement which comprises the cement and a cement admixture material, wherein the cement admixture material comprises a blast furnace slag fine powder and/or coal ash.

Description

セメント及び混合セメントCement and mixed cement
 本発明は、焼成物(クリンカ)の原料として用いられる廃棄物の使用量を増加することができるセメント、及び、該セメントを含む混合セメントに関する。 This invention relates to the cement which can increase the usage-amount of the waste used as a raw material of a baked material (clinker), and the mixed cement containing this cement.
 わが国では、経済成長や、都市部への人口の集中に伴い、産業廃棄物及び一般廃棄物等が急増している。従来、これらの廃棄物の大半は、焼却によって十分の一程度に減容化した後、埋め立て処分されているが、最近では、埋め立て処分場の残余容量が逼迫していることから、新しい廃棄物処理方法の確立が緊急課題になっている。この課題に対処するために、セメント産業では、産業廃棄物及び一般廃棄物等を、セメントの原料や、クリンカの焼成のためのエネルギーとして使用している。
 例えば、特許文献1には、クリンカ1ton当たり、150kg以上350kg以下の石炭灰を原料として使用するセメントクリンカの製造にあたり、水硬率(H.M.)が1.8~2.3、ケイ酸率(S.M.)が1.3~2.3、鉄率(I.M.)が1.8~2.8となるように、石炭灰を含むセメント原料を配合し、得られたセメントクリンカに、総SO3量が2.0~10.0%となるように石膏を混合して粉砕するか/又は互いに分離粉砕した後混合し、ブレーン比表面積3,000~4,500cm/gとしたセメント組成物の製造方法が記載されている。
In Japan, industrial waste and general waste are rapidly increasing with economic growth and population concentration in urban areas. Conventionally, most of these wastes have been landfilled after being reduced to a sufficient volume by incineration, but recently, the remaining capacity of landfill sites has become tight, so new waste Establishing treatment methods is an urgent issue. In order to cope with this problem, in the cement industry, industrial waste, general waste, and the like are used as raw materials for cement and energy for firing clinker.
For example, Patent Document 1 discloses that in the production of a cement clinker using 150 to 350 kg of coal ash per ton of clinker as a raw material, the hydraulic modulus (HM) is 1.8 to 2.3, silicic acid. A cement raw material containing coal ash was blended so that the rate (SM) was 1.3 to 2.3 and the iron rate (IM) was 1.8 to 2.8. Gypsum is mixed with a cement clinker so that the total SO 3 amount is 2.0 to 10.0% and pulverized or separated and pulverized from each other and mixed to obtain a Blaine specific surface area of 3,000 to 4,500 cm 2. A method for producing a cement composition of / g is described.
 しかし、ここ数年、廃棄物の使用量、特に原料代替廃棄物(例えば石炭灰)の使用量は頭打ちになってきている。そこで、廃棄物の使用量の更なる増量を進める方策の一つとして、廃棄物の使用対象を普通セメント以外のセメント品種に拡大することが挙げられる。ここで、原料代替廃棄物の多くはAl23に富む粘土代替廃棄物であるため、廃棄物の使用量が増加するとセメントクリンカの間隙相(アルミネート相:3CaO・Al23(以下、「C3A」ともいう。)、及びフェライト相:4CaO・Al23・Fe23(以下、「C4AF」ともいう。))が増え、結果としてセメントの水和熱が増大するという問題がある。しかし、早強ポルトランドセメントは、セメントの水和熱が大きな問題となる大型構造物の製造にはほとんど用いられないことから、廃棄物の使用量を増加することができる品種として好適である。
 例えば、特許文献2には、早強型セメント系固化材や早強型セメントの母体となり、ボーグ式での鉱物組成の割合が3CaO・SiO2(エーライト(以下、「C3S」ともいう。))>70%である高活性セメントクリンカであって、該高活性セメントクリンカにおける水硬率(H.M.)が2.2~2.3のときはケイ酸率(S.M.)が1.7~2.4かつ鉄率(I.M.)が1.0~2.1であり、水硬率(H.M.)が2.1~2.2未満のときはケイ酸率(S.M.)が1.5~2.0かつ鉄率(I.M.)が0.9~1.4である高活性セメントクリンカが記載されている。また、特許文献2には、該高活性セメントクリンカの主原料として、カルシウム分をCaO換算で20重量%以上含む産業廃棄物を利用することができることが記載されている。
However, in recent years, the amount of waste used, especially the amount of raw material alternative waste (for example, coal ash), has reached its peak. Therefore, as one of the measures for further increasing the amount of waste used, it is possible to expand the use of waste to cement varieties other than ordinary cement. Here, since most of the raw material substitute waste is clay substitute waste rich in Al 2 O 3, when the amount of waste increases, the cement clinker interstitial phase (aluminate phase: 3CaO · Al 2 O 3 , also referred to as "C 3 a"), and the ferrite phase:.. 4CaO · Al 2 O 3 · Fe 2 O 3 ( hereinafter also referred to as "C 4 AF")) increases, the cement hydration heat as a result of There is a problem of increasing. However, early strength Portland cement is hardly used for the production of large structures where the heat of hydration of cement is a major problem, and is therefore suitable as a variety that can increase the amount of waste used.
For example, Patent Document 2 discloses a base material for early-strength cement-based solidified material and early-strength cement, and the proportion of mineral composition in the Borg formula is 3CaO · SiO 2 (also referred to as “Alite” (hereinafter “C 3 S”). .))> 70% highly active cement clinker, and when the hydraulic modulus (HM) of the highly active cement clinker is 2.2 to 2.3, the silicic acid ratio (SM) ) Is 1.7 to 2.4, the iron ratio (IM) is 1.0 to 2.1, and the hydraulic modulus (HM) is less than 2.1 to 2.2 A highly active cement clinker having a silicic acid ratio (SM) of 1.5 to 2.0 and an iron ratio (IM) of 0.9 to 1.4 is described. Patent Document 2 describes that industrial waste containing 20% by weight or more of calcium in terms of CaO can be used as the main raw material of the highly active cement clinker.
 一方、セメント産業では、日本の温室効果ガス総排出量の約4%に相当する二酸化炭素を排出している。この約4%のうちの6割に相当する約2.4%の二酸化炭素は、セメントクリンカを製造する際に、石灰石の脱炭酸から必然的に発生するものである。このため、セメントクリンカの生産量を減らさない限り、二酸化炭素の排出量の削減は困難である。なお、セメントクリンカの生産量の減少は、石灰石の脱炭酸量の抑制のみならず、セメントクリンカ焼成における燃料起源の二酸化炭素の発生量を抑制することにもなる。 On the other hand, the cement industry emits carbon dioxide equivalent to about 4% of Japan's total greenhouse gas emissions. About 2.4% of carbon dioxide, corresponding to 60% of this about 4%, is inevitably generated from the decarboxylation of limestone when producing cement clinker. For this reason, unless the production volume of cement clinker is reduced, it is difficult to reduce carbon dioxide emissions. The reduction in the production amount of cement clinker not only suppresses the decarboxylation amount of limestone, but also suppresses the generation amount of carbon dioxide derived from fuel in cement clinker firing.
 混合セメントは、高炉スラグ微粉末やフライアッシュ等を多量に使用するため、クリンカの配合量を大幅に減らすことができる。このため、「京都議定書目標達成計画」では、セメント産業における二酸化炭素排出量の削減の観点から、2010年度における日本のセメント生産量に占める混合セメントの生産量の割合を24.8%にするという目標を掲げている。しかしながら、混合セメントは初期強度発現性が劣る等の問題を有するため、その生産量は、ここ数年、セメント生産量全体の21%程度で横ばい状態となっている。 ¡Mixed cement uses a large amount of blast furnace slag fine powder, fly ash, etc., so the amount of clinker added can be greatly reduced. Therefore, the “Kyoto Protocol Target Achievement Plan” states that the proportion of mixed cement production in Japan's cement production in 2010 will be 24.8% from the viewpoint of reducing carbon dioxide emissions in the cement industry. Has set goals. However, since mixed cement has problems such as poor initial strength, its production has been flat for about 21% of the total cement production in recent years.
 そこで、初期強度発現性を有する早強型のセメントを混合セメントの基材とすることで、上述した混合セメントの問題を解決する試みが行われている。
 例えば、特許文献3には、ボーグ式による計算値の鉱物組成がC3S>70%かつC2S<5%で、L.S.D.が1を超え、遊離石灰量が0.5~7.5重量%である高活性セメントクリンカに石膏をSO3換算で1.5~4.0重量%添加してなる高活性セメント60~97重量%と、高炉スラグ、無水石膏、石灰石微粉末、ポゾラン物質のうち一種以上からなる無機混和材3~40重量%とからなることを特徴とする中性化抑制型早強セメント組成物が記載されている。
Then, the trial which solves the problem of the mixed cement mentioned above is performed by making the early-strength-type cement which has initial strength expressibility into the base material of a mixed cement.
For example, Patent Document 3 discloses that the mineral composition calculated by the Borg formula has C 3 S> 70% and C 2 S <5%. S. D. Is obtained by adding gypsum to 1.5 to 4.0% by weight in terms of SO 3 to a highly active cement clinker having a free lime content of more than 1 and 0.5 to 7.5% by weight. A neutralization-suppressing type early-strength cement composition characterized by comprising 3% to 40% by weight of an inorganic admixture composed of at least one of blast furnace slag, anhydrous gypsum, fine limestone powder, and pozzolanic material is described. Has been.
 また、混合セメントを構成するセメント混合材に用いられる、高炉スラグ微粉末、石炭灰(例えば、フライアッシュ)等として、混合セメントの品質を確保する観点から、JIS規格を満足するものが使用されている。JIS規格を外れるか、JIS規格内であっても低品質の高炉スラグ微粉末等は、セメントクリンカ原料等として利用されているが、これらをセメント混合材として利用することができれば、焼成(セメントクリンカを得るための加熱)が不要となり、環境負荷の観点から好ましい。 In addition, blast furnace slag fine powder, coal ash (for example, fly ash), etc. used for the cement mixed material constituting the mixed cement, those that satisfy the JIS standard are used from the viewpoint of ensuring the quality of the mixed cement. Yes. Low quality blast furnace slag fine powder is used as a cement clinker raw material even if it is outside the JIS standard or within the JIS standard, but if these can be used as a cement mixture, it will be fired (cement clinker (Heating for obtaining) is unnecessary, which is preferable from the viewpoint of environmental load.
特許第4157662号Japanese Patent No. 4157762 特開2012-197198号公報JP 2012-197198 A 特開2013-47153号公報JP 2013-47153 A
 早強ポルトランドセメントは、初期強度発現性に優れることが求められていることから、C3Sの含有率、及び水硬率(H.M.)を一定の数値以上にする必要がある。このようにC3Sの含有率、及び水硬率(H.M.)を一定の数値以上にしようとすると、クリンカの化学組成において、CaOの含有率に制限(下限)が生じることになるため、CaOの含有率を減少させる効果を有する廃棄物(特に粘土代替廃棄物)の使用量には限界があった。また、早強ポルトランドセメントは、高い水硬率及び大きい比表面積を有するため、粉砕時間が長くなるなど、製造に要するエネルギーが多く、普通セメントよりも製造コストが高いという問題があった。
 一方、混合セメントにおいて、従来は、混合セメントの品質の観点からセメント混合材として使用されていなかった低品質の高炉スラグ微粉末や石炭灰(例えば、フライアッシュ)を、混合セメントを構成するセメント混合材として使用することができれば、廃棄物利用の観点から好ましい。
 そこで、本発明は、焼成物(クリンカ)の原料として用いられる廃棄物の使用量を増加させることができるとともに、早強ポルトランドセメントと同等の物理特性(具体的には、凝結性状、強度発現性、及び流動性)を有するセメント、及び、初期強度発現性に優れ、かつ、低品質のセメント混合材を用いることができる混合セメントを提供することを目的とする。
Since early-strength Portland cement is required to have excellent initial strength, it is necessary to make the C 3 S content and hydraulic modulus (HM) higher than a certain value. In this way, if the C 3 S content and hydraulic modulus (HM) are to be set to a certain value or more, there is a limit (lower limit) on the CaO content in the clinker chemical composition. Therefore, there is a limit to the amount of waste (in particular, clay substitute waste) that has the effect of reducing the CaO content. Moreover, since the early strong Portland cement has a high hydraulic modulus and a large specific surface area, there is a problem that a lot of energy is required for production, such as a longer grinding time, and the production cost is higher than that of ordinary cement.
On the other hand, in the mixed cement, low-quality blast furnace slag fine powder and coal ash (for example, fly ash), which has not been used as a cement mixing material from the viewpoint of the quality of the mixed cement, are mixed with the cement that constitutes the mixed cement. If it can be used as a material, it is preferable from the viewpoint of waste utilization.
Therefore, the present invention can increase the amount of waste used as a raw material of the baked product (clinker), and has physical properties equivalent to those of early-strength Portland cement (specifically, setting properties and strength development). And fluidity) and a mixed cement that is excellent in initial strength development and that can use a low-quality cement mixed material.
 本発明者らは、上記課題を解決するために鋭意検討した結果、水硬率、ケイ酸率、鉄率、及びC3Sの含有率が特定の数値範囲内である焼成物の粉砕物と、特定の石膏を特定の配合割合で含むセメントによれば、前記の目的を達成できることを見出し、本発明を完成した。
 すなわち、本発明は、以下の[1]~[8]を提供するものである。
[1] (A)水硬率(H.M.)が2.10~2.30、ケイ酸率(S.M.)が1.80~2.48、鉄率(I.M.)が1.3~2.6であり、かつ、焼成物100質量%中の3CaO・SiOの割合が、ボーグ式による計算値で70.0質量%以下である焼成物の粉砕物と、石膏を含むセメントであって、該セメント100質量%中の石膏の割合が、SO換算で1.2質量%以上であり、かつ、該セメント中の二水石膏及び半水石膏の合計量に対する半水石膏の割合が、SO換算で30質量%以上であることを特徴とするセメント。
[2] 上記焼成物が、廃棄物及び発生土の少なくともいずれか一方を原料の一部として使用して焼成されたものである前記[1]に記載のセメント。
[3] 前記[1]又は[2]に記載のセメントの製造方法であって、焼成物1ton当たり、300kg以下の廃棄物及び発生土の少なくともいずれか一方を原料の一部として使用することを特徴とするセメントの製造方法。
[4] 前記[1]又は[2]に記載のセメントと、(B)高炉スラグ微粉末及び石炭灰の少なくともいずれか一方を含むセメント混合材、を含むことを特徴とする混合セメント。
[5] 上記混合セメント中の上記セメント混合材の割合が5~80質量%である、前記[4]に記載の混合セメント。
[6] 上記セメント混合材の28日活性度指数が50%以上である、前記[4]又は[5]に記載の混合セメント。
[7] さらに、上記セメント混合材として石灰石微粉末を含む、前記[4]~[6]のいずれかに記載の混合セメント。
[8] 前記[4]~[7]のいずれかに記載の混合セメントの製造方法であって、焼成物1ton当たり、300kg以下の廃棄物及び発生土の少なくともいずれか一方を原料の一部として使用することを特徴とする混合セメントの製造方法。
As a result of intensive studies to solve the above-mentioned problems, the inventors of the present invention have found that the calcination product of the calcined product having a hydraulic rate, silicic acid rate, iron rate, and C 3 S content within a specific numerical range The present inventors have found that the above object can be achieved by using a cement containing a specific gypsum at a specific blending ratio, thereby completing the present invention.
That is, the present invention provides the following [1] to [8].
[1] (A) Hydraulic modulus (HM) is 2.10-2.30, Silicic acid ratio (SM) is 1.80-2.48, Iron ratio (IM) Is a pulverized product of a calcined product in which the ratio of 3CaO.SiO 2 in 100% by mass of the calcined product is 70.0% by mass or less as calculated by the Borg formula, and gypsum In which the proportion of gypsum in 100% by mass of the cement is 1.2% by mass or more in terms of SO 3 , and half of the total amount of dihydrate gypsum and hemihydrate gypsum in the cement Cement characterized in that the ratio of hydropaste is 30% by mass or more in terms of SO 3 .
[2] The cement according to [1], wherein the fired product is fired using at least one of waste and generated soil as part of a raw material.
[3] The method for producing a cement according to [1] or [2], wherein at least one of waste of 300 kg or less and generated soil is used as a part of raw material per 1 ton of the fired product. A method for producing cement, which is characterized.
[4] A mixed cement comprising the cement according to [1] or [2] and (B) a cement mixed material including at least one of blast furnace slag fine powder and coal ash.
[5] The mixed cement according to [4], wherein the proportion of the cement mixture in the mixed cement is 5 to 80% by mass.
[6] The mixed cement according to [4] or [5], wherein the 28-day activity index of the cement mixed material is 50% or more.
[7] The mixed cement according to any one of [4] to [6], further including fine limestone powder as the cement mixed material.
[8] The method for producing a mixed cement according to any one of [4] to [7], wherein at least one of waste of 300 kg or less and generated soil per 1 ton of the fired product is used as a part of the raw material. A method for producing a mixed cement, characterized by being used.
 本発明のセメントは、早強ポルトランドセメントと同等の物理特性(具体的には、凝結性状、強度発現性、及び流動性)を有する。
 また、本発明のセメントは、焼成物(クリンカ)の原料の一部として用いられる廃棄物や発生土の使用量を増加させることができるので、廃棄物の有効利用をより促進させることができる。
 さらに、本発明のセメントと、セメント混合材として高炉スラグ微粉末や石炭灰を含む混合セメントは、初期強度発現性に優れている。また、該混合セメントは、セメント混合材として低品質の高炉スラグ微粉末や石炭灰を使用しても、強度発現性に優れている。
The cement of the present invention has physical properties equivalent to those of early-strength Portland cement (specifically, setting properties, strength development, and fluidity).
Moreover, since the cement of this invention can increase the usage-amount of the waste used as a raw material of a baked material (clinker) and generated soil, it can promote the effective utilization of a waste more.
Furthermore, the cement of the present invention and the mixed cement containing blast furnace slag fine powder and coal ash as a cement mixture are excellent in initial strength development. Further, the mixed cement is excellent in strength development even when low quality blast furnace slag fine powder or coal ash is used as a cement mixed material.
 本発明のセメントは、水硬率(H.M.)が2.10~2.30、ケイ酸率(S.M.)が1.80~2.48、鉄率(I.M.)が1.3~2.6であり、かつ、焼成物100質量%中のC3S量が、ボーグ式による計算値で70.0質量%以下である焼成物の粉砕物と、石膏を含むセメントであって、該セメント100質量%中の石膏の割合が、SO3換算で1.2質量%以上であり、かつ、該セメント中の二水石膏及び半水石膏の合計量に対する半水石膏の割合がSO3換算で30質量%以上のセメントである。
 なお、上記焼成物(クリンカ)の各係数は、後述する原料を前記数値範囲内となるように混合することで調整することができる。
The cement of the present invention has a hydraulic modulus (HM) of 2.10 to 2.30, a silicic acid ratio (SM) of 1.80 to 2.48, and an iron ratio (IM). Is 1.3 to 2.6, and the amount of C 3 S in 100% by mass of the calcined product is 70.0% by mass or less as calculated by the Borg formula, and includes a pulverized product of gypsum The ratio of gypsum in 100% by mass of cement is 1.2% by mass or more in terms of SO 3 , and hemihydrate gypsum with respect to the total amount of dihydrate gypsum and hemihydrate gypsum in the cement Is a cement having a proportion of 30% by mass or more in terms of SO 3 .
In addition, each coefficient of the said baked product (clinker) can be adjusted by mixing the raw material mentioned later so that it may become in the said numerical range.
 本発明のセメントに用いられる焼成物の水硬率(H.M.)は、2.10~2.30、好ましくは2.15~2.25、より好ましくは2.20~2.24である。該水硬率が2.30を超えると、焼成物中のC3Sの含有率が大きくなり、セメントの短期(材齢3日以内)の強度発現性が過大となる。また、セメントの長期(例えば材齢28日)の強度発現性が悪くなる。また、セメントの水和発熱量が過大となる。さらに、焼成物を製造する際の易焼成性が悪くなり、得られた焼成物中にフリーライム(CaO)が残りやすくなる。該水硬率が2.10未満であると、焼成物中のC3Sの含有率が小さくなり、セメントの短期の強度発現性が悪くなる。 The hydraulic modulus (HM) of the fired product used in the cement of the present invention is 2.10 to 2.30, preferably 2.15 to 2.25, more preferably 2.20 to 2.24. is there. When the hydraulic modulus exceeds 2.30, the content of C 3 S in the fired product increases, and the short-term strength (within 3 days of age) of the cement becomes excessive. Moreover, the long-term (for example, material age 28 days) intensity | strength expression property of cement worsens. Moreover, the hydration heat value of cement becomes excessive. Furthermore, the easy baking property at the time of manufacturing a baked product worsens, and free lime (CaO) tends to remain in the obtained baked product. When the hydraulic modulus is less than 2.10, the content of C 3 S in the fired product is reduced, and the short-term strength development of the cement is deteriorated.
 焼成物のケイ酸率(S.M.)は、1.80~2.48、好ましくは2.00~2.47、より好ましくは2.20~2.46、特に好ましくは2.30~2.45である。該ケイ酸率が2.48を超えると、焼成物を製造する際の焼成が困難となり、得られた焼成物中にフリーライム(CaO)が残りやすくなる。また、廃棄物の使用量を増やすことができなくなる。該ケイ酸率が1.80未満であると、焼成物中のC3A及びC4AFの含有率が大きくなり、セメントの長期(例えば材齢28日)の強度発現性が悪くなる。また、該焼成物を用いて調製されたモルタル、コンクリートまたはペースト(以下、「モルタル等」ともいう。)の流動性及び作業性が悪くなる。また、セメントの品質を確保するために必要な石膏の割合が増加するため、製造コストが高くなる。また、セメントの水和発熱量が過大となる。さらに、焼成物の被粉砕性が悪くなり、製造コストが高くなる。 The silicic acid ratio (SM) of the fired product is 1.80 to 2.48, preferably 2.00 to 2.47, more preferably 2.20 to 2.46, and particularly preferably 2.30 to 2.45. When the silicic acid ratio exceeds 2.48, it is difficult to perform calcination when producing a baked product, and free lime (CaO) tends to remain in the obtained baked product. In addition, the amount of waste used cannot be increased. When the silicic acid ratio is less than 1.80, the content of C 3 A and C 4 AF in the fired product increases, and the strength development of the cement over a long period of time (for example, age 28 days) deteriorates. In addition, the fluidity and workability of mortar, concrete or paste (hereinafter, also referred to as “mortar etc.”) prepared using the fired product are deteriorated. Moreover, since the ratio of gypsum required in order to ensure the quality of cement increases, manufacturing cost becomes high. Moreover, the hydration heat value of cement becomes excessive. Furthermore, the pulverizability of the fired product is deteriorated and the production cost is increased.
 焼成物の鉄率(I.M.)は、1.3~2.6、好ましくは1.6~2.5、より好ましくは1.8~2.4である。該鉄率が2.6を超えると、焼成物中のC3Aの含有率が大きくなり、モルタル等の流動性及び作業性が悪くなる。また、セメントの品質を確保するために必要な石膏の割合が増加するため、製造コストが高くなる。さらに、セメントの水和発熱量が過大となる。該鉄率が1.3未満であると、焼成物中のC3AFの含有率が大きくなり、焼成物の被粉砕性が悪くなるため、製造コストが高くなる。 The iron ratio (IM) of the fired product is 1.3 to 2.6, preferably 1.6 to 2.5, and more preferably 1.8 to 2.4. When the iron ratio exceeds 2.6, the content of C 3 A in the fired product increases, and the fluidity and workability of mortar and the like deteriorate. Moreover, since the ratio of gypsum required in order to ensure the quality of cement increases, manufacturing cost becomes high. Furthermore, the hydration heat value of cement becomes excessive. When the iron ratio is less than 1.3, the content of C 3 AF in the fired product is increased, and the pulverizability of the fired product is deteriorated, resulting in an increase in production cost.
 焼成物中のC3Sの含有率は、焼成物100質量%中の割合として、ボーグ式による計算値で70.0質量%以下、好ましくは50.0~70.0質量%、より好ましくは60.0~70.0質量%である。C3Sの割合が70.0質量%を超えると、セメントの凝結時間が短くなる。
 なお、本明細書中、焼成物中のC3S、C2S、C3A、C4AFの各含有率は、焼成物100質量%中の割合(質量%)として、原料や焼成物の化学成分に基づき、下記のボーグの計算式を用いて算出される。
3S(%)=(4.07×CaO(%))-(7.60×SiO2(%))-(6.72×Al23(%))-(1.43×Fe23(%))
2S(%)=(2.87×SiO2(%))-(0.754×C3S(%))
3A(%)=(2.65×Al23(%))-(1.69×Fe23(%))
4AF(%)=3.04×Fe23(%)
The content of C 3 S in the fired product is 70.0% by weight or less, preferably 50.0 to 70.0% by weight, more preferably as a ratio in 100% by weight of the fired product. It is 60.0-70.0% by mass. When the proportion of C 3 S exceeds 70.0% by mass, the setting time of cement is shortened.
In the present specification, C 3 S, C 2 S , C 3 A, each content of C 4 AF in calcined product, as a percentage of the calcined product in 100% by mass (mass%), raw or baked product Based on the chemical composition of the above, it is calculated using the following Borg formula.
C 3 S (%) = (4.07 × CaO (%)) − (7.60 × SiO 2 (%)) − (6.72 × Al 2 O 3 (%)) − (1.43 × Fe 2 O 3 (%)
C 2 S (%) = (2.87 × SiO 2 (%)) − (0.754 × C 3 S (%))
C 3 A (%) = (2.65 × Al 2 O 3 (%)) − (1.69 × Fe 2 O 3 (%))
C 4 AF (%) = 3.04 × Fe 2 O 3 (%)
 焼成物(クリンカ)の原料としては、ポルトランドセメントクリンカの製造に用いられる一般的な原料を使用することができる。具体的には、石灰石、生石灰、消石灰等のCaO原料;珪石、粘土等のSiO2原料;粘土等のAl23原料;鉄滓、鉄ケーキ等のFe23原料を使用することができる。
 さらに、前記原料に加えて、廃棄物及び発生土の少なくともいずれか一方を原料の一部して使用することができる。
 本明細書中、「廃棄物」とは、産業廃棄物または一般廃棄物をいう。
 産業廃棄物とは、事業活動に伴って生じた廃棄物をいう。
 産業廃棄物の例としては、生コンスラッジ、各種汚泥(例えば、下水汚泥、浄水汚泥、製鉄汚泥等)、建築廃材、コンクリート廃材、各種焼却灰(例えば、石炭灰)、鋳物砂、ロックウール、廃ガラス、高炉2次灰等が挙げられる。
 一般廃棄物とは、産業廃棄物以外の廃棄物をいう。
 一般廃棄物の例としては、下水汚泥乾粉、都市ごみ焼却灰、貝殻等が挙げられる。
 なお、「廃棄物」には、後述する「発生土」は含まれないものとする。
 本明細書中、「発生土」とは、建設工事に伴い副次的に発生する土砂(例えば、地盤の掘削により生じるボーリング廃土)や汚泥(建設汚泥;例えば、地盤改良工事で生じる、セメントミルクと掘削土の混合物)をいう。
 中でも、使用の容易性等の観点から、石炭灰を用いることが好ましい。
As a raw material of a baked product (clinker), the general raw material used for manufacture of a Portland cement clinker can be used. Specifically, CaO raw materials such as limestone, quicklime and slaked lime; SiO 2 raw materials such as silica and clay; Al 2 O 3 raw materials such as clay; Fe 2 O 3 raw materials such as iron cake and iron cake may be used. it can.
Furthermore, in addition to the raw material, at least one of waste and generated soil can be used as a part of the raw material.
In this specification, “waste” refers to industrial waste or general waste.
Industrial waste refers to waste generated from business activities.
Examples of industrial waste include raw consludge, various sludges (eg, sewage sludge, purified water sludge, steelmaking sludge, etc.), building wastes, concrete wastes, various incineration ash (eg, coal ash), foundry sand, rock wool, waste Examples thereof include glass and blast furnace secondary ash.
General waste refers to waste other than industrial waste.
Examples of general waste include sewage sludge dry powder, municipal waste incineration ash, and shells.
Note that “waste” does not include “deposited soil” to be described later.
In this specification, “development soil” means earth and sand generated secondary to construction work (for example, boring waste soil generated by excavation of the ground) and sludge (construction sludge; for example, cement generated by ground improvement work) A mixture of milk and excavated soil.
Of these, coal ash is preferably used from the viewpoint of ease of use.
 廃棄物または発生土の使用量(廃棄物と発生土を併用する場合は、これらの合計量)は、廃棄物等の有効利用の促進、かつ、セメントの品質を確保するという観点から、焼成物1ton当たり、好ましくは300kg以下、より好ましくは170~300kg、さらに好ましくは180~280kg、さらに好ましくは183~280kg、さらに好ましくは185~280kg、特に好ましくは190~260kgである。 The amount of waste or generated soil used (the total amount when waste and generated soil are used in combination) is a fired product from the viewpoint of promoting effective use of waste and ensuring the quality of cement. It is preferably 300 kg or less, more preferably 170 to 300 kg, further preferably 180 to 280 kg, further preferably 183 to 280 kg, further preferably 185 to 280 kg, and particularly preferably 190 to 260 kg per ton.
 焼成物を製造する方法としては、上述した各原料を、所望の水硬率(H.M.)、ケイ酸率(S.M.)、鉄率(I.M.)となるように混合し、得られた混合物を、好ましくは1,200~1,600℃、より好ましくは1,350~1,500℃で焼成する方法が挙げられる。
 各原料を混合する方法は、特に限定されるものではなく、エアブレンディングサイロ等の慣用の装置等で行えばよい。また、焼成に使用する装置も特に限定されるものではなく、例えば、ロータリーキルン等の慣用の装置を使用することができる。ロータリーキルンで焼成を行う場合には、燃料代替廃棄物、具体的には、木くず、廃油、廃タイヤ、廃プラスチック等を使用することができる。燃料代替廃棄物を用いることで、廃棄物の利用をさらに促進することができる。
As a method for producing a fired product, the above-described raw materials are mixed so as to have a desired hydraulic modulus (HM), silicic acid rate (SM), and iron rate (IM). The resulting mixture is preferably fired at 1,200 to 1,600 ° C., more preferably 1,350 to 1,500 ° C.
The method of mixing each raw material is not particularly limited, and may be performed by a common apparatus such as an air blending silo. Moreover, the apparatus used for baking is not specifically limited, For example, conventional apparatuses, such as a rotary kiln, can be used. When firing in a rotary kiln, fuel alternative waste, specifically wood waste, waste oil, waste tire, waste plastic, etc. can be used. By using fuel alternative waste, the use of waste can be further promoted.
 本発明のセメントは、上記焼成物の粉砕物と、石膏を含むものである。セメント100質量%中の石膏の割合は、SO3換算で1.2質量%以上、好ましくは1.3~5.0質量%、より好ましくは1.4~4.0質量%である。
 石膏の量が1.2質量%未満であると、セメントの強度発現性、及びモルタル等の流動性が悪くなる。
 石膏としては、二水石膏、α型又はβ型半水石膏、及び無水石膏等が挙げられる。これらは1種を単独で、あるいは2種以上を組み合わせて用いることができる。
 なお、セメント中のSO3量の定量は、化学分析(「JIS R 5202(セメントの化学分析方法)」)、又は、蛍光X線分析(「JIS R 5204(セメントの蛍光X線分析方法)」)により行うことができる。二水石膏及び半水石膏の定量は、例えば、特開平6-242035号公報に記載される方法により行うことができる。
The cement of the present invention includes the pulverized product of the fired product and gypsum. The proportion of gypsum in 100% by mass of cement is 1.2% by mass or more, preferably 1.3 to 5.0% by mass, more preferably 1.4 to 4.0% by mass in terms of SO 3 .
When the amount of gypsum is less than 1.2% by mass, the strength development property of cement and the fluidity of mortar and the like deteriorate.
Examples of the gypsum include dihydrate gypsum, α-type or β-type hemihydrate gypsum, and anhydrous gypsum. These can be used alone or in combination of two or more.
The amount of SO 3 in the cement can be determined by chemical analysis (“JIS R 5202 (chemical analysis method of cement)”) or fluorescent X-ray analysis (“JIS R 5204 (fluorescence X-ray analysis method of cement)”. ). The quantification of dihydrate gypsum and hemihydrate gypsum can be carried out, for example, by the method described in JP-A-6-242035.
 セメント中の二水石膏及び半水石膏の合計量(100質量%)に対する半水石膏の割合は、SO3換算で30質量%以上、好ましくは50質量%以上、より好ましくは70質量%以上である。該割合が30質量%以上であると、モルタル等の流動性を向上させることができる。
 さらに、成因による石膏の種類は特に限定されず、例えば、天然石膏、排煙脱硫石膏、リン酸石膏、チタン石膏、フッ酸石膏、精錬石膏等を用いることができる。これらは1種を単独で、あるいは2種以上を組み合わせて用いることができる。
The ratio of hemihydrate gypsum to the total amount (100% by mass) of dihydrate gypsum and hemihydrate gypsum in cement is 30% by mass or more, preferably 50% by mass or more, more preferably 70% by mass or more in terms of SO 3. is there. When the ratio is 30% by mass or more, fluidity such as mortar can be improved.
Furthermore, the kind of gypsum depending on the origin is not particularly limited, and for example, natural gypsum, flue gas desulfurization gypsum, phosphate gypsum, titanium gypsum, hydrofluoric gypsum, refined gypsum, and the like can be used. These can be used alone or in combination of two or more.
 本発明のセメントの製造方法としては、例えば、(i)焼成物(クリンカ)と石膏を同時に粉砕する方法、(ii)焼成物(クリンカ)を粉砕し、該粉砕物と石膏を混合する方法等が挙げられる。
 上記(i)の方法の場合、焼成物と石膏を、ブレーン比表面積が好ましくは3,000~6,000cm/g、より好ましくは3,500~5,500cm/gとなるまで粉砕する。
 上記(ii)の方法の場合、焼成物を、ブレーン比表面積が好ましくは3,000~5,500cm/g、より好ましくは3,500~5,000cm/gとなるまで粉砕する。また、上記(ii)の方法で用いられる石膏のブレーン比表面積は、好ましくは3,500~7,000cm/g、より好ましくは4,000~6,500cm/gである。
 なお、ブレーン比表面積の測定は、「JIS R 5201(セメントの物理試験方法)」によって測定することができる。
As the method for producing the cement of the present invention, for example, (i) a method of simultaneously pulverizing a baked product (clinker) and gypsum, (ii) a method of pulverizing a baked product (clinker) and mixing the pulverized product and gypsum, etc. Is mentioned.
In the case of the method (i), the fired product and gypsum are pulverized until the Blaine specific surface area is preferably 3,000 to 6,000 cm 2 / g, more preferably 3,500 to 5,500 cm 2 / g. .
In the case of the above method (ii), the fired product is pulverized until the Blaine specific surface area is preferably 3,000 to 5,500 cm 2 / g, more preferably 3,500 to 5,000 cm 2 / g. Further, the specific surface area of glaine of gypsum used in the method (ii) is preferably 3,500 to 7,000 cm 2 / g, more preferably 4,000 to 6,500 cm 2 / g.
The Blaine specific surface area can be measured by “JIS R 5201 (Cement physical test method)”.
 本発明のセメントは、「JIS R 5210(ポルトランドセメント)」に準拠して、粉末状の他の材料(具体的には、高炉スラグ粉末、シリカフューム、フライアッシュ、石灰石粉末等)をセメント100質量%中の割合として、5質量%以下の割合で含むことができる。 The cement of the present invention is based on “JIS R 5210 (Portland cement)”, and other materials in powder form (specifically, blast furnace slag powder, silica fume, fly ash, limestone powder, etc.) are 100% by mass of cement. It can contain in the ratio of 5 mass% or less as a ratio in.
 本発明の混合セメントは、上述した(A)セメントと、(B)高炉スラグ微粉末及び石炭灰の少なくともいずれか一方を含むセメント混合材、を含む。
 混合セメント100質量%中、セメント混合材の割合は、好ましくは5~80質量%、より好ましくは30~70質量%、特に好ましくは40~60質量%である。該割合が5質量%以上であれば、焼成物(クリンカ)の使用量をより削減できる。該割合が80質量%以下であれば、セメントの強度発現性がより向上する。
 なお、本明細書中、(A)成分(焼成物の粉砕物と石膏を含むセメント)、及び、(A)成分と(B)成分(セメント混合材;例えば、高炉スラグ微粉末、石炭灰、石灰石微粉末等)を含む混合セメントは、粉末状の混合物である。
The mixed cement of the present invention includes the above-mentioned (A) cement and (B) a cement mixed material containing at least one of blast furnace slag fine powder and coal ash.
The proportion of the cement mixed material in 100% by mass of the mixed cement is preferably 5 to 80% by mass, more preferably 30 to 70% by mass, and particularly preferably 40 to 60% by mass. If this ratio is 5 mass% or more, the usage-amount of baking products (clinker) can be reduced more. If this ratio is 80 mass% or less, the strength development property of a cement will improve more.
In addition, in this specification, (A) component (cement containing the pulverized material and gypsum of a baked product), and (A) component and (B) component (cement mixed material; For example, blast furnace slag fine powder, coal ash, The mixed cement containing limestone fine powder or the like is a powdery mixture.
 また、セメント混合材の28日活性度指数は、好ましくは50%以上、より好ましくは55%以上、特に好ましくは60%以上である。該28日活性度指数が50%以上であれば、混合セメントの強度発現性がより向上する。
 ここで、28日活性度指数とは、普通ポルトランドセメントを用いて製造されたモルタルの材齢28日における圧縮強度を基準とし、該圧縮強度に対する、混合材と普通ポルトランドセメントを用いて製造された試験モルタルの材齢28日における圧縮強度の比を百分率で表したものである。
The 28-day activity index of the cement mixture is preferably 50% or more, more preferably 55% or more, and particularly preferably 60% or more. If the 28-day activity index is 50% or more, the strength development of the mixed cement is further improved.
Here, the 28-day activity index is based on the compressive strength of a mortar produced using ordinary Portland cement at the age of 28 days, and produced using a mixed material and ordinary Portland cement with respect to the compressive strength. The ratio of the compressive strength of the test mortar at the age of 28 days is expressed as a percentage.
 セメント混合材として用いられる高炉スラグ微粉末としては、高炉で銑鉄を製造する際に副生する溶融状態のスラグを、水で急冷、破砕して得られる水砕スラグや、徐冷、破砕して得られる徐冷スラグ等が挙げられる。
 高炉スラグ微粉末の28日活性度指数は、低品質の高炉スラグ微粉末の利用促進の観点から、好ましくは50%以上、より好ましくは55%以上、特に好ましくは60%以上である。該28日活性度指数が50%以上であれば、混合セメントの強度発現性がより向上する。
 上記範囲内でも、強度発現性の観点から、高炉スラグ微粉末の28日活性度指数は、好ましくは75%以上、より好ましくは80%以上、特に好ましくは90%以上である。
 また、高炉スラグ微粉末の28日活性度指数は、「JIS A 6206 付属書(規定)(高炉スラグ微粉末のモルタルによる活性度指数及びフロー値比の試験方法)」に準拠して求めることができる。
 なお、「JIS A 6206」で規定する「高炉スラグ微粉末4000」の28日活性度指数は75%以上である。
 高炉スラグ微粉末を含む本発明の混合セメントは、強度発現性(特に、初期強度発現性)に優れている。また、高炉スラグ微粉末として、28日活性度指数が低い低品質の高炉スラグ微粉末を用いても、上記混合セメントは、圧縮強さについて、「JIS R 5211(高炉セメント)」の規格値を満足する。
As blast furnace slag fine powder used as a cement mixture, molten slag produced as a by-product in the production of pig iron in the blast furnace is quenched with water and granulated slag obtained by crushing, or slowly cooled and crushed. The obtained slow cooling slag is mentioned.
The 28-day activity index of the blast furnace slag fine powder is preferably 50% or more, more preferably 55% or more, and particularly preferably 60% or more from the viewpoint of promoting the utilization of low-quality blast furnace slag fine powder. If the 28-day activity index is 50% or more, the strength development of the mixed cement is further improved.
Even within the above range, from the viewpoint of strength development, the 28-day activity index of the blast furnace slag fine powder is preferably 75% or more, more preferably 80% or more, and particularly preferably 90% or more.
The 28-day activity index of blast furnace slag fine powder should be determined according to “JIS A 6206 Annex (normative) (Activity index and flow value ratio test method using mortar of blast furnace slag fine powder)”. it can.
The 28-day activity index of “blast furnace slag fine powder 4000” defined in “JIS A 6206” is 75% or more.
The mixed cement of the present invention containing fine blast furnace slag powder is excellent in strength development (particularly, initial strength development). Moreover, even if low quality blast furnace slag fine powder having a low activity index on the 28th is used as the blast furnace slag fine powder, the above mixed cement has a standard value of “JIS R 5211 (blast furnace cement)” for compressive strength. Satisfied.
 また、高炉スラグ微粉末のガラス化率は、特に限定されるものではないが、好ましくは2%以上、より好ましくは3%以上である。該ガラス化率が2%以上であれば、混合セメントの強度発現性がより向上する。
 ここで、上記ガラス化率は、例えば、以下の(i)と(ii)により求めることができる。
(i)62~105μmの高炉スラグ微粉末を篩分けした後、該粉末から400~500個の粒子を無作為に抽出する。
(ii)次に、抽出した粒子をブロムナフタレン溶液に浸し、偏光顕微鏡を通してガラス粒子数を数え、全粒子数に対するガラス粒子数の比として、ガラス化率を求める。
The vitrification rate of the blast furnace slag fine powder is not particularly limited, but is preferably 2% or more, more preferably 3% or more. When the vitrification rate is 2% or more, the strength development of the mixed cement is further improved.
Here, the said vitrification rate can be calculated | required by the following (i) and (ii), for example.
(I) After screening 62-105 μm blast furnace slag fine powder, 400-500 particles are randomly extracted from the powder.
(Ii) Next, the extracted particles are immersed in a bromonaphthalene solution, the number of glass particles is counted through a polarizing microscope, and the vitrification ratio is determined as the ratio of the number of glass particles to the total number of particles.
 また、高炉スラグ微粉末のブレーン比表面積は、好ましくは3,000~10,000cm/g、より好ましくは4,000~8,000cm/gである。該ブレーン比表面積が3,000cm/g以上であれば、混合セメントの初期強度発現性がより向上する。また、ブレーン比表面積が10,000cm/g以下であれば、入手が容易であり、混合セメントを用いてなるモルタル等の流動性及び作業性がより向上する。
 なお、高炉スラグ微粉末は、高炉スラグを、ボールミルやジェットミルなどの粉砕機で粉砕して得ることができる。
 また、高炉スラグ微粉末の塩基度は、好ましくは1.7以上、より好ましくは1.8以上、特に好ましくは1.9以上である。該塩基度が1.7以上であれば、混合セメントの強度発現性がより向上する。なお、塩基度は下記(1)式を用いて算出する。
 塩基度=(CaO+MgO+Al23)/SiO2   ・・・(1)
(式中の化学式は、高炉スラグ微粉末中の含有率(質量%)を表す。)
The specific surface area of the blast furnace slag fine powder is preferably 3,000 to 10,000 cm 2 / g, more preferably 4,000 to 8,000 cm 2 / g. If the Blaine specific surface area is 3,000 cm 2 / g or more, the initial strength development of the mixed cement is further improved. Moreover, if a Blaine specific surface area is 10,000 cm < 2 > / g or less, acquisition will be easy and fluidity | liquidity and workability | operativity, such as a mortar using a mixed cement, will improve more.
The blast furnace slag fine powder can be obtained by pulverizing blast furnace slag with a pulverizer such as a ball mill or a jet mill.
The basicity of the blast furnace slag fine powder is preferably 1.7 or more, more preferably 1.8 or more, and particularly preferably 1.9 or more. When the basicity is 1.7 or more, the strength expression of the mixed cement is further improved. The basicity is calculated using the following formula (1).
Basicity = (CaO + MgO + Al 2 O 3 ) / SiO 2 (1)
(The chemical formula in the formula represents the content (mass%) in the blast furnace slag fine powder.)
 さらに、高炉スラグ微粉末は石膏を含むもの(石膏含有高炉スラグ微粉末)であってもよい。高炉スラグ微粉末に含有される石膏としては、例えば、無水石膏、半水石膏、二水石膏等が挙げられ、これらのうち少なくとも一種が含まれていればよい。高炉スラグ微粉末中の石膏の含有率は、SO換算で好ましくは2~4質量%、より好ましくは2~3質量%である。 Furthermore, the blast furnace slag fine powder may contain gypsum (gypsum-containing blast furnace slag fine powder). Examples of the gypsum contained in the blast furnace slag fine powder include anhydrous gypsum, hemihydrate gypsum, dihydrate gypsum, etc., and at least one of these may be contained. The content of gypsum in the blast furnace slag fine powder is preferably 2 to 4% by mass, more preferably 2 to 3% by mass in terms of SO 3 .
 本発明において、混合セメント100質量%中の高炉スラグ微粉末の割合は、好ましくは30~80質量%、より好ましくは35~75質量%である。
 上記範囲内でも、強度発現性の観点から、混合セメント100質量%中の高炉スラグ微粉末の割合は、好ましくは50質量%以下、より好ましくは45質量%以下である。
 また、高炉スラグ微粉末の利用促進の観点から、混合セメント100質量%中の高炉スラグ微粉末の割合は、好ましくは50質量%以上、より好ましくは55質量%以上である。
In the present invention, the proportion of fine blast furnace slag powder in 100% by mass of the mixed cement is preferably 30 to 80% by mass, more preferably 35 to 75% by mass.
Even within the above range, the proportion of fine blast furnace slag powder in 100% by mass of the mixed cement is preferably 50% by mass or less, more preferably 45% by mass or less from the viewpoint of strength development.
Further, from the viewpoint of promoting utilization of the blast furnace slag fine powder, the ratio of the blast furnace slag fine powder in 100% by mass of the mixed cement is preferably 50% by mass or more, and more preferably 55% by mass or more.
 セメント混合材として用いられる石炭灰としては、フライアッシュ等が挙げられる。なお、フライアッシュとは、石炭を焼成させた時に発生する石炭灰のうち、電気集塵機により捕集された微粉末をいう。
 石炭灰の28日活性度指数は、低品質の石炭灰の利用促進の観点から、好ましくは50%以上、より好ましくは60%以上、特に好ましくは70%以上である。50%以上であれば、混合セメントの強度発現性がより向上する。
 上記範囲内でも、強度発現性の観点から、石炭灰の28日活性度指数は、好ましくは75%以上、より好ましくは80%以上である。
 石炭灰の28日活性度指数は、「JIS A 6201 付属書2(規定) (フライアッシュのモルタルによるフロー値比及び活性度指数の試験方法)」に準拠して求めることができる。
 なお、「JIS A 6201」に規定する「フライアッシュII種」の28日活性度指数は80%以上である。
 石炭灰を含む本発明の混合セメントは、強度発現性(特に、初期強度発現性)に優れている。また、石炭灰として、28日活性度指数が低い低品質の石炭灰を用いても、上記混合セメントは、圧縮強さについて、「JIS R 5213(フライアッシュセメント)」の規格値を満足する。
Examples of the coal ash used as the cement mixed material include fly ash. Fly ash refers to fine powder collected by an electrostatic precipitator among coal ash generated when coal is fired.
The 28-day activity index of coal ash is preferably 50% or more, more preferably 60% or more, and particularly preferably 70% or more, from the viewpoint of promoting utilization of low-quality coal ash. If it is 50% or more, the strength expression of the mixed cement is further improved.
Even within the above range, from the viewpoint of strength development, the 28-day activity index of coal ash is preferably 75% or more, more preferably 80% or more.
The 28-day activity index of coal ash can be determined according to “JIS A 6201 Appendix 2 (normative) (flow value ratio and activity index test method using fly ash mortar)”.
In addition, the 28-day activity index of “fly ash type II” defined in “JIS A 6201” is 80% or more.
The mixed cement of the present invention containing coal ash is excellent in strength development (particularly, initial strength development). Moreover, even if low quality coal ash having a low 28-day activity index is used as the coal ash, the mixed cement satisfies the standard value of “JIS R 5213 (fly ash cement)” for compressive strength.
 また、石炭灰の45μm篩残分量は、好ましくは17質量%以下、より好ましくは16.5質量%以下、特に好ましくは16.0質量%以下である。該45μm篩残分量が17質量%以下であると、混合セメントの長期強度発現性がより向上する。
 なお、45μm篩残分量は、「JIS A 6201(コンクリート用フライアッシュ)」の網ふるい方法に準じて測定することができる。
Moreover, the 45-micrometer sieve residue amount of coal ash becomes like this. Preferably it is 17 mass% or less, More preferably, it is 16.5 mass% or less, Most preferably, it is 16.0 mass% or less. When the 45 μm sieve residue is 17% by mass or less, the long-term strength development of the mixed cement is further improved.
In addition, the 45-micrometer sieve residue amount can be measured according to the screen sieve method of "JIS A6201 (fly ash for concrete)".
 石炭灰中のフリーライムの含有率は、好ましくは1.5質量%以下、より好ましくは0.1~1.0量%である。該フリーライムの含有率が1.5質量%以下であると、混合セメントの強度発現性がより向上する。
 フリーライムの含有率は、「JIS R 5202(ポルトランドセメントの化学分析方法)」に準じて測定することができる。
 石炭灰中の水溶性ホウ素の量は、好ましくは120mg/kg以下、より好ましくは110mg/kg以下、さらに好ましくは100mg/kg以下、特に好ましくは90mg/kg以下である。該水溶性ホウ素の量が120mg/kg以下であると、混合セメントの初期強度発現性がより向上する。
The content of free lime in the coal ash is preferably 1.5% by mass or less, more preferably 0.1 to 1.0% by mass. When the free lime content is 1.5% by mass or less, the strength development of the mixed cement is further improved.
The content of free lime can be measured according to “JIS R 5202 (Portland cement chemical analysis method)”.
The amount of water-soluble boron in the coal ash is preferably 120 mg / kg or less, more preferably 110 mg / kg or less, still more preferably 100 mg / kg or less, and particularly preferably 90 mg / kg or less. When the amount of the water-soluble boron is 120 mg / kg or less, the initial strength development of the mixed cement is further improved.
 石炭灰におけるフリーライムの量と水溶性ホウ素の量の質量比(フリーライム/水溶性ホウ素)は、好ましくは8以上、より好ましくは9以上、特に好ましくは10以上である。該質量比が8以上であると、混合セメントの初期強度発現性が向上する。
 なお、水溶性ホウ素の量は、以下の手順で測定することができる。
(1)蒸留水75cm3に石炭灰25gを投入し、pHを8.5±0.2に調整しながら、10分間攪拌する。なお、pHの調整には、塩酸又は水酸化ナトリウム水溶液を使用する。
(2)撹拌後、固液分離し、液中のほう素濃度をICPにより定量して、水溶性ホウ素の量を算出する。
The mass ratio of the amount of free lime to the amount of water-soluble boron in coal ash (free lime / water-soluble boron) is preferably 8 or more, more preferably 9 or more, and particularly preferably 10 or more. When the mass ratio is 8 or more, the initial strength development of the mixed cement is improved.
The amount of water-soluble boron can be measured by the following procedure.
(1) 25 g of coal ash is added to 75 cm 3 of distilled water and stirred for 10 minutes while adjusting the pH to 8.5 ± 0.2. In addition, hydrochloric acid or sodium hydroxide aqueous solution is used for pH adjustment.
(2) After stirring, solid-liquid separation is performed, and the boron concentration in the liquid is quantified by ICP to calculate the amount of water-soluble boron.
 石炭灰のガラス化率は、好ましくは60質量%以上、より好ましくは65質量%以上、特に好ましくは70質量%以上である。
 石炭灰のガラス相の塩基度は、好ましくは0.4以上、より好ましくは0.5以上、特に好ましくは0.6以上である。ガラス化率とガラス相の塩基度が、前記範囲内の石炭灰を使用することにより、混合セメントの長期強度発現性を向上させることができる。
 石炭灰のガラス化率、及びガラス相の塩基度は、特開2011-132046号公報に記載される方法によって算出することができる。
 石炭灰のブレーン比表面積は、混合セメントを用いてなるモルタル等の流動性や混合セメントの強度発現性の観点から、好ましくは3,300~8,000cm/g、より好ましくは3,500~7,000cm/gである。
The vitrification rate of coal ash is preferably 60% by mass or more, more preferably 65% by mass or more, and particularly preferably 70% by mass or more.
The basicity of the glass phase of coal ash is preferably 0.4 or more, more preferably 0.5 or more, and particularly preferably 0.6 or more. By using coal ash whose vitrification rate and basicity of the glass phase are within the above ranges, it is possible to improve the long-term strength development of the mixed cement.
The vitrification rate of coal ash and the basicity of the glass phase can be calculated by the method described in JP 2011-132046.
The Blaine specific surface area of the coal ash is preferably 3,300 to 8,000 cm 2 / g, more preferably 3,500 to 5,000, from the viewpoint of fluidity of mortar using mixed cement and strength development of the mixed cement. 7,000 cm 2 / g.
 本発明において、混合セメント100質量%中の石炭灰の割合は、好ましくは5~60質量%、より好ましくは10~55質量%、特に好ましくは15~58質量%である。
 上記範囲内でも、強度発現性の観点から、混合セメント100質量%中の石炭灰の割合は、好ましくは45質量%以下、より好ましくは40質量%以下である。
 また、石炭灰の利用促進の観点から、混合セメント100質量%中の石炭灰の割合は、好ましくは40質量%以上、より好ましくは45質量%以上である。
 本発明の混合セメントは、混合セメントの品質を維持しながら、石炭灰の配合量を増やすことができる。
In the present invention, the proportion of coal ash in 100% by mass of the mixed cement is preferably 5 to 60% by mass, more preferably 10 to 55% by mass, and particularly preferably 15 to 58% by mass.
Even within the above range, from the viewpoint of strength development, the proportion of coal ash in 100% by mass of the mixed cement is preferably 45% by mass or less, more preferably 40% by mass or less.
From the viewpoint of promoting the use of coal ash, the proportion of coal ash in 100% by mass of the mixed cement is preferably 40% by mass or more, and more preferably 45% by mass or more.
The mixed cement of the present invention can increase the blending amount of coal ash while maintaining the quality of the mixed cement.
 本発明の混合セメントは、さらに、セメント混合材として石灰石微粉末を含んでもよい。
 石灰石微粉末中の、炭酸カルシウムの含有率は、好ましくは90質量%以上、より好ましくは95質量%以上であり、かつ、酸化アルミニウムの含有率は、好ましくは1.0質量%以下である。炭酸カルシウムの含有率が90質量%以上、かつ、酸化アルミニウムの含有率が1.0質量%以下であれば、混合セメントの強度発現性がより向上する。
 石灰石微粉末のブレーン比表面積は、好ましくは4,000cm/g以上、より好ましくは5,000~12,000cm/g、さらに好ましくは6,000~11,000cm/g、特に好ましくは8,000~11,000cm/gである。該ブレーン比表面積が4,000cm/g以上であれば、混合セメントの強度発現性がより向上する。
 本発明において、混合セメント100質量%中の石灰石微粉末の割合は、好ましくは20質量%以下、より好ましくは15質量%以下、さらに好ましくは12質量%以下である。
 また、複数の種類のセメント混合材(高炉スラグ微粉末、石炭灰、石灰石微粉末等)を使用する場合、混合セメント100質量%中、セメント混合材の合計の割合(例えば、高炉スラグ微粉末と石炭灰の合計の割合)は、好ましくは5~80質量%、より好ましくは30~80質量%、特に好ましくは40~60質量%である。
The mixed cement of the present invention may further contain limestone fine powder as a cement mixed material.
The content of calcium carbonate in the limestone fine powder is preferably 90% by mass or more, more preferably 95% by mass or more, and the content of aluminum oxide is preferably 1.0% by mass or less. If the calcium carbonate content is 90% by mass or more and the aluminum oxide content is 1.0% by mass or less, the strength development of the mixed cement is further improved.
The Blaine specific surface area of the limestone fine powder is preferably 4,000 cm 2 / g or more, more preferably 5,000 to 12,000 cm 2 / g, still more preferably 6,000 to 11,000 cm 2 / g, particularly preferably. 8,000 to 11,000 cm 2 / g. When the brain specific surface area is 4,000 cm 2 / g or more, the strength development of the mixed cement is further improved.
In the present invention, the proportion of fine limestone powder in 100% by mass of the mixed cement is preferably 20% by mass or less, more preferably 15% by mass or less, and further preferably 12% by mass or less.
In addition, when a plurality of types of cement mixed materials (blast furnace slag fine powder, coal ash, limestone fine powder, etc.) are used, the total proportion of the cement mixed material (for example, blast furnace slag fine powder and The total proportion of coal ash is preferably 5 to 80% by mass, more preferably 30 to 80% by mass, and particularly preferably 40 to 60% by mass.
 本発明において、セメントとセメント混合材を混合する方法は、特に限定されるものではなく、(i)焼成物(クリンカ)と石膏とセメント混合材を同時に粉砕しながら混合する方法、(ii)予め粉砕したセメントと、予め粉砕したセメント混合材を混合する方法等が挙げられる。 In the present invention, the method of mixing the cement and the cement mixed material is not particularly limited, and (i) a method of mixing the fired product (clinker), gypsum and the cement mixed material while pulverizing them simultaneously, (ii) Examples thereof include a method of mixing pulverized cement with a previously pulverized cement mixed material.
 本発明のセメント又は混合セメントと、水と、必要に応じて配合される他の材料(例えば、細骨材、粗骨材、減水剤等)を混合することによって、ペースト、モルタル又はコンクリートを調製することができる。
 モルタル又はコンクリートを調製する場合、骨材として、モルタルやコンクリートの製造に使用される通常の細骨材(例えば、川砂、陸砂、砕砂等)や粗骨材(例えば、川砂利、山砂利、砕石等)を使用することができる。
 また、減水剤として、リグニン系、ナフタレンスルホン酸系、メラミン系、及びポリカルボン酸系の減水剤(AE減水剤、高性能減水剤、高性能AE減水剤も含む)を使用することができる。
 なお、必要に応じて、支障のない範囲内で、空気連行剤、消泡剤等の混和剤を使用してもよい。
A paste, mortar or concrete is prepared by mixing the cement or mixed cement of the present invention, water, and other materials blended as required (for example, fine aggregate, coarse aggregate, water reducing agent, etc.). can do.
When preparing mortar or concrete, as aggregate, normal fine aggregate (eg river sand, land sand, crushed sand, etc.) and coarse aggregate (eg river gravel, mountain gravel, etc.) used in the production of mortar and concrete. Crushed stone, etc.) can be used.
As the water reducing agent, lignin-based, naphthalenesulfonic acid-based, melamine-based, and polycarboxylic acid-based water reducing agents (including AE water reducing agents, high-performance water reducing agents, and high-performance AE water reducing agents) can be used.
In addition, you may use admixtures, such as an air entrainment agent and an antifoamer, in the range which does not have trouble if needed.
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
1.焼成物1~20の製造、及び評価
 焼成物の原料として、従来、ポルトランドセメントクリンカの主原料として一般的に使用されている石灰石、粘土、珪石、鉄原料等を主体とし、さらに原料代替廃棄物を用いて、焼成物の水硬率(H.M.)、ケイ酸率(S.M.)、および鉄率(I.M.)が表2で示す値となるように原料を調合した。
 ここで、焼成物11の原料として用いた原料代替廃棄物の、焼成物(クリンカ)1ton(表中「t」と表す。)当たりの配合量(kg)を表1に示す。焼成物11は市販の早強ポルトランドセメントクリンカと同等の水硬率(H.M.)、ケイ酸率(S.M.)、および鉄率(I.M.)を有する焼成物である。
 また、他の焼成物(焼成物1~10、12~20)に用いられる原料代替廃棄物は、目的とする水硬率等を有する焼成物を得るために、表1で示される原料代替廃棄物のうち、石炭灰及びリサイクル鉄原料以外の廃棄物(リサイクル石灰石、リサイクル粘土、建設発生土、及びリサイクル珪石)の使用量を可能な限り固定して、石炭灰及びリサイクル鉄原料の使用量を調整したものである。
 なお、表1は、早強セメントの材料である焼成物の原料として一般的に用いられる原料代替廃棄物(使用量:165kg/t(焼成物))の内訳を示すものである。
 表2中、原料代替廃棄物の使用量は、焼成例11で用いられた原料代替廃棄物の使用量を基準として、増加した量を表している。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
1. Production and evaluation of calcined products 1-20 Mainly used as raw materials for calcined products, mainly limestone, clay, silica, iron materials, etc., which are conventionally used as the main raw materials for Portland cement clinker, and alternative raw material waste The raw materials were prepared so that the hydraulic rate (HM), silicic acid rate (SM), and iron rate (IM) of the fired product were the values shown in Table 2. .
Here, Table 1 shows the blending amount (kg) per 1 ton (represented as “t” in the table) of the raw material substitute waste used as the raw material of the fired product 11. The fired product 11 is a fired product having a hydraulic modulus (HM), a silicic acid rate (SM), and an iron rate (IM) equivalent to those of a commercially available early strong Portland cement clinker.
In addition, the raw material substitute waste used for other fired products (fired products 1 to 10, 12 to 20) is the raw material substitute waste shown in Table 1 in order to obtain a fired product having the desired hydraulic modulus. Of wastes other than coal ash and recycled iron raw materials (recycled limestone, recycled clay, construction generated soil, and recycled silica) are fixed as much as possible, and the usage of coal ash and recycled iron raw materials is reduced. It is adjusted.
Table 1 shows a breakdown of raw material substitute waste (used amount: 165 kg / t (fired product)) that is generally used as a raw material of the fired product that is a material of early strong cement.
In Table 2, the usage amount of the raw material alternative waste represents an increased amount based on the usage amount of the raw material alternative waste used in Firing Example 11.
1)原料代替廃棄物の使用量の評価
 各焼成物の製造に用いられる原料代替廃棄物の使用量が、焼成例11に用いられた原料代替廃棄物の使用量(165.0kg/ton)よりも20kg/ton以上増加した焼成物は、廃棄物の使用量が十分に増加したものとして評価を「○」とした。結果を表2に示す。
 表2の結果から、焼成物のケイ酸率(S.M.)が2.48を超える場合、又はC3S量が70.0質量%を超える場合、焼成物の原料代替廃棄物の使用量の評価が悪くなることがわかる。
1) Evaluation of the amount of raw material alternative waste used The amount of raw material alternative waste used in the production of each calcined product is based on the amount of raw material alternative waste used in Firing Example 11 (165.0 kg / ton) In addition, the burned product increased by 20 kg / ton or more was evaluated as “◯” because the amount of waste used was sufficiently increased. The results are shown in Table 2.
From the results of Table 2, when the silicic acid ratio (SM) of the fired product exceeds 2.48, or when the amount of C 3 S exceeds 70.0% by mass, use of raw material alternative waste of the fired product It turns out that evaluation of quantity worsens.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
2.セメントの製造、及び評価
[実施例1~7、比較例1~13]
 表2の各焼成物100質量部に対して、排脱二水石膏(住友金属社製)及び該排脱二水石膏を140℃で加熱して得られた半水石膏を、セメント100質量%中の割合として、石膏(二水石膏及び半水石膏)の割合がSO3換算で2.7質量%となる量を添加し、バッチ式ボールミルでブレーン比表面積が4500±50cm/gとなるように同時粉砕して、セメントを調製した。なお、二水石膏及び半水石膏の合計量に対する半水石膏の割合は、全てのセメントにおいて、SO3換算で50質量%とした。
2. Production and evaluation of cement [Examples 1 to 7, Comparative Examples 1 to 13]
With respect to 100 parts by mass of each fired product in Table 2, drained dihydrate gypsum (manufactured by Sumitomo Metals) and hemihydrate gypsum obtained by heating the drained dihydrate gypsum at 140 ° C., 100% by mass of cement The ratio of gypsum (dihydrate gypsum and hemihydrate gypsum) is 2.7% by mass in terms of SO 3 , and the brain specific surface area is 4500 ± 50 cm 2 / g in a batch type ball mill. The cement was prepared by simultaneous grinding as described above. The ratio of hemihydrate gypsum to the total amount of dihydrate gypsum and hemihydrate gypsum was 50% by mass in terms of SO 3 in all cements.
 各セメントを用いて、以下の特性を評価した。
1)焼成物の被粉砕性の評価
 各セメントのブレーン比表面積と、該ブレーン比表面積となるまでに要した時間を表3に示す。
 被粉砕性の評価は、比較例4のセメント(市販品と同等の焼成物11を使用したセメント)を製造するのに要した時間を基準とし、該時間に1.1を乗じた時間(127分間)未満のセメントを「○」と評価した。結果を表4に示す。
2)凝結性状の評価
 各セメントの凝結時間について、「JIS R 5201(セメントの物理試験方法)」に準拠して測定を行った。結果を表3に示す。
 凝結性状の評価は、比較例4のセメント(市販品と同等の焼成物11を使用したセメント)の凝結始発時間及び終結時間を基準とし、凝結始発時間が100分間以上であり、かつ、凝結終結時間が150分間以上であるものを「○」と評価した。結果を表4に示す。
The following properties were evaluated using each cement.
1) Evaluation of pulverizability of the fired product Table 3 shows the brane specific surface area of each cement and the time required to reach the brane specific surface area.
The evaluation of grindability was based on the time required to produce the cement of Comparative Example 4 (cement using a fired product 11 equivalent to a commercial product), and the time multiplied by 1.1 (127 Cement less than (min) was rated as “◯”. The results are shown in Table 4.
2) Evaluation of setting properties The setting time of each cement was measured according to "JIS R 5201 (physical test method for cement)". The results are shown in Table 3.
The evaluation of the setting property is based on the setting start time and the setting time of the cement of Comparative Example 4 (cement using the burned material 11 equivalent to the commercial product), and the setting start time is 100 minutes or more, and the setting is completed. Those with a time of 150 minutes or more were evaluated as “◯”. The results are shown in Table 4.
3)モルタル圧縮強さの評価
 各セメントを含むモルタルのモルタル圧縮強さについて、「JIS R 5201(セメントの物理試験方法)」に準拠して測定を行った。結果を表3に示す。
 モルタル圧縮強さの評価は、比較例4のセメント(市販品と同等の焼成物11を使用したセメント)を含むモルタルのモルタル圧縮強度を基準とし、比較例4のセメントを含むモルタルの各材齢における圧縮強度に0.95を乗じた数値以上のモルタル圧縮強さ(材齢1日:24.7N/mm以上、材齢3日:44.8N/mm以上、材齢7日:55.3N/mm以上、材齢28日:64.0N/mm以上)を満足するものを「○」と評価した。結果を表4に示す。
3) Evaluation of mortar compressive strength About the mortar compressive strength of the mortar containing each cement, it measured based on "JISR5201 (physical test method of cement)". The results are shown in Table 3.
The evaluation of the mortar compressive strength is based on the mortar compressive strength of the mortar containing the cement of Comparative Example 4 (cement using the fired product 11 equivalent to the commercial product), and the age of each mortar containing the cement of Comparative Example 4 Mortar compressive strength greater than or equal to the value obtained by multiplying the compressive strength by 0.95 (material age 1 day: 24.7 N / mm 2 or more, material age 3 days: 44.8 N / mm 2 or more, material age 7 days: 55 .3 N / mm 2 or higher, material age 28 days: 64.0 N / mm 2 or higher) was evaluated as “◯”. The results are shown in Table 4.
4)流動性の評価
 以下の配合のモルタルについて、混練直後及び混練後30分間静置したモルタルを、フローコーン(上面直径5cm、下面直径10cm、高さ15cm)に投入し、フローコーンを上方へ取り去った際のモルタルの広がりを測定し、フロー値を求めた。混練直後の数値(以下、「直後値」ともいう。)及び、下記評価式を用いて算出した経時変化量(以下、「ロス率」ともいう。)を用いて流動性の評価を行った。流動性の評価は、直後値が250mm以上であり、かつ、ロス率が30%以下であるものを「○」と評価した。結果を表3、及び4に示す。
[配合]
 水/セメント(質量比):0.35
 細骨材/セメント(質量比):2.0
 減水剤(エヌエムビー社製「レオビルドSP8N」/セメント(質量比):0.0065
[経時変化量(ロス率)の評価式]
 経時変化量(ロス率):{(f1-f2)/(f1-100)}×100(%)
(式中、f1は混練直後のモルタルのフロー値(mm)を表し、f2は混練後30分間静置したモルタルのフロー値(mm)を表す。)
4) Evaluation of fluidity About the mortar of the following mixing | blendings, the mortar left still for 30 minutes after kneading | mixing is thrown into a flow cone (upper surface diameter 5cm, lower surface diameter 10cm, height 15cm), and a flow cone is upwards. The spread of the mortar when removed was measured to determine the flow value. The fluidity was evaluated using a numerical value immediately after kneading (hereinafter also referred to as “immediate value”) and a change with time (hereinafter also referred to as “loss rate”) calculated using the following evaluation formula. In the evaluation of fluidity, the value immediately after 250 mm or more and the loss rate of 30% or less was evaluated as “◯”. The results are shown in Tables 3 and 4.
[Combination]
Water / cement (mass ratio): 0.35
Fine aggregate / cement (mass ratio): 2.0
Water-reducing agent (“Neo build SP8N” / cement (mass ratio): 0.0065
[Evaluation formula for change over time (loss rate)]
Amount of change with time (loss rate): {(f 1 −f 2 ) / (f 1 −100)} × 100 (%)
(In the formula, f 1 represents the flow value (mm) of the mortar immediately after kneading, and f 2 represents the flow value (mm) of the mortar left standing for 30 minutes after kneading.)
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
[実施例8~13、比較例14~17]
 実施例8~13及び比較例14~17では、表2の焼成物6を焼成物(クリンカ)として使用した。
 焼成物100質量部に対して、排脱二水石膏(住友金属社製)及び該排脱二水石膏を140℃で加熱して得られた半水石膏を、表5に示される割合で添加して、バッチ式ボールミルで118分間同時粉砕して、セメントを調製した。
 なお、石膏の添加量による影響でブレーン比表面積は実施例1~8及び比較例1~12よりもばらついているが、該ばらつきは市販品の通常のばらつきと同程度である。
[Examples 8 to 13, Comparative Examples 14 to 17]
In Examples 8 to 13 and Comparative Examples 14 to 17, the fired product 6 in Table 2 was used as a fired product (clinker).
To 100 parts by mass of the fired product, drained dihydrate gypsum (manufactured by Sumitomo Metals Co., Ltd.) and hemihydrate gypsum obtained by heating the drained dihydrate gypsum at 140 ° C. are added at a ratio shown in Table 5. Then, cement was prepared by simultaneous grinding for 118 minutes in a batch type ball mill.
The specific surface area of Blaine is more varied than Examples 1 to 8 and Comparative Examples 1 to 12 due to the effect of the amount of gypsum added, but the variation is similar to the normal variation of commercial products.
 実施例1~7及び比較例1~13と同様にして、各セメントの凝結時間、混練直後及び混練後30分間静置したモルタルのフロー値の測定を行い、各セメントの凝結性状及び各セメントを含むモルタルの流動性を評価した。結果を表5に示す。 In the same manner as in Examples 1 to 7 and Comparative Examples 1 to 13, the setting time of each cement, the flow value of the mortar left standing immediately after kneading and 30 minutes after kneading were measured, and the setting properties of each cement and each cement were measured. The fluidity of the containing mortar was evaluated. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表4及び表5より、本発明のセメントによれば、原料代替廃棄物の使用量を増やすことができ、かつ、市販の早強ポルトランドセメントと同等レベルの品質を確保することができる。 From Tables 4 and 5, according to the cement of the present invention, the amount of raw material substitute waste can be increased, and quality equivalent to that of commercially available early strong Portland cement can be secured.
3.セメント1~3の製造
 焼成物1~20の製造と同様にして、焼成物の水硬率(H.M.)、ケイ酸率(S.M.)、および鉄率(I.M.)が表6で示す値となるように原料を調合した。
 得られた焼成物100質量%に対して、排脱二水石膏(住友金属社製)及び該排脱二水石膏を140℃で加熱して得られた半水石膏を、セメント100質量%中、石膏(二水石膏及び半水石膏)の割合がSO3換算で2.2質量%となる量を添加し、バッチ式ボールミルを用いて同時粉砕して、セメント1を調製した。
 また、上記石膏の割合を、SO3換算で2.2質量%から2.7質量%と変更する以外は、セメント1と同様にして、セメント2及び3を調製した。
 なお、二水石膏及び半水石膏の合計量に対する半水石膏の割合は、全てのセメントにおいて、SO3換算で50質量%とした。
3. Production of cements 1 to 3 In the same manner as the production of the calcined products 1 to 20, the hydraulic rate (HM), silicic acid rate (SM), and iron rate (IM) of the calcined product are obtained. The raw materials were prepared so that the values shown in Table 6 were obtained.
With respect to 100% by mass of the obtained fired product, exhausted dihydrate gypsum (manufactured by Sumitomo Metals) and hemihydrate gypsum obtained by heating the exhausted dihydrate gypsum at 140 ° C. Cement 1 was prepared by adding an amount such that the proportion of gypsum (dihydrate gypsum and hemihydrate gypsum) was 2.2% by mass in terms of SO 3 and simultaneously grinding using a batch-type ball mill.
Cements 2 and 3 were prepared in the same manner as cement 1 except that the gypsum ratio was changed from 2.2% by mass to 2.7% by mass in terms of SO 3 .
The ratio of hemihydrate gypsum to the total amount of dihydrate gypsum and hemihydrate gypsum was 50% by mass in terms of SO 3 in all cements.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
[実施例14~29、比較例18~24]
 表6~9に記載されたセメント、高炉スラグ微粉末、石炭灰、及び石灰石微粉末を、表10に記載された配合で、媒体(ボール)の量を減じたボールミルを用いて撹拌混合して、セメント混合材を含まないセメント(セメント組成物1~3)、または、混合セメント(セメント組成物4~23)を調製した。
 得られた各セメント組成物の材齢3日、7日、28日におけるモルタル圧縮強さについて、「JIS R 5201(セメントの物理試験方法)」に準拠して測定を行った。結果を表11に示した。
 また、参考例1~4として、高炉セメントB種(セメント100質量%中の高炉スラグ微粉末が30質量%を超え、60質量%以下であるセメント)、高炉セメントC種(セメント100質量%中の高炉スラグ微粉末が60質量%を超え、70質量%以下であるセメント)、フライアッシュセメントA種(セメント100質量%中の石炭灰が5質量%を超え、10質量%以下であるセメント)、フライアッシュセメントC種(セメント100質量%中の石炭灰が20質量%を超え、30質量%以下であるセメント)のモルタル圧縮強さのJIS規格値を表11に示した。
[Examples 14 to 29, Comparative Examples 18 to 24]
Cement, blast furnace slag fine powder, coal ash, and fine limestone powder described in Tables 6 to 9 were mixed with stirring using a ball mill with the composition described in Table 10 and with a reduced amount of media (balls). Cement containing no cement mixture (cement compositions 1 to 3) or mixed cement (cement compositions 4 to 23) was prepared.
The mortar compressive strength at the age of 3 days, 7 days and 28 days of each obtained cement composition was measured according to “JIS R 5201 (physical test method for cement)”. The results are shown in Table 11.
In addition, as Reference Examples 1 to 4, blast furnace cement B type (cement in which blast furnace slag fine powder in 100% by mass of cement exceeds 30% by mass and 60% by mass or less), blast furnace cement C type (in 100% by mass of cement) Blast furnace slag fine powder of more than 60% by mass and cement of 70% by mass or less), fly ash cement A type (cement in which 100% by mass of coal ash exceeds 5% by mass and less than 10% by mass) Table 11 shows JIS standard values of mortar compressive strength of fly ash cement type C (cement in which coal ash in cement of 100% by mass exceeds 20% by mass and is 30% by mass or less).
 なお、表7中、高炉スラグ微粉末1は、一般的なセメント混合材用高炉スラグ微粉末であり、高炉スラグ微粉末2は徐冷スラグの粉砕品である。表7の高炉スラグ微粉末の28日活性度指数は、「JIS A 6206 付属書(規定) (高炉スラグ微粉末のモルタルによる活性度指数及びフロー値比の試験方法)」に準拠して求めた。
 また、表8中、石炭灰1は、一般的なセメント混合材用石炭灰である、「JIS A 6201(コンクリート用フライアッシュ)」のフライアッシュII種相当品であり、石炭灰2は「JIS A 6201(コンクリート用フライアッシュ)」のフライアッシュIV種相当品である。表8の石炭灰の28日活性度指数は、「JIS A 6201 付属書2(規定) (フライアッシュのモルタルによるフロー値比及び活性度指数の試験方法)」に準拠して求めた。
In Table 7, blast furnace slag fine powder 1 is a common blast furnace slag fine powder for cement mixture, and blast furnace slag fine powder 2 is a pulverized product of slow-cooled slag. The 28-day activity index of blast furnace slag fine powder in Table 7 was determined in accordance with “JIS A 6206 Annex (normative) (Activity index and flow value ratio test method by mortar of blast furnace slag fine powder)”. .
Moreover, in Table 8, coal ash 1 is a fly ash type II equivalent of “JIS A 6201 (fly ash for concrete)” which is a general coal ash for cement mixture, and coal ash 2 is “JIS A 6201 (fly ash for concrete) "is a fly ash type IV equivalent product. The 28-day activity index of coal ash in Table 8 was determined according to “JIS A 6201 Annex 2 (normative) (flow value ratio and activity index test method using fly ash mortar)”.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 表11より、実施例14と比較例18を比較すると、混合セメント100質量%中、一般的な高炉スラグ微粉末(表7に示される、高炉スラグ微粉末1)の割合が40質量%である混合セメント(実施例14)は、普通セメント(比較例18)と同等の強度発現性を有することがわかる。
 実施例15と比較例21を比較すると、混合セメント100質量%中、低品質の高炉スラグ微粉末(表7に示される、高炉スラグ微粉末2)の割合が40質量%である混合セメント(実施例15)は、比較例21の通常の高炉セメント(普通セメントに高炉スラグ1を混合したもの)と同等の初期強度発現性(材齢3日、及び7日のモルタル圧縮強さ)を有することがわかる。
 実施例16~19、及び参考例1より、混合セメント100質量%中、低品位の高炉スラグ微粉末の割合が、40又は60質量%である混合セメント(実施例16~19)は、「JIS R 5211(高炉セメント)」の高炉セメントB種のJIS規格値(参考例1)よりも、優れた初期強度発現性(材齢3日、及び7日のモルタル圧縮強さ)を有し、同等の材齢28日における強度発現性を有する。
 実施例20、及び参考例2より、混合セメント100質量%中、低品位の高炉スラグ微粉末の割合が70質量%である混合セメント(実施例20)は、「JIS R 5211(高炉セメント)」の高炉セメントC種(参考例2)よりも、優れた初期強度発現性(材齢3日、及び7日のモルタル圧縮強さ)を有し、同等の材齢28日における強度発現性を有する。
From Table 11, when Example 14 and Comparative Example 18 are compared, the proportion of general blast furnace slag fine powder (blast furnace slag fine powder 1 shown in Table 7) is 40% by mass in 100% by mass of the mixed cement. It can be seen that the mixed cement (Example 14) has the same strength development as the ordinary cement (Comparative Example 18).
When Example 15 and Comparative Example 21 are compared, a mixed cement (implementation) in which the proportion of low-quality blast furnace slag fine powder (blast furnace slag fine powder 2 shown in Table 7) is 40% by mass in 100% by mass of the mixed cement. Example 15) has an initial strength development property (a mortar compressive strength of 3 days and 7 days of age) equivalent to the normal blast furnace cement of Comparative Example 21 (a mixture of ordinary cement and blast furnace slag 1). I understand.
From Examples 16 to 19 and Reference Example 1, the mixed cement (Examples 16 to 19) in which the proportion of fine blast furnace slag fine powder was 40 or 60% by mass in 100% by mass of the mixed cement was “JIS”. R 5211 (Blast Furnace Cement) "has better initial strength than the JIS standard value of B type blast furnace cement B (Reference Example 1) (3 and 7-day mortar compressive strength), equivalent It has strength development properties at 28 days of age.
From Example 20 and Reference Example 2, the mixed cement (Example 20) in which the ratio of the low-grade blast furnace slag fine powder is 70% by mass in 100% by mass of the mixed cement is “JIS R 5211 (blast furnace cement)”. Has better initial strength development (3 and 7-day mortar compressive strength) than blast furnace cement type C (Reference Example 2), and has equivalent strength development at 28 days of age. .
 実施例21と比較例18を比較すると、混合セメント100質量%中、一般的な石炭灰(表8で示される、石炭灰1)の割合が30質量%である混合セメント(実施例21)は、普通セメント(比較例18)と同等の初期強度発現性(材齢3日、及び7日のモルタル圧縮強さ)を有することがわかる。
 実施例22~23、及び参考例3より、混合セメント100質量%中、低品質の石炭灰(表8で示される、石炭灰2)の割合が30質量%である混合セメント(実施例22~23)は、「JIS R 5213(フライアッシュセメント)」のフライアッシュセメントA種の規格値(参考例3)と同等以上の強度発現性を有することがわかる。
 実施例24~27、及び参考例4より、混合セメント100質量%中、低品質の石炭灰の割合が40又は50質量%である混合セメント(実施例24~27)は、「JIS R 5213(フライアッシュセメント)」のフライアッシュセメントC種の規格値(参考例4)と同等以上の強度発現性を有することがわかる。
When Example 21 and Comparative Example 18 are compared, the mixed cement (Example 21) in which the proportion of general coal ash (coal ash 1 shown in Table 8) is 30% by mass in 100% by mass of the mixed cement. It can be seen that it has an initial strength development property (a mortar compressive strength of 3 days and 7 days of age) equivalent to that of ordinary cement (Comparative Example 18).
From Examples 22 to 23 and Reference Example 3, mixed cement (Examples 22 to 30) in which the proportion of low-quality coal ash (coal ash 2 shown in Table 8) is 30% by mass in 100% by mass of the mixed cement. It can be seen that No. 23) has a strength developability equal to or higher than the standard value (reference example 3) of the fly ash cement A type of “JIS R 5213 (fly ash cement)”.
From Examples 24-27 and Reference Example 4, the mixed cement (Examples 24-27) in which the proportion of low-quality coal ash is 40 or 50% by mass in 100% by mass of the mixed cement is “JIS R 5213 ( It can be seen that the fly ash cement has a strength development property equal to or higher than the standard value of the fly ash cement C type (Reference Example 4).

Claims (8)

  1.  (A)水硬率(H.M.)が2.10~2.30、ケイ酸率(S.M.)が1.80~2.48、鉄率(I.M.)が1.3~2.6であり、かつ、焼成物100質量%中の3CaO・SiOの割合が、ボーグ式による計算値で70.0質量%以下である焼成物の粉砕物と、石膏を含むセメントであって、
     該セメント100質量%中の石膏の割合が、SO換算で1.2質量%以上であり、かつ、該セメント中の二水石膏及び半水石膏の合計量に対する半水石膏の割合が、SO換算で30質量%以上であることを特徴とするセメント。
    (A) The hydraulic modulus (HM) is 2.10 to 2.30, the silicic acid ratio (SM) is 1.80 to 2.48, and the iron ratio (IM) is 1. A cement containing 3 to 2.6 and a pulverized product of calcined product in which the ratio of 3CaO · SiO 2 in 100% by mass of calcined product is 70.0% by mass or less as calculated by the Borg formula, and gypsum Because
    The ratio of gypsum in 100% by mass of the cement is 1.2% by mass or more in terms of SO 3 , and the ratio of hemihydrate gypsum to the total amount of dihydrate gypsum and hemihydrate gypsum in the cement is SO Cement characterized by being 30% by mass or more in terms of 3 .
  2.  上記焼成物が、廃棄物及び発生土の少なくともいずれか一方を原料の一部として使用して焼成されたものである請求項1に記載のセメント。 The cement according to claim 1, wherein the fired product is fired using at least one of waste and generated soil as a part of the raw material.
  3.  請求項1又は2に記載のセメントの製造方法であって、焼成物1ton当たり、300kg以下の廃棄物及び発生土の少なくともいずれか一方を原料の一部として使用することを特徴とするセメントの製造方法。 The method for producing cement according to claim 1 or 2, wherein at least one of waste of 300 kg or less and generated soil is used as a part of raw material per ton of the fired product. Method.
  4.  請求項1又は2に記載のセメントと、(B)高炉スラグ微粉末及び石炭灰の少なくともいずれか一方を含むセメント混合材、を含むことを特徴とする混合セメント。 A mixed cement comprising the cement according to claim 1 or 2, and (B) a cement mixed material containing at least one of blast furnace slag fine powder and coal ash.
  5.  上記混合セメント中の上記セメント混合材の割合が5~80質量%である、請求項4に記載の混合セメント。 The mixed cement according to claim 4, wherein the proportion of the cement mixed material in the mixed cement is 5 to 80% by mass.
  6.  上記セメント混合材の28日活性度指数が50%以上である、請求項4又は5に記載の混合セメント。 The mixed cement according to claim 4 or 5, wherein the 28-day activity index of the cement mixed material is 50% or more.
  7.  さらに、上記セメント混合材として石灰石微粉末を含む、請求項4~6のいずれか1項に記載の混合セメント。 The mixed cement according to any one of claims 4 to 6, further comprising fine limestone powder as the cement mixed material.
  8.  請求項4~7のいずれか1項に記載の混合セメントの製造方法であって、焼成物1ton当たり、300kg以下の廃棄物及び発生土の少なくともいずれか一方を原料の一部として使用することを特徴とする混合セメントの製造方法。 The method for producing a mixed cement according to any one of claims 4 to 7, wherein at least one of waste of 300 kg or less and generated soil is used as a part of raw material per 1 ton of the fired product. A method for producing a mixed cement.
PCT/JP2013/083158 2012-12-18 2013-12-11 Cement and blended cement WO2014097938A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012275980A JP6045328B2 (en) 2012-12-18 2012-12-18 Cement and manufacturing method thereof
JP2012-275980 2012-12-18
JP2013135434A JP6021753B2 (en) 2013-06-27 2013-06-27 Mixed cement
JP2013-135434 2013-06-27

Publications (1)

Publication Number Publication Date
WO2014097938A1 true WO2014097938A1 (en) 2014-06-26

Family

ID=50978273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/083158 WO2014097938A1 (en) 2012-12-18 2013-12-11 Cement and blended cement

Country Status (2)

Country Link
TW (1) TW201437177A (en)
WO (1) WO2014097938A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104072015A (en) * 2014-07-18 2014-10-01 锦州市好为尔保温材料有限公司 Plastering mortar for phenolic foam heat-insulating plate
JP2016064940A (en) * 2014-09-24 2016-04-28 株式会社トクヤマ Manufacturing method of cement clinker
CN113072312A (en) * 2021-05-22 2021-07-06 江西南氏锂电新材料有限公司 Method for preparing cement from lithium slag
TWI753785B (en) * 2021-02-24 2022-01-21 林文欽 Manufacturing method of cementing material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002234757A (en) * 2001-02-06 2002-08-23 Taiheiyo Cement Corp Cement clinker and cement composition
JP2011132111A (en) * 2009-11-30 2011-07-07 Taiheiyo Cement Corp Hydraulic composition
JP2011207699A (en) * 2010-03-30 2011-10-20 Ube Industries Ltd Cement composition, method for producing the same and treatment method for arsenic-containing waste
JP2012224504A (en) * 2011-04-19 2012-11-15 Tokuyama Corp Cement clinker

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002234757A (en) * 2001-02-06 2002-08-23 Taiheiyo Cement Corp Cement clinker and cement composition
JP2011132111A (en) * 2009-11-30 2011-07-07 Taiheiyo Cement Corp Hydraulic composition
JP2011207699A (en) * 2010-03-30 2011-10-20 Ube Industries Ltd Cement composition, method for producing the same and treatment method for arsenic-containing waste
JP2012224504A (en) * 2011-04-19 2012-11-15 Tokuyama Corp Cement clinker

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GIJUTSU SHOIN: "Concrete Soran", 10 June 1998, pages: 15 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104072015A (en) * 2014-07-18 2014-10-01 锦州市好为尔保温材料有限公司 Plastering mortar for phenolic foam heat-insulating plate
JP2016064940A (en) * 2014-09-24 2016-04-28 株式会社トクヤマ Manufacturing method of cement clinker
TWI753785B (en) * 2021-02-24 2022-01-21 林文欽 Manufacturing method of cementing material
CN113072312A (en) * 2021-05-22 2021-07-06 江西南氏锂电新材料有限公司 Method for preparing cement from lithium slag

Also Published As

Publication number Publication date
TW201437177A (en) 2014-10-01

Similar Documents

Publication Publication Date Title
JP6021753B2 (en) Mixed cement
JP7218083B2 (en) Method for producing cement composition
JP4176660B2 (en) Hydraulic composition
WO2014097938A1 (en) Cement and blended cement
JP5441768B2 (en) Hydraulic composition
JP5932478B2 (en) Cement composition and method for producing the same
JP2000281399A (en) Cement clinker and cement composition
JP6316576B2 (en) Cement composition
JP4842211B2 (en) Sintered product for cement additive, cement additive and cement composition
JP2010168256A (en) Cement additive and cement composition
JP7042643B2 (en) Cement composition
JP2000344555A (en) Cement clinker and cement composition
JP2013107780A (en) Cement clinker and cement composition
JP6045328B2 (en) Cement and manufacturing method thereof
JP2010195601A (en) Cement composition
JP2008222475A (en) Fired product, cement additive and cement composition
JP4154359B2 (en) concrete
JP2013087036A (en) Low hydration heat cement clinker and low hydration heat cement composition
JP2005272222A (en) Concrete
JP2014185042A (en) Cement composition
JP5794696B2 (en) Manufacturing method of ordinary Portland cement clinker
JP4116987B2 (en) Hydraulic composition
JP5235057B2 (en) Fired product, cement additive and cement composition
JP4852506B2 (en) Cement additive and cement composition
JP5501705B2 (en) Cement additive and cement composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13866354

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13866354

Country of ref document: EP

Kind code of ref document: A1