JPH11138183A - Ozone inject control method in water treatment - Google Patents
Ozone inject control method in water treatmentInfo
- Publication number
- JPH11138183A JPH11138183A JP30393397A JP30393397A JPH11138183A JP H11138183 A JPH11138183 A JP H11138183A JP 30393397 A JP30393397 A JP 30393397A JP 30393397 A JP30393397 A JP 30393397A JP H11138183 A JPH11138183 A JP H11138183A
- Authority
- JP
- Japan
- Prior art keywords
- ozone
- treatment
- reaction tank
- water
- water quality
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Treatment Of Water By Oxidation Or Reduction (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、有機性汚水の処理
に関し、特に下水二次処理水の処理方法において浮遊物
及び有機物を効率的に除去し、処理水質の向上を図るの
に有効な有機性汚水の処理に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the treatment of organic sewage, and more particularly to a method of treating suspended sewage secondary effluent to effectively remove suspended matter and organic matter and improve the quality of treated sewage. It relates to the treatment of sewage.
【0002】[0002]
【従来の技術】下水処理場の水処理プロセスは一般的
に、沈砂池,最初沈殿池を基本構成施設とする一次処理
プラント,曝気槽あるいはエアレーションタンクと呼ば
れる微生物反応槽と最終沈殿池を基本構成施設とする二
次処理プラントから構成される。一次プラントの機能
は、流入水中に懸濁する粗大雑物や、重力沈降する浮遊
物質を除去することである。二次処理プラントは、活性
汚泥と称する多種多用の微生物を利用して下水中の溶解
性有機物を除去するとともに、一次処理プラントで除去
できなかった浮遊物質を除去し、清澄な処理水を作って
いる。さらに、二次処理水の水質を向上させるために二
次処理プラントの後にオゾン処理や砂ろ過処理する施設
を配置される方式がある。2. Description of the Related Art Generally, a water treatment process in a sewage treatment plant basically includes a primary treatment plant having a sand basin and a primary sedimentation basin as basic facilities, a microbial reaction tank called an aeration tank or an aeration tank, and a final sedimentation basin. It consists of a secondary processing plant that is a facility. The function of the primary plant is to remove coarse impurities suspended in the influent and suspended substances that settle by gravity. The secondary treatment plant removes soluble organic matter in the sewage using a variety of microorganisms called activated sludge, and removes suspended substances that could not be removed by the primary treatment plant, making clear treated water. I have. Furthermore, there is a system in which a facility for ozone treatment or sand filtration is disposed after the secondary treatment plant in order to improve the quality of the secondary treatment water.
【0003】これらの施設は三次処理あるいは高度処理
と呼ばれている。図2により、オゾン処理の一例を説明
する。オゾン反応槽10の上部から被処理水30が供給
される。一方、オゾンガス33は反応槽下部から注入さ
れ、オゾン反応槽で気液向流接触され、処理水31は反
応槽下部から引き抜かれる。また、注入オゾンガスは全
量消費されることがなく、未反応オゾンガス34となり
排オゾンガス処理装置18を介してから、大気に処理ガ
ス42として放出される。[0003] These facilities are called tertiary treatment or advanced treatment. An example of the ozone treatment will be described with reference to FIG. The water to be treated 30 is supplied from the upper part of the ozone reaction tank 10. On the other hand, the ozone gas 33 is injected from the lower part of the reaction tank, is brought into gas-liquid countercurrent contact in the ozone reaction tank, and the treated water 31 is withdrawn from the lower part of the reaction tank. Further, the injected ozone gas is not consumed in its entirety, but becomes unreacted ozone gas 34, and is discharged as a processing gas 42 to the atmosphere via the exhaust ozone gas processing device 18.
【0004】このような構成において、被処理水30の
水質値、処理水31の溶存オゾン濃度さらには未反応オ
ゾンガス34のオゾン濃度を計測(計測器は図示せず)
して注入オゾン量を設定しているのが一般的である。
(引用文献:下水二次処理水のオゾン処理特性、第30
回下水道研究発表会講演集、1993)In such a configuration, the water quality value of the water to be treated 30, the dissolved ozone concentration of the treated water 31, and the ozone concentration of the unreacted ozone gas 34 are measured (a measuring instrument is not shown).
Generally, the amount of injected ozone is set.
(Cited document: Ozone treatment characteristics of secondary sewage water, No. 30
Proceedings of the Annual Conference on Sewerage Research, 1993)
【0005】[0005]
【発明が解決しようとする課題】従来方法のうち、高度
処理プラントは微生物処理水(二次処理水)中の色度や
臭い、あるいは二次処理水に残留した有機物を除去対象
としている。これらの除去方法としてオゾン処理や砂ろ
過処理が有効視されている。ただし、オゾン反応は、非
酸化物質と手あたり次第反応するもので、浮遊物質(S
S分、以降SS分と記す)成分も溶解性成分も区別なく
反応してしまう。したがって、SS分によるオゾン消費
が生じるため、実質のオゾン消費量が大きくなってしま
い、水質改善効果が低い結果になってしまう。Among the conventional methods, the advanced treatment plant aims to remove the chromaticity and odor in the microorganism-treated water (secondary treated water) or the organic substances remaining in the secondary treated water. Ozone treatment and sand filtration treatment are regarded as effective as these removing methods. However, the ozone reaction reacts with non-oxidizing substances as soon as possible, and the suspended substance (S
The component (S), hereinafter referred to as SS component) and the soluble component react without distinction. Therefore, ozone is consumed by the SS component, so that the actual ozone consumption is increased, resulting in a low water quality improvement effect.
【0006】さらには、オゾン発生には電力消費が大き
いという課題を抱えており、前記SS分の課題とを含め
て、発生オゾン量をいかに制御して効率良く使用できる
ものかが重要である。Further, ozone generation has a problem that power consumption is large, and it is important how to control the amount of ozone generated and use it efficiently, including the problem of SS.
【0007】本発明は上記従来技術に対処してなされた
もので、その目的とするところは、オゾンを二次処理水
へ効果的に注入制御し、処理水質を向上させる水処理方
法を提供することにある。SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned prior art, and an object of the present invention is to provide a water treatment method for effectively injecting and controlling ozone into secondary treated water to improve treated water quality. It is in.
【0008】[0008]
【課題を解決するための手段】上記目的を達成するため
に、本発明では砂ろ過槽とオゾン反応槽の組合せ処理と
し、該砂ろ過槽を前段に、オゾン反応槽を後段に設置と
する。このような構成において、前段で二次処理水中S
S分を砂ろ過処理した後に、後段でオゾン処理すること
により、注入オゾンを必要最小限にでき、かつ、オゾン
反応槽から出る排オゾンガスも最小限に抑えることが可
能となる。In order to achieve the above object, in the present invention, a combination of a sand filtration tank and an ozone reaction tank is employed, and the sand filtration tank is provided in the first stage and the ozone reaction tank is provided in the second stage. In such a configuration, the secondary treatment water S
By subjecting the S component to sand filtration and then ozone treatment in the subsequent stage, the amount of injected ozone can be minimized and the amount of exhausted ozone gas discharged from the ozone reaction tank can be minimized.
【0009】即ち、本発明を構成する上記手段におい
て、前段を砂ろ過槽、後段をオゾン反応槽とするもので
ある。すなわち、砂ろ過がない場合、被処理水中には溶
解性有機物(色度成分も有機性物質の一種)とSS分が
混入しているために、オゾンは上記溶解性有機物とSS
分の両者に消費されることになり、あたかも溶解性有機
物質が大きい状態にある。処理水質を向上させるには、
溶解性有機物をオゾンによって酸化分解されることが必
須である。That is, in the above means constituting the present invention, the first stage is a sand filtration tank, and the second stage is an ozone reaction tank. In other words, when there is no sand filtration, the water to be treated contains a soluble organic substance (a chromaticity component is also a kind of organic substance) and an SS component.
And it is consumed by both, as if the soluble organic matter is in a large state. To improve the quality of treated water,
It is essential that soluble organic matter is oxidatively decomposed by ozone.
【0010】したがって、本発明の前段設置の砂ろ過で
SS分を除去することで、後段のオゾン反応槽では溶解
性有機物を対象に、オゾンを注入すればよいことにな
る。ただし、砂ろ過槽で常時SS分を100%除去する
ことは不可能であり、前記オゾン反応槽へのオゾン注入
量の設定は、砂ろ過槽で捕捉されなかった浮遊物質のオ
ゾン消費を考慮した運転が必要となる。また、オゾン反
応槽では、注入オゾンが全量被処理水と反応消費される
ことはなく、未反応の排オゾンガスとして排出される。
オゾンガスそのものは有害なため、大気に放出すること
はできなく、触媒等の排オゾンガス処理装置が必要にな
る。[0010] Therefore, by removing the SS content by the sand filtration provided in the preceding stage of the present invention, ozone may be injected into the subsequent ozone reaction tank with respect to the soluble organic matter. However, it is impossible to always remove 100% of the SS content in the sand filtration tank, and the setting of the amount of ozone injected into the ozone reaction tank takes into account the ozone consumption of suspended substances not captured in the sand filtration tank. Driving is required. Further, in the ozone reaction tank, the entire amount of the injected ozone is not reacted and consumed with the water to be treated, but is discharged as unreacted exhaust ozone gas.
Since ozone gas itself is harmful, it cannot be released to the atmosphere, and an exhaust ozone gas treatment device such as a catalyst is required.
【0011】この排オゾンガス量は、注入オゾン量に比
例するものであり、前記したようにオゾン反応槽で必要
最小限にオゾン量が調整されれば、排オゾンガス量も少
なくなり、排ガス処理の負荷が低減される。The amount of exhausted ozone gas is proportional to the amount of injected ozone. If the amount of ozone is adjusted to the minimum necessary in the ozone reaction tank as described above, the amount of exhausted ozone gas is reduced, and the load of exhaust gas treatment is reduced. Is reduced.
【0012】以上のことから、砂ろ過槽処理水水質値と
してSS分及びオゾン反応槽処理水水質値として色度を
計測、該水質値を演算処理することにより、設定とする
水質値を得るための必要オゾン量を制御できるものであ
る。具体的には第一段階でオゾン反応処理水色度と処理
水設定色度の比較から必要オゾン量を算出し、第二段階
では砂ろ過処理水中SS分によって、前記第一段階オゾ
ン注入量を補正する。From the above, it is possible to obtain the water quality value to be set by measuring the SS content as the water quality value in the sand filtration tank and the chromaticity as the water quality value in the ozone reaction tank, and calculating the water quality value. Required ozone amount can be controlled. Specifically, in the first stage, the required ozone amount is calculated from the comparison of the chromaticity of the ozone reaction treated water and the set chromaticity of the treated water, and in the second stage, the first-stage ozone injection amount is corrected by the SS content in the sand filtration treated water. I do.
【0013】[0013]
【発明の実施の形態】本発明は、都市下水道,産業廃水
等処理水の高度処理のための、砂ろ過,オゾン処理にお
ける、オゾン注入方法を実現するものである。以下、高
度処理を図1に示す実施例に基づいて構成を説明する。
砂ろ過槽10,オゾン反応槽11において、流入原水
(二次処理水)20が砂ろ過槽10上部より流入し、下
部より流出する。砂ろ過処理水21は次に、オゾン反応
槽11の上部より流入し、同下部より処理水22として
取り出す。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention realizes an ozone injection method in sand filtration and ozone treatment for advanced treatment of treated water such as municipal sewerage and industrial wastewater. Hereinafter, the configuration of the altitude processing will be described based on the embodiment shown in FIG.
In the sand filtration tank 10 and the ozone reaction tank 11, the inflow raw water (secondarily treated water) 20 flows in from the upper part of the sand filtration tank 10 and flows out from the lower part. Next, the sand filtration treatment water 21 flows in from the upper part of the ozone reaction tank 11 and is taken out as treatment water 22 from the lower part.
【0014】一方、オゾン発生機12からのオゾンガス
23はオゾン反応槽11下部より、散気管14を介し注
入される。上記オゾン反応槽11で気液接触後、未反応
として残ったオゾンガス24は排オゾンガス処理装置1
3を介してから、大気に処理ガス25として放出する。On the other hand, ozone gas 23 from the ozone generator 12 is injected from the lower part of the ozone reaction tank 11 through the diffuser 14. After the gas-liquid contact in the ozone reaction tank 11, the ozone gas 24 remaining unreacted is discharged to the ozone gas treatment apparatus 1.
After that, the gas is released to the atmosphere as the processing gas 25.
【0015】次に、このように構成された実施例の作用
を説明する。砂ろ過槽10上部より流入した原水20中
のSS分は沈殿作用によって、ろ層内に捕捉し分離除去
される。次いで、SS分が除去された砂ろ過処理水21
はオゾン反応槽11に流下し、ここで、該オゾン反応槽
11の下部から注入されたオゾンガス23と向流気液接
触が行われ、有機物がオゾンとの酸化反応で、除去また
は減少される。ただし、オゾン反応槽11に注入された
オゾンガスの全量が消費されることはなく、一部のオゾ
ンガスは未反応の排オゾンガス24として残留する。こ
のためマンガン系等触媒を充填した排オゾンガス処理装
置13に、前記排オゾンガス24を通し酸素に分解して
から、大気に処理ガス25として放出する。Next, the operation of the embodiment configured as described above will be described. The SS component in the raw water 20 flowing from the upper part of the sand filter tank 10 is captured in the filter layer by a sedimentation action and separated and removed. Next, the sand filtration treated water 21 from which the SS component was removed.
Flows down into the ozone reaction tank 11, where the ozone gas 23 injected from the lower part of the ozone reaction tank 11 is brought into countercurrent gas-liquid contact, and organic substances are removed or reduced by an oxidation reaction with ozone. However, the entire amount of the ozone gas injected into the ozone reaction tank 11 is not consumed, and a part of the ozone gas remains as unreacted exhaust ozone gas 24. For this reason, the exhausted ozone gas 24 is decomposed into oxygen through the exhausted ozone gas treatment device 13 filled with a catalyst such as a manganese-based catalyst, and then released into the atmosphere as a treated gas 25.
【0016】次に、上記した構成作用の水処理におけ
る、オゾン注入制御方法について説明する。本発明では
オゾン注入制御を、色度を基本指標とし、SSで補正す
るものである。図1において、水質計測器30,31
(一例として各計測はSS濃度計,色度計)、演算処理
装置50及び砂ろ過処理水水質値信号40,オゾン反応
処理水水質値信号41である。上記構成において、水質
計測器30及び31で計測した水質値信号40のSS濃
度,水質値信号41の色度を演算処理装置50へ送信す
る。Next, a description will be given of a method of controlling ozone injection in the water treatment having the above-described construction. In the present invention, ozone injection control is corrected by SS using chromaticity as a basic index. In FIG. 1, water quality measuring devices 30, 31
(As an example, each measurement is an SS densitometer and a chromaticity meter), an arithmetic processing unit 50, a sand filtration water quality signal 40, and an ozone reaction water quality signal 41. In the above configuration, the SS concentration of the water quality value signal 40 measured by the water quality measurement devices 30 and 31 and the chromaticity of the water quality value signal 41 are transmitted to the arithmetic processing device 50.
【0017】演算処理装置50では、まず色度設定値と
前記オゾン反応槽処理水22の色度入力値を比較し、こ
の差によって第一段階のオゾン注入率が計算される。次
に、砂ろ過処理水21の水質値信号40のSS濃度入力
値がオゾン注入率の補正値として使用する。The arithmetic processing unit 50 first compares the chromaticity set value with the chromaticity input value of the ozone reaction tank treated water 22, and calculates the first stage ozone injection rate based on the difference. Next, the SS concentration input value of the water quality value signal 40 of the sand filtration treatment water 21 is used as a correction value of the ozone injection rate.
【0018】すなわち、本発明はSS濃度と有機物濃度
は比例関係にあることを見い出したものであり、SS濃
度の変動に対応してオゾン注入率を調整する。従って、
第二段階として砂ろ過処理水のSS濃度と消費定数kか
ら補正値を計算し、色度に基づくオゾン注入率を補正す
る。最終的には、補正されたオゾン注入率42とろ過流
量43から注入オゾン調節器51によってオゾン発生量
44が算出され、この値がオゾン発生機12に送信され
る。これにしたがって、オゾン発生機12から、必要な
オゾン量23がオゾン反応槽に吹込まれる。That is, the present invention has found that the SS concentration and the organic matter concentration are in a proportional relationship, and adjusts the ozone injection rate according to the fluctuation of the SS concentration. Therefore,
As a second step, a correction value is calculated from the SS concentration of the sand filtration treatment water and the consumption constant k, and the ozone injection rate based on the chromaticity is corrected. Finally, the ozone generation amount 44 is calculated by the injection ozone controller 51 from the corrected ozone injection rate 42 and the filtered flow rate 43, and this value is transmitted to the ozone generator 12. Accordingly, the required ozone amount 23 is blown into the ozone reaction tank from the ozone generator 12.
【0019】次に、具体的な実証データを基に本発明の
有効性を説明する。まず、図3に砂ろ過槽を設置した場
合と、設置しない場合の両者でのオゾン注入率に対す
る、処理水の有機物の濃度減少を示す。この結果、原水
中(有機物濃度BOD:13mg/L,SS濃度:5mg/
L)のSS分を除去することにより、同一処理水有機物
濃度を得るためのオゾン注入は、砂ろ過槽を設置する
と、約30〜40%低減できるものである。ただし、砂
ろ過槽で、常にSS分を100%除去することはなく、
一部のSS分はオゾン反応槽へ入る。Next, the effectiveness of the present invention will be described based on specific demonstration data. First, FIG. 3 shows a decrease in the concentration of the organic matter in the treated water with respect to the ozone injection rate when the sand filtration tank is installed and when the sand filtration tank is not installed. As a result, in the raw water (organic matter concentration BOD: 13 mg / L, SS concentration: 5 mg / L
The ozone injection for obtaining the same treated water organic matter concentration by removing the SS component in L) can be reduced by about 30 to 40% by installing a sand filtration tank. However, in the sand filter tank, 100% of SS is not always removed.
Some SS enters the ozone reactor.
【0020】次に、図4に色度とオゾン注入率の関係を
示す。色度はオゾン注入により大きく減少することが分
かる。同図から設定色度に対する必要オゾン注入率を演
算できる。さらに、図5にSS分と有機物濃度の関係
を、また、図6に有機物濃度とオゾン注入率の関係を示
す。図5からSS濃度と有機物濃度は比例関係にあり、
したがって、砂ろ過処理水中のSS濃度測定から、SS
濃度とオゾン注入率の関係を図7に示すことができるも
のである。以上のように、本発明では図4,図5,図6
及び図7の関係からオゾン注入率を設定するものであ
る。Next, FIG. 4 shows the relationship between the chromaticity and the ozone injection rate. It can be seen that the chromaticity is greatly reduced by ozone injection. The required ozone injection rate for the set chromaticity can be calculated from FIG. FIG. 5 shows the relationship between the SS content and the organic substance concentration, and FIG. 6 shows the relationship between the organic substance concentration and the ozone injection rate. From FIG. 5, the SS concentration and the organic matter concentration are in a proportional relationship,
Therefore, from the SS concentration measurement in the sand filtration treated water,
FIG. 7 shows the relationship between the concentration and the ozone injection rate. As described above, in the present invention, FIGS.
The ozone injection rate is set based on the relationship shown in FIG.
【0021】[0021]
【発明の効果】以上の説明から明らかなように、本発明
によれば、下水二次処理水の高度処理として使用するオ
ゾンを効率良く注入することにより、発生オゾン量の効
率的使用並びに大気への排出ガス量を低減が可能とな
る。また、放流処理水水質の向上につながり、水圏環境
改善に効果がある。As is apparent from the above description, according to the present invention, by efficiently injecting ozone used for advanced treatment of sewage secondary treatment water, the amount of generated ozone can be efficiently used and the ozone can be introduced into the atmosphere. It is possible to reduce the amount of exhaust gas. In addition, it leads to the improvement of the quality of treated effluent water, which is effective in improving the aquatic environment.
【図1】本発明における実施例であるオゾン処理装置の
全体を表わす構成図。FIG. 1 is a configuration diagram showing an entire ozone treatment apparatus according to an embodiment of the present invention.
【図2】従来のオゾン処理装置の一部を表わす構成図。FIG. 2 is a configuration diagram showing a part of a conventional ozone treatment apparatus.
【図3】オゾン注入率と処理水有機物濃度の関係を示す
特性図。FIG. 3 is a characteristic diagram showing a relationship between an ozone injection rate and an organic matter concentration in treated water.
【図4】色度とオゾン注入率の関係を示す特性図。FIG. 4 is a characteristic diagram showing a relationship between chromaticity and an ozone injection rate.
【図5】SS濃度とオゾン注入率の関係を示す特性図。FIG. 5 is a characteristic diagram showing a relationship between an SS concentration and an ozone injection rate.
【図6】有機物濃度とオゾン注入率の関係を示す特性
図。FIG. 6 is a characteristic diagram showing a relationship between an organic substance concentration and an ozone injection rate.
【図7】SS濃度とオゾン注入率の関係を示す特性図。FIG. 7 is a characteristic diagram showing a relationship between an SS concentration and an ozone injection rate.
10…砂ろ過槽、11…オゾン反応槽、12…オゾン発
生機、13…排オゾン処理装置、14…散気管、20…
原水、21…砂ろ過処理水、22…オゾン処理水、23
…オゾンガス、24…排オゾンガス、25…処理ガス、
30,31…水質計測器、40…砂ろ過処理水水質値信
号、41…オゾン反応処理水水質値信号、42…オゾン
注入率、43…ろ過流水量、44…オゾン発生量、50
…演算処理装置、51…注入オゾン調節器。DESCRIPTION OF SYMBOLS 10 ... Sand filtration tank, 11 ... Ozone reaction tank, 12 ... Ozone generator, 13 ... Exhaust ozone treatment apparatus, 14 ... Aeration tube, 20 ...
Raw water, 21: sand filtration treated water, 22: ozone treated water, 23
... ozone gas, 24 ... exhaust ozone gas, 25 ... processing gas,
30, 31: water quality measuring instrument, 40: sand filtration treated water quality signal, 41: ozone reaction treated water quality signal, 42: ozone injection rate, 43: filtered water flow, 44: ozone generation, 50
... arithmetic processing unit, 51 ... injection ozone controller.
Claims (1)
を前段で砂ろ過層を通し、後段でオゾン反応槽で注入オ
ゾンにより処理する方法において、前記砂ろ過層及びオ
ゾン反応槽の処理水の各水質値並びに設定水質値を演算
処理装置に送信し、該演算処理装置でオゾン処理水水質
値と前記設定水質値とを比較演算して設定水質値に適し
たオゾン注入率を算出し、該オゾン注入率を前記砂ろ過
処理水水質値によって補正することを特徴とする水処理
におけるオゾン注入制御方法。1. A method for treating wastewater containing an organic substance and a floating substance through a sand filtration layer in a first stage and treating the wastewater with injected ozone in an ozone reaction tank in a second stage. The respective water quality value and the set water quality value are transmitted to the arithmetic processing device, and the ozone treatment water quality value and the set water quality value are compared and calculated by the arithmetic processing device to calculate an ozone injection rate suitable for the set water quality value, An ozone injection control method in water treatment, wherein the ozone injection rate is corrected based on the water quality value of the sand filtration treatment water.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30393397A JPH11138183A (en) | 1997-11-06 | 1997-11-06 | Ozone inject control method in water treatment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30393397A JPH11138183A (en) | 1997-11-06 | 1997-11-06 | Ozone inject control method in water treatment |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11138183A true JPH11138183A (en) | 1999-05-25 |
Family
ID=17927039
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30393397A Pending JPH11138183A (en) | 1997-11-06 | 1997-11-06 | Ozone inject control method in water treatment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11138183A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008149215A (en) * | 2006-12-14 | 2008-07-03 | Sharp Corp | Cleaning apparatus |
JP2015160172A (en) * | 2014-02-27 | 2015-09-07 | オルガノ株式会社 | Water treatment equipment and water treatment method |
-
1997
- 1997-11-06 JP JP30393397A patent/JPH11138183A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008149215A (en) * | 2006-12-14 | 2008-07-03 | Sharp Corp | Cleaning apparatus |
JP2015160172A (en) * | 2014-02-27 | 2015-09-07 | オルガノ株式会社 | Water treatment equipment and water treatment method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7314563B2 (en) | Membrane coupled activated sludge method and apparatus operating anoxic/anaerobic process alternately for removal of nitrogen and phosphorous | |
JP2002126779A (en) | Sludge treatment method and apparatus used therefor | |
JPH03114597A (en) | Method for controlling biological denitrification | |
JPH03137990A (en) | High level treatment of sewage to be treated | |
JP3203774B2 (en) | Organic wastewater treatment method and methane fermentation treatment device | |
JPH11138183A (en) | Ozone inject control method in water treatment | |
JPH09122681A (en) | Water quality controlling apparatus | |
JPH0716595A (en) | Operation control method in modified method for circulating active sludge | |
JPH0938683A (en) | Biological water treating device | |
JP3782738B2 (en) | Wastewater treatment method | |
JP2000288540A (en) | Method and apparatus for treating night soil wastewater | |
JP3026017B2 (en) | Activated sludge treatment method by SRT control | |
JP4453287B2 (en) | Sewage treatment method and sewage treatment control system | |
JPH03262599A (en) | Purification for removing nitrogen and phosphorus in polluted water | |
JPH05177196A (en) | Active carbon feeding device in high grade water purification system | |
JPH09192680A (en) | Treatment of water with ozone and device therefor | |
JP3303475B2 (en) | Operation control method of activated sludge circulation method | |
JPH09234478A (en) | Sewage treatment by ozone injection and device therefor | |
JPH08192179A (en) | Device for setting residence time of sludge in activated sludge process | |
JPS6025587A (en) | High-degree treatment of water | |
JP2002320957A (en) | Water quality controlling system for wastewater treatment facilities | |
JPH08318286A (en) | Ozone treating method and apparatus in high-degree water purifying treatment | |
JPH08299987A (en) | Biological denitrification method | |
JPH10192897A (en) | Sludge treating method | |
JP2002355693A (en) | Wastewater treatment method using wastewater treatment apparatus |