JP2002221518A - Water quality monitor and controller for water treatment process - Google Patents

Water quality monitor and controller for water treatment process

Info

Publication number
JP2002221518A
JP2002221518A JP2001017153A JP2001017153A JP2002221518A JP 2002221518 A JP2002221518 A JP 2002221518A JP 2001017153 A JP2001017153 A JP 2001017153A JP 2001017153 A JP2001017153 A JP 2001017153A JP 2002221518 A JP2002221518 A JP 2002221518A
Authority
JP
Japan
Prior art keywords
alkalinity
water
value
acid
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001017153A
Other languages
Japanese (ja)
Inventor
Naoki Hara
直樹 原
Shoji Watanabe
昭二 渡辺
Takeshi Takemoto
剛 武本
Ichiro Enbutsu
伊智朗 圓佛
Fumitomo Kimura
文智 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001017153A priority Critical patent/JP2002221518A/en
Publication of JP2002221518A publication Critical patent/JP2002221518A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To excellently maintain concentration of nitrogen or phosphor in treatment water by rapidly grasping accurate alkalinity and properly controlling an injected flocculant amount in a water treatment process. SOLUTION: Treated liquid such as mixed liquid, inflow sewage 13 or the treatment water 16 is directly led into a biological reaction tank 1, the true alkalinity is found by an alkalinity measurement device 41, the flocculant injection amount is found by a calculation device 50 by use of the found alkalinity value, and a controller 55 is controlled on the basis of the result. The alkalinity measurement device 41 has a titration device 411 measuring an acid consumption amount on the basis of a pH set value from a pH setting circuit 412, a calculation circuit 413 finding temporary alkalinity from the acid consumption amount, and a calculation circuit 414 finding the true alkalinity on the basis of the temporary alkalinity and the pH set value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、都市下水や産業排
水、河川水や湖沼水あるいはダム湖水の水質監視や、こ
れらの水中に溶解している有機物や窒素、リンを生物学
的処理あるいは物理化学凝集で除去する水処理プロセス
において、特に、生物や有機性あるいは無機性物質が懸
濁しても正確なアルカリ度が把握でき、このアルカリ度
に基づいて生物学的処理の操作量や物理化学凝集の目的
で注入する凝集剤を調節し、処理水中の窒素やリン濃度
を目標値に維持する水質監視方法及び制御方法に関す
る。
The present invention relates to the monitoring of water quality of municipal sewage, industrial effluent, river water, lake water or dam lake water, and biological treatment or physical treatment of organic substances, nitrogen and phosphorus dissolved in these waters. In the water treatment process that removes by chemical coagulation, especially when biological or organic or inorganic substances are suspended, the exact alkalinity can be grasped. The present invention relates to a water quality monitoring method and a control method for adjusting a coagulant to be injected for the purpose of (1) and maintaining nitrogen and phosphorus concentrations in treated water at target values.

【0002】[0002]

【従来の技術】下水処理場では、活性汚泥と呼ばれる複
合微生物群の反応で生活排水や産業排水などを処理して
いる。下水中には有機物の他に窒素やリンが含まれてお
り、窒素は主にNH4−N、リンはオルトリン酸(以下、PO
4−P)として下水処理場に流入する。これらの窒素やリ
ンを除去せずに放流すると、放流水域では富栄養化が進
み、藻類などの異常繁殖によりさらに水質が悪化する。
したがって、下水処理場では有機物に加えて窒素やリン
も除去できる高度処理が要求されている。
2. Description of the Related Art In a sewage treatment plant, domestic wastewater and industrial wastewater are treated by the reaction of a complex microorganism group called activated sludge. Sewage contains nitrogen and phosphorus in addition to organic matter. Nitrogen is mainly NH4-N, and phosphorus is orthophosphoric acid (hereinafter PO).
4-P) flows into the sewage treatment plant. If the water is released without removing these nitrogen and phosphorus, eutrophication proceeds in the discharge water area, and the water quality is further deteriorated due to abnormal reproduction of algae and the like.
Therefore, a sewage treatment plant is required to have an advanced treatment capable of removing nitrogen and phosphorus in addition to organic matter.

【0003】活性汚泥中には有機物分解菌や硝化菌、脱
窒菌、リン蓄積菌などが存在し、高度処理では、これら
の微生物の代謝機能を効果的に発揮させることで有機物
や窒素、リンを除去する。高度処理では嫌気槽と好気槽
という二つ以上の反応槽が必要であり、反応槽の組合せ
によって様々な処理方式がある。代表的な方式として、
嫌気−無酸素−好気法(A2O法)、嫌気−好気法(AO
法)、嫌気−好気−無酸素−再曝気法(AOAO法あるいは
2段嫌気−好気法)、無酸素−好気法(活性汚泥あるい
は硝化液循環変法)などがある。A2O法とAOAO法は窒素
とリン、活性汚泥循環変法は窒素、AO法はリンの除去率
の向上が期待できる。このように、高度処理には種々の
方式があるが、窒素やリン、及び有機物の除去原理は共
通している。
[0003] Activated sludge contains organic matter-decomposing bacteria, nitrifying bacteria, denitrifying bacteria, phosphorus-accumulating bacteria, and the like. In advanced treatment, the metabolic function of these microorganisms is effectively exerted to remove organic matter, nitrogen, and phosphorus. Remove. Advanced treatment requires two or more reaction tanks, an anaerobic tank and an aerobic tank, and there are various treatment methods depending on the combination of the reaction tanks. As a typical method,
Anaerobic-anoxic-aerobic method (A2O method), Anaerobic-aerobic method (AO
Method), anaerobic-aerobic-anoxic-re-aeration method (AOAO method or two-stage anaerobic-aerobic method), anoxic-aerobic method (activated sludge or nitrification liquid circulation modified method), and the like. The A2O and AOAO methods can be expected to improve the removal rate of nitrogen and phosphorus, the activated sludge circulation method can improve the nitrogen removal rate, and the AO method can improve the phosphorus removal rate. As described above, there are various types of advanced treatment, but the principle of removing nitrogen, phosphorus, and organic substances is common.

【0004】窒素は、アンモニア性窒素NH4−Nで流入
し、好気槽で(1)式の硝化反応により硝酸性窒素NO3
−Nに変化し、NO3−Nが嫌気槽で(2)式の脱窒反応に
よって窒素ガスとなる2段階の反応で除去される。A2O
法や活性汚泥循環変法は、後段の好気槽でNH4−NをNO3
−Nに酸化する硝化反応を進行させ、硝化反応液を前段
の無酸素槽に循環してNO3−Nを有機物でN2等に還元する
脱窒反応を行わせることで窒素を除去する。AOAO法は前
段の好気槽で生成されたNO3−Nを後段の無酸素槽でN2等
に還元して窒素を除去する。
[0004] Nitrogen flows in as ammoniacal nitrogen NH4-N, and is subjected to nitrification reaction of formula (1) in an aerobic tank to produce nitrate nitrogen NO3.
-N, and NO3-N is removed in a two-stage reaction in which nitrogen gas is obtained by the denitrification reaction of the formula (2) in the anaerobic tank. A2O
Method and activated sludge circulation method, NH4-N in NO2
The nitrification reaction to oxidize to -N is advanced, and the nitrification reaction liquid is circulated to the anoxic tank in the preceding stage to perform a denitrification reaction for reducing NO3-N to N2 or the like with an organic substance to remove nitrogen. In the AOAO method, NO3-N generated in the first aerobic tank is reduced to N2 or the like in the subsequent anoxic tank to remove nitrogen.

【0005】なお、硝化反応はNH4−N→NO2−N→NO3−
N、脱窒反応はNO3−N→ NO2−N→N2と、いづれも亜硝酸
(NO2−N)を経由する反応形態を辿るとされているが、
(1)式及び(2)式ではこれらの反応経路を省略して
いる。
[0005] The nitrification reaction is NH4-N → NO2-N → NO3-
N, the denitrification reaction is said to follow the reaction form via nitrous acid (NO2-N) in the order of NO3-N → NO2-N → N2,
In the formulas (1) and (2), these reaction routes are omitted.

【0006】 NH4++2O2→NO3−+2H++H2O (1) 2NO3−+5(H2)→N2↑+2OH−+4H2O (2) (1)式の硝化反応では、アルカリ成分が存在すると、
生成された水素イオンと反応してアルカリ度が低下す
る。アルカリ度は1mg/LのNH4−Nが硝化された場合、
7.14mg/L低下する。逆に、(2)式の脱窒反応では水
酸イオンが生成され、NO3−Nが1mg除去されると、アル
カリ度は3.57mg増加する。
NH4 ++ 2O2 → NO3− + 2H ++ H2O (1) 2NO3− + 5 (H2) → N2 ↑ + 2OH− + 4H2O (2) In the nitrification reaction of the formula (1), if an alkali component is present,
It reacts with the generated hydrogen ions to lower the alkalinity. When the alkalinity is 1 mg / L NH4-N is nitrified,
Decrease by 7.14 mg / L. Conversely, in the denitrification reaction of the formula (2), hydroxyl ions are generated, and when 1 mg of NO3-N is removed, the alkalinity increases by 3.57 mg.

【0007】一方、リンは、活性汚泥(リン蓄積菌)の
リン過剰摂取機能を利用して除去している。リン蓄積菌
は、嫌気状態下で細胞内のリンを一旦細胞外に放出し、
放出した菌を好気状態にすると放出した以上にリンを細
胞内に摂取する特徴がある。
[0007] On the other hand, phosphorus is removed by utilizing the excess sludge intake function of activated sludge (phosphorus accumulating bacteria). Phosphorus-accumulating bacteria once release intracellular phosphorus under anaerobic conditions,
When the released bacteria are brought into an aerobic state, phosphorus is more likely to be taken into cells than released.

【0008】A2O法やAO法及びAOAO法は嫌気槽を前段
に、好気槽を後段に配置することで、流入した下水中の
リンを生物学的に除去できる。活性汚泥のリン過剰摂取
機能は、流入下水の水質状態やプラント操作条件、ある
いは活性汚泥の管理状態によって変化し、放出不良や摂
取不良などを生じて処理水中のリン濃度を増加させるこ
とがある。このため、下水処理場では凝集剤を注入して
物理化学的に除去する方法を併用している。
[0008] In the A2O method, the AO method and the AOAO method, by disposing the anaerobic tank in the first stage and the aerobic tank in the second stage, it is possible to biologically remove the phosphorus in the inflowing sewage. The function of excess phosphorus ingestion of activated sludge varies depending on the quality of inflow sewage water, plant operating conditions, or the management state of activated sludge, and may cause poor discharge or poor intake to increase the phosphorus concentration in treated water. For this reason, the sewage treatment plant uses a method of injecting a flocculant and removing it physically and chemically.

【0009】凝集剤にはアルミニウムや鉄系の金属塩や
消石灰などが用いられる。液中でのリンはオルトリン酸
PO4−Pや縮合リン酸の形態で存在し、凝集剤の注入によ
り難溶性の塩を形成する。また、凝集剤は重炭酸塩など
のアルカリ成分HCO3とも反応する。アルミニウム系の凝
集剤を用いた場合の反応式は、(3)式及び(4)式で
表される。
As the coagulant, an aluminum or iron-based metal salt or slaked lime is used. Phosphorus in the solution is orthophosphoric acid
It exists in the form of PO4-P and condensed phosphoric acid, and forms a sparingly soluble salt upon injection of a flocculant. Further, the flocculant also reacts with an alkaline component such as bicarbonate HCO3. The reaction formula when an aluminum-based flocculant is used is represented by formulas (3) and (4).

【0010】 Al3++PO43−→AlPO4↓ (3) Al3++3HCO3−→Al(OH)3↓+3CO2 (4) (4)式で生成された水酸化物はフロック状となり、さ
らにリンを吸着除去する(文献1;村田恒雄編著「下水
の高度処理技術」、理工図書、平成4年)。
[0010] Al3 ++ PO43- → AlPO4 ↓ (3) Al3 ++ 3HCO3-- → Al (OH) 3 ↓ + 3CO2 (4) The hydroxide formed by the formula (4) becomes a floc and further removes phosphorus by adsorption. (Literature 1: Tsuneo Murata, edited by "Advanced Sewage Treatment Technology", Science and Engineering Books, 1992).

【0011】このように、下水高度処理において、アル
カリ度は硝化・脱窒反応の進行状態の監視や運転管理の
判断指標、凝集剤注入量の操作指標として重要な因子で
ある。アルカリ度とは、水中に含まれている炭酸塩、重
炭酸塩や水酸化物などのアルカリ成分を所定のpHまで中
和するのに要する酸の量を、これに対応する炭酸カルシ
ウムの濃度で表わしたものである。
As described above, in the advanced sewage treatment, the alkalinity is an important factor as a monitoring index of the progress of the nitrification / denitrification reaction, a judgment index for operation management, and an operation index for the coagulant injection amount. Alkalinity is the amount of acid required to neutralize alkali components, such as carbonates, bicarbonates and hydroxides, contained in water to a predetermined pH, by the corresponding concentration of calcium carbonate. It is a representation.

【0012】アルカリ度には、中和点のpHを4.8とする
Mアルカリ度(別名総アルカリ度)と、中和点pHを8.3
とするPアルカリ度の2種類がある。処理場によって相
違するが、流入下水のpHは6.8〜8.3の範囲、放流水のpH
は6.3〜7.7の範囲にある。このため、下水処理場では、
Pアルカリ度は測定できず、中和点pHを4.8とするMア
ルカリ度が対象となる。Mアルカリ度の測定は、所定量
(La mL)の検水をpH計を用いてpHが4.8となるまで酸で滴
定し、これに要した酸量(Da mL)を求め、(5)式で算
出する。
The alkalinity includes M alkalinity at which the pH at the neutralization point is 4.8 (also called total alkalinity) and pH 8.3 at the neutralization point.
There are two types of P alkalinity. Influent sewage pH ranges from 6.8 to 8.3, effluent pH
Ranges from 6.3 to 7.7. For this reason, in sewage treatment plants,
P alkalinity cannot be measured, and M alkalinity with a neutralization point pH of 4.8 is targeted. The measurement of M alkalinity is a predetermined amount
A sample of (La mL) is titrated with an acid using a pH meter until the pH becomes 4.8, and the amount of acid (Da mL) required for the titration is determined, and calculated by equation (5).

【0013】 Mアルカリ度(mgCaCO3/L)=1000・Da・F・Kc/La (5) ここで、Fは用いた酸のファクタ、Kcは酸1mLの炭酸カ
ルシウム換算値である(文献2;日本下水道協会「下水
試験方法−上巻−」、1997年版、P120−122)。以後、
Mアルカリ度を単にアルカリ度と称する。
M alkalinity (mgCaCO 3 / L) = 1000 · Da · F · Kc / La (5) Here, F is a factor of the acid used, and Kc is a calcium carbonate equivalent value of 1 mL of the acid (Reference 2; Japan Sewage Works Association, "Sewage test method-Volume 1", 1997 edition, P120-122). Since then
M alkalinity is simply referred to as alkalinity.

【0014】アルカリ度を自動的に測定する装置は、浄
水を対象に実用化されている。滴定対象の検水にアルカ
リ成分が溶出する濁質や、測定を妨害する固形物成分が
含まれる場合は、これらの懸濁物質を予め分離除去する
前処理操作が必要となる。分離除去手段としては、遠心
分離法やろ紙を用いる方法が知られている(文献3;日
本水道協会「上水試験方法」、1993年版P58)。
A device for automatically measuring alkalinity has been put to practical use for purified water. If the test sample to be titrated contains a turbid substance from which an alkaline component elutes or a solid component that interferes with measurement, a pretreatment operation for separating and removing these suspended substances in advance is required. As means for separation and removal, a centrifugal separation method and a method using a filter paper are known (Reference 3; Japan Water Works Association "Water supply test method", 1993 edition, p. 58).

【0015】下水処理場において、活性汚泥が含有する
試料を対象にアルカリ度を測定する場合、遠心分離し、
その上澄液を滴定対象液とすることが述べられている
(上記文献2;P293、P300)。
In a sewage treatment plant, when alkalinity is measured for a sample containing activated sludge, centrifugation is performed.
It is stated that the supernatant is used as a liquid to be titrated (Reference 2; P293, P300).

【0016】さらに、遠心分離法やろ紙を用いた方法は
懸濁物質の除去率が低く、測定精度が低下する問題があ
るとして、固液分離手段に限外ろ過装置を配設した消化
汚泥の水質モニター方式(特開平5−212399号公報)が
提案されている。
Furthermore, the centrifugal separation method and the method using filter paper have a problem that the removal rate of suspended substances is low and the measurement accuracy is reduced. A water quality monitoring method (Japanese Patent Laid-Open No. 5-212399) has been proposed.

【0017】アルカリ度を運転管理指標に用いた下水処
理制御に関しては、硝化槽の総アルカリ度変化量に基づ
いて脱窒槽への有機炭素源注入量を調節制御する方式
(特開昭56−53795号公報)、硝化槽のアルカリ度変化
量から硝化された窒素量を演算して硝化反応状態を判定
し、硝化に影響する因子を調節する方式(特開平9−38
682号公報)などの提案がある。
Regarding sewage treatment control using alkalinity as an operation management index, a method of adjusting and controlling the amount of organic carbon source injected into a denitrification tank based on the total alkalinity change in a nitrification tank (JP-A-56-53795) JP-A-9-38), a nitrification reaction state is determined by calculating an amount of nitrified nitrogen from an alkalinity change amount of a nitrification tank, and a factor affecting nitrification is adjusted (Japanese Patent Laid-Open No. 9-38)
No. 682).

【0018】[0018]

【発明が解決しようとする課題】上記した特開平5−21
2399号のアルカリ度計測方式は、酸−アルカリ滴定に対
する消化汚泥の影響を求め、固液分離手段が不可欠との
結果(特開平5−253600号)に基づき、他の先行技術よ
り固液分離性能が優れている限外ろ過装置を前処理手段
に採用している。
SUMMARY OF THE INVENTION The above-mentioned JP-A-5-21
The alkalinity measurement method of No. 2399 determines the effect of digested sludge on acid-alkali titration, and based on the result that solid-liquid separation means is indispensable (Japanese Patent Laid-Open No. 5-253600), the solid-liquid separation performance is higher than that of other prior arts. The ultrafiltration apparatus, which is superior in the above, is adopted as the pretreatment means.

【0019】限外ろ過装置は、一般に20Å〜0.2μmの孔
径を有する膜を使用し、加圧あるいは減圧して固液分離
する。被ろ過液側の膜面には、ろ過時間とともに懸濁物
質の付着量が増加してろ過性能を低下させるため、付着
物を剥離する膜洗浄手段が必要となる。また、ろ過膜
は、劣化破損や逆洗しても改善されない細孔部の目詰り
により性能が低下するため、ろ過流量やろ過液の懸濁物
質濃度、あるいは圧力損失などを点検・監視し、交換す
る必要がある。
The ultrafiltration apparatus generally uses a membrane having a pore size of 20 to 0.2 μm, and performs solid-liquid separation under pressure or under reduced pressure. On the membrane surface on the side of the liquid to be filtered, the amount of suspended substances attached increases with the filtration time and the filtration performance decreases, so that a membrane cleaning means for removing the attached matter is required. In addition, the performance of the filtration membrane deteriorates due to deterioration and damage or clogging of the pores that are not improved even after backwashing.Therefore, check and monitor the filtration flow rate, the concentration of suspended solids in the filtrate, and the pressure loss. Need to be replaced.

【0020】運転制御を目的とした特開昭56−53795号
や特開平9−38682号も、膜ろ過や遠心分離、あるいは
重力沈降などの活性汚泥分離手段を設け、分離手段から
のろ過液や上澄液を対象にアルカリ度を滴定法で計測す
る方式を採用している。これらの方式も、アルカリ度計
の他に固液分離手段を設けるため、設備及び運転コスト
が嵩み、さらに、保守点検作業が必要となり、運転管理
者の作業負担を増大させる。また、前処理している間に
も反応が進行するため、水質が変化する。アルカリ度
は、被ろ過液が好気状態でも嫌気状態であっても、硝
化、脱窒反応の双方に影響を受けるため、特に変化しや
すい水質である。
JP-A-56-53795 and JP-A-9-38682 for the purpose of operation control are also provided with activated sludge separating means such as membrane filtration, centrifugal separation, or gravity sedimentation. A method is used in which the alkalinity of the supernatant is measured by a titration method. In these methods, since a solid-liquid separation unit is provided in addition to the alkalinity meter, equipment and operation costs are increased, and further, maintenance and inspection work is required, and the work load of the operation manager is increased. In addition, since the reaction proceeds even during the pretreatment, the water quality changes. The alkalinity is a water quality that is particularly liable to change, regardless of whether the liquid to be filtered is in an aerobic state or an anaerobic state, because it is affected by both nitrification and denitrification reactions.

【0021】本発明の目的は、上記した従来技術の状況
に鑑み、活性汚泥を固液分離する前処理手段を設置する
必要がなく、活性汚泥を含有する混合液でも直接滴定
し、アルカリ度を速やかに高精度で計測できる簡易な水
質監視装置と、この水質監視方式を用いた水処理プラン
トの制御装置を提供することにある。
In view of the above-mentioned state of the prior art, the object of the present invention is to eliminate the need for installing a pretreatment means for solid-liquid separation of activated sludge, and to directly titrate even a mixed liquid containing activated sludge to reduce the alkalinity. An object of the present invention is to provide a simple water quality monitoring device capable of promptly measuring with high accuracy and a control device for a water treatment plant using the water quality monitoring method.

【0022】[0022]

【課題を解決するための手段】上記目的を達成する本発
明の水質監視装置は、pH4.8を基準値とし、該pH基
準値より高いpH設定値を入力するpH設定回路と、所
定量の被滴定検水を導入し、該被滴定検水のpHが前記p
H設定回路から出力されたpH設定値となるように酸で
中和する滴定装置と、該滴定装置で中和に消費した酸量
を計測する酸消費量計測回路と、該酸消費量計測値から
前記pH設定値におけるアルカリ度の暫定値を求める暫
定アルカリ度演算回路と、前記pH設定値で前記pH基
準値のアルカリ度を予測するアルカリ度予測係数が入力
され、該アルカリ度予測係数と前記暫定アルカリ度から
前記pH基準値におけるアルカリ度を演算するアルカリ
度演算回路を具備し、該アルカリ度演算値を前記被滴定
検水の真のアルカリ度として出力することを特徴とす
る。
A water quality monitoring apparatus according to the present invention which achieves the above object has a pH setting circuit for setting a pH of 4.8 as a reference value and inputting a pH set value higher than the pH reference value, Introducing a sample to be titrated, the pH of the sample to be titrated
A titrator for neutralizing with an acid so as to have a pH set value output from the H setting circuit, an acid consumption measuring circuit for measuring the amount of acid consumed for neutralization by the titrator, and the acid consumption measurement value A provisional alkalinity calculating circuit for obtaining a provisional value of the alkalinity at the pH set value, and an alkalinity prediction coefficient for predicting the alkalinity of the pH reference value at the pH set value, and the alkalinity prediction coefficient and the An alkalinity calculation circuit for calculating the alkalinity at the pH reference value from the provisional alkalinity is provided, and the calculated alkalinity value is output as the true alkalinity of the test water to be titrated.

【0023】また、本発明の水質監視装置は、pH4.8
を基準値とし、該pH基準値より高いpH設定値を入力
するpH設定回路と、所定量の被滴定検水を導入し、該
被滴定検水のpHが前記pH設定回路から出力されたpH
設定値となるように酸で中和する滴定装置と、該滴定装
置で中和に消費した酸量を計測する酸消費量計測回路
と、前記pH設定値で前記pH基準値の酸消費量を予測
する酸消費量予測係数が入力され、該酸消費量予測係数
と前記pH設定値での酸消費量計測値から前記pH基準
値の酸消費量を演算する酸消費量演算回路と、該酸消費
量演算値からアルカリ度を求めるアルカリ度演算回路を
具備し、該アルカリ度演算値を前記被滴定検水の真のア
ルカリ度として出力することを特徴とする。
The water quality monitoring device of the present invention has a pH of 4.8.
Is a reference value, a pH setting circuit for inputting a pH set value higher than the pH reference value, and a predetermined amount of the test water to be titrated is introduced, and the pH of the test water to be titrated is the pH output from the pH setting circuit.
A titrator for neutralizing with an acid so as to be a set value, an acid consumption measuring circuit for measuring an amount of acid consumed for neutralization by the titrator, and an acid consumption amount of the pH reference value at the pH set value. An acid consumption prediction coefficient to be predicted, an acid consumption calculation circuit for calculating an acid consumption of the pH reference value from the acid consumption prediction coefficient and the acid consumption measurement value at the pH set value; An alkalinity calculation circuit for calculating alkalinity from the consumption calculation value is provided, and the alkalinity calculation value is output as the true alkalinity of the test water to be titrated.

【0024】上記の本発明おいて、被滴定検水は家庭排
水や産業排水等から成る流入下水中の有機物や窒素、リ
ンを活性汚泥により除去する下水処理プロセスの前記流
入下水あるいは活性汚泥が懸濁する活性汚泥混合液、あ
るいは該混合液の活性汚泥を固液分離した上澄液である
ことを特徴とする。
In the above-mentioned present invention, the test water to be titrated is suspended by the inflow sewage or activated sludge in the sewage treatment process in which organic matter, nitrogen and phosphorus in inflow sewage such as domestic wastewater and industrial wastewater are removed by activated sludge. It is a mixed liquid of activated sludge which becomes turbid or a supernatant obtained by solid-liquid separation of the activated sludge of the mixed liquid.

【0025】また、本発明の水質監視装置は、pH基準
値である4.8を入力するpH設定回路と、所定量の被滴
定検水を導入し、該被滴定検水のpHが前記pH設定回路
から出力されたpH基準値となるように酸で中和する滴
定装置と、該滴定装置で中和に消費した酸量を計測する
酸消費量計測回路と、前記被滴定検水中の活性汚泥濃度
を計測する汚泥濃度計測回路と、pH基準値である4.8
までに単位重量当りの活性汚泥が消費する酸量を予め設
定し、前記汚泥濃度計測回路からの汚泥濃度を積算して
求めた活性汚泥が消費する酸量を前記酸消費量計測回路
の酸消費量計測値から差し引いて酸消費量補正値を演算
する酸消費量補正回路と、該酸消費量補正値に基づいて
アルカリ度を求めるアルカリ度演算回路を具備し、該ア
ルカリ度演算値を前記被滴定検水が活性汚泥を含まない
状態の真のアルカリ度として出力することを特徴とす
る。
Further, the water quality monitoring apparatus of the present invention has a pH setting circuit for inputting a pH reference value of 4.8 and a predetermined amount of test water to be titrated, and the pH of the test water to be titrated is set to the pH setting circuit. A titrator for neutralizing with an acid so as to have a pH reference value output from the apparatus, an acid consumption measuring circuit for measuring an amount of acid consumed for neutralization by the titrator, and an activated sludge concentration in the test water to be titrated. Sludge concentration measurement circuit to measure pH and pH reference value of 4.8
The amount of acid consumed by the activated sludge per unit weight beforehand is set in advance, and the amount of acid consumed by the activated sludge obtained by integrating the sludge concentration from the sludge concentration measuring circuit is determined by the acid consumption of the acid consumption measuring circuit. An acid consumption correction circuit for calculating an acid consumption correction value by subtracting from the measured amount value; and an alkalinity calculation circuit for calculating alkalinity based on the acid consumption correction value. It is characterized in that the titration sample is output as a true alkalinity in a state not containing activated sludge.

【0026】あるいは、生物反応で被処理水中の汚濁物
質を除去する反応槽と、該反応槽の流出液中の懸濁物質
を沈降させて上澄液を処理水とする沈殿池を具備する水
処理プロセスの水質監視装置において、pH4.8をpH
設定値として入力するpH設定回路と、所定量の被滴定
検水を導入し、該被滴定検水のpHが前記pH設定回路
から出力されたpH設定値となるように酸で中和する滴
定装置と、該滴定装置で中和に消費した酸量を計測する
酸消費量計測回路と、この酸消費量計測値から前記pH
設定値におけるアルカリ度を演算する第1の演算回路
と、前記被滴定検水の生物濃度を計測する手段と、前記
被滴定検水のpHが前記pH設定値になるまでに生物で
増加したアルカリ度を補正するアルカリ度補正係数が入
力され、該アルカリ度補正係数と前記第1演算回路のア
ルカリ度演算値と前記生物濃度計測値から前記pH設定
値での前記被滴定検水が生物を含まない状態のアルカリ
度を演算する第2の演算回路を具備し、該第2のアルカ
リ度演算値を前記被滴定検水の真のアルカリ度として出
力することを特徴とする。
Alternatively, a water tank comprising a reaction tank for removing pollutants in the water to be treated by a biological reaction, and a sedimentation tank for sedimenting suspended substances in the effluent of the reaction tank and using the supernatant as treated water. In the water quality monitoring device of the treatment process, pH 4.8
A pH setting circuit for inputting as a set value and a predetermined amount of a test water to be titrated are introduced, and a titration for neutralizing with an acid so that the pH of the test water to be titrated becomes the pH set value output from the pH setting circuit. A device, an acid consumption measuring circuit for measuring the amount of acid consumed for neutralization in the titrator, and the pH value from the acid consumption measurement value.
A first arithmetic circuit for calculating the alkalinity at a set value, a means for measuring the biological concentration of the test water to be titrated, and an alkali which has increased in organisms until the pH of the test water to be titrated reaches the pH set value. The alkalinity correction coefficient for correcting the degree is input, and the titration test water at the pH set value from the alkalinity correction coefficient, the alkalinity calculation value of the first calculation circuit, and the biological concentration measurement value includes living organisms. A second arithmetic circuit for calculating the alkalinity in the absence state, wherein the second arithmetic value is output as the true alkalinity of the test water to be titrated.

【0027】本発明の水処理プロセスの制御装置は、生
物反応及び/あるいは凝集剤添加による物理化学反応で
被処理水中の汚濁物質を除去あるいは懸濁化する反応槽
と、該反応槽の流出液中の懸濁物質を沈降させて上澄液
を処理水とする沈殿池を具備する水処理プロセスにおい
て、基準となるpH基準値と、該pH基準値より高いp
H設定値、及び該pH設定値で前記pH基準値のアルカ
リ度を予測するアルカリ度予測係数を設定し、前記被処
理水から所定量の滴定検水を導入し、該滴定検水のpHが
前記pH設定値となるように酸で中和し、該中和に消費
した酸消費量を計測し、該酸消費量の計測値から前記p
H設定値におけるアルカリ度の暫定値を求め、該アルカ
リ度の暫定値と前記アルカリ度予測係数から前記pH基
準値におけるアルカリ度を演算するアルカリ度計測装置
を設け、前記アルカリ度計測装置の演算値を用いて、前
記水処理プロセスの反応に影響する操作量を調節するこ
とを特徴とする。
The control device for the water treatment process of the present invention comprises a reaction tank for removing or suspending pollutants in the water to be treated by a biological reaction and / or a physicochemical reaction by adding a flocculant, and an effluent of the reaction tank. In a water treatment process provided with a sedimentation basin in which suspended substances in the sediment are settled and the supernatant liquid is treated water, a reference pH value as a reference and a higher p value than the reference pH value
H set value, and an alkalinity prediction coefficient for predicting the alkalinity of the pH reference value with the pH set value, introducing a predetermined amount of titration test water from the water to be treated, and adjusting the pH of the titration test water Neutralize with an acid so as to reach the pH set value, measure the amount of acid consumed by the neutralization, and calculate the p from the measured value of the acid consumption.
A provisional value of the alkalinity at the H set value is obtained, and an alkalinity measuring device for calculating the alkalinity at the pH reference value from the provisional value of the alkalinity and the alkalinity prediction coefficient is provided. Is used to adjust the amount of operation affecting the reaction of the water treatment process.

【0028】また、生物反応で被処理水中の汚濁物質を
除去する生物反応槽と、該生物反応槽の流出液中の懸濁
物質を沈降させて上澄液を処理水とする沈殿池と、前記
生物反応槽あるいは前記沈殿池あるいは前記生物反応槽
と沈殿池の間に凝集剤注入設備を具備する水処理プロセ
スにおいて、基準となるpH基準値と、該pH基準値よ
り高いpH設定値、及び該pH設定値で前記pH基準値
のアルカリ度を予測するアルカリ度予測係数を設定し、
前記被処理水から所定量の滴定検水を導入し、該滴定検
水のpHが前記pH設定値となるように酸で中和し、該中
和に消費した酸消費量を計測し、該酸消費量の計測値か
ら前記pH設定値におけるアルカリ度の暫定値を求め、
該アルカリ度の暫定値と前記アルカリ度予測係数から前
記pH基準値におけるアルカリ度を演算するアルカリ度
計測装置と、前記被処理水のリン濃度を計測するリン濃
度計を設け、前記アルカリ度計測装置の演算値と前記リ
ン濃度計の計測値を用いて、前記凝集剤注入設備からの
注入量を調節することを特徴とする。
A biological reactor for removing pollutants in the water to be treated by a biological reaction, a sedimentation pond for sedimenting suspended substances in the effluent of the biological reactor and treating the supernatant as treated water, In a water treatment process including a coagulant injection facility between the biological reaction tank or the sedimentation tank or the biological reaction tank and the sedimentation tank, a reference pH reference value, and a pH set value higher than the pH reference value, and Setting an alkalinity prediction coefficient for predicting the alkalinity of the pH reference value with the pH set value;
A predetermined amount of titration test water is introduced from the water to be treated, neutralized with an acid so that the pH of the titration test water becomes the pH set value, and the amount of acid consumed in the neutralization is measured. Obtain a provisional value of alkalinity at the pH set value from the measured value of acid consumption,
An alkalinity measuring device for calculating the alkalinity at the pH reference value from the provisional value of the alkalinity and the alkalinity prediction coefficient, and a phosphorus concentration meter for measuring the phosphorus concentration of the water to be treated, wherein the alkalinity measuring device The injection amount from the coagulant injection equipment is adjusted using the calculated value of the above and the measurement value of the phosphorus concentration meter.

【0029】あるいは、基準となるpH基準値と、該基
準値より高いpH設定値、及び該pH設定値で前記pH
基準値のアルカリ度を予測するアルカリ度予測係数を設
定する設定回路と、所定量の被処理水を前記pH設定値
とする酸消費量を測定し、該酸消費量と前記アルカリ度
予測係数から前記pH基準値におけるアルカリ度を演算
する第1の演算回路と、被処理水に所定濃度となるよう
に凝集剤を注入し、該凝集剤を注入した液の所定量を前
記pH設定値とする酸消費量を測定し、該酸消費量と前
記アルカリ度予測係数から前記pH基準値におけるアル
カリ度を演算する第2の演算回路を設け、前記第1及び
第2の演算回路による2つのアルカリ度と凝集剤注入濃
度に基づいて前記被処理水のリン濃度を演算し、該リン
濃度から活性汚泥のリン放出あるいは摂取状態を判定
し、放出あるいは摂取反応に影響する操作量を調節する
ことを特徴とする。
Alternatively, a pH reference value as a reference, a pH set value higher than the reference value, and the pH set value
A setting circuit for setting an alkalinity prediction coefficient for predicting the alkalinity of a reference value, and measuring an acid consumption amount with a predetermined amount of water to be treated as the pH setting value, and calculating the acid consumption amount and the alkalinity prediction coefficient from the acid consumption amount and the alkalinity prediction coefficient. A first arithmetic circuit for calculating the alkalinity at the pH reference value, a coagulant is injected into the water to be treated so as to have a predetermined concentration, and a predetermined amount of a liquid into which the coagulant is injected is set as the pH set value. A second arithmetic circuit for measuring an acid consumption amount and calculating an alkalinity at the pH reference value from the acid consumption amount and the alkalinity prediction coefficient, wherein two alkalinities by the first and second arithmetic circuits are provided; And calculating the phosphorus concentration of the water to be treated based on the coagulant injection concentration, determining the phosphorus release or intake state of the activated sludge from the phosphorus concentration, and adjusting the manipulated variable affecting the release or intake response. And

【0030】さらに、混和池とフロック形成池及び沈殿
池を有し、前記混和池あるいは混和池に流入する原水に
凝集剤を注入する水処理プロセスにおいて、基準となる
pH基準値と、該基準値より高いpH設定値、及び該p
H設定値で前記pH基準値のアルカリ度を予測するアル
カリ度予測係数を設定し、所定量の前記凝集剤注入前の
被処理水を前記pH設定値とする酸消費量を測定し、該
酸消費量と前記アルカリ度予測係数から前記pH基準値
におけるアルカリ度を演算するアルカリ度計測装置を設
け、前記アルカリ度の演算値と前記被処理水中の懸濁物
質濃度及び/あるいはpH及び/あるいは水温の計測値
を用いて凝集剤注入量を求め、前記凝集剤の注入を調節
することを特徴とする。
Further, in a water treatment process having a mixing pond, a floc forming pond, and a sedimentation pond, wherein a coagulant is injected into the mixing pond or raw water flowing into the mixing pond, a pH reference value as a reference, and the reference value A higher pH set point and the p
Setting an alkalinity prediction coefficient for predicting the alkalinity of the pH reference value with the H set value, measuring an acid consumption amount with a predetermined amount of the water to be treated before injecting the flocculant as the pH set value, An alkalinity measuring device for calculating the alkalinity at the pH reference value from the consumption and the alkalinity prediction coefficient is provided, and the calculated alkalinity and the suspended substance concentration and / or the pH and / or the water temperature in the water to be treated are provided. The injection amount of the coagulant is adjusted by using the measured value of (1) to calculate the coagulant injection amount.

【0031】上記した本発明の作用を説明する。本発明
は、(1)活性汚泥混合液と、この混合液の活性汚泥を
分離した清澄液のpH−アルカリ度特性が一致するpH
範囲が存在し、このpH範囲で求めた活性汚泥混合液の
暫定アルカリ度と、清澄液の真のアルカリ度(pH=4.
8)は相関し、定式化できる、(2)このpH範囲は活
性汚泥濃度やアルカリ度の変化に影響されない、(3)
pH=4.8で求めた活性汚泥混合液のアルカリ度は清澄
液より高く、その変化量は活性汚泥濃度に比例する、と
いう実験的知見に基づいてなされたものである。以下、
本発明のpH−アルカリ度特性と、この特性に及ぼす活
性汚泥濃度の影響を説明する。
The operation of the present invention will be described. The present invention relates to (1) a pH in which the pH-alkalinity characteristics of the activated sludge mixed liquid and the clarified liquid obtained by separating the activated sludge of the mixed liquid are the same.
A range exists, and the provisional alkalinity of the activated sludge mixture obtained in this pH range and the true alkalinity of the clarified solution (pH = 4.
8) correlates and can be formulated. (2) This pH range is not affected by changes in activated sludge concentration or alkalinity. (3)
The alkalinity of the activated sludge mixture obtained at pH = 4.8 was higher than that of the clarified liquid, and the change was proportional to the activated sludge concentration. Less than,
The pH-alkaline property of the present invention and the effect of the activated sludge concentration on this property will be described.

【0032】図3は、活性汚泥濃度を変化させた場合の
酸消費量とpHの変化特性の関係を示したものである。
活性汚泥濃度(以下、MLSSと称す)は、実下水処理
場の生物反応槽から採水した活性汚泥混合液を静置して
汚泥を沈殿させ、上澄液の捨てる量を変えることで4段
階に変化させた。したがって、アルカリ度は全条件とも
ほぼ同一で、MLSSのみが相違している。
FIG. 3 shows the relationship between acid consumption and pH change characteristics when the activated sludge concentration is changed.
Activated sludge concentration (hereinafter referred to as MLSS) can be measured in four steps by allowing the activated sludge mixed liquid sampled from the biological reaction tank of the actual sewage treatment plant to stand to precipitate sludge and changing the amount of the supernatant liquid to be discarded. Was changed to. Therefore, the alkalinity is almost the same under all conditions, and only the MLSS is different.

【0033】酸添加量とpHの関係は、活性汚泥混合液
と、この混合液の遠心分離上澄液、及び孔径0.45μmろ
紙によるろ過液の3試料をそれぞれの汚泥濃度について
作成して求めた。遠心分離及びろ紙によるろ過処理をす
るとpHは高くなる傾向にあるが、pHを4.8に到達さ
せる終点の酸消費量は一致した。(5)式に示したよう
に、アルカリ度は酸消費量と比例するため、遠心分離上
澄液及びろ過液のアルカリ度は一致し、前処理がアルカ
リ度に与える影響はないことが示された。活性汚泥混合
液の場合、pH4.8になる終点の酸消費量は汚泥濃度が
高いほど増加し、アルカリ度に影響を与えているが、酸
消費量とpHの特性が上澄液及びろ過液と一致するpH
領域が存在している。このpH領域は6.5〜5.5の範囲に
あり、汚泥濃度が高くなると狭まる傾向にあることを見
い出した。
The relationship between the amount of acid added and the pH was determined by preparing three samples of the activated sludge mixture, the supernatant of this mixture centrifuged, and the filtrate of 0.45 μm filter paper for each sludge concentration. . The pH tends to be higher when centrifugation and filtration with filter paper are performed, but the acid consumption at the end point at which the pH reaches 4.8 was consistent. As shown in equation (5), the alkalinity is proportional to the amount of acid consumed. Therefore, the alkalinities of the centrifuged supernatant and the filtrate are the same, indicating that the pretreatment has no effect on the alkalinity. Was. In the case of an activated sludge mixture, the acid consumption at the end point of pH 4.8 increases as the sludge concentration increases, affecting the alkalinity. PH matching
Region exists. It has been found that this pH range is in the range of 6.5 to 5.5, and tends to narrow as the sludge concentration increases.

【0034】図4は、図3の結果をアルカリ度に換算し、
上澄液のpH=4.8におけるアルカリ度を真値にし、各
pHで得られたアルカリ度を暫定値としてアルカリ度比
率(=暫定値/真値)を求め、pHとの関係を示したも
のである。アルカリ度比率は、pHが6.0付近で、混合
液、上澄液及びろ過液ともほぼ同値を示し、汚泥濃度に
も影響されていない。
FIG. 4 shows the result of FIG. 3 converted into alkalinity.
The alkalinity at the pH = 4.8 of the supernatant was set to a true value, and the alkalinity obtained at each pH was set as a provisional value, and an alkalinity ratio (= provisional value / true value) was determined to show the relationship with the pH. is there. As for the alkalinity ratio, when the pH was around 6.0, the mixture, the supernatant and the filtrate showed almost the same value, and were not affected by the sludge concentration.

【0035】図5は、A2O法で運転されているプラントの
嫌気槽、無酸素槽及び好気槽から活性汚泥混合液を採取
し、酸添加量とpHの特性を求め、pHとアルカリ度比
率で整理した結果である。これらの試料は汚泥濃度がほ
ぼ一定で、アルカリ度が相違している。この結果におい
ても、pHが6.0付近のアルカリ度比率は全試料とも同
値を示し、アルカリ度に影響されないことを見い出し
た。
FIG. 5 shows a sample of activated sludge mixed from an anaerobic tank, an anoxic tank and an aerobic tank of a plant operated by the A2O method, and the acid addition amount and pH characteristics were determined. This is the result of the arrangement. These samples have almost constant sludge concentration and differ in alkalinity. Also in this result, the alkalinity ratio at pH around 6.0 showed the same value in all the samples, and it was found that the alkalinity ratio was not affected.

【0036】図6は、pHが6.5〜5.5の範囲の3点につ
いて、アルカリ度の暫定値と真値の関係を示したもので
ある。両者の関係は直線近似でき、その傾きはpHが低
くなるほど緩くなって1に近づいている。この傾きは暫
定値と真値の比で、暫定値から真値を予測するアルカリ
度予測係数Keと定義する。そこで、各pH毎の直線近似
式を求め、pHに対するアルカリ度予測係数Keと相関係
数の関係を図7に示す。
FIG. 6 shows the relationship between the provisional value of alkalinity and the true value at three points in the pH range of 6.5 to 5.5. The relationship between the two can be approximated by a straight line, and the slope becomes gentler and closer to 1 as the pH becomes lower. This slope is defined as a ratio of the provisional value to the true value, and is defined as an alkalinity prediction coefficient Ke for predicting the true value from the provisional value. Thus, a linear approximation formula is obtained for each pH, and the relationship between the alkalinity prediction coefficient Ke and the correlation coefficient for pH is shown in FIG.

【0037】図7で、pHが5.5〜6.2の範囲では相関係
数が0.95以上となり、暫定値から真値を高精度で予測で
きる。この範囲をpH至適範囲と称す。なお、最適値は
相関係数がほぼ1となるpH=5.8付近に存在する。p
Hとアルカリ度予測係数Keは指数相関しているが、pH
至適範囲では一次式で表現できる。
In FIG. 7, when the pH is in the range of 5.5 to 6.2, the correlation coefficient is 0.95 or more, and the true value can be predicted from the provisional value with high accuracy. This range is referred to as a pH optimum range. Note that the optimum value exists near pH = 5.8 at which the correlation coefficient becomes almost 1. p
H and the alkalinity prediction coefficient Ke have an exponential correlation,
In the optimal range, it can be expressed by a linear expression.

【0038】以上の実験的知見から、活性汚泥濃度やア
ルカリ度に影響されないアルカリ度予測のためのpH至
適範囲が存在し、この範囲で活性汚泥混合液の暫定アル
カリ度を求めることにより、清澄液の真のアルカリ度
(pH=4.8)を予測できる。pH=4.8における上澄液
とろ過液のアルカリ度は同じなので、これらを総称して
清澄液と呼び、真のアルカリ度は上澄液あるいはろ過液
で求めてもよい。予測式は、図7の結果に基づいて定式
化するに至った。
From the above experimental findings, there is a pH optimum range for predicting alkalinity that is not affected by the activated sludge concentration or alkalinity. By determining the provisional alkalinity of the activated sludge mixed solution within this range, clarification is performed. The true alkalinity of the solution (pH = 4.8) can be predicted. Since the alkalinity of the supernatant and the filtrate at the pH of 4.8 is the same, these are collectively called a clarified solution, and the true alkalinity may be obtained from the supernatant or the filtrate. The prediction formula has been formulated based on the results of FIG.

【0039】図7から、至適範囲におけるアルカリ度予
測係数Keは、暫定アルカリ度計測のためのpH設定値を
pHsとすれば、(6)式で求められる。さらに、pH=
4.8のアルカリ度真値ALiは、(7)式のように、予測係
数Keと暫定値ALsの積で求まる。ここで、a及びbは定数
で、実験式によれば0.89、3.86となる。
FIG. 7 shows that the alkalinity prediction coefficient Ke in the optimum range is a pH set value for provisional alkalinity measurement.
Assuming that pHs, it can be obtained by equation (6). Furthermore, pH =
The alkalinity true value ALi of 4.8 is obtained by the product of the prediction coefficient Ke and the provisional value ALs as in equation (7). Here, a and b are constants, which are 0.89 and 3.86 according to the empirical formula.

【0040】 Ke=a・pHs−b (6) ALi=Ke・ALs (7) ところで、(6)式及び(7)式の関係は、活性汚泥混
合液だけでなく、上澄液やろ過液、あるいは河川水など
にも適用できる。図7の関係は上澄液やろ過液も含めて
得られたことから、汚泥分離液や元々汚泥を含まない液
でも成立つことを意味する。
Ke = a · pHs−b (6) ALi = Ke · ALs (7) By the way, the relations of the equations (6) and (7) are not limited to the activated sludge mixed liquid, but also the supernatant liquid and the filtrate. Or to river water. Since the relationship shown in FIG. 7 was obtained including the supernatant and the filtrate, it means that a sludge separation liquid and a liquid originally containing no sludge can be satisfied.

【0041】以上のようなアルカリ度監視方法は、上水
向けなどに既に実用化されているアルカリ度計と小容量
の演算器を組合せて実現できる。アルカリ度計のpH滴
定目標値を4.8から5.5〜6.2の範囲に変え、出力された
アルカリ度を暫定値として演算器で(6)式及び(7)
式の演算を実行させて、アルカリ度真値ALiを出力す
る。
The above alkalinity monitoring method can be realized by combining an alkalinity meter already in practical use for water supply and the like with a small-capacity computing unit. The pH titration target value of the alkalinity meter is changed from 4.8 to the range of 5.5 to 6.2, and the output alkalinity is set as a provisional value by the arithmetic unit using the formulas (6) and (7).
The calculation of the expression is executed to output the alkalinity true value ALi.

【0042】本発明のアルカリ度監視方式によれば、活
性汚泥を固液分離する前処理手段を設置する必要がな
く、活性汚泥を含有する混合液でも直接滴定するため、
水質変化がなく、アルカリ度を高精度で計測できる。前
処理手段がないため、新たな設備及び運転コストがかか
らず、保守点検作業も不要である。また、pH滴定目標
値を高くするため、滴定に要する酸消費量を低減でき、
経済的である。さらに、pH滴定目標値は5.5以上に設
定するため、滴定処理液を中和する必要がなく、排出で
きる。
According to the alkalinity monitoring method of the present invention, it is not necessary to provide a pretreatment means for solid-liquid separation of activated sludge, and a mixed solution containing activated sludge is directly titrated.
There is no change in water quality and alkalinity can be measured with high accuracy. Since there is no pretreatment means, no new equipment and operating costs are required, and no maintenance and inspection work is required. In addition, to increase the pH titration target value, it is possible to reduce the acid consumption required for titration,
It is economical. Further, since the target value of the pH titration is set to 5.5 or more, the titration treatment liquid does not need to be neutralized and can be discharged.

【0043】なお、図8は、図3の滴定終点値(pH=
4.8)における汚泥混合液と遠心分離上澄液のアルカリ
度を比較した結果である。上澄液に対して、汚泥混合液
のアルカリ度は汚泥濃度MLSSに比例して増加した。この
ことは、pH=4.8で求めた汚泥混合液のアルカリ度ALf
を汚泥濃度Smで補正すれば、上澄液のアルカリ度ALiが
求められることを示す。予測式を(8)式に示す。
FIG. 8 shows the titration end point value (pH =
It is the result of comparing the alkalinity of the sludge mixed solution and the centrifuged supernatant in 4.8). The alkalinity of the sludge mixture with respect to the supernatant increased in proportion to the sludge concentration MLSS. This means that the alkalinity ALf of the sludge mixture obtained at pH = 4.8
Is corrected by the sludge concentration Sm, the alkalinity ALi of the supernatant is determined. The prediction equation is shown in equation (8).

【0044】 ALi=ALf−Ks・Sm (8) ここで、Ksはアルカリ度補正係数である。なお、滴定後
の汚泥混合液中の水質を測定したところ、有機物や窒
素、リン濃度が増加しており、汚泥からの溶出あるいは
酸化分解しているものと予想された。添加した酸は汚泥
にも消費され、その結果、アルカリ度が増加したと判断
できる。この監視方法によれば、酸消費量は増えるが、
活性汚泥を固液分離する前処理手段を設置する必要がな
い。
ALi = ALf−Ks · Sm (8) where Ks is an alkalinity correction coefficient. In addition, when the water quality in the sludge mixed solution after the titration was measured, the concentrations of organic substances, nitrogen, and phosphorus were increased, and it was expected that they were eluted from the sludge or oxidatively decomposed. The added acid is also consumed in the sludge, and as a result, it can be determined that the alkalinity has increased. According to this monitoring method, the acid consumption increases,
There is no need to provide a pretreatment means for solid-liquid separation of activated sludge.

【0045】リンの除去を目的に注入する凝集剤はアル
カリ成分にも消費され、その消費比率は注入前のリン濃
度Piとアルカリ度ALiの比に影響される(詳細は、特願
平11−210244を参照)。この実験的知見に基づけば、リ
ン濃度Piを目標値Pm以下にする凝集剤注入濃度Caは
(9)式で演算できる。ηpはリン除去係数で、(6)
式及び(7)式で求めたアルカリ度ALiを用いて(1
0)式で算出できる。ただし、Ap、Bpは係数である。
The coagulant injected for the purpose of removing phosphorus is also consumed by the alkali component, and the consumption ratio is affected by the ratio between the phosphorus concentration Pi and the alkalinity ALi before the injection (for details, see Japanese Patent Application No. 11-110,1992). 210244). Based on this experimental knowledge, the coagulant injection concentration Ca that makes the phosphorus concentration Pi less than or equal to the target value Pm can be calculated by equation (9). ηp is the phosphorus removal coefficient, (6)
Using the alkalinity ALi obtained by the equation and the equation (7), (1
0) can be calculated. Here, Ap and Bp are coefficients.

【0046】 Ca=(Pi− Pm)/ηp (9) ηp =Ap・(Pi/ALi)Bp (10) 凝集剤注入濃度は、汚泥分離前処理操作なしの直接計測
したアルカリ度ALiを用いるため、被処理液が必要とす
る正確な値を得ることができる。注入濃度Caは、被処理
液単位容積当りの凝集剤量で、被処理液流量を乗算すれ
ば、必要な凝集剤量を算出できる。
Ca = (Pi−Pm) / ηp (9) ηp = A p · (Pi / ALi) Bp (10) The coagulant injection concentration uses the alkalinity ALi directly measured without the sludge separation pretreatment operation. Therefore, an accurate value required for the liquid to be treated can be obtained. The required concentration of the coagulant can be calculated by multiplying the injection concentration Ca by the amount of the coagulant per unit volume of the liquid to be treated and the flow rate of the liquid to be treated.

【0047】好気槽や嫌気槽、あるいは無酸素槽の活性
汚泥混合液を直接計測してアルカリ度を求めることは、
本来の微生物反応槽で進行している硝化反応や脱窒反応
状態を精度良く把握できる。硝化された窒素量や脱窒さ
れた窒素量は(6)式及び(7)式で求めたアルカリ度
ALの各反応槽での変化量から算出できる。硝化量SNは、
好気槽でのアルカリ度変化量ΔALn、脱窒量DNは嫌気槽
あるいは無酸素槽でのアルカリ度変化量ΔALdから、
(11)式及び(12)式により精度良く予測できる。
Obtaining alkalinity by directly measuring the activated sludge mixture in an aerobic tank, an anaerobic tank, or an anoxic tank is as follows:
It is possible to accurately grasp the state of the nitrification reaction or denitrification reaction that is proceeding in the original microorganism reaction tank. The amount of nitrified or denitrified nitrogen is the alkalinity calculated by the equations (6) and (7).
It can be calculated from the amount of change in AL in each reaction tank. The nitrification amount SN is
The amount of alkalinity change ΔALn in the aerobic tank and the amount of denitrification DN are calculated from the amount of alkalinity change ΔALd in the anaerobic tank or anoxic tank,
Prediction can be made with high accuracy by the equations (11) and (12).

【0048】 SN=ΔALn/Kn (11) DN=ΔALd/Kd (12) ここで、Knは単位硝化量当りのアルカリ度変化量、Kdは
単位脱窒量当りのアルカリ度変化量で、7.14及び3.57が
与えられる。(11)式及び(12)式で算出される硝
化量SNと脱窒量DNは濃度基準で算出される。プラントの
任意場所の全窒素濃度を把握すれば、硝化率や脱窒率が
予測でき、硝化反応や脱窒反応に影響する因子の適否を
判定し、プラントを適正に調節管理することができる。
SN = ΔALn / Kn (11) DN = ΔALd / Kd (12) where Kn is the alkalinity change amount per unit nitrification amount, and Kd is the alkalinity change amount per unit denitrification amount. 3.57 is given. The nitrification amount SN and the denitrification amount DN calculated by the equations (11) and (12) are calculated based on the concentration. By grasping the total nitrogen concentration at an arbitrary place in the plant, the nitrification rate and the denitrification rate can be predicted, the suitability of factors affecting the nitrification reaction and the denitrification reaction can be determined, and the plant can be appropriately adjusted and managed.

【0049】このように、本発明の水質監視及び制御方
法によれば、処理対象なる混合液の正確なアルカリ度を
用いてプラントの監視制御ができるので、必要最小限の
操作量による低コスト運転と、良質の処理水を安定して
提供できる効果がある。
As described above, according to the water quality monitoring and control method of the present invention, the plant can be monitored and controlled by using the correct alkalinity of the mixed liquid to be treated. Thus, there is an effect that high quality treated water can be stably provided.

【0050】[0050]

【発明の実施の形態】以下、本発明の複数の実施例を図
面に沿って詳細に説明する。なお、各図を通して同一の
構成要素には同一の符号を付してある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a plurality of embodiments of the present invention will be described in detail with reference to the drawings. Note that the same reference numerals are given to the same components throughout the drawings.

【0051】(実施例1)図1は嫌気−無酸素−好気法
(A2O法)による下水処理設備の構成図で、処理水の
リン濃度を目標値以下に管理する凝集剤制御装置を設け
ている。実施例1の下水処理設備は嫌気槽1A、無酸素
槽1B、と好気槽1Cから成る生物反応槽1、最終沈殿
池2、水中撹拌機5、汚泥返送設備7、汚泥排出設備
8、送風機9、循環設備10、凝集剤貯留槽11、凝集
剤注入設備12から構成されている。
(Embodiment 1) FIG. 1 is a block diagram of a sewage treatment facility using an anaerobic-anoxic-aerobic method (A2O method). A flocculant control device for controlling the phosphorus concentration of treated water to a target value or less is provided. ing. Example 1 The sewage treatment equipment of the first embodiment is a biological reaction tank 1 composed of an anaerobic tank 1A, an oxygen-free tank 1B, and an aerobic tank 1C, a final sedimentation tank 2, an underwater stirrer 5, a sludge return facility 7, a sludge discharge facility 8, and a blower. 9, a circulation facility 10, a flocculant storage tank 11, and a flocculant injection facility 12.

【0052】都市下水や産業排水、及び雨水を含む流入
下水は最初沈殿池(図示せず)で粗大な狭雑物が除去さ
れた後、生物反応槽1に流入する。最上流の嫌気槽1A
には流入下水13と、最終沈殿池2から汚泥返送設備7
を介して高濃度の活性汚泥を含有する返送汚泥14が供
給される。流入下水13と返送汚泥14は水中撹拌機5
Aで撹拌混合される。嫌気状態化の嫌気槽1Aにおい
て、活性汚泥は細胞内に蓄積していたポリリン酸を加水
分解してオルトリン酸PO4−Pとして液中に放出する。こ
のリン放出時に、活性汚泥は有機物を吸着し、細胞内に
蓄積する。
Inflow sewage including municipal sewage, industrial effluent, and rainwater flows into the biological reaction tank 1 after coarse sediment is first removed in a sedimentation basin (not shown). Upstream anaerobic tank 1A
And the sludge return equipment 7 from the final sedimentation basin 2
A return sludge 14 containing a high concentration of activated sludge is supplied via the. The inflow sewage 13 and the returned sludge 14 are mixed with an underwater stirrer 5
A. Stir and mix. In the anaerobic tank 1A in the anaerobic state, the activated sludge hydrolyzes the polyphosphoric acid accumulated in the cells and releases it into the liquid as orthophosphate PO4-P. During this phosphorus release, the activated sludge adsorbs organic matter and accumulates in the cells.

【0053】流入下水13や返送汚泥14中にNOx−N
(NO3−NとNO2−Nの総称)が含まれている場合は、
(2)式の脱窒反応が進行する。このため、嫌気槽1A
ではリン濃度が増加し、有機物やNOx−N濃度が減少する 嫌気槽1Aの混合液は隔壁4Aを介して無酸素槽1Bに
導かれる。無酸素槽1Bでは循環設備10により循環液
18として還流された好気槽1Cの混合液と、嫌気槽1
Aの混合液とが水中撹拌機5Bにより撹拌混合される。
溶存酸素を含む循環液18が流入するが、無酸素槽1B
は殆ど酸素のない状態となり、循環液18に含まれてい
たNOx−Nを嫌気槽1Aから導かれた混合液中の有機物、
あるいは活性汚泥が細胞内に蓄積していた有機物を利用
して(2)式の脱窒反応が主に進行する。このため、無
酸素槽1BではNOx−Nと有機物が減少し、アルカリ度が
増加する。
NOx-N is contained in the inflow sewage 13 and return sludge 14.
(Generic term for NO3-N and NO2-N)
The denitrification reaction of the formula (2) proceeds. For this reason, anaerobic tank 1A
In this case, the phosphorus concentration increases and the concentration of organic substances and NOx-N decreases. The mixed solution in the anaerobic tank 1A is led to the oxygen-free tank 1B via the partition 4A. In the oxygen-free tank 1B, the mixed liquid of the aerobic tank 1C, which is recirculated as the circulating liquid 18 by the circulation equipment 10, and the anaerobic tank 1
The mixed solution of A is stirred and mixed by the underwater stirrer 5B.
The circulating fluid 18 containing dissolved oxygen flows in, but the oxygen-free tank 1B
Is almost free of oxygen, and the NOx-N contained in the circulating fluid 18 is removed from the anaerobic tank 1A,
Alternatively, the denitrification reaction of the formula (2) mainly proceeds using the organic matter in which the activated sludge has accumulated in the cells. Therefore, in the oxygen-free tank 1B, NOx-N and organic matter decrease, and alkalinity increases.

【0054】無酸素槽1Bの混合液は隔壁4Bを介して
好気槽1Cに導かれる。好気槽1Cの底部には散気管6
が設置されており、送風機9からの空気18を噴射し、
混合液を攪拌するとともに活性汚泥の酸素源を供給す
る。好気状態化の好気槽1Cにおいて、活性汚泥は蓄積
した有機物及び混合液中の有機物を水と炭酸ガスに酸化
分解する。また、NH4−NをNOx−Nに酸化する(1)式の
硝化反応が進行する。
The liquid mixture in the oxygen-free tank 1B is led to the aerobic tank 1C via the partition 4B. A diffuser 6 is provided at the bottom of the aerobic tank 1C.
Is installed, and injects air 18 from the blower 9,
The mixed liquid is stirred and an activated sludge oxygen source is supplied. In the aerobic tank 1C in the aerobic state, the activated sludge oxidizes and decomposes the accumulated organic matter and the organic matter in the mixed solution into water and carbon dioxide gas. Further, the nitrification reaction of the formula (1) for oxidizing NH 4 —N to NOx—N proceeds.

【0055】さらに、混合液中のPO4−Pをポリリン酸と
して細胞内に摂取する。この摂取量は、通常、嫌気槽1
Aで放出した以上(過剰摂取)となるため、プロセス全
体ではリンが減少し、除去されたことになる。したがっ
て、好気槽1Cでは有機物、PO4−P、NH4−N及びアルカ
リ度が減少し、NOx−Nが増加する。好気槽1Cの流出部
混合液の一部を循環液18とするため、循環液18には
有機物やリンが殆どなく、NOx−Nが含まれる。
Further, PO4-P in the mixed solution is taken into cells as polyphosphoric acid. This intake is usually in the anaerobic tank 1
Since the amount was released by A (overdose), phosphorus was reduced and removed in the entire process. Therefore, in the aerobic tank 1C, organic matter, PO4-P, NH4-N and alkalinity decrease, and NOx-N increases. Since a part of the mixed solution at the outlet of the aerobic tank 1C is used as the circulating fluid 18, the circulating fluid 18 contains almost no organic matter or phosphorus and contains NOx-N.

【0056】好気槽1Cの流出液15は最終沈殿池2に
導かれ、混合液中の活性汚泥が重力沈降する。上澄液は
処理水16として消毒殺菌後、河川や海洋に放流され
る。沈殿した活性汚泥は高濃度となり、大部分を汚泥返
送設備7により返送汚泥14として生物反応槽1の嫌気
槽1Aに戻す。生物反応槽1では反応に対応して固有の
微生物が増殖し、活性汚泥濃度を増加させるが、この増
殖分に相当する汚泥を余剰汚泥17として汚泥排出設備
8を介してプロセス系外に排出する。排出汚泥が保持す
るリン量がプロセス全体のリン除去量に相当する。
The effluent 15 from the aerobic tank 1C is led to the final sedimentation basin 2, where the activated sludge in the mixture is settled by gravity. The supernatant is disinfected and sterilized as treated water 16 and then discharged into rivers and oceans. The precipitated activated sludge has a high concentration, and is mostly returned to the anaerobic tank 1A of the biological reaction tank 1 as returned sludge 14 by the sludge return equipment 7. In the biological reaction tank 1, specific microorganisms proliferate in response to the reaction and increase the concentration of activated sludge. However, sludge corresponding to the proliferated portion is discharged as excess sludge 17 out of the process system through the sludge discharge facility 8. . The amount of phosphorus retained by the discharged sludge corresponds to the amount of phosphorus removed in the entire process.

【0057】このように、生物学的に窒素やリンを除去
するプロセスでは、嫌気槽1Aや無酸素槽1Bでのリン
放出と脱窒、好気槽1Cでのリン過剰摂取と硝化のそれ
ぞれの機能を十分に発揮させる適正な維持管理が必要と
なる。これらの活性汚泥の処理機能は、流入下水の水質
やプラントの運転操作条件、あるいは活性汚泥の管理条
件で変化し、徐々に、あるいは突発的に除去不良を招
く。
As described above, in the process of biologically removing nitrogen and phosphorus, the release and denitrification of phosphorus in the anaerobic tank 1A and the anaerobic tank 1B, and the excessive intake of phosphorus and nitrification in the aerobic tank 1C, respectively. Appropriate maintenance is required to fully demonstrate the functions. These activated sludge treatment functions vary depending on the quality of inflow sewage, plant operating conditions, or activated sludge management conditions, and gradually or suddenly cause defective removal.

【0058】リン放出・摂取状態の悪化は、プロセス全
体のリン除去率を低下させ、さらに処理水16のリン濃
度が流入下水13より高くなる場合もある。このような
場合、凝集剤を注入して物理化学的にリンを除去する方
式が併用されている。本実施例の下水処理設備は凝集剤
貯槽11と凝集剤注入設備12を配設し、凝集剤注入前
のアルカリ度とリン濃度に基づいて処理水16のリン濃
度を目標値Pm以下に維持するように凝集剤注入設備12
を制御する。このアルカリ度の計測に本発明の水質監視
装置を適用している。
The deterioration of the phosphorus release / uptake state lowers the phosphorus removal rate of the whole process, and the phosphorus concentration of the treated water 16 may be higher than that of the inflow sewage 13 in some cases. In such a case, a method of physicochemically removing phosphorus by injecting a flocculant is also used. The sewage treatment equipment of the present embodiment includes a flocculant storage tank 11 and a flocculant injection equipment 12, and maintains the phosphorus concentration of the treated water 16 at a target value Pm or less based on the alkalinity and the phosphorus concentration before the flocculant injection. So that the coagulant injection equipment 12
Control. The water quality monitoring device of the present invention is applied to the measurement of the alkalinity.

【0059】好気槽1Cには、活性汚泥が存在する混合
液を対象にアルカリ度とリン濃度を計測できるアルカリ
度計測装置41とリン濃度計42を設置する。これらの
計測器は、ほぼ同一の混合液の水質を計測できるように
近接させ、また、凝集剤を注入するまでに計測した水質
が大きく変化しない位置に設置する。図1では好気槽1
Cの流出部に設置している。
In the aerobic tank 1C, an alkalinity measuring device 41 and a phosphorus concentration meter 42 capable of measuring the alkalinity and the phosphorus concentration of the mixed liquid in which activated sludge is present are installed. These measuring instruments are placed close to each other so as to be able to measure the water quality of almost the same mixed liquid, and are installed at a position where the measured water quality does not greatly change until the coagulant is injected. In Figure 1, aerobic tank 1
It is installed at the outlet of C.

【0060】凝集剤注入設備12からの凝集剤は生物反
応槽1と最終沈殿池2の間の反応槽流出液15に注入す
る。このような水質計測と凝集剤注入の位置関係にすれ
ば、凝集剤注入に影響されることなく、正確なアルカリ
度やリン濃度が計測できる。両者の位置関係は、注入し
た凝集剤が水質計測位置に影響しないことを前提に、流
出液15の上流部と下流部、流出液15と最終沈殿池
2、好気槽1Cと最終沈殿池2、あるいは隔壁で分画さ
れた好気槽1Cであればその上流部と下流部、としても
よい。
The coagulant from the coagulant injection equipment 12 is injected into the reaction tank effluent 15 between the biological reaction tank 1 and the final sedimentation tank 2. With such a positional relationship between water quality measurement and coagulant injection, accurate alkalinity and phosphorus concentration can be measured without being affected by coagulant injection. The positional relationship between the two is based on the premise that the injected flocculant does not affect the water quality measurement position, the upstream and downstream portions of the effluent 15, the effluent 15 and the final sedimentation basin 2, the aerobic tank 1C and the final sedimentation basin 2 Alternatively, if it is an aerobic tank 1C separated by a partition, the upstream part and the downstream part thereof may be used.

【0061】アルカリ度計測装置41の構成例を図2に
示す。滴定装置411には好気槽1C混合液の所定量
(例えば100mL)が滴定検水として送られる。滴定装置
411では、pH設定回路412から入力された暫定ア
ルカリ度計測のためのpH設定値pHsを終点とし、所定
量LaのpHがpHsを示すのに必要な酸消費量Daを測定す
る。pHsは6.2〜5.5の範囲で設定し、滴定後の処理液
(滴定水)は排出され、新たな被滴定検水が導水されて
酸消費量Daを測定する。暫定アルカリ度演算回路413
では、(13)式により暫定アルカリ度ALsを演算す
る。ここで、Kcは滴定に用いた酸の単位容積当りのアル
カリ度換算係数である。
FIG. 2 shows a configuration example of the alkalinity measuring device 41. A predetermined amount (for example, 100 mL) of the mixed liquid of the aerobic tank 1C is sent to the titrator 411 as a titration test water. In the titrator 411, the pH set value pHs for provisional alkalinity measurement input from the pH setting circuit 412 is set as the end point, and the acid consumption Da necessary for the pH of the predetermined amount La to indicate the pHs is measured. The pHs are set in the range of 6.2 to 5.5, and the treatment liquid (titration water) after the titration is discharged, and a new test water for titration is introduced to measure the acid consumption Da. Provisional alkalinity calculation circuit 413
Then, the provisional alkalinity ALs is calculated by the equation (13). Here, Kc is an alkalinity conversion coefficient per unit volume of the acid used for the titration.

【0062】 ALs=1000・Kc・Da/La (13) アルカリ度演算回路414は、被滴定検水のpH=4.8を
終点とする真のアルカリ度ALiを(6)式及び(7)式
により演算する。演算式は予め入力し、pH設定回路4
12からのpH設定値pHsと暫定アルカリ度演算回路4
13からの暫定アルカリ度ALsの入力値に基づいて、ア
ルカリ度ALiを出力する。
ALs = 1000 · Kc · Da / La (13) The alkalinity calculation circuit 414 calculates the true alkalinity ALi ending at pH = 4.8 of the test water to be titrated by the equations (6) and (7). Calculate. The arithmetic expression is input in advance, and the pH setting circuit 4
PH setting value pHs from 12 and provisional alkalinity calculation circuit 4
Based on the input value of the provisional alkalinity ALs from No. 13, the alkalinity ALi is output.

【0063】リン濃度計42は、混合液からリン酸イオ
ンを選択的に移行させるイオンフィルタ−を用いた濃度
計で、直接好気槽1C混合液のリン濃度Piを計測し、出
力する。
The phosphorus concentration meter 42 is a concentration meter using an ion filter for selectively transferring phosphate ions from the mixed solution, and directly measures and outputs the phosphorus concentration Pi of the mixed solution in the aerobic tank 1C.

【0064】演算装置50では、まず、除去係数演算回
路51で好気槽1C混合液のリン濃度Piとアルカリ度AL
iが入力され、下流部で注入される凝集剤に含まれる単
位金属量当りのリン除去量であるリン除去係数ηpを
(10)式で演算する。凝集剤がポリ塩化アルミニウム
(PAC)の場合、(10)式の係数Apは0.5〜1.0、Bp
は0.1〜0.5の範囲で設定される。
In the arithmetic unit 50, first, the phosphorus concentration Pi of the mixed solution in the aerobic tank 1C and the alkalinity AL
i is input, and the phosphorus removal coefficient ηp, which is the amount of phosphorus removed per unit metal contained in the coagulant injected in the downstream part, is calculated by equation (10). When the coagulant is polyaluminum chloride (PAC), the coefficient Ap of the equation (10) is 0.5 to 1.0, Bp
Is set in the range of 0.1 to 0.5.

【0065】判定回路52は、リン濃度Piと、予め入力
された凝集剤注入後の処理水16のリン濃度目標値Pmの
偏差εp(=Pi−Pm)を求め、凝集剤注入の要否を判定
する。判定は、εp≦0の場合に注入不要とし、εp>0
の場合に注入要とする。
The determination circuit 52 obtains a deviation εp (= Pi−Pm) between the phosphorus concentration Pi and a pre-input phosphorus concentration target value Pm of the treated water 16 after the coagulant injection, and determines whether or not the coagulant injection is necessary. judge. The judgment is that injection is unnecessary when εp ≦ 0, and εp> 0
In this case, injection is required.

【0066】凝集剤量演算回路53は、判定回路53の
判定に基づいて、凝集剤の注入量を演算する。注入要と
判定された場合、まず、(9)式の(Pi−Pm)をεpと
し、除去係数演算回路51からのリン除去係数ηpを用
いて金属換算の注入濃度Caを演算する。次に、注入濃度
Caと被処理水流量から金属注入量Maを求め、この金属注
入量Maが含まれる凝集剤注入量Gaを(14)式から演算
する。
The coagulant amount calculation circuit 53 calculates the coagulant injection amount based on the judgment of the judgment circuit 53. When it is determined that injection is necessary, first, (Pi−Pm) in equation (9) is set to εp, and the metal-concentrated injection concentration Ca is calculated using the phosphorus removal coefficient ηp from the removal coefficient calculation circuit 51. Next, the injection concentration
The metal injection amount Ma is obtained from Ca and the flow rate of the water to be treated, and the coagulant injection amount Ga including the metal injection amount Ma is calculated from equation (14).

【0067】 Ma=Ca・(Qi+Qr)、 Ga=Ma/Cm (14) 被処理水流量は処理方式や凝集剤の注入位置で異なる
が、図1の場合、流入下水流量Qiと返送汚泥流量Qrの和
となる。これらの流量は流量計31と32で計測され、
演算回路53に出力される。凝集剤に含有する金属濃度
Cmは、凝集剤の種類や溶解条件で異なるため、金属量Ma
を含む凝集剤量Gaに換算する必要がある。
Ma = Ca · (Qi + Qr), Ga = Ma / Cm (14) Although the flow rate of the water to be treated differs depending on the treatment method and the injection position of the flocculant, in the case of FIG. 1, the inflow sewage flow rate Qi and the return sludge flow rate Qr Is the sum of These flow rates are measured by flow meters 31 and 32,
The signal is output to the arithmetic circuit 53. Metal concentration in coagulant
Since Cm differs depending on the type of coagulant and dissolution conditions, the amount of metal Ma
It is necessary to convert to a coagulant amount Ga containing

【0068】調節装置55は、流量計34の計測値が演
算値Gaとなるように凝集剤注入設備12を操作し、流出
液15への凝集剤量を調節する。なお、偏差量εp≦0
の場合、処理水16のリン濃度は目標値を満たしている
と判定し、注入不要の指令により凝集剤の注入を停止す
る。この間欠操作により、余分な凝集剤の注入を抑制し
て運転コストを低減し、かつ、凝集剤による活性汚泥へ
の悪影響を回避する。
The adjusting device 55 operates the coagulant injection equipment 12 so that the measured value of the flow meter 34 becomes the calculated value Ga, and adjusts the coagulant amount to the effluent 15. Note that the deviation εp ≦ 0
In the case of (1), it is determined that the phosphorus concentration of the treated water 16 satisfies the target value, and the injection of the flocculant is stopped according to the instruction that injection is unnecessary. By this intermittent operation, the injection of an extra coagulant is suppressed, the operating cost is reduced, and the adverse effect of the coagulant on the activated sludge is avoided.

【0069】本実施例によれば、活性汚泥を固液分離す
る前処理手段が不要で、設備及び運転コストを低減で
き、また、洗浄や部品交換などの保守点検作業も不要な
監視制御を実現できる。また、活性汚泥混合液を直接計
測対象とするため、正確な計測値に基づく監視制御を提
供できる。
According to the present embodiment, no pretreatment means is required for solid-liquid separation of activated sludge, equipment and operating costs can be reduced, and monitoring and control work such as cleaning and replacement of parts is also unnecessary. it can. In addition, since the activated sludge mixture is directly measured, monitoring and control based on accurate measurement values can be provided.

【0070】(実施例2)図9はA2O法による下水処理
設備の構成図で、図1の構成との相違はアルカリ度計測
装置41の真のアルカリ度ALiの計測、演算方式にあ
る。好気槽1Cには、MLSS計44を設置し、混合液のML
SS濃度Smを計測してアルカリ度計測装置41に出力す
る。
(Embodiment 2) FIG. 9 is a configuration diagram of a sewage treatment facility using the A2O method. The difference from the configuration of FIG. 1 lies in the method of measuring and calculating the true alkalinity ALi of the alkalinity measuring device 41. MLSS meter 44 is installed in aerobic tank 1C,
The SS concentration Sm is measured and output to the alkalinity measuring device 41.

【0071】アルカリ度計測装置41の構成を図10に
示す。pH設定回路412は設定値pHsを4.8として滴定
装置411に出力する。滴定装置411では、pH=4.8
を終点とする酸消費量Daを求める。混合液アルカリ度演
算回路413は、(15)式によりpH=4.8における混
合液のアルカリ度ALfを演算する。
FIG. 10 shows the configuration of the alkalinity measuring device 41. The pH setting circuit 412 outputs the set value pHs to the titrator 411 as 4.8. In the titrator 411, pH = 4.8
The acid consumption Da ending at is determined. The mixed liquid alkalinity calculation circuit 413 calculates the alkalinity ALf of the mixed liquid at pH = 4.8 according to the equation (15).

【0072】 ALf=1000・Kc・Da/La (15) アルカリ度演算回路414は、(8)式により、MLSS濃
度Smの増加分を補正した真のアルカリ度ALiを求める。
ALf = 1000 · Kc · Da / La (15) The alkalinity calculation circuit 414 obtains the true alkalinity ALi in which the increase in the MLSS concentration Sm is corrected according to the equation (8).

【0073】除去係数演算回路51、判定回路52、凝
集剤量演算回路53、調節装置55、及び金属注入量M
a、凝集剤注入量Ga、凝集剤注入設備12の操作方法は
実施例1と同様である。
The removal coefficient calculation circuit 51, the judgment circuit 52, the coagulant amount calculation circuit 53, the adjusting device 55, and the metal injection amount M
a, the coagulant injection amount Ga, and the operation method of the coagulant injection equipment 12 are the same as those in the first embodiment.

【0074】実施例2の方式は実施例1に比べて、滴定
に必要な酸消費量が増えるが、浄水場などで使用してい
る既存のアルカリ度計を改造することなく適用できる。
The method of the second embodiment requires more acid for the titration than that of the first embodiment, but can be applied without modifying an existing alkalinity meter used in a water purification plant or the like.

【0075】(実施例3)実施例1及び実施例2では、
アルカリ度予測係数Keやアルカリ度補正係数Ksを用いて
真のアルカリ度ALiを求めたが、真の酸消費量を求めて
からアルカリ度を演算することができる。
(Embodiment 3) In Embodiments 1 and 2,
Although the true alkalinity ALi was obtained using the alkalinity prediction coefficient Ke and the alkalinity correction coefficient Ks, the alkalinity can be calculated after obtaining the true acid consumption.

【0076】図11は、アルカリ度計測装置41におけ
るアルカリ度ALiの求め方で、実施例1と相違する。p
H設定回路412は5.5〜6.2の範囲で設定値pHsを与
え、滴定装置411は設定値pHsを終点とする酸消費量D
aを測定する。酸消費量演算回路415はpH=4.8にお
ける酸消費量Diを(16)式により演算する。Ke'は酸
消費予測係数で、アルカリ度と酸消費量が比例関係にあ
ることから、(6)式と同様の(17)式で表現でき
る。
FIG. 11 is different from the first embodiment in the method of obtaining the alkalinity ALi in the alkalinity measuring device 41. p
The H setting circuit 412 gives the set value pHs in the range of 5.5 to 6.2, and the titrator 411 provides the acid consumption D with the set value pHs as the end point.
Measure a. The acid consumption calculating circuit 415 calculates the acid consumption Di at pH = 4.8 by the equation (16). Ke ′ is an acid consumption prediction coefficient, which can be expressed by equation (17) similar to equation (6) since alkalinity and acid consumption are in a proportional relationship.

【0077】 Di=Ke'・Da (16) Ke'=a'・pHs−b' (17) ALi=1000・Kc・Di/La (18) ここで、a'、b'は定数で、滴定に用いた酸の種類や濃度
で(6)式の数値と異なる。アルカリ度演算回路416
は、pH=4.8におけるアルカリ度ALiを(18)式で演
算する。
Di = Ke ′ · Da (16) Ke ′ = a ′ · pHs−b ′ (17) ALi = 1000 · Kc · Di / La (18) where a ′ and b ′ are constants and titration The value differs from the value of the expression (6) depending on the kind and concentration of the acid used for the above. Alkalinity calculation circuit 416
Calculates the alkalinity ALi at pH = 4.8 by equation (18).

【0078】図12は、アルカリ度計測装置41におけ
るアルカリ度ALiの求め方で、実施例2と相違する。酸
消費量補正回路415は、活性汚泥を含む混合液のpH
=4.8における酸消費量Daの汚泥による消費量を補正
し、上澄液の場合の酸消費量Diを(19)式で演算す
る。
FIG. 12 is different from the second embodiment in the method of calculating the alkalinity ALi in the alkalinity measuring device 41. The acid consumption correction circuit 415 determines the pH of the mixed solution containing the activated sludge.
The consumption of sludge with the acid consumption Da at = 4.8 is corrected, and the acid consumption Di in the case of the supernatant is calculated by the equation (19).

【0079】 Di=Da−Ks'・Sm (19) ここで、Ks'は酸消費量補正係数で、滴定に用いる酸の
種類や濃度に影響される。アルカリ度演算回路416は
図11と同様で、(18)式により、pH=4.8におけ
る上澄液のアルカリ度ALiを演算し、出力する。
Di = Da−Ks ′ · Sm (19) Here, Ks ′ is an acid consumption correction coefficient, and is affected by the type and concentration of the acid used for titration. The alkalinity calculation circuit 416 calculates the alkalinity ALi of the supernatant at pH = 4.8 and outputs the calculated alkalinity ALi according to equation (18) in the same manner as in FIG.

【0080】実施例3のアルカリ度演算方式を用いて
も、実施例1及び実施例2と同様の結果が得られ、凝集
剤を適正に制御できる。
Even when the alkalinity calculation method of the third embodiment is used, the same results as in the first and second embodiments can be obtained, and the coagulant can be appropriately controlled.

【0081】(実施例4)図13はA2O法による下水処
理設備で、実施例1のアルカリ度計測装置を用いて、プ
ロセスのNox−Nの生成量と除去量を正確に検知し、その
検知情報に基づいて硝化反応や脱窒反応を適正に管理す
るものである。
(Embodiment 4) FIG. 13 shows a sewage treatment facility based on the A2O method. Using the alkalinity measuring device of Embodiment 1, the amount of generation and removal of Nox-N in the process is accurately detected and detected. The nitrification reaction and the denitrification reaction are properly managed based on the information.

【0082】このために、嫌気槽1A、無酸素槽1B、
流出液15の混合液を対象とするアルカリ度計測装置4
1A、41B、及び41Cをそれぞれ設置し、最終沈殿
池2の上澄液あるいは処理水16の全窒素(以下TNと称
す)濃度TNeを計測するTN計を配設する。アルカリ度
計測装置41A、41B、及び41Cは、図2と同様の
計測・演算方式で、嫌気槽アルカリ度ALa、無酸素槽ア
ルカリ度ALn、好気槽流出液アルカリ度ALoを計測する。
For this purpose, the anaerobic tank 1A, the anaerobic tank 1B,
Alkalinity measuring device 4 for mixture of effluent 15
1A, 41B and 41C are installed, respectively, and a TN meter for measuring the total nitrogen (hereinafter referred to as TN) concentration TNe of the supernatant of the final sedimentation basin 2 or the treated water 16 is provided. The alkalinity measuring devices 41A, 41B, and 41C measure the anaerobic tank alkalinity ALa, the anaerobic tank alkalinity ALn, and the aerobic tank effluent alkalinity ALo by the same measurement and calculation method as in FIG.

【0083】また、流量計31、32、33、35、3
6はそれぞれ流入下水量Qi、返送汚泥量Qr、循環液量Q
j、余剰汚泥量Qe、及び空気量Qgを計測する。また、好
気槽1Cには溶存酸素(以下DOと称す)濃度計43とML
SS計44を設置してDO濃度DoとMLSS濃度Smを計測し、返
送汚泥14には汚泥濃度計42を設置して返送汚泥濃度
Srを計測する。これらの計測値はデ−タ記憶装置57に
出力、記憶される。
The flow meters 31, 32, 33, 35, 3
6 is the inflow sewage volume Qi, the returned sludge volume Qr, and the circulating fluid volume Q, respectively.
j, the amount of excess sludge Qe and the amount of air Qg are measured. The dissolved oxygen (hereinafter referred to as DO) concentration meter 43 and the ML are provided in the aerobic tank 1C.
An SS meter 44 is installed to measure the DO concentration Do and the MLSS concentration Sm, and a sludge concentration meter 42 is installed on the returned sludge 14 to return the sludge concentration.
Measure Sr. These measured values are output and stored in the data storage device 57.

【0084】演算装置60は硝化反応や脱窒反応の状態
を判定して、適正な運転操作量を演算出力する。まず、
硝化量演算回路61は無酸素槽アルカリ度ALnと好気槽
流出液アルカリ度ALoの偏差ΔALnを求め、(11)式に
より好気槽1Cでの硝化量SNを演算する。脱窒量演算回
路62は、無酸素槽1Bのアルカリ度変化量ΔALdを
(20)式で求め、さらに、(12)式により脱窒量DN
を演算する。
The arithmetic unit 60 determines the state of the nitrification reaction or the denitrification reaction, and calculates and outputs an appropriate operation amount. First,
The nitrification amount calculation circuit 61 calculates a deviation ΔALn between the alkalinity of the oxygen-free tank ALn and the alkalinity of the effluent of the aerobic tank ALO, and calculates the nitrification amount SN in the aerobic tank 1C by the equation (11). The denitrification amount calculation circuit 62 calculates the alkalinity change amount ΔALd of the oxygen-free tank 1B by the equation (20), and further calculates the denitrification amount DN by the equation (12).
Is calculated.

【0085】 ΔALd=ALn−((ALa(Qi+Qr)+ALo・Qj)/(Qi+Qr+Qj)) (20) 図14はA2O法で実下水を処理したときの無酸素槽と好
気槽のNox−N変化量とアルカリ度変化量の関係であ
る。両者の関係は無酸素槽及び好気槽とも直線関係にあ
り、これらの傾きをKn、Kdとしてアルカリ度変化量から
硝化量及び脱窒量を求めることができる。
ΔALd = ALn − ((ALa (Qi + Qr) + ALo · Qj) / (Qi + Qr + Qj)) (20) FIG. 14 shows the Nox-N change of the anoxic tank and the aerobic tank when the actual sewage is treated by the A2O method. It is a relationship between the amount and the alkalinity change amount. The relationship between the two is linear in both the anoxic tank and the aerobic tank, and the nitrification amount and the denitrification amount can be obtained from the change in alkalinity with the slopes of these as Kn and Kd.

【0086】判定回路63は、窒素除去の良否を判断
し、除去不良の場合にその要因と操作量を選択判定す
る。その方法を図15に示す。窒素除去の良否は、最終
沈殿池2の上澄液あるいは処理水16のTN濃度TNeが目
標値TNmより低ければ除去良好と判断する(s10
1)。TNm<TNeの場合、硝化反応と脱窒反応の進行状態
に基づいて操作量を選択する。TN計46の計測値TNe
は、NH4−N、Nox−N、及び有機性窒素を総和した濃度
となる。
The determination circuit 63 determines the quality of nitrogen removal, and if the removal is defective, selectively determines the factor and the amount of operation. The method is shown in FIG. The quality of the nitrogen removal is determined to be good if the TN concentration TNe of the supernatant of the final sedimentation basin 2 or the treated water 16 is lower than the target value TNm (s10).
1). When TNm <TNe, the operation amount is selected based on the progress of the nitrification reaction and the denitrification reaction. Measurement value TNe of TN meter 46
Is the total concentration of NH4-N, Nox-N, and organic nitrogen.

【0087】活性汚泥処理後の処理水中の有機性窒素濃
度は僅かで、計測値TNeとアルカリ度変化量から求めた
濃度基準の硝化量SNで硝化反応状態を診断できる。硝化
反応はTN濃度TNeと硝化量SNの偏差量が目標とする偏差
量αnより小さければ硝化良好、(Tne−SN)>αnであ
ればNH4−Nの残留が多く、硝化不良と判断する(s10
2)。
The concentration of organic nitrogen in the treated water after the activated sludge treatment is very small, and the nitrification reaction state can be diagnosed based on the nitrification amount SN based on the measured value TNe and the alkalinity change amount. In the nitrification reaction, if the deviation between the TN concentration TNe and the nitrification amount SN is smaller than the target deviation αn, it is judged that the nitrification is good, and if (Tne−SN)> αn, the residual NH4—N is large and it is judged that the nitrification is poor ( s10
2).

【0088】脱窒反応は、循環液19で持ち込まれるNo
x−N量SNjと脱窒量DNの偏差量が目標とする偏差量βn
より小さければ脱窒良好、逆に、(SNj−DN)>βnであ
れば脱窒不良と診断する(s103,s104)。持込
Nox−N量SNj(濃度基準)は(21)式で演算する。
The denitrification reaction is carried out using the No.
The deviation βn is the target deviation between the x-N amount SNj and the denitrification amount DN.
If it is smaller, it is diagnosed that denitrification is good, and if (SNj−DN)> βn, it is diagnosed that it is not good for denitrification (s103, s104). Bring in
The Nox-N amount SNj (concentration reference) is calculated by equation (21).

【0089】 SNj=SN・Qj/(Qi+Qr+Qj) (21) これらの診断結果に基づいて、(1)硝化及び脱窒反応
とも良好であれば循環液量を増加、(2)硝化反応は良
好であるが、脱窒反応が不良であれば汚泥量増加、
(3)硝化反応は不良であるが、脱窒反応が良好であれ
ば循環液量あるいは空気量あるいは汚泥量増加、(4)
硝化及び脱窒反応とも不良であれば空気量あるいは汚泥
量増加、等の操作選択を実行する。
SNj = SN · Qj / (Qi + Qr + Qj) (21) Based on these diagnostic results, if both (1) the nitrification and denitrification reactions are good, the circulating fluid volume is increased, and (2) the nitrification reaction is good. However, if the denitrification reaction is poor, the amount of sludge will increase,
(3) The nitrification reaction is poor, but if the denitrification reaction is good, the amount of circulating liquid or air or sludge increases, (4)
If both the nitrification and the denitrification reactions are not satisfactory, an operation selection such as an increase in the amount of air or sludge is performed.

【0090】制御目標値設定回路64では、判定回路6
3の操作選択に基づいて操作量の目標値を設定する。目
標値は、各操作量ごとに上下限値を設け、その範囲内で
現状値に対して5%あるいは10%増加減する定比率方
式、現状値に対して一定量あるいは一定濃度を加減算す
る定量方式で設定する。目標値は、操作量が空気量であ
れば空気量あるいはDO濃度、汚泥量であれば返送汚泥
流量あるいは余剰汚泥流量あるいはMLSS濃度あるいは汚
泥滞留時間(SRT、A−SRT)、循環液量であれば
循環液量あるいは流入下水流量に対する循環液量の比率
を対象にできる。
In the control target value setting circuit 64, the judgment circuit 6
The target value of the operation amount is set based on the operation selection of 3. For the target value, upper and lower limits are set for each manipulated variable, and within the range, a constant ratio method in which the current value is increased or decreased by 5% or 10%, and a fixed amount in which a constant amount or a constant concentration is added to or subtracted from the current value. Set by method. The target value may be the air amount or DO concentration if the operation amount is the air amount, the return sludge flow amount or the excess sludge flow amount, the MLSS concentration, the sludge residence time (SRT, A-SRT), or the circulating liquid amount if the operation amount is the sludge amount. For example, the circulating liquid amount or the ratio of the circulating liquid amount to the inflow sewage flow rate can be targeted.

【0091】調節装置55は、判定回路63及び設定回
路64で選択された操作量と新たな目標値とデ−タ記憶
装置57の現状値に基づいて汚泥返送設備7、あるいは
汚泥排出設備8、あるいは送風機9、あるいは循環設備
10を調節する。なお、表示装置56は演算装置60内
での硝化量や脱窒量の演算結果、硝化反応や脱窒反応の
状況、選択された操作量とその目標値などを対象に表示
し、運転者にプラント状況を提示する。
The adjusting device 55 is based on the operation amount selected by the judgment circuit 63 and the setting circuit 64, the new target value, and the current value of the data storage device 57, and the sludge return equipment 7 or the sludge discharge equipment 8, Alternatively, the blower 9 or the circulation equipment 10 is adjusted. In addition, the display device 56 displays the calculation results of the nitrification amount and the denitrification amount in the calculation device 60, the status of the nitrification reaction and the denitrification reaction, the selected operation amount and its target value, and the like, so as to display the target to the driver. Present the plant status.

【0092】最終沈殿池2の上澄液あるいは処理水16
のTN濃度TNeが目標値TNmを満足している場合、判定回路
63は現在操作量を維持する、あるいは前回選択された
操作量の目標値を選択前の値に戻すように制御目標値設
定回路64に指示する。
The supernatant or treated water 16 of the final sedimentation basin 2
If the TN concentration TNe of the control value satisfies the target value TNm, the determination circuit 63 maintains the current manipulated variable or returns a control target value setting circuit to return the previously selected target value of the manipulated variable to the value before selection. Instruct 64.

【0093】実施例4によれば、高価で、メンテナンス
負担の大きいNH4−N計やNOx−N計を用いることなく、硝
化量や脱窒量を簡易で信頼性の高いアルカリ度計測装置
で予測できるため、監視制御の信頼性を向上できる。
According to the fourth embodiment, the amount of nitrification and the amount of denitrification can be predicted by a simple and highly reliable alkalinity measuring device without using an expensive NH4-N meter or NOx-N meter which requires a large maintenance burden. Therefore, the reliability of monitoring control can be improved.

【0094】(実施例5)図16はA2O法による下水処
理設備で、アルカリ度計測値からリン濃度を求め、嫌気
槽と好気槽のリン放出状態と摂取状態を予測してリン除
去反応を適正に管理するものである。嫌気槽1A及び反
応槽流出液15に前処理装置418を設けたアルカリ度
計測装置41A'、41C'を設置し、前処理前のアルカリ度AL
1と前処理後のアルカリ度AL2を計測する。
(Example 5) FIG. 16 shows a sewage treatment system using the A2O method. The phosphorus concentration is determined from the measured alkalinity, and the phosphorus release and intake states of the anaerobic tank and the aerobic tank are predicted to determine the phosphorus removal reaction. It is properly managed. The alkalinity measuring devices 41A 'and 41C' provided with the pretreatment device 418 are installed in the anaerobic tank 1A and the reaction tank effluent 15, and the alkalinity AL before the pretreatment is set.
Measure 1 and alkalinity AL2 after pretreatment.

【0095】アルカリ度計測装置41A'、41C'の構成例を
図17に示す。前処理装置418では、撹拌槽418A
に所定量の嫌気槽1A混合液あるいは反応槽流出液15
と、凝集剤貯槽418Bから凝集剤注入装置418Cを
介して所定量の凝集剤を混合撹拌する。撹拌槽418A
では、凝集剤が流入した混合液のリン濃度とアルカリ度
と反応して消費され、溶液中のアルカリ度とリン濃度が
低下する。このときの凝集剤消費内訳は凝集剤注入前の
リン濃度とアルカリ度で変化する。検水切替器418D
は、滴定装置411に送る滴定検水を切替えるもので、
前処理していない反応槽混合液と前処理後の凝集剤処理
液を交互に切替送水する。滴定装置411、pH設定回路
412、暫定アルカリ度演算回路413、及びアルカリ
度演算回路414の機能と演算内容は、図2と同様であ
るが、反応槽混合液のアルカリ度AL1と凝集剤処理液ア
ルカリ度AL2を出力する。
FIG. 17 shows a configuration example of the alkalinity measuring devices 41A 'and 41C'. In the pretreatment device 418, the stirring tank 418A
A predetermined amount of the anaerobic tank 1A mixture or the reaction tank effluent 15
Then, a predetermined amount of coagulant is mixed and stirred from the coagulant storage tank 418B via the coagulant injection device 418C. Stirring tank 418A
In this case, the coagulant is consumed by reacting with the phosphorus concentration and the alkalinity of the inflowing mixture, and the alkalinity and the phosphorus concentration in the solution decrease. The breakdown of coagulant consumption at this time varies depending on the phosphorus concentration and alkalinity before the coagulant injection. Water sampling switch 418D
Is to switch the titration test water sent to the titrator 411,
The mixed solution of the reaction tank not subjected to the pretreatment and the coagulant treatment solution after the pretreatment are alternately switched and fed. The functions and calculation contents of the titrator 411, the pH setting circuit 412, the provisional alkalinity calculation circuit 413, and the alkalinity calculation circuit 414 are the same as those in FIG. 2, except that the alkalinity AL1 of the reaction mixture and the coagulant treatment liquid. Outputs alkalinity AL2.

【0096】演算装置70では、まず、リン濃度演算回
路71で、凝集剤注入に伴なうアルカリ度の低減が凝集
剤注入前のリン濃度とアルカリ度に影響されるという実
験的知見に基づいて、(22)式でリン濃度Cpを演算す
る。
In the arithmetic unit 70, first, in the phosphorus concentration calculating circuit 71, based on the experimental finding that the reduction in alkalinity accompanying the coagulant injection is affected by the phosphorus concentration and alkalinity before the coagulant injection. , (22) is used to calculate the phosphorus concentration Cp.

【0097】 Cp=AL1((Ka−(AL1−AL2)/Ca)/Aa)1/Ba (22) ここで、Caは撹拌槽418Aにおける凝集剤注入濃度
(金属換算)、Ka、Aa、Baは定数で、凝集剤がPACの場
合、Ka=2〜3、Aa=0.5〜1.0、Ba=0.1〜0.5の範囲で
設定される。
Cp = AL1 ((Ka− (AL1-AL2) / Ca) / Aa) 1 / Ba (22) where Ca is the coagulant injection concentration in the stirring tank 418A.
(In terms of metal), Ka, Aa, and Ba are constants. When the flocculant is PAC, it is set in the range of Ka = 2 to 3, Aa = 0.5 to 1.0, and Ba = 0.1 to 0.5.

【0098】アルカリ度計測装置41A'の出力値AL1、AL2
により嫌気槽混合液のリン濃度Cpa、計測装置41C'の出
力値AL1、AL2により反応槽流出液のリン濃度Cpoが演算
される。
The output values AL1, AL2 of the alkalinity measuring device 41A '
Thus, the phosphorus concentration Cpa of the reaction tank effluent is calculated from the phosphorus concentration Cpa of the anaerobic tank mixture and the output values AL1 and AL2 of the measuring device 41C ′.

【0099】判定回路72は、リン除去の良否を判断し
(s201)、除去不良の場合にその要因と操作量を選
択判定する。判定例を図18に示す。リン除去の良否
は、反応槽流出液15のリン濃度Cpoが目標値Pmより低
ければ除去良好と判断する。一方、Cpo>Pmの場合、リ
ン放出と摂取機能の状態に対応して機能向上のための操
作量を判定選択する。
The determination circuit 72 determines the quality of the phosphorus removal (s201). If the removal is defective, the factor and the operation amount are selected and determined. FIG. 18 shows a determination example. The quality of the phosphorus removal is determined to be good if the phosphorus concentration Cpo of the reaction tank effluent 15 is lower than the target value Pm. On the other hand, when Cpo> Pm, the operation amount for improving the function is determined and selected in accordance with the state of the phosphorus release and the intake function.

【0100】リン放出状態はCpaが設定値αpより高けれ
ば放出良好、Cpa<αpであれば放出不良と判断する(s
202)。リン摂取はCpoが設定値βpより低ければ摂取
良好、Cpo>βpであれば摂取不良と判断する(s20
3,s204)。
In the phosphorus release state, if Cpa is higher than the set value αp, it is determined that the release is good, and if Cpa <αp, it is determined that the release is poor (s
202). Phosphorus intake is determined to be good if Cpo is lower than the set value βp, and poor if Cpo> βp (s20).
3, s204).

【0101】これらの診断結果に基づいて、(1)放出
及び摂取とも良好であれば空気量あるいは汚泥量を変
更、(2)放出は良好であるが、摂取が不良であれば空
気量あるいは汚泥量を変更、あるいは凝集剤添加、
(3)放出不良であるが、摂取が良好であれば汚泥量を
変更、(4)放出及び摂取とも不良であれば汚泥量を変
更あるいは凝集剤添加、等の操作選択を実行する。
Based on these diagnostic results, (1) the amount of air or sludge is changed if the release and intake are good, and (2) the amount of air or sludge is good if the release is good, but the intake is poor. Change the amount or add a flocculant,
(3) If the discharge is poor, but the intake is good, change the amount of sludge. (4) If both the release and the intake are poor, change the sludge amount or add an aggregating agent.

【0102】制御目標値設定回路73は、実施例4と同
様な方法で、判定回路72の操作選択に基づいて操作量
の目標値を設定する。調節装置55は、判定回路72及
び設定回路73で選択された操作量と新たな目標値とデ
−タ記憶装置57の現状値に基づいて汚泥返送設備7、
あるいは汚泥排出設備8、あるいは送風機9、あるいは
凝集剤注入設備12を調節する。なお、表示装置56
は、リン濃度演算結果、リン放出・摂取状況、選択され
た操作量とその目標値などを対象に表示し、運転者にプ
ラント状況を提示する。
The control target value setting circuit 73 sets the target value of the operation amount based on the operation selection of the determination circuit 72 in the same manner as in the fourth embodiment. The adjusting device 55 controls the sludge return equipment 7 based on the operation amount selected by the determination circuit 72 and the setting circuit 73, the new target value, and the current value of the data storage device 57.
Alternatively, the sludge discharge equipment 8, the blower 9, or the coagulant injection equipment 12 is adjusted. The display device 56
Displays the phosphorus concentration calculation result, the phosphorus release / intake state, the selected manipulated variable and its target value, etc., and presents the plant situation to the driver.

【0103】実施例5によれば、高価で、メンテナンス
負担の大きいPO4−P計を用いることなく、リン放出及び
摂取濃度をアルカリ度計測値から予測できるため、簡易
で信頼性の高い監視制御を提供できる。
According to the fifth embodiment, since the phosphorus release and the intake concentration can be predicted from the alkalinity measurement value without using an expensive and heavy maintenance PO4-P meter, a simple and highly reliable monitoring control can be performed. Can be provided.

【0104】(実施例6)図19は、アルカリ度計測値
から硝化量あるいはリン濃度を求め、NH4−N計やNox−N
計あるいはPO4−P計の正常/異常を診断する構成例であ
る。嫌気槽1Aにアルカリ度計測装置41A'とPO4−P計42
A、無酸素槽1Bにアルカリ度計測装置41B'とNH4−N計4
7AやNox−N計48A、好気槽1CにPO4−P計42B及びNH4−N
計47BとNox−N計48B、反応槽流出液15にアルカリ度計
測装置41C'を設けている。アルカリ度計測装置41A'、41
B'、41C'は図17に示す方式を用いる。これらの計測値
は全てデ−タ記憶装置57に保存され、演算装置80に
適宜出力される。
(Example 6) FIG. 19 shows that the nitrification amount or the phosphorus concentration was determined from the measured alkalinity value, and the NH4-N meter and the Nox-N
This is a configuration example for diagnosing normal / abnormal of the meter or the PO4-P meter. Alkalinity measuring device 41A 'and PO4-P meter 42 in anaerobic tank 1A
A, alkalinity measuring device 41B 'and NH4-N total 4 in anoxic tank 1B
7A and Nox-N total 48A, PO4-P total 42B and NH4-N in aerobic tank 1C
A totality 47B, a Nox-N total 48B, and an alkalinity measuring device 41C 'are provided in the reaction tank effluent 15. Alkalinity measuring device 41A ', 41
B 'and 41C' use the method shown in FIG. All of these measured values are stored in the data storage device 57 and output to the arithmetic device 80 as appropriate.

【0105】硝化量演算回路61では、アルカリ度計測
装置41B'、41C'の凝集剤注入前のアルカリ度AL1を用い
て、(11)式から好気槽1Cでの硝化量すなわち硝化
濃度SNを演算する。リン濃度演算回路71は実施例5と
同様の方法で各反応槽のリン濃度を演算する。比較回路
81では、NH4−N計47Aと47Bの変化量ΔNH、及びNox−N
計48Aと48Bの変化量ΔNOと硝化濃度SNを比較する。さら
に、リン濃度演算回路71からのリン濃度演算値とPO4
−P計42A、及び42Bの出力値とを比較する。
In the nitrification amount calculation circuit 61, the amount of nitrification, that is, the nitrification concentration SN in the aerobic tank 1C is calculated from the equation (11) using the alkalinity AL1 of the alkalinity measuring devices 41B 'and 41C' before the coagulant is injected. Calculate. The phosphorus concentration calculation circuit 71 calculates the phosphorus concentration of each reaction tank in the same manner as in the fifth embodiment. In the comparison circuit 81, the change amount ΔNH of the NH4-N totals 47A and 47B and the Nox-N
The amount of change ΔNO and the nitrification concentration SN of the total 48A and 48B are compared. Further, the calculated value of the phosphorus concentration from the phosphorus concentration
-Compare the output values of the P total 42A and 42B.

【0106】判定回路82ではΔNH−SN、ΔNO−SNの偏
差が所定値以下であればNH4−N計47Aと47B、Nox−N計48
Aと48Bは正常と判断し、所定値以上であれば異常と判断
する。PO4−P計42A、及び42Bも出力値とリン濃度演算値
の偏差が所定値以下であれば正常、所定値以上であれば
異常と判断する。NH4−N計47A、47B、及びNox−N計48
A、48Bは、実施例4と同様に、脱窒量演算回路62での
脱窒量に基づいて脱窒状態を評価し、完全脱窒であれば
硝化濃度SNでNox−N計48Bを直接診断できる。また、脱
窒不良であれば、Nox−N計48Bは硝化濃度SN以上の出力
値となっているか否かで異常判定できる。
In the judgment circuit 82, if the deviation of ΔNH-SN and ΔNO-SN is less than a predetermined value, the NH4-N totals 47A and 47B and the Nox-N total 48
A and 48B are determined to be normal, and if they are equal to or greater than a predetermined value, it is determined to be abnormal. The PO4-P meters 42A and 42B also determine that the deviation between the output value and the calculated phosphorus concentration is normal if it is equal to or less than a predetermined value, and that it is abnormal if the deviation is equal to or more than the predetermined value. NH4-N Total 47A, 47B, Nox-N Total 48
A and 48B evaluate the denitrification state based on the denitrification amount in the denitrification amount calculation circuit 62 in the same manner as in the fourth embodiment, and if it is complete denitrification, the Nox-N meter 48B is directly measured with the nitrification concentration SN. Diagnose. Further, if the denitrification is poor, the Nox-N total 48B can determine an abnormality based on whether or not the output value is equal to or higher than the nitrification concentration SN.

【0107】これらの比較、判定結果は表示装置56に
表示できる。なお、実施例には示していないが、NH4−N
計やNox−N計あるいはPO4−P計で硝化、脱窒、リン放出
及び摂取を対象とした運転管理をする場合、異常判定さ
れた計測器による操作量の変更は行わず、正常時のみ運
転管理に適用する。
The results of these comparisons and judgments can be displayed on the display device 56. Although not shown in the Examples, NH4-N
When the operation management for nitrification, denitrification, phosphorus release and ingestion is performed with a meter, Nox-N meter, or PO4-P meter, the operation amount is not changed by the meter that has been determined to be abnormal, and operation is only performed during normal times. Apply to management.

【0108】上記実施例は、A2O法の下水処理設備を対
象に説明したが、AO法、AOAO法、硝化液循環変法、標準
活性汚泥法、並びに流入下水を分割して導入するステッ
プ方式AOAO法、などにも適用できる。また、アルカリ度
計測装置は生物反応槽に設置しているが、流入下水や処
理水、返送汚泥にも適用できる。さらに、余剰汚泥を処
理する汚泥濃縮設備や消化設備の混合液を対象に計測
し、汚泥濃縮や消化に影響する因子を調節できる。
Although the above embodiment has been described with reference to the sewage treatment equipment of the A2O method, the AO method, the AOAO method, the modified nitrification liquid circulation method, the standard activated sludge method, and the step method AOAO in which the inflowing sewage is divided and introduced. Law, etc. Although the alkalinity measuring device is installed in the biological reaction tank, it can be applied to inflow sewage, treated water, and returned sludge. In addition, by measuring a mixture of sludge concentration equipment and digestion equipment for processing excess sludge, it is possible to adjust factors affecting sludge concentration and digestion.

【0109】(実施例7)図20は、浄水処理設備の構
成例で、沈殿上澄水(処理水)の濁質成分とアルカリ成分
を目標値に管理する凝集剤及び薬品注入制御装置を設け
ている。浄水処理設備は流入原水131に懸濁する微小
な濁質粒子を凝集剤で凝集沈殿して除去するもので、着
水井101、混和池102、フロック形成池103、沈
殿池104、凝集剤貯槽11、凝集剤注入設備12、薬
品貯槽111Aと111B、薬品注入設備112から構
成されている。
(Embodiment 7) FIG. 20 shows an example of the configuration of a water purification treatment system, which is provided with a flocculant and a chemical injection control device for controlling turbid components and alkaline components of sedimentation supernatant water (treated water) to target values. I have. The water purification treatment equipment removes minute turbid particles suspended in the inflow raw water 131 by coagulating and sedimenting with a coagulant, and includes a landing well 101, a mixing pond 102, a floc forming pond 103, a sedimentation pond 104, and a coagulant storage tank 11. , A coagulant injection facility 12, chemical storage tanks 111A and 111B, and a chemical injection facility 112.

【0110】河川や湖沼から取水した流入原水131は
沈砂池(図示せず)などで土砂や狭雑物が除去された後、
着水井101に流入する。着水井101では、他の原水
や後段設備からの返送水と混合され、水質の安定化が図
れる。混和池102では、薬品貯槽111Aからの酸あ
るいはアルカリ剤と凝集剤貯槽11からの凝集剤が注入
され、撹拌機106で混合拡散させる。フロック形成池
103は、撹拌機107を緩やかに回転させ、微小濁質
粒子を凝集剤の作用で粗大な凝集塊(以下、フロックと
称す)とし、沈降しやすい状態にする。沈殿池104で
は、粗大化したフロックを沈殿除去し、上澄液を形成さ
せる。上澄液は砂ろ過、殺菌工程を経て、水道水132
となる。
The inflow raw water 131 taken from rivers and lakes is subjected to removal of sediment and contaminants by a sand basin (not shown).
It flows into the landing well 101. In the landing well 101, the water is mixed with other raw water or return water from the downstream equipment, so that the water quality can be stabilized. In the mixing pond 102, the acid or alkali agent from the chemical storage tank 111A and the coagulant from the coagulant storage tank 11 are injected and mixed and diffused by the stirrer 106. The floc forming pond 103 rotates the stirrer 107 gently to turn the fine turbid particles into coarse aggregates (hereinafter, referred to as flocs) by the action of the flocculant, and to settle easily. In the sedimentation basin 104, coarse flocs are removed by sedimentation to form a supernatant. The supernatant liquid is filtered through sand and sterilized, and
Becomes

【0111】以下、演算装置90で実現される凝集剤注
入制御装置と薬品注入制御装置の構成と動作について説
明する。着水井101に水質計測器142を設置して濁
度、pH、水温を計測し、これらの計測値TUi、pHi、Ti
をデ−タ記憶装置57に入力する。着水井101あるい
は着水井流出液に実施例1と同じアルカリ度計測装置4
1を設置し、演算値ALiを記憶装置57に入力する。ま
た、記憶装置57には流量計141、143、144か
らの流入原水量、凝集剤注入量、薬品注入量が入力され
る。
Hereinafter, the configuration and operation of the coagulant injection control device and the chemical injection control device realized by the arithmetic unit 90 will be described. A water quality measuring device 142 is installed in the landing well 101 to measure turbidity, pH, and water temperature, and these measured values TUi, pHi, Ti
Is input to the data storage device 57. The same alkalinity measuring device 4 as in the first embodiment is applied to the landing well 101 or the landing well effluent.
1 is set, and the operation value ALi is input to the storage device 57. The storage device 57 is supplied with the inflow raw water amount, the coagulant injection amount, and the chemical injection amount from the flow meters 141, 143, and 144.

【0112】演算装置90では、まず、薬品注入濃度演
算回路92で、アルカリ度演算値ALiが予め定めたアル
カリ度設定範囲にあるかを判定し、範囲外であれば設定
範囲となる最小注入濃度を求める。薬品注入量演算回路
94では、演算値ALiが上記設定範囲以下であればアル
カリ剤を、設定範囲以上であれば酸を注入する判定と、
最小注入濃度と流入原水量の積で薬品注入量を演算す
る。凝集剤注入濃度演算回路91では、予め設定された
注入モデル:f(TUi、pHi、Ti、ALi)で注入濃度Caを演
算する。凝集剤注入量演算回路93は、注入濃度Caと流
入原水量の積から凝集剤注入量を演算する。
In the arithmetic unit 90, the chemical injection concentration calculating circuit 92 first determines whether the alkalinity calculation value ALi is within a predetermined alkalinity setting range. Ask for. In the chemical injection amount calculation circuit 94, when the calculated value ALi is equal to or less than the set range, an alkaline agent is injected, and when the calculated value ALi is equal to or more than the set range, an acid is determined to be injected.
The chemical injection amount is calculated by the product of the minimum injection concentration and the inflowing raw water amount. The coagulant injection concentration calculation circuit 91 calculates the injection concentration Ca using a preset injection model: f (TUi, pHi, Ti, ALi). The coagulant injection amount calculation circuit 93 calculates the coagulant injection amount from the product of the injection concentration Ca and the inflowing raw water amount.

【0113】調節装置55は、演算装置90から出力さ
れた凝集剤注入量と薬品注入量に対応して凝集剤注入設
備12、薬品注入設備112を調節する。なお、薬品注
入設備112は、アルカリ剤あるいは酸注入の判定結果
に基づいて切替装置113を作動させ、アルカリ剤貯槽
111Aあるいは酸貯槽111Bからの薬品注入量を調
節する。
The adjusting device 55 adjusts the coagulant injection equipment 12 and the chemical injection equipment 112 according to the coagulant injection amount and the chemical injection amount output from the arithmetic unit 90. The chemical injection equipment 112 operates the switching device 113 based on the determination result of the alkali agent or acid injection to adjust the amount of the chemical injected from the alkali agent storage tank 111A or the acid storage tank 111B.

【0114】本実施例によれば、浄水処理において、取
水した原水にアルカリ度の計測に影響する微生物が流入
してもアルカリ度を正確に測定でき、信頼性の高い凝集
剤あるいは薬品注入制御を実現できる。また、アルカリ
度計測に消費する酸量を低減でき、運転コストを軽減で
きる。
According to this embodiment, in the water purification treatment, even if microorganisms that affect the measurement of alkalinity flow into the raw water that has been withdrawn, the alkalinity can be accurately measured, and a highly reliable coagulant or chemical injection control can be performed. realizable. Further, the amount of acid consumed for alkalinity measurement can be reduced, and the operating cost can be reduced.

【0115】[0115]

【発明の効果】本発明のアルカリ度監視方法によれば、
活性汚泥を固液分離する前処理手段を設置する必要がな
く、活性汚泥を含有する混合液でも直接滴定するため、
水質変化がなく、アルカリ度を高精度で計測できる。前
処理手段がないため、新たな設備及び運転コストがかか
らず、保守点検作業も不要である。また、pH滴定目標
値を高くするため、滴定に要する酸消費量を低減でき、
経済的である。さらに、pH滴定目標値は5.5以上に設
定するため、滴定処理液を中和する必要がなく、排出で
きる。
According to the method for monitoring alkalinity of the present invention,
There is no need to install a pretreatment means for solid-liquid separation of activated sludge, and even a mixed solution containing activated sludge is directly titrated,
There is no change in water quality and alkalinity can be measured with high accuracy. Since there is no pretreatment means, no new equipment and operating costs are required, and no maintenance and inspection work is required. In addition, to increase the pH titration target value, it is possible to reduce the acid consumption required for titration,
It is economical. Further, since the target value of the pH titration is set to 5.5 or more, the titration treatment liquid does not need to be neutralized and can be discharged.

【0116】また、本発明の水処理プロセスの制御によ
れば、処理対象となる混合液の正確なアルカリ度を用い
てプラントの監視制御ができ、さらに、硝化量や脱窒
量、リン濃度を把握できるので、高価な水質計測器を用
いず適正なプラント運転管理ができるため良質の処理水
を安定して提供できる効果がある。
Further, according to the control of the water treatment process of the present invention, the plant can be monitored and controlled by using the correct alkalinity of the mixture to be treated, and the nitrification amount, the denitrification amount, and the phosphorus concentration can be controlled. Since it can be grasped, an appropriate plant operation management can be performed without using an expensive water quality measuring instrument, so that there is an effect that high quality treated water can be stably provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1による凝集剤制御装置を含む
下水処理設備の構成図。
FIG. 1 is a configuration diagram of a sewage treatment facility including a flocculant control device according to a first embodiment of the present invention.

【図2】実施例1におけるアルカリ度計測装置の構成
図。
FIG. 2 is a configuration diagram of an alkalinity measuring device according to the first embodiment.

【図3】酸添加量とpH特性の試験結果の一例を示すグ
ラフ。
FIG. 3 is a graph showing an example of test results of an acid addition amount and pH characteristics.

【図4】アルカリ度比率とpH特性の試験結果の一例を
示すグラフ。
FIG. 4 is a graph showing an example of test results of alkalinity ratio and pH characteristics.

【図5】アルカリ度比率とpH特性の試験結果の他の一
例を示すグラフ。
FIG. 5 is a graph showing another example of test results of alkalinity ratio and pH characteristics.

【図6】各種pHにおけるアルカリ度と真のアルカリ度
の試験結果の一例を示すグラフ。
FIG. 6 is a graph showing an example of test results of alkalinity and true alkalinity at various pHs.

【図7】アルカリ度予測のためのpH設定値を説明する
試験結果の一例を示すグラフ。
FIG. 7 is a graph showing an example of a test result illustrating a pH set value for predicting alkalinity.

【図8】MLSSとアルカリ度特性の試験結果の一例を
示すグラフ。
FIG. 8 is a graph showing an example of test results of MLSS and alkalinity characteristics.

【図9】実施例2による凝集剤制御装置を含む下水処理
設備の構成図。
FIG. 9 is a configuration diagram of a sewage treatment facility including a flocculant control device according to a second embodiment.

【図10】実施例2におけるアルカリ度計測装置の構成
図。
FIG. 10 is a configuration diagram of an alkalinity measuring device according to a second embodiment.

【図11】実施例3におけるアルカリ度計測装置の構成
図。
FIG. 11 is a configuration diagram of an alkalinity measuring device according to a third embodiment.

【図12】実施例3におけるアルカリ度計測装置の他の
一例を示す構成図。
FIG. 12 is a configuration diagram showing another example of the alkalinity measuring device according to the third embodiment.

【図13】実施例4による窒素除去制御装置を含む下水
処理設備の構成図。
FIG. 13 is a configuration diagram of a sewage treatment facility including a nitrogen removal control device according to a fourth embodiment.

【図14】Nox−Nとアルカリ度変化特性の試験結果の一
例を示すグラフ。
FIG. 14 is a graph showing an example of test results of Nox-N and alkalinity change characteristics.

【図15】実施例4における窒素除去判定方法の一例を
示す構成図。
FIG. 15 is a configuration diagram illustrating an example of a nitrogen removal determination method according to a fourth embodiment.

【図16】実施例5によるリン除去制御装置を含む下水
処理設備の構成図。
FIG. 16 is a configuration diagram of a sewage treatment facility including a phosphorus removal control device according to a fifth embodiment.

【図17】実施例5におけるアルカリ度計測装置の構成
図。
FIG. 17 is a configuration diagram of an alkalinity measuring device according to a fifth embodiment.

【図18】実施例5におけるリン除去判定方法の一例を
示す構成図。
FIG. 18 is a configuration diagram illustrating an example of a phosphorus removal determination method according to a fifth embodiment.

【図19】実施例6による計測器診断装置を含む下水処
理設備の構成図。
FIG. 19 is a configuration diagram of a sewage treatment facility including a measuring instrument diagnostic device according to a sixth embodiment.

【図20】実施例7による凝集剤及び薬品制御装置を含
む浄水処理設備の構成図。
FIG. 20 is a configuration diagram of a water purification treatment facility including a flocculant and a chemical control device according to a seventh embodiment.

【符号の説明】[Explanation of symbols]

1…生物反応槽、1A…嫌気槽、1B…無酸素槽、1C
…好気槽、2…最終沈殿池、5…水中撹拌機、7…汚泥
返送設備、8…汚泥排出設備、9…送風機、10…循環
設備、11…凝集剤貯留槽、12…凝集剤注入設備、3
1,32,33,34,35,36…流量計、41,4
1'…アルカリ度計測装置、411…滴定装置、412
…pH設定回路、413…暫定アルカリ度演算回路、4
14,416…アルカリ度演算回路、415…酸消費量
演算回路、417…酸消費量補正回路、418…前処理
装置、42…リン濃度計、43…DO計、44…MLSS計、
45…汚泥濃度計、46…TN計、47…NH4−N計、48
…Nox−N計、50,60,70,80,90…演算装
置、55…調節装置、56…表示装置、57…デ−タ記
憶装置、101…着水井、102…混和池、103…フ
ロック形成池、104…沈殿池、111…薬品貯槽、1
12…薬品注入設備、142…水質計測器。
1. Biological reaction tank, 1A: Anaerobic tank, 1B: Anoxic tank, 1C
... Aerobic tank, 2 ... Final sedimentation basin, 5 ... Underwater stirrer, 7 ... Sludge return equipment, 8 ... Sludge discharge equipment, 9 ... Blower, 10 ... Circulation equipment, 11 ... Coagulant storage tank, 12 ... Coagulant injection Equipment, 3
1, 32, 33, 34, 35, 36 ... flow meter, 41, 4
1 ': alkalinity measuring device, 411: titration device, 412
... pH setting circuit, 413 ... Temporary alkalinity calculation circuit, 4
14, 416: alkalinity calculation circuit, 415: acid consumption calculation circuit, 417: acid consumption correction circuit, 418: pretreatment device, 42: phosphorus concentration meter, 43: DO meter, 44: MLSS meter,
45: Sludge concentration meter, 46: TN meter, 47: NH4-N meter, 48
... Nox-N meter, 50, 60, 70, 80, 90 ... arithmetic unit, 55 ... adjusting unit, 56 ... display unit, 57 ... data storage unit, 101 ... landing well, 102 ... mixing pond, 103 ... floc Formation pond, 104: sedimentation pond, 111: chemical storage tank, 1
12 ... chemical injection equipment, 142 ... water quality measuring instrument.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 1/52 C02F 1/52 E 1/66 510 1/66 510K 530 530L 530P 540 540J 540Z 3/30 ZAB 3/30 ZABC G01N 31/16 G01N 31/16 A (72)発明者 武本 剛 茨城県日立市大みか町七丁目2番1号 株 式会社日立製作所電力・電機開発研究所内 (72)発明者 圓佛 伊智朗 茨城県日立市大みか町七丁目2番1号 株 式会社日立製作所電力・電機開発研究所内 (72)発明者 木村 文智 茨城県日立市大みか町五丁目2番1号 株 式会社日立製作所情報制御システム事業部 内 Fターム(参考) 2G042 AA01 BB03 CA02 CB03 DA02 FA01 GA05 4D015 BA21 BB05 CA02 CA14 EA16 EA19 EA32 FA01 FA16 4D040 BB32 BB72 BB91 4D062 BA21 BB05 CA02 CA14 EA16 EA19 EA32 FA01 FA16 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C02F 1/52 C02F 1/52 E 1/66 510 1/66 510K 530 530L 530P 540 540J 540Z 3/30 ZAB 3/30 ZABC G01N 31/16 G01N 31/16 A (72) Inventor Tsuyoshi Takemoto 7-2-1, Omika-cho, Hitachi City, Ibaraki Pref. Hitachi, Ltd. Electric Power and Electric Development Laboratory (72) Inventor En Ichiro, France 7-2-1, Omika-cho, Hitachi City, Ibaraki Prefecture Inside Power and Electricity Research Laboratory, Hitachi, Ltd. (72) Inventor Fumichi Kimura 5-2-1, Omika-cho, Hitachi City, Ibaraki Prefecture Hitachi, Ltd. Information Control System Division F term (reference) 2G042 AA01 BB03 CA02 CB03 DA02 FA01 GA05 4D015 BA21 BB05 CA02 CA14 EA16 EA19 EA32 FA01 FA16 4D040 BB32 BB72 BB91 4D062 BA21 BB05 CA02 CA14 EA16 EA19 EA32 FA01 FA16

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 pH4.8をpH基準値とし、該pH基準
値より高いpH設定値を入力するpH設定回路と、所定
量の被滴定検水を導入し、該被滴定検水のpHが前記pH
設定回路から出力されたpH設定値となるように酸で中
和する滴定装置と、該滴定装置で中和に消費した酸量を
計測する酸消費量計測回路と、該酸消費量計測値から前
記pH設定値におけるアルカリ度の暫定値を求める暫定
アルカリ度演算回路と、前記pH設定値で前記pH基準
値のアルカリ度を予測するアルカリ度予測係数が入力さ
れ、該アルカリ度予測係数と前記暫定アルカリ度から前
記pH基準値におけるアルカリ度を演算するアルカリ度
演算回路を具備し、該アルカリ度演算値を前記被滴定検
水の真のアルカリ度として出力することを特徴とする水
質監視装置。
1. A pH setting circuit for inputting a pH set value higher than the pH reference value with a pH of 4.8 as a pH reference value, and introducing a predetermined amount of test water for titration, wherein the pH of the test water for titration is adjusted. The pH
A titrator for neutralizing with acid so as to have a pH set value output from the setting circuit, an acid consumption measuring circuit for measuring the amount of acid consumed for neutralization by the titrator, and A provisional alkalinity calculating circuit for obtaining a provisional value of alkalinity at the pH set value, and an alkalinity prediction coefficient for predicting the alkalinity of the pH reference value based on the pH set value, wherein the alkalinity prediction coefficient and the provisional A water quality monitoring device, comprising: an alkalinity calculating circuit for calculating the alkalinity at the pH reference value from the alkalinity, and outputting the calculated alkalinity value as the true alkalinity of the test water to be titrated.
【請求項2】 pH4.8をpH基準値とし、該pH基準
値より高いpH設定値を入力するpH設定回路と、所定
量の被滴定検水を導入し、該被滴定検水のpHが前記pH
設定回路から出力されたpH設定値となるように酸で中
和する滴定装置と、該滴定装置で中和に消費した酸量を
計測する酸消費量計測回路と、前記pH設定値で前記p
H基準値の酸消費量を予測する酸消費量予測係数が入力
され、該酸消費量予測係数と前記pH設定値での酸消費
量計測値から前記pH基準値の酸消費量を演算する酸消
費量演算回路と、該酸消費量演算値からアルカリ度を求
めるアルカリ度演算回路を具備し、該アルカリ度演算値
を前記被滴定検水の真のアルカリ度として出力すること
を特徴とする水質監視装置。
2. A pH setting circuit for inputting a pH set value higher than the pH reference value with a pH of 4.8 as a pH reference value, and introducing a predetermined amount of test sample water to be measured. The pH
A titrator for neutralizing with an acid so as to have a pH set value output from a setting circuit, an acid consumption measuring circuit for measuring an amount of acid consumed for neutralization by the titrator,
An acid consumption prediction coefficient for predicting the acid consumption of the H reference value is input, and an acid for calculating the acid consumption of the pH reference value from the acid consumption prediction coefficient and the acid consumption measurement value at the pH set value. Water consumption, comprising: a consumption calculation circuit; and an alkalinity calculation circuit for calculating alkalinity from the acid consumption calculation value, wherein the alkalinity calculation value is output as the true alkalinity of the test water to be titrated. Monitoring device.
【請求項3】 請求項1または2において、 前記被滴定検水は、家庭排水や産業排水等から成る流入
下水中の有機物や窒素、リンを活性汚泥により除去する
下水処理プロセスの前記流入下水あるいは活性汚泥が懸
濁する活性汚泥混合液、あるいは該混合液の活性汚泥を
固液分離した上澄液であることを特徴とする水質監視装
置。
3. The influent sewage of the sewage treatment process according to claim 1 or 2, wherein the test water to be titrated is an organic waste, a domestic wastewater, an industrial effluent, or the like, and the organic matter, nitrogen, and phosphorus in the influent sewage are removed by activated sludge. A water quality monitoring device, which is an activated sludge mixture in which activated sludge is suspended, or a supernatant liquid obtained by solid-liquid separation of the activated sludge of the mixed solution.
【請求項4】 請求項1、2または3において、 前記pH設定値は、5.5〜6.2の範囲に設定されることを
特徴とする水質監視装置。
4. The water quality monitoring device according to claim 1, wherein the pH set value is set in a range of 5.5 to 6.2.
【請求項5】 生物反応で被処理水中の汚濁物質を除去
する反応槽と、該反応槽の流出液中の懸濁物質を沈降さ
せて上澄液を処理水とする沈殿池を具備する水処理プロ
セスの水質監視装置において、 pH4.8をpH設定値として入力するpH設定回路と、
所定量の被滴定検水を導入し、該被滴定検水のpHが前
記pH設定回路から出力されたpH設定値となるように
酸で中和する滴定装置と、該滴定装置で中和に消費した
酸量を計測する酸消費量計測回路と、この酸消費量計測
値から前記pH設定値におけるアルカリ度を演算する第
1の演算回路と、前記被滴定検水の生物濃度を計測する
手段と、前記被滴定検水のpHが前記pH設定値になる
までに生物で増加したアルカリ度を補正するアルカリ度
補正係数が入力され、該アルカリ度補正係数と前記第1
の演算回路のアルカリ度演算値と前記生物濃度の計測値
から前記pH設定値での前記被滴定検水が生物を含まな
い状態のアルカリ度を演算する第2の演算回路を具備
し、この第2のアルカリ度演算値を前記被滴定検水の真
のアルカリ度として出力することを特徴とする水質監視
装置。
5. A water comprising a reaction tank for removing pollutants in the water to be treated by a biological reaction, and a sedimentation pond for sedimenting suspended substances in the effluent of the reaction tank and using the supernatant as treated water. A pH setting circuit for inputting pH 4.8 as a pH set value in the water quality monitoring device of the treatment process;
Introducing a predetermined amount of the test water for titration, a titrator for neutralizing with acid so that the pH of the test water for titration becomes the pH set value output from the pH setting circuit, and neutralization with the titrator. An acid consumption measuring circuit for measuring the amount of consumed acid; and
An arithmetic circuit, a means for measuring the biological concentration of the test water for titration, and an alkalinity correction coefficient for correcting the alkalinity increased by the organism until the pH of the test water for titration reaches the pH set value. Input, the alkalinity correction coefficient and the first
A second arithmetic circuit for calculating the alkalinity of the test sample at the pH set value in a state that does not include living organisms, from the alkalinity arithmetic value of the arithmetic circuit and the measured value of the biological concentration, 2. The water quality monitoring device according to claim 2, wherein the calculated alkalinity value is output as a true alkalinity of the test water for titration.
【請求項6】 生物反応及び/あるいは凝集剤添加によ
る物理化学反応で被処理水中の汚濁物質を除去あるいは
懸濁化する反応槽と、該反応槽の流出液中の懸濁物質を
沈降させて上澄液を処理水とする沈殿池を具備する水処
理プロセスにおいて、 基準となるpH基準値と、該pH基準値より高いpH設
定値、及び該pH設定値で前記pH基準値のアルカリ度
を予測するアルカリ度予測係数を設定し、前記被処理水
から所定量の滴定検水を導入し、該滴定検水のpHが前記
pH設定値となるように酸で中和し、該中和に消費した
酸消費量を計測し、該酸消費量の計測値から前記pH設
定値におけるアルカリ度の暫定値を求め、該アルカリ度
の暫定値と前記アルカリ度予測係数から前記pH基準値
におけるアルカリ度を演算するアルカリ度計測装置を設
け、 前記アルカリ度計測装置の演算値を用いて、前記水処理
プロセスの反応に影響する操作量を調節することを特徴
とする水処理プロセスの制御装置。
6. A reaction tank for removing or suspending pollutants in water to be treated by a biological reaction and / or a physicochemical reaction by adding a flocculant, and suspending substances in an effluent of the reaction tank by sedimentation. In a water treatment process provided with a sedimentation basin using the supernatant as treated water, a pH reference value as a reference, a pH set value higher than the pH reference value, and an alkalinity of the pH reference value at the pH set value. Set the alkalinity prediction coefficient to be predicted, introduce a predetermined amount of titration test water from the water to be treated, neutralize with acid so that the pH of the titration test water becomes the pH set value, and neutralize with the acid. The consumed acid consumption is measured, and a provisional value of the alkalinity at the pH set value is obtained from the measured value of the acid consumption, and the alkalinity at the pH reference value is calculated from the provisional value of the alkalinity and the alkalinity prediction coefficient. Alkalinity measuring device that calculates A control device for a water treatment process, wherein an operation amount affecting a reaction of the water treatment process is adjusted using a calculation value of the alkalinity measurement device.
【請求項7】 生物反応で被処理水中の汚濁物質を除去
する生物反応槽と、該生物反応槽の流出液中の懸濁物質
を沈降させて上澄液を処理水とする沈殿池と、前記生物
反応槽あるいは前記沈殿池あるいは前記生物反応槽と沈
殿池の間に凝集剤注入設備を具備する水処理プロセスに
おいて、 基準となるpH基準値と、該pH基準値より高いpH設
定値、及び該pH設定値で前記pH基準値のアルカリ度
を予測するアルカリ度予測係数を設定し、前記被処理水
から所定量の滴定検水を導入し、該滴定検水のpHが前記
pH設定値となるように酸で中和し、該中和に消費した
酸消費量を計測し、該酸消費量の計測値から前記pH設
定値におけるアルカリ度の暫定値を求め、該アルカリ度
の暫定値と前記アルカリ度予測係数から前記pH基準値
におけるアルカリ度を演算するアルカリ度計測装置と、
前記被処理水のリン濃度を計測するリン濃度計を設け、 前記アルカリ度計測装置の演算値と前記リン濃度計の計
測値を用いて、前記凝集剤注入設備からの注入量を調節
することを特徴とする水処理プロセスの制御装置。
7. A biological reaction tank for removing pollutants in water to be treated by a biological reaction, a sedimentation pond for sedimenting suspended substances in an effluent of the biological reaction tank and using the supernatant as treated water, In a water treatment process including a coagulant injection facility between the biological reaction tank or the sedimentation tank or the biological reaction tank and the sedimentation tank, a reference pH reference value, a pH set value higher than the pH reference value, and An alkalinity prediction coefficient for estimating the alkalinity of the pH reference value is set at the pH set value, a predetermined amount of titration test water is introduced from the water to be treated, and the pH of the titration test water is equal to the pH set value. Neutralize with acid so as to measure the amount of acid consumed by the neutralization, determine the provisional value of the alkalinity at the pH set value from the measured value of the acid consumption, and the provisional value of the alkalinity From the alkalinity prediction coefficient, the An alkalinity measuring device that calculates the degree of luster,
Providing a phosphorus concentration meter for measuring the phosphorus concentration of the water to be treated, using the calculated value of the alkalinity measuring device and the measured value of the phosphorus concentration meter, to adjust the injection amount from the coagulant injection equipment. Control device for water treatment process.
【請求項8】 生物反応及び凝集剤添加による物理化学
反応で被処理水中の汚濁物質を除去あるいは懸濁化する
反応槽と、該反応槽の流出液中の懸濁物質を沈降させて
上澄液を処理水とする沈殿池を具備する水処理プロセス
において、 基準となるpH基準値と、該基準値より高いpH設定
値、及び該pH設定値で前記pH基準値のアルカリ度を
予測するアルカリ度予測係数を設定する設定回路と、 所定量の被処理水を前記pH設定値とする酸消費量を測
定し、該酸消費量と前記アルカリ度予測係数から前記p
H基準値におけるアルカリ度を演算する第1の演算回路
と、 被処理水に所定濃度となるように凝集剤を注入し、該凝
集剤を注入した液の所定量を前記pH設定値とする酸消
費量を測定し、該酸消費量と前記アルカリ度予測係数か
ら前記pH基準値におけるアルカリ度を演算する第2の
演算回路を設け、 前記第1及び第2の演算回路による2つのアルカリ度と
凝集剤注入濃度に基づいて前記被処理水のリン濃度を演
算し、該リン濃度から活性汚泥のリン放出あるいは摂取
状態を判定し、放出あるいは摂取反応に影響する操作量
を調節することを特徴とする水処理プロセスの制御装
置。
8. A reaction tank for removing or suspending pollutants in the water to be treated by a biological reaction and a physicochemical reaction by the addition of a flocculant, and the suspended matter in the effluent of the reaction tank is settled and the supernatant is removed. In a water treatment process provided with a sedimentation tank using liquid as treated water, a pH reference value as a reference, a pH set value higher than the reference value, and an alkali for predicting the alkalinity of the pH reference value with the pH set value A setting circuit for setting an acidity prediction coefficient, measuring an acid consumption amount with a predetermined amount of water to be treated as the pH set value, and calculating the p from the acid consumption amount and the alkalinity prediction coefficient.
A first arithmetic circuit for calculating the alkalinity at the H reference value; and an acid which injects a coagulant into the water to be treated so as to have a predetermined concentration, and sets a predetermined amount of the liquid into which the coagulant is injected as the pH set value. A second arithmetic circuit for measuring consumption and calculating the alkalinity at the pH reference value from the acid consumption and the alkalinity prediction coefficient is provided, and two alkalinities by the first and second arithmetic circuits are provided. Calculating the phosphorus concentration of the water to be treated based on the coagulant injection concentration, determining the phosphorus release or intake state of the activated sludge from the phosphorus concentration, and adjusting the operation amount affecting the release or intake response. Water treatment process control device.
【請求項9】 混和池とフロック形成池及び沈殿池を有
し、前記混和池あるいは混和池に流入する原水に凝集剤
を注入する水処理プロセスにおいて、 基準となるpH基準値と、該基準値より高いpH設定
値、及び該pH設定値で前記pH基準値のアルカリ度を
予測するアルカリ度予測係数を設定し、所定量の凝集剤
を注入前に被処理水を前記pH設定値とする酸消費量を
測定し、該酸消費量と前記アルカリ度予測係数から前記
pH基準値におけるアルカリ度を演算するアルカリ度計
測装置を設け、 前記アルカリ度の演算値と前記被処理水中の懸濁物質濃
度及び/あるいはpH及び/あるいは水温の計測値を用
いて凝集剤注入量を求め、前記凝集剤の注入を調節する
ことを特徴とする水処理プロセスの制御装置。
9. A water treatment process comprising a mixing pond, a floc forming pond, and a sedimentation pond, wherein a pH reference value as a reference in a water treatment process in which a coagulant is injected into the mixing pond or raw water flowing into the mixing pond; A higher pH set value, and an alkalinity prediction coefficient for predicting the alkalinity of the pH reference value at the pH set value, and an acid having the water to be treated as the pH set value before injecting a predetermined amount of coagulant. Provide an alkalinity measuring device that measures consumption, calculates the alkalinity at the pH reference value from the acid consumption and the alkalinity prediction coefficient, and calculates the alkalinity and the suspended solids concentration in the water to be treated. And / or controlling the injection of the flocculant by using a measured value of the pH and / or the water temperature to adjust the injection of the flocculant.
【請求項10】 請求項6から9のいずれかにおいて、 前記pH基準値は4.8、前記pH設定値は5.5〜6.2の範
囲に設定することを特徴とする水処理プロセスの制御装
置。
10. The control device for a water treatment process according to claim 6, wherein the pH reference value is set in a range of 4.8, and the pH set value is set in a range of 5.5 to 6.2.
JP2001017153A 2001-01-25 2001-01-25 Water quality monitor and controller for water treatment process Pending JP2002221518A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001017153A JP2002221518A (en) 2001-01-25 2001-01-25 Water quality monitor and controller for water treatment process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001017153A JP2002221518A (en) 2001-01-25 2001-01-25 Water quality monitor and controller for water treatment process

Publications (1)

Publication Number Publication Date
JP2002221518A true JP2002221518A (en) 2002-08-09

Family

ID=18883400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001017153A Pending JP2002221518A (en) 2001-01-25 2001-01-25 Water quality monitor and controller for water treatment process

Country Status (1)

Country Link
JP (1) JP2002221518A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111302471A (en) * 2020-04-13 2020-06-19 生态环境部华南环境科学研究所 Intelligent dosage method for environmental emergency drug-dissolving dephosphorization and integrated device thereof
CN115417492A (en) * 2022-08-30 2022-12-02 同济大学建筑设计研究院(集团)有限公司 Advanced oxidation system based on underwater vision and control method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111302471A (en) * 2020-04-13 2020-06-19 生态环境部华南环境科学研究所 Intelligent dosage method for environmental emergency drug-dissolving dephosphorization and integrated device thereof
CN111302471B (en) * 2020-04-13 2023-11-21 生态环境部华南环境科学研究所 Environment emergency medicine dissolving and dephosphorizing intelligent dosing method and integrated device thereof
CN115417492A (en) * 2022-08-30 2022-12-02 同济大学建筑设计研究院(集团)有限公司 Advanced oxidation system based on underwater vision and control method

Similar Documents

Publication Publication Date Title
JP3691650B2 (en) Water treatment method and control device
JP3886069B2 (en) Treatment of return water for sewage sludge intensive treatment
CN107352744A (en) Kitchen garbage slurry fermentation waste water processing method
JP2011005354A (en) Method of operating activated sludge capable of simultaneously treating bod and nitrogen
JP3707305B2 (en) Water treatment monitoring control method and apparatus
JP2002221518A (en) Water quality monitor and controller for water treatment process
JP4101539B2 (en) Wastewater treatment equipment
JP6529886B2 (en) Organic wastewater treatment system, control method and computer program
CN110540336A (en) treatment method and application of ammoximation wastewater
JPH0724492A (en) Method for controlling operation of activated sludge circulation change method
JP3691651B2 (en) Water treatment method and control device for water treatment facility
JP4248043B2 (en) Biological phosphorus removal equipment
JP4453287B2 (en) Sewage treatment method and sewage treatment control system
JP4190177B2 (en) Method and apparatus for adding organic carbon source in biological denitrification treatment
JPH11169887A (en) Flocculant injection control method in water treatment process and device therefor
JPH1157771A (en) Biological water treatment and equipment therefor
JPH11290888A (en) Method for biological water treatment and its control device
JPH0938682A (en) Biological water treatment
JP2004025051A (en) Organic wastewater treatment method and organic wastewater treatment apparatus
JP6702656B2 (en) Granule forming method and granule forming apparatus
JP3229806B2 (en) Human wastewater treatment equipment
KR100424999B1 (en) Controlling system and method of sequencing batch reactor
JP2010269276A (en) Method and apparatus for controlling water treatment
JPH10323688A (en) Method for removing phosphorus in waste water
JP2005125152A (en) Water treatment method and water treatment apparatus