JPS6347518B2 - - Google Patents
Info
- Publication number
- JPS6347518B2 JPS6347518B2 JP54109584A JP10958479A JPS6347518B2 JP S6347518 B2 JPS6347518 B2 JP S6347518B2 JP 54109584 A JP54109584 A JP 54109584A JP 10958479 A JP10958479 A JP 10958479A JP S6347518 B2 JPS6347518 B2 JP S6347518B2
- Authority
- JP
- Japan
- Prior art keywords
- aeration
- amount
- nitrogen
- aeration tank
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000005273 aeration Methods 0.000 claims description 57
- 238000000034 method Methods 0.000 claims description 33
- 239000010802 sludge Substances 0.000 claims description 30
- 239000002351 wastewater Substances 0.000 claims description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 16
- 239000000203 mixture Substances 0.000 claims description 10
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 6
- 239000001301 oxygen Substances 0.000 claims description 6
- 229910052760 oxygen Inorganic materials 0.000 claims description 6
- 239000006228 supernatant Substances 0.000 claims description 6
- 230000007774 longterm Effects 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 5
- 238000006243 chemical reaction Methods 0.000 description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 11
- 230000007423 decrease Effects 0.000 description 9
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 description 7
- 244000005700 microbiome Species 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 125000001477 organic nitrogen group Chemical group 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 230000004071 biological effect Effects 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 239000010840 domestic wastewater Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 239000010800 human waste Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 238000004065 wastewater treatment Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- -1 nitrite ions Chemical class 0.000 description 2
- 239000005416 organic matter Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 239000010865 sewage Substances 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 1
- JVMRPSJZNHXORP-UHFFFAOYSA-N ON=O.ON=O.ON=O.N Chemical compound ON=O.ON=O.ON=O.N JVMRPSJZNHXORP-UHFFFAOYSA-N 0.000 description 1
- MMDJDBSEMBIJBB-UHFFFAOYSA-N [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] Chemical compound [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] MMDJDBSEMBIJBB-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000001364 causal effect Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000006481 deamination reaction Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000010797 grey water Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Treatment Of Biological Wastes In General (AREA)
- Activated Sludge Processes (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Description
〔技術分野〕
本発明は、含窒素有機性廃水中のBOD除去を
長時間曝気法によつて行う生物処理法に係り、特
に窒素濃度とBODとの比が激しく変動しないよ
うな廃水、例えば生活廃水や屎尿等を処理するの
に好適な生物処理法に関する。
〔従来技術と発明が解決しようとする課題〕
長時間曝気法を含む活性汚泥法で含窒素有機性
廃水を処理する際の操作因子としては、(イ)水質
(BOD負荷量)、(ロ)流入廃水量、(ハ)曝気槽に吹き
込む空気量、(ニ)曝気槽内微生物量(系内汚泥保有
量)、(ホ)返送汚泥量、(ヘ)汚泥日令等が挙げられる
が、特に曝気槽に吹き込む空気量(以下、曝気量
と称す)が重要な因子であることが知られてい
る。
従来、この曝気量は、曝気槽へのBOD負荷量
やMLSS量などから経験的に或いは計算によつて
定められていた。そして、実装置においては、一
度曝気量を決めると、流入BOD量が変動しても
それに応じて頻繁に曝気量を変えるようなことは
余り行なわれていない。
このため、過剰の空気が吹き込まれている時間
帯或いは期間もあれば、過少の空気しか吹き込ま
れていない時間帯或いは期間もあり、有機物の酸
化分解等の処理が余り効率良く行われていないこ
とがある。また、曝気量が過剰或いは過少になる
と曝気槽内に存在する微生物に一般に悪影響があ
る。
すなわち、曝気量が過剰な場合には、第7図に
示すように硝化反応が促進されa、PHが低下し
b、生物活性が低下cする。一方、曝気量が過少
の場合には、硝化反応が停止し、さらに嫌気化し
てBOD除去活性が低下し、極端な場合には微生
物が死滅してしまう。
加えて、曝気量が過剰の場合には、汚泥の自己
消化が過度に進み1、老化して汚泥性状が悪化し
2、生物活性が落ちると同時に、処理水の中に流
亡混入するいわゆる汚泥のキヤリオーバーの現象
3が起りやすい。また、過曝気の場合はMLSS
(汚泥量)が増えず、時には減少4し、このこと
からSV(活性汚泥)の減少5するほか、BOD−
MLSS負荷量が過大になることから前記の生物活
性の低下と相まつて流入水質、水量の変動に弱く
なつたり6、また汚泥日令が極端に長くなること
から汚物の分解力が低下7したりして処理水質が
悪化8する。
さらに、曝気量が過剰の場合には、硝化反応が
著しくなるためa、運転手法次第では沈殿槽で脱
窒が起り9、発生する窒素ガスと共に浮上してス
カムの形で処理水中に混入し、処理水質が悪化10
することもある。
ところで、上記のような問題に対処するために
大型装置においては、曝気槽内の溶存酸素濃度
(DO)によつて曝気量を制御する試みが行われ
ている実例が若干ある。しかし、DOの検出値に
より制御する場合には、溶存酸素濃度を常時正確
に検出するために、DOメーターの欠かさぬ保守
と、異常検出値の除外する仕組を必要とするため
装置的にかなり大がかりなものになる。また、機
器の特性上DOメーターの保守を完全にしていな
いと正しい値が得られず、種々の問題が生ずるこ
とが多い。
さらに、DOの検出値により制御する従来法に
おいては、DOを所定の範囲内、例えば1.5〜
2.5ppmに保持することだけに主眼が置かれてい
るため、アンモニア性窒素及び(又は)有機窒素
を含む生活排水や屎尿等の有機性廃水を処理する
場合は、窒素分が酸化されるに従つて微生物の適
正値をこえてPHが低下し、微生物の浄化能力の低
下等を招き、BOD除去処理などに悪影響を及ぼ
すことがあつた。これは前記DOの下限値1.5ppm
以下の0.3〜0.5ppm以上で硝化反応が起りえるこ
とに起因するものである。
〔発明の背景〕
本発明者等は上記事情に鑑みて鋭意研究を行つ
た結果、窒素分を含む有機性廃水を活性汚泥法や
接触酸化法等の生物処理法で処理する場合、有機
性窒素(Org−N)はアンモニア性窒素(NH4−
N)を経て酸化(硝化)される一方、もともと存
在するアンモニア性窒素はそのまま酸化されて亜
硝酸性窒素(NO2−N)を経て硝酸性窒素とな
り、曝気槽内の汚泥混合液のPHが低下することに
着目した。そして、硝化反応の進行状況、即ちPH
値によつてBOD除去等の処理状況を把握できる
ことを知見すると共に、生物処理系の状況が大略
どのような状況にあるかをPHによつて把握しやす
いことも知見した。
而して、曝気槽内の汚泥混合液または沈殿槽上
澄水のPHに応じて曝気量を制御することにより
BOD除去を含む生物処理を効率的に行えること
を知見した。
〔課題を解決するための手段〕
第1の発明においては、含窒素有機性廃水を長
時間曝気法によつて処理するに際し、曝気槽内の
汚泥混合液または沈殿槽上澄水のPHを検出し、そ
のPH検出値又はその変動速度を加味した値によつ
て曝気槽に吹き込む空気量を制御することによつ
て、上記課題の解決を図つた。
また、第2の発明においては、曝気槽に吹き込
む空気の基本量をPH検出値によつて制御するとと
もに残部調整量を少なくとも曝気槽内溶存酸素濃
度の検出値によつて制御することによつて、上記
課題の解決を図つた。
ここで長時間曝気法とは、BOD負荷を約0.15
〜0.25 BODKg/m3・日と小さくして、増殖した
汚泥を自己酸化により分解し無機化して余剰汚泥
量を少なくする処理法、すなわち通常の長時間曝
気法を示す。長時間曝気法においては滞留時間が
長く設定される。一般的な生活廃水を処理する場
合の滞留時間は、通常約16時間以上である。
[作用]
本発明の処理法による廃水処理の工程を回分処
理反応を例にとり、まず段階的に説明する。
アンモニア性窒素や有機性窒素が含まれると共
に、これら窒素分の濃度とBODとの比が激しく
変化しないような廃水、例えば生活廃水や屎尿等
の含窒素有機性廃水が曝気槽に流入すると、まず
アンモニア性窒素や有機性窒素等の影響により、
曝気槽内の汚泥混合液または沈澱槽上澄液が中性
液あるいは弱アルカリ性液になる。そこで曝気を
行うと、微生物の働きによりまず有機物の酸化、
すなわちBOD除去が行なわれる。そしてこの
BOD除去が高度に進行した時点では、微生物の
働きによつて、有機性窒素がアンモニア性窒素に
分解され(以下、脱アミノ反応と略称する)、生
じたアンモニア性窒素の一部が酸化されて(1)式に
示すように亜硝酸イオンとなり、更に(2)式に示す
ように硝酸イオンとなる硝化反応がある程度進行
する。
NH4 ++3/2O2→NO2 -+2H++H2O …(1)
NO2 -+1/2O2→NO3 - …(2)
この結果、曝気槽内の汚泥混合液または沈澱槽
上澄水のPHが低下する。従つて、このPHを観測す
ることによつて、BOD除去の完了を検知するこ
とができる。そして、BODの除去が終了に近付
いてPHが設定値の下限に近付いたときには、曝気
量を減じる。すると、BOD除去反応の過剰進行
が防止される。これと共に、前記(1)・(2)式の硝化
反応も抑制され、汚泥混合液のPHの低下が停止さ
れる。
実際の廃水処理においては、廃水が曝気槽に連
続的に流入するので、前記PHを一定に保つように
曝気量を調節する。すると、安定したBOD除去
を行うことができる。
またこの結果、過不足のない曝気を行うことが
できるので、汚泥の性状を良好に保つことができ
る。
さらに、本発明の処理法では汚泥混合液のPHが
所定値に保たれるので、この点からも汚泥性状を
良好に保つことができる。しかも、PHの設定値を
適宜設定することによつて、活性汚泥消化の度合
をコントロールし余剰汚泥の発生量を制御するこ
ともできる。
第二発明の処理法の場合には、基本量をPH値に
よつて制御し、残部を少なくとも曝気槽内溶存酸
素濃度検出値によつて制御しているため、短時間
に起る流入負荷の大きな変動に対しても容易に即
応出来る。この場合も、ベースになる曝気量をPH
によつて制御しているので、上記第1発明の処理
法と同様の作用を得ることができる。
[実施例]
第1図に示す仕様の処理装置で本発明の処理方
法を実施した。
この処理装置では、長方形の完全混合型曝気槽
20の2/3付近に設置したPH計21から出力信号を取
り出し、指示調節部22を経て、PID動作により
空気バィパス電動弁23の開度を調節し、曝気量
を制御している。またDO計25も付設している
が、今回はDO計25は確認の意味で補助的に使
用したにすぎない。
処理条件
主な処理条件は次の通りである。
主として長時間曝気法を用いた。
滞留時間は、約24時間に設定された。
流入原水のMLSSは約1300〜3500mg/であ
つた。
返送汚泥量は約75〜150%
PHを弱酸性の6.8程度に設定して自動運転し
た。
流入原水は厨房、雑排水、汚水等からなる総
合排水である。
以上の条件で一年余りに渡つて処理を行つたデ
ータをBOD、COD、SSについて統計処理し、結
果を第1表に示す。また流入BODと硝化率との
関係について得られたデータを第2図に示す。さ
らにこの間、DOを測定した結果を第3図に示
す。なおDOの測定は、測定時毎に洗浄したDO
メータを用い、かつ流速が遅い場合はDOメータ
を適当に動かしながら行つた。
参考のためにPHを約6.3に設定して自動運転し
たときの、硝化率と流入BOD濃度の関係および
DOの値について観測した結果を第2図、第3図
に記載する。
また同じ処理装置で従来行なわれていた手動運
転の場合の処理水のBOD、COD、SSについて、
測定結果を統計処理して第1表に合わせて記載す
る。この時に行なわれていた手動運転は、DOを
0.8ppmに保持するようにして行なわれていた。
ここでDO=0.8ppmという値を採用していた理
由は、別途行なつた基礎実験でDO一定制御と処
理水質の相関を調べたところ、第2表に示すよう
に長時間曝気法においてはDOを0.8ppm程度に設
定して制御を行うと最も良好なBOD除去を行う
ことができると確認されたためである。
[Technical Field] The present invention relates to a biological treatment method for removing BOD from nitrogen-containing organic wastewater by a long-term aeration method, and particularly for wastewater in which the ratio of nitrogen concentration to BOD does not fluctuate drastically, such as domestic wastewater. This invention relates to a biological treatment method suitable for treating wastewater, human waste, etc. [Prior art and problems to be solved by the invention] Operational factors when treating nitrogen-containing organic wastewater using an activated sludge method including a long-time aeration method include (a) water quality (BOD load); These include the amount of inflowing wastewater, (c) the amount of air blown into the aeration tank, (d) the amount of microorganisms in the aeration tank (the amount of sludge held in the system), (e) the amount of returned sludge, and (f) the daily sludge age, etc. It is known that the amount of air blown into the aeration tank (hereinafter referred to as aeration amount) is an important factor. Conventionally, this aeration amount has been determined empirically or by calculation from the BOD load to the aeration tank, the MLSS amount, etc. In actual equipment, once the aeration amount is determined, the aeration amount is not often changed in response to fluctuations in the inflow BOD amount. For this reason, there are times or periods when too much air is blown into the tank, and there are times or periods when too little air is blown into the tank, and processes such as oxidation and decomposition of organic matter are not being carried out very efficiently. There is. Furthermore, if the amount of aeration is too high or too low, it will generally have an adverse effect on the microorganisms present in the aeration tank. That is, when the amount of aeration is excessive, as shown in FIG. 7, the nitrification reaction is promoted (a), the pH is reduced (b), and the biological activity is reduced (c). On the other hand, if the amount of aeration is too low, the nitrification reaction will stop, the process will become anaerobic, the BOD removal activity will decrease, and in extreme cases, microorganisms will die. In addition, if the amount of aeration is excessive, the self-digestion of sludge will progress excessively1, resulting in aging and deterioration of sludge properties2, and a decrease in biological activity, as well as a decrease in so-called sludge that flows into the treated water. Carry over phenomenon 3 is likely to occur. Also, in case of overaeration, MLSS
(sludge volume) does not increase, and sometimes decreases4, which leads to a decrease in SV (activated sludge)5 and BOD-
Excessive MLSS loading leads to the above-mentioned decrease in biological activity, which in turn makes the plant vulnerable to fluctuations in inflow water quality and water volume.6 Also, as the sludge age becomes extremely long, the ability to decompose sewage decreases7. The quality of treated water deteriorates8. Furthermore, if the amount of aeration is excessive, the nitrification reaction will become significant;a, depending on the operating method, denitrification may occur in the settling tank9, and it will float up with the generated nitrogen gas and mix in the treated water in the form of scum. Treated water quality deteriorates10
Sometimes I do. By the way, in order to deal with the above-mentioned problems, there are some examples in which attempts have been made to control the amount of aeration by controlling the dissolved oxygen concentration (DO) in the aeration tank in large-scale equipment. However, when controlling based on DO detection values, the equipment is quite large because it requires constant maintenance of the DO meter and a mechanism to exclude abnormal detection values in order to accurately detect the dissolved oxygen concentration at all times. Become something. Furthermore, due to the characteristics of the device, if the DO meter is not thoroughly maintained, correct values cannot be obtained, which often causes various problems. Furthermore, in the conventional method of controlling based on the detected value of DO, the DO is kept within a predetermined range, for example 1.5 to
Since the main focus is on keeping the level at 2.5 ppm, when treating organic wastewater such as domestic wastewater or human waste containing ammonia nitrogen and/or organic nitrogen, the nitrogen content should be kept at 2.5 ppm. As a result, the pH decreased beyond the appropriate value for the microorganisms, leading to a decrease in the purification ability of the microorganisms, which had an adverse effect on BOD removal processing. This is the lower limit of 1.5ppm for DO.
This is due to the fact that nitrification reactions can occur at concentrations of 0.3 to 0.5 ppm or higher. [Background of the Invention] In view of the above circumstances, the present inventors conducted intensive research and found that when organic wastewater containing nitrogen is treated with biological treatment methods such as activated sludge method and catalytic oxidation method, organic nitrogen (Org−N) is ammonia nitrogen (NH 4 −
While the ammonia nitrogen that originally exists is oxidized as it is and becomes nitrate nitrogen through nitrite nitrogen (NO 2 -N), the pH of the sludge mixture in the aeration tank increases. We focused on the decrease. The progress of the nitrification reaction, that is, the pH
We found that the status of treatment such as BOD removal can be understood by the value, and we also found that it is easy to understand the general state of the biological treatment system by the PH. By controlling the aeration amount according to the PH of the sludge mixture in the aeration tank or the supernatant water of the settling tank,
We found that biological treatment including BOD removal can be performed efficiently. [Means for Solving the Problems] In the first invention, when treating nitrogen-containing organic wastewater by a long-time aeration method, the pH of the sludge mixture in the aeration tank or the supernatant water of the settling tank is detected. The above problem was solved by controlling the amount of air blown into the aeration tank based on the detected PH value or a value that takes into account the rate of change. Further, in the second invention, the basic amount of air blown into the aeration tank is controlled by the detected pH value, and the remaining adjustment amount is controlled by at least the detected value of the dissolved oxygen concentration in the aeration tank. , attempted to solve the above problems. Here, the long-time aeration method means that the BOD load is approximately 0.15.
This is a treatment method in which the amount of excess sludge is reduced to ~0.25 BODKg/m 3 days, and the grown sludge is decomposed and mineralized by self-oxidation to reduce the amount of excess sludge, that is, the usual long-time aeration method. In the long-time aeration method, the residence time is set to be long. The residence time when treating general domestic wastewater is usually about 16 hours or more. [Function] First, the process of wastewater treatment by the treatment method of the present invention will be explained step by step, taking a batch treatment reaction as an example. When wastewater that contains ammonia nitrogen and organic nitrogen and whose ratio of nitrogen concentration to BOD does not change drastically, such as domestic wastewater or human waste, flows into the aeration tank, Due to the influence of ammonia nitrogen and organic nitrogen,
The sludge mixture in the aeration tank or the supernatant liquid in the settling tank becomes a neutral or weakly alkaline liquid. When aeration is carried out, the action of microorganisms first oxidizes organic matter.
That is, BOD removal is performed. And this
At the point when BOD removal has progressed to a high level, organic nitrogen is decomposed into ammonia nitrogen by the action of microorganisms (hereinafter referred to as deamination reaction), and some of the resulting ammonia nitrogen is oxidized. The nitrification reaction progresses to some extent to form nitrite ions as shown in equation (1) and further to nitrate ions as shown in equation (2). NH 4 + +3/2O 2 →NO 2 - +2H + +H 2 O...(1) NO 2 - +1/2O 2 →NO 3 -... (2) As a result, the sludge mixture in the aeration tank or the supernatant water of the settling tank PH decreases. Therefore, by observing this PH, it is possible to detect the completion of BOD removal. Then, when BOD removal approaches the end and the pH approaches the lower limit of the set value, the aeration amount is reduced. This prevents the BOD removal reaction from proceeding excessively. At the same time, the nitrification reactions of formulas (1) and (2) are also suppressed, and the decrease in the pH of the sludge mixture is stopped. In actual wastewater treatment, wastewater continuously flows into the aeration tank, so the amount of aeration is adjusted to keep the pH constant. Then, stable BOD removal can be performed. Moreover, as a result, aeration can be carried out without excess or deficiency, so that the properties of the sludge can be maintained in good condition. Furthermore, in the treatment method of the present invention, the pH of the sludge mixture is maintained at a predetermined value, so that good sludge properties can also be maintained from this point of view. Furthermore, by appropriately setting the pH value, it is possible to control the degree of activated sludge digestion and the amount of surplus sludge generated. In the case of the treatment method of the second invention, the basic amount is controlled by the PH value, and the remaining amount is controlled by at least the detected value of the dissolved oxygen concentration in the aeration tank, so that the inflow load that occurs in a short period of time is It can easily and quickly respond to large changes. In this case as well, the base aeration amount is set to PH
Since the treatment method is controlled by the above-mentioned method, it is possible to obtain the same effect as the treatment method of the first invention. [Example] The processing method of the present invention was carried out using a processing apparatus having the specifications shown in FIG. This treatment equipment uses a rectangular complete mixing aeration tank.
The output signal is taken out from the PH meter 21 installed around 2/3 of 20, passes through the instruction adjustment section 22, and adjusts the opening degree of the air bypass electric valve 23 by PID operation to control the aeration amount. A DO meter 25 is also attached, but this time the DO meter 25 was only used as a supplement for confirmation purposes. Processing conditions The main processing conditions are as follows. Mainly, long-time aeration method was used. Residence time was set to approximately 24 hours. The MLSS of the influent raw water was about 1300-3500 mg/. The amount of returned sludge was approximately 75% to 150%, and the PH was set to a slightly acidic level of 6.8 and operated automatically. The inflow raw water is comprehensive wastewater consisting of kitchen, gray water, sewage, etc. The data processed under the above conditions for over a year was statistically processed for BOD, COD, and SS, and the results are shown in Table 1. Figure 2 shows the data obtained regarding the relationship between inflow BOD and nitrification rate. Furthermore, during this period, DO was measured and the results are shown in Figure 3. Note that DO measurement is performed using DO that has been cleaned at each measurement time.
A meter was used, and when the flow rate was slow, the DO meter was moved appropriately. For reference, the relationship between nitrification rate and inflow BOD concentration when operating automatically with pH set to approximately 6.3.
The observed results of DO values are shown in Figures 2 and 3. Also, regarding the BOD, COD, and SS of the treated water in the case of manual operation, which was conventionally performed with the same treatment equipment,
The measurement results are statistically processed and listed in Table 1. The manual operation that was being performed at this time was
The concentration was maintained at 0.8 ppm. The reason for adopting the value of DO = 0.8 ppm here is that when we investigated the correlation between constant DO control and treated water quality in a separate basic experiment, we found that in the long-term aeration method, as shown in Table 2, This is because it has been confirmed that the best BOD removal can be achieved by controlling the amount by setting it to around 0.8 ppm.
【表】【table】
以上説明したように、第1発明においては、PH
検出値等により曝気槽内に吹き込まれる空気量を
制御しつつ含窒素有機性廃水を長時間曝気法によ
り生物処理している。従つて、以下の(1)〜(6)の利
点が得られる。
(1) BOD除去を適正な段階まで行うことができ
ると共に、硝化反応の過度の進行と過剰な曝気
を防止できる。従つて、この発明の含窒素有機
性廃水の生物処理法によればBOD除去を高度
に行うと共に、汚泥性状を良好に保つことがで
き、良好でかつ安定した廃水処理を行うことが
できる。
(2) PHによつて生物処理系の状況を確実に把握で
きるので、このPH検出値によつて曝気槽内に吹
き込む空気量を制御すると所定の生物処理系に
設定でき、例えば生活排水や屎尿等を高度に安
定して処理できる。
(3) 所定量の空気を吹き込むように制御している
ため、硝化反応が適正なものとなり、PHは所定
値に設定され、生物活性を良好にでき、生物処
理を効率的に行うことができる。
(4) 第1発明によれば、PH検出値等により曝気量
を制御しており、適正な生物処理系となるた
め、汚泥の自己消化は実質上生じないか、或い
は適正な程度にしか生じない。
(5) 第1発明によれば、硝化反応を適正に設定で
きるため、沈殿槽では脱窒は起りにくく、スカ
ムの発生等の不都合は生じない。
(6) 用いるPHメータは現有技術でも若干の保守に
より十分正しい検出値を与えることが出来、信
頼出来るものであり、設備費的にも安いことか
ら、自動制御系に容易に組み込みうるものであ
る。
また、第2発明の処理法の場合には、基本量は
PH値によつて制御し、それ以上に対しては少なく
とも曝気槽内溶存酸素濃度検出値によつて制御し
ているため、上記第1発明と同様の効果に加え、
短時間に起る流入負荷の大きな変動に対しても容
易に即応出来る利点がある。
As explained above, in the first invention, PH
Nitrogen-containing organic wastewater is biologically treated using a long-term aeration method while controlling the amount of air blown into the aeration tank based on detected values. Therefore, the following advantages (1) to (6) can be obtained. (1) BOD removal can be carried out to an appropriate stage, and excessive progress of nitrification reaction and excessive aeration can be prevented. Therefore, according to the biological treatment method for nitrogen-containing organic wastewater of the present invention, BOD can be removed to a high degree, sludge properties can be kept good, and good and stable wastewater treatment can be performed. (2) Since the status of the biological treatment system can be reliably grasped by the PH, by controlling the amount of air blown into the aeration tank based on this PH detection value, it is possible to set the biological treatment system to a specified level. etc. can be processed in a highly stable manner. (3) Since the air is controlled to be blown in a predetermined amount, the nitrification reaction is appropriate, the pH is set to a predetermined value, biological activity is improved, and biological treatment can be carried out efficiently. . (4) According to the first invention, the amount of aeration is controlled based on the detected pH value, etc., resulting in an appropriate biological treatment system, so that self-digestion of sludge does not substantially occur or occurs only to an appropriate extent. do not have. (5) According to the first invention, since the nitrification reaction can be set appropriately, denitrification is unlikely to occur in the settling tank, and problems such as scum generation do not occur. (6) Even with existing technology, the PH meter used can provide sufficiently accurate detection values with some maintenance, is reliable, and has low equipment costs, so it can be easily incorporated into automatic control systems. . In addition, in the case of the treatment method of the second invention, the basic amount is
Since it is controlled by the PH value, and above it is controlled by at least the detected value of dissolved oxygen concentration in the aeration tank, in addition to the same effect as the first invention,
It has the advantage of being able to easily and quickly respond to large fluctuations in the inflow load that occur in a short period of time.
第1図は実施例で用いた処理装置の構造を示す
概略図、第2図は実施例における硝化率と流入
BOD濃度の関係を示すグラフ、第3図は同実施
例におけるDOとPHとの関係を示すグラフ、第4
図は比較例における流入全窒素濃度と流入BOD
濃度との関係を示すグラフ、第5図は比較例にお
ける硝化率と流入BOD濃度との関係を示すグラ
フ、第6図は比較例における曝気槽内PHと流入
BOD濃度との関係を示すグラフ、第7図は曝気
槽内に吹き込む空気量が過剰の場合における因果
関係を示す説明図である。
Figure 1 is a schematic diagram showing the structure of the processing equipment used in the example, and Figure 2 is the nitrification rate and inflow in the example.
Figure 3 is a graph showing the relationship between BOD concentration, Figure 3 is a graph showing the relationship between DO and PH in the same example, and Figure 4 is a graph showing the relationship between DO and PH in the same example.
The figure shows the inflow total nitrogen concentration and inflow BOD in a comparative example.
Figure 5 is a graph showing the relationship between nitrification rate and inflow BOD concentration in a comparative example. Figure 6 is a graph showing the relationship between nitrification rate and inflow BOD concentration in a comparative example.
A graph showing the relationship with the BOD concentration, FIG. 7, is an explanatory diagram showing the causal relationship when the amount of air blown into the aeration tank is excessive.
Claims (1)
理するに際し、曝気槽内の汚泥混合液または沈澱
槽上澄水のPHを検出し、そのPH検出値又はその変
動速度を加味した値によつて曝気槽に吹き込む空
気量を調節することにより、BOD除去を含む生
物処理工程を制御することを特徴とする含窒素有
機性廃水の生物処理法。 2 含窒素有機性廃水を長時間曝気法によつて処
理するに際し、曝気槽内の汚泥混合液または沈澱
槽上澄水のPHを検出し、そのPH検出値によつて曝
気槽に吹き込む空気の基本量を調節すると共に、
残部調整量を少なくとも曝気槽内溶存酸素濃度の
検出値によつて調節することにより、BOD除去
を含む生物処理工程を制御することを特徴とする
含窒素有機性廃水の生物処理法。[Scope of Claims] 1. When treating nitrogen-containing organic wastewater by a long-term aeration method, the PH of the sludge mixture in the aeration tank or the supernatant water of the settling tank is detected, and the detected PH value or its fluctuation rate is determined. A biological treatment method for nitrogen-containing organic wastewater, characterized in that the biological treatment process including BOD removal is controlled by adjusting the amount of air blown into an aeration tank according to a value that takes into account. 2. When treating nitrogen-containing organic wastewater by a long-term aeration method, the pH of the sludge mixture in the aeration tank or the supernatant water of the settling tank is detected, and the basics of the air blown into the aeration tank are determined based on the detected pH value. In addition to adjusting the amount,
A biological treatment method for nitrogen-containing organic wastewater, characterized in that a biological treatment process including BOD removal is controlled by adjusting the amount of residual adjustment based on at least a detected value of dissolved oxygen concentration in an aeration tank.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10958479A JPS5633098A (en) | 1979-08-28 | 1979-08-28 | Biological treatment of organic waste water containing nitrogen |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10958479A JPS5633098A (en) | 1979-08-28 | 1979-08-28 | Biological treatment of organic waste water containing nitrogen |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5633098A JPS5633098A (en) | 1981-04-03 |
JPS6347518B2 true JPS6347518B2 (en) | 1988-09-22 |
Family
ID=14513964
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10958479A Granted JPS5633098A (en) | 1979-08-28 | 1979-08-28 | Biological treatment of organic waste water containing nitrogen |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5633098A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58124596A (en) * | 1982-01-20 | 1983-07-25 | Meidensha Electric Mfg Co Ltd | Apparatus for controlling active sludge process |
JPS60209296A (en) * | 1984-03-31 | 1985-10-21 | Shimizu Constr Co Ltd | Batch treatment of activated sludge |
JPS61274796A (en) * | 1985-05-29 | 1986-12-04 | Nisshin:Kk | Method for treating water |
-
1979
- 1979-08-28 JP JP10958479A patent/JPS5633098A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5633098A (en) | 1981-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1721870B1 (en) | Method of nitrifying ammonium-nitrogen-containing water and method of treating the same | |
JP2769973B2 (en) | Method and apparatus for treating water to be treated containing organic sulfur compounds | |
JP2018138292A (en) | Water treatment method and apparatus | |
KR20010052484A (en) | Method for regulating aeration during waste water biological treatment | |
JP2017144402A (en) | Nitrification denitrification method and device for ammoniac nitrogen-containing liquid to be treated | |
JP5581872B2 (en) | Method and apparatus for denitrification treatment of ammoniacal nitrogen waste liquid | |
JPH04104896A (en) | Method for controlling drainage | |
US4818407A (en) | Nitrification with ammonia enrichment | |
JPS6347518B2 (en) | ||
JP3870445B2 (en) | Biological treatment equipment | |
JP3203774B2 (en) | Organic wastewater treatment method and methane fermentation treatment device | |
JP4327770B2 (en) | Biological nitrification treatment method and nitrification treatment apparatus for wastewater containing ammonia nitrogen | |
JP3303352B2 (en) | Operation control method for batch activated sludge treatment | |
JP2008018377A (en) | Intermittent biological treatment method | |
JP2001314892A (en) | Method for controlling denitrification apparatus of wastewater | |
JP2946163B2 (en) | Wastewater treatment method | |
KR100470350B1 (en) | Method for disposing of livestock waste water | |
JPH0938683A (en) | Biological water treating device | |
JPS6038095A (en) | Treatment of organic sewage | |
JPH0230319B2 (en) | ||
JPS6154296A (en) | Treatment of sewage | |
JP3293218B2 (en) | Biological nitrification denitrification treatment method | |
JP7050204B1 (en) | Wastewater treatment equipment and wastewater treatment method for wastewater containing high-concentration organic matter | |
JP2000325989A (en) | Biological denitrification treatment method | |
JP7332501B2 (en) | Ammonia nitrogen-containing wastewater treatment method and treatment apparatus |