JPH11135844A - Manufacture of thermoionic module - Google Patents
Manufacture of thermoionic moduleInfo
- Publication number
- JPH11135844A JPH11135844A JP9299701A JP29970197A JPH11135844A JP H11135844 A JPH11135844 A JP H11135844A JP 9299701 A JP9299701 A JP 9299701A JP 29970197 A JP29970197 A JP 29970197A JP H11135844 A JPH11135844 A JP H11135844A
- Authority
- JP
- Japan
- Prior art keywords
- thermoelectric
- thermoionic
- thermoelectric element
- type
- hole
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 14
- 238000005219 brazing Methods 0.000 claims abstract description 14
- 238000005192 partition Methods 0.000 claims abstract description 14
- 239000000758 substrate Substances 0.000 claims abstract description 13
- 238000000034 method Methods 0.000 claims abstract description 8
- 239000012777 electrically insulating material Substances 0.000 claims abstract description 7
- 239000000463 material Substances 0.000 claims description 39
- 239000010949 copper Substances 0.000 claims description 12
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 8
- 229910052802 copper Inorganic materials 0.000 claims description 8
- 238000005520 cutting process Methods 0.000 claims description 4
- 239000002184 metal Substances 0.000 abstract description 3
- 229910052751 metal Inorganic materials 0.000 abstract description 3
- 239000000945 filler Substances 0.000 abstract 1
- 230000006641 stabilisation Effects 0.000 abstract 1
- 238000011105 stabilization Methods 0.000 abstract 1
- 229910000679 solder Inorganic materials 0.000 description 10
- 239000000919 ceramic Substances 0.000 description 8
- 238000007747 plating Methods 0.000 description 5
- 238000005304 joining Methods 0.000 description 3
- 238000010248 power generation Methods 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000005476 soldering Methods 0.000 description 2
- 230000005679 Peltier effect Effects 0.000 description 1
- 230000005678 Seebeck effect Effects 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 229910052878 cordierite Inorganic materials 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
Landscapes
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、熱電モジュールの
作製方法に関する。[0001] The present invention relates to a method for manufacturing a thermoelectric module.
【0002】[0002]
【従来の技術】熱電モジュールは、p型熱電素子とn型
熱電素子が電極板を介して電気的に直列となるように接
合されたもので、pn素子対の接合部間に温度差を与え
ると電位差が発生し、また接合部間に電流を流すと、そ
の電流の向きにより吸熱又は発熱する性質を有する。前
者の性質はゼーベック効果と呼ばれ、例えばごみ焼却炉
の廃熱による発電の如き熱電発電用に開発されており、
後者の性質はペルチェ効果と呼ばれ、例えば半導体製造
プロセスにおける恒温装置、エレクトロデバイスの冷却
等の熱電冷却に幅広く利用されている。2. Description of the Related Art A thermoelectric module is formed by joining a p-type thermoelectric element and an n-type thermoelectric element via an electrode plate so as to be electrically connected in series. When a current flows between the junctions, heat is absorbed or heat is generated depending on the direction of the current. The former property is called the Seebeck effect, and has been developed for thermoelectric power generation, such as power generation by waste heat from refuse incinerators,
The latter property is called a Peltier effect, and is widely used for thermoelectric cooling such as cooling of a thermostat or an electronic device in a semiconductor manufacturing process.
【0003】熱電モジュールの典型例として、図8に示
すように、対向するセラミック基板(96)(96)の間にて、
p型熱電材料(90)とn型熱電材料(91)が電極板(98)を介
して電気的に直列に接続された構造のものがある。この
熱電モジュールの作製法について説明すると、図9に示
すように、p型熱電材料(90)とn型熱電材料(91)の両面
に、接合性を高めるためのNiメッキ層(92)(92)が施さ
れ、Niメッキ層の上には半田メッキ層(94)(94)がさら
に施される。次に、電極(98)は、電気絶縁性のセラミッ
ク基板(96)の上にCuのパターニングを直接施して形成
される。セラミック基板(96)のCu電極(98)の上に、そ
のパターニング位置に対応してp型熱電材料(90)とn型
熱電材料(91)が交互に配置された後、これら熱電材料(9
0)(91)の上に、Cu電極(98)のパターニングが施された
セラミック基板(96)が載せられる。これを加熱装置の中
に入れて加熱すると、半田(94)(94)が溶融し、熱電材料
(90)(91)のNiメッキ層(92)(92)と、セラミック基板(9
6)(96)のCu電極(98)(98)とが接合される。[0003] As a typical example of a thermoelectric module, as shown in FIG.
There is a structure in which a p-type thermoelectric material (90) and an n-type thermoelectric material (91) are electrically connected in series via an electrode plate (98). The method of manufacturing this thermoelectric module will be described. As shown in FIG. 9, Ni plating layers (92) and (92) on both sides of a p-type thermoelectric material (90) and an n-type thermoelectric material (91) for improving the bonding property. ) Is applied, and solder plating layers (94) and (94) are further applied on the Ni plating layer. Next, the electrode (98) is formed by directly patterning Cu on the electrically insulating ceramic substrate (96). After the p-type thermoelectric material (90) and the n-type thermoelectric material (91) are alternately arranged on the Cu electrode (98) of the ceramic substrate (96) corresponding to the patterning position, these thermoelectric materials (9
0) On the (91), a ceramic substrate (96) on which a Cu electrode (98) is patterned is placed. When this is placed in a heating device and heated, the solder (94) (94) melts and the thermoelectric material
(90) (91) Ni plating layer (92) (92) and ceramic substrate (9
6) The Cu electrodes (98) and (98) of (96) are joined.
【0004】[0004]
【発明が解決しようとする課題】従来の作製法では、p
型及びn型の熱電材料と、電極との接合を、熱電モジュ
ールの組立て時に半田付けにより行なっていたため、熱
電材料の大きさ、表面状態に不揃いがあると、熱電素子
と半田との接合不良又は導電不良を生じたり、熱電モジ
ュールの平坦度が損なわれる等の不都合があった。この
場合、熱電素子と半田との接合不良があると、部分的な
補修は不可能であるから、折角組み立てられた熱電モジ
ュールを廃棄せねばならなかった。また、熱電素子をセ
ラミック板で挟んだ構造の熱電モジュール場合、セラミ
ック板は、熱電モジュールとしての剛性を確保するのに
十分な厚さにせねばならず、熱電素子と、取り付けられ
るべき熱交換機器の吸熱ブロック及び放熱ブロックとの
熱伝達効率が低下する不都合があった。In the conventional manufacturing method, p
Since the type and n-type thermoelectric material and the electrode were joined by soldering when assembling the thermoelectric module, if the size and surface condition of the thermoelectric material were not uniform, poor connection between the thermoelectric element and the solder or There have been inconveniences such as poor conductivity and loss of flatness of the thermoelectric module. In this case, if there is a poor connection between the thermoelectric element and the solder, it is impossible to partially repair the thermoelectric element. Therefore, the thermoelectric module assembled must be discarded. In the case of a thermoelectric module having a structure in which a thermoelectric element is sandwiched between ceramic plates, the ceramic plate must be thick enough to secure the rigidity of the thermoelectric module. There is a disadvantage that the heat transfer efficiency between the heat absorbing block and the heat radiating block is reduced.
【0005】本発明の目的は、熱電材料と電極板を予め
一体に接合した熱電素子を用いることにより、上記不都
合を解消した熱電モジュールの作製方法を提供すること
である。An object of the present invention is to provide a method of manufacturing a thermoelectric module which solves the above-mentioned disadvantages by using a thermoelectric element in which a thermoelectric material and an electrode plate are integrally joined in advance.
【0006】[0006]
【課題を解決するための手段】上記目的を達成するた
め、請求項1に記載された発明は、電気的に絶縁性の材
料から形成された平板状の基体に、熱電素子を収容すべ
き孔を所定の間隔をあけて格子状に開設し、電気的直列
の基端となる熱電素子が収容される孔から、電気的直列
の終端となる熱電素子が収容される孔に至るまで、隣り
合う孔と孔によって形成される仕切部に対し、熱電素子
の電極板の厚さにほぼ相当する深さの凹所を上下交互に
形成し、基体の孔の中に、p型熱電素子とn型熱電素子
を交互に配置し、電気的に直列となるように、基体の仕
切部の凹所にロー材を充填し、凹所を挟んで隣り合う電
極板どうしを交互にロー付する工程からなることを特徴
としている。In order to achieve the above-mentioned object, the invention described in claim 1 is directed to a plate-like base formed of an electrically insulating material, and a hole for accommodating a thermoelectric element. Are opened in a lattice at predetermined intervals, and are adjacent from the hole in which the thermoelectric element serving as the base end of the electric series is accommodated to the hole in which the thermoelectric element serving as the terminal end of the electric series is accommodated With respect to the partition formed by the holes and the holes, recesses having a depth substantially equivalent to the thickness of the electrode plate of the thermoelectric element are alternately formed on the upper and lower sides, and the p-type thermoelectric element and the n-type A step of arranging the thermoelectric elements alternately, filling the recesses of the partitioning portions of the base with a brazing material so as to be electrically in series, and alternately brazing the electrode plates adjacent to each other across the recess. It is characterized by:
【0007】請求項2に記載された発明は、ロー材を充
填する前に、仕切部の凹所に銅材を配置することを特徴
としている。[0007] The invention described in claim 2 is characterized in that a copper material is arranged in a recess of the partition before filling with the brazing material.
【0008】請求項3に記載された発明は、ロー付け工
程の後、基体及び電極板の表面を平面研削又は切削する
工程を有することを特徴としている。[0008] The invention described in claim 3 is characterized in that after the brazing step, a step of surface grinding or cutting the surfaces of the base and the electrode plate is provided.
【0009】請求項4に記載された発明は、平面研削工
程の後、基体及び電極板の表面に対し、電気的絶縁層を
被着する工程をさらに有することを特徴としている。The invention described in claim 4 is characterized in that the method further comprises, after the surface grinding step, a step of applying an electrical insulating layer to the surfaces of the base and the electrode plate.
【0010】[0010]
【作用及び効果】請求項1に記載された発明では、熱電
材料と電極板を予め一体に接合した熱電素子を用いるの
で、熱電モジュールの作製工程における作業性が向上す
る。また、電極板どうしの接合は、仕切部の凹所に半田
等のロー材を充填して行なうから、接合不良又は導電不
良は殆んど起こらないし、仮に、そのような不都合が生
じた場合でも、不良箇所のみを手直しすれば足りる。According to the first aspect of the present invention, since a thermoelectric element in which a thermoelectric material and an electrode plate are integrally joined in advance is used, workability in a thermoelectric module manufacturing process is improved. In addition, since the bonding between the electrode plates is performed by filling the recess of the partition with a brazing material such as solder, poor bonding or poor conductivity hardly occurs, even if such inconvenience occurs. It is sufficient to fix only the defective part.
【0011】請求項2に記載された発明では、電極板と
電極板の間に導電性にすぐれる銅材を介在させるから、
単なる半田接合の場合に比べて、熱電素子間の電気抵抗
の低減を達成できる。In the invention described in claim 2, since a copper material having excellent conductivity is interposed between the electrode plates,
It is possible to reduce the electric resistance between the thermoelectric elements as compared with the case of simple solder joining.
【0012】請求項3に記載された発明では、基体及び
電極板の表面の平滑度及び平坦度を向上させることがで
きると共に、熱電モジュールの厚みを精度良く揃えるこ
とができるから、取り付けられるべき熱交換機器の吸熱
ブロック及び放熱ブロックとの密着度を向上させること
ができ、熱電素子と、吸熱及び放熱用の熱伝導部材との
熱伝達効率を向上させることができる。According to the third aspect of the present invention, the smoothness and flatness of the surfaces of the base and the electrode plate can be improved, and the thickness of the thermoelectric module can be precisely adjusted. The degree of adhesion between the heat absorbing block and the heat radiating block of the exchange device can be improved, and the heat transfer efficiency between the thermoelectric element and the heat conductive member for heat absorption and heat radiation can be improved.
【0013】請求項4に記載された発明では、基体及び
電極板の表面に、電気絶縁層を予め形成しているから、
熱伝導率の良い金属製の熱交換機器へ直接取り付けるこ
とができる。According to the fourth aspect of the present invention, since the electric insulating layer is previously formed on the surfaces of the base and the electrode plate,
It can be directly attached to a heat exchanger made of metal with good thermal conductivity.
【0014】[0014]
【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。まず、組み立てられた熱電モジュールにつ
いて説明する。図2を参照すると、矩形平板状の基体(1
1)には、所定の間隔を存して、熱電材料を収容すべき孔
(12)が格子状に形成され、隣り合う孔(12)と孔(12)によ
って仕切部(13)が形成される。孔の個数は、所望される
発電容量に応じた熱電素子の個数に基づいて設定される
ものであり、図示の実施例に限定されないことは理解さ
れるべきである。基体(11)は、セラミックス又はセメン
ト等の電気的絶縁性材料から作られ、基体(11)の望まし
い材料として、例えばコージェライト(2MgO・2A
l2O3・5SiO2)を挙げることができる。Embodiments of the present invention will be described below. First, the assembled thermoelectric module will be described. Referring to FIG. 2, a rectangular flat base (1
In 1), there is a hole at a predetermined interval to accommodate the thermoelectric material.
(12) is formed in a lattice shape, and a partition (13) is formed by the adjacent holes (12) and the holes (12). It should be understood that the number of holes is set based on the number of thermoelectric elements according to the desired power generation capacity, and is not limited to the illustrated embodiment. The substrate (11) is made of an electrically insulating material such as ceramics or cement. As a desirable material for the substrate (11), for example, cordierite (2MgO.2A) is used.
l 2 O 3 .5SiO 2 ).
【0015】仕切部(13)には、熱電素子の電極板(18)の
厚さにほぼ相当する深さの凹所(14)が上下交互に形成さ
れる。この凹所(14)は、隣り合う電極板どうしを接続す
るためのロー材(25)を充填するのに必要なスペースであ
る。In the partition (13), recesses (14) having a depth substantially equivalent to the thickness of the electrode plate (18) of the thermoelectric element are formed alternately in the upper and lower directions. The recess (14) is a space necessary for filling a brazing material (25) for connecting adjacent electrode plates.
【0016】p型熱電素子(21)は、対向する一対の電極
板(18)(18)の間にp型熱電材料(16)が予め接合されてお
り、n型熱電素子(22)は、対向する一対の電極板(18)(1
8)の間にn型熱電材料(17)が予め接合されている。これ
ら熱電素子は、金型の中に、電極板を入れ、その上に熱
電材料粉末を充填した後、電極板を載せて、ホットプレ
スすることにより作製される。p型熱電材料の例とし
て、(Bi2Te3)1-x(Sb2Te3)xであってxが0.7
0〜0.85のもの、n型熱電材料の例として、(Bi2
Te3)1-x(Bi2Se3)xであってxが0.05〜0.15
のものを挙げることができるが、これらに限定されるも
のでない。なお、組成比は原子数比である。電極板はC
u板が使用されるが、熱電材料との接合性を向上させる
ために、熱電材料と接触する側の面に、Niメッキを施
したり、又はMo若しくはTiを蒸着したものを使用す
ることがより望ましい。The p-type thermoelectric element (21) has a p-type thermoelectric material (16) previously bonded between a pair of opposed electrode plates (18), (18), and the n-type thermoelectric element (22) has A pair of opposing electrode plates (18) (1
An n-type thermoelectric material (17) is previously bonded between 8). These thermoelectric elements are manufactured by placing an electrode plate in a mold, filling a thermoelectric material powder thereon, placing the electrode plate, and hot pressing. As an example of a p-type thermoelectric material, (Bi 2 Te 3 ) 1 -x (Sb 2 Te 3 ) x where x is 0.7
(Bi 2)
Te 3 ) 1-x (Bi 2 Se 3 ) x where x is 0.05 to 0.15
However, the present invention is not limited to these. The composition ratio is a ratio of the number of atoms. The electrode plate is C
Although a u-plate is used, in order to improve the bonding property with the thermoelectric material, it is more preferable to use Ni plating or Mo or Ti vapor-deposited on the surface in contact with the thermoelectric material. desirable.
【0017】図示の熱電モジュールの実施例では、図1
において、位置1−1のp熱電素子(21)が電気的直列の
基端であり、位置6−6のn型熱電素子(22)が電気的直
列の終端であり、位置1−1のp型熱電素子(21)から、
位置6−6の熱電素子(22)まで、基体(11)の凹所(14)の
中へ充填された半田等のロー材(25)を介して、隣り合う
上側電極板(18)(18)どうし、下側電極板(18)(18)どうし
が交互にロー付けされ、ジグザグ状に電気的直列回路が
形成される。より具体的に説明すると、位置1−1のp
型熱電素子(21)と位置1−2のn型熱電素子(22)は下側
電極板どうし(図1では見えない)、位置1−2のn型熱
電素子(22)と位置1−3のp型熱電素子(21)は上側電極
板どうしがロー付けされる。また、位置1−6のn型熱
電素子(22)と位置2−1のp型熱電素子(21)は上側電極
板どうし、位置2−1のp型熱電素子(21)と位置2−2
のn型熱電素子(22)は下側電極板どうし(図1では見え
ない)がそれぞれロー付けされる。In the embodiment of the thermoelectric module shown in FIG.
, The p-type thermoelectric element (21) at the position 1-1 is the base end of the electric series, the n-type thermoelectric element (22) at the position 6-6 is the end of the electric series, From the type thermoelectric element (21),
Up to the thermoelectric element (22) at the position 6-6, the adjacent upper electrode plates (18) (18) (18) through the brazing material (25) such as solder filled into the recess (14) of the base (11). ) The lower electrode plates (18) and (18) are alternately brazed to form a zigzag electrical series circuit. More specifically, p at position 1-1
The type thermoelectric element (21) and the n-type thermoelectric element (22) at the position 1-2 are arranged between the lower electrode plates (not shown in FIG. 1), and the n-type thermoelectric element (22) at the position 1-2 and the position 1-3. In the p-type thermoelectric element (21), the upper electrode plates are brazed. Further, the n-type thermoelectric element (22) at the position 1-6 and the p-type thermoelectric element (21) at the position 2-1 are located between the upper electrode plates, and the p-type thermoelectric element (21) at the position 2-1 and the position 2-2.
The lower electrode plates (not shown in FIG. 1) of the n-type thermoelectric element (22) are soldered.
【0018】基体(11)には、機器接続用リード線(32)(3
2)を収容するための溝(34)(34)が開設され、前記溝に配
備されたリード線(32)(32)は、半田等により、位置1−
1のp型熱電素子(21)(電気的直列の基端)と、位置6−
6のn型熱電素子(22)(電気的直列の終端)の電極板(18)
にそれぞれ接続され、全ての熱電素子と電気的に繋がっ
ている。The base (11) has lead wires (32) (3
Grooves (34) and (34) for accommodating 2) are opened, and the lead wires (32) and (32) provided in the grooves are positioned at positions 1 through
1 p-type thermoelectric element (21) (the base end of the electric series) and position 6-
6. Electrode plate (18) of n-type thermoelectric element (22) (terminal in electrical series)
And are electrically connected to all the thermoelectric elements.
【0019】次に、本発明に係る熱電モジュールの組立
て工程について説明する。まず、セラミックス等の電気
的に絶縁性の材料から矩形平板状に形成され、熱電素子
を収容すべき孔(12)が所定の間隔をあけて格子状に開設
された基体(11)(図2(a)及び(b)参照)を準備する。図
2(a)中、1−1で示す位置の孔(12)が、電気的直列の
基端となる熱電素子が収容される孔であり、6−6で示
す位置の孔(12)が、電気的直列の終端となる熱電素子が
収容される孔である。Next, a process of assembling the thermoelectric module according to the present invention will be described. First, a substrate (11) (FIG. 2) formed in a rectangular flat plate shape from an electrically insulating material such as ceramics and having holes (12) for accommodating thermoelectric elements formed in a lattice at predetermined intervals. (a) and (b)) are prepared. In FIG. 2A, a hole (12) at a position indicated by 1-1 is a hole for accommodating a thermoelectric element serving as a base end of an electric series, and a hole (12) at a position indicated by 6-6 is , A hole for accommodating a thermoelectric element serving as a terminal of an electrical series.
【0020】熱電素子にはp型とn型の2種類があり、
p型熱電素子(21)は対向する一対の電極板(18)(18)の間
にp型熱電材料(16)が接合され、n型熱電素子(22)は対
向する一対の電極板(18)(18)の間にn型熱電材料(17)が
接合されている。There are two types of thermoelectric elements, p-type and n-type.
The p-type thermoelectric element (21) has a p-type thermoelectric material (16) bonded between a pair of opposed electrode plates (18) and (18), and the n-type thermoelectric element (22) has a pair of opposed electrode plates (18). The n-type thermoelectric material (17) is joined between the () and (18).
【0021】p型熱電素子(21)とn型熱電素子(22)は、
上記の如く準備された基体(11)に対し、位置1−1の孔
(12)から位置6−6の孔(12)に到るジグザグ状の経路
を、交互に孔の中に配置される(図3及び図4参照)。The p-type thermoelectric element (21) and the n-type thermoelectric element (22)
With respect to the substrate (11) prepared as described above,
A zigzag path from (12) to the hole (12) at position 6-6 is alternately arranged in the holes (see FIGS. 3 and 4).
【0022】次に、基体(11)の仕切部(13)に形成された
凹所(14)に、半田等の導電性ロー材(25)を充填し、隣り
合う下側電極板(18)(18)どうし、隣り合う上側電極板(1
8)(18)どうしをロー付けして接合する(図5参照)。これ
により、位置1−1の孔(12)に配置されたp型熱電素子
(21)から、位置6−6の孔(12)に配置されたn型熱電素
子(22)に到るまで、全ての熱電素子が電気的に直列に接
続される。Next, a recess (14) formed in the partition (13) of the base (11) is filled with a conductive brazing material (25) such as solder, and the adjacent lower electrode plate (18) is filled. (18) The adjacent upper electrode plates (1
8) (18) Soldering and joining (see FIG. 5). Thereby, the p-type thermoelectric element arranged in the hole (12) at the position 1-1
From (21) to the n-type thermoelectric element (22) arranged in the hole (12) at the position 6-6, all the thermoelectric elements are electrically connected in series.
【0023】基体及び電極板の表面は、平滑度を良くす
るために、図6の二点鎖線に示すように、平面研削又は
切削により表面仕上げ加工を行なうことが望ましい。熱
電モジュールは、アルミナ等の電気的絶縁性材料からな
る部材を介して、熱伝導性にすぐれる銅などの金属から
形成された吸熱ブロック及び放熱ブロックと密着させて
使用に供されるため、基体及び電極板の表面の平滑度
は、前記ブロックとの接触状態を良好ならしめて熱交換
効率を高める上で重要である。The surfaces of the base and the electrode plate are desirably subjected to surface finishing by surface grinding or cutting as shown by a two-dot chain line in FIG. 6 in order to improve smoothness. The thermoelectric module is used in close contact with a heat absorbing block and a heat radiating block formed of a metal such as copper, which has excellent thermal conductivity, through a member made of an electrically insulating material such as alumina. In addition, the smoothness of the surface of the electrode plate is important for improving the heat exchange efficiency by improving the contact state with the block.
【0024】なお、基体(11)及び電極板(18)の表面に
は、アルミナ等の電気的絶縁性材料の層(36)を、例えば
溶射により、予め形成しておくこともできる(図7参
照)。この電気的絶縁性層(36)を予め設けておくことに
より、吸熱及び放熱ブロックへの取付けをより容易に行
なえる利点がもたらされる。A layer (36) of an electrically insulating material such as alumina may be formed on the surfaces of the base (11) and the electrode plate (18) in advance, for example, by thermal spraying (FIG. 7). reference). By providing the electrically insulating layer (36) in advance, there is an advantage that attachment to the heat absorption and heat dissipation block can be performed more easily.
【0025】このようにして作製された熱電モジュール
は、機器接続用のリード線(32)が基体(11)の溝(34)の中
に挿入され、半田等の導電性ロー材を用いて、電気的直
列の基端と終端となる熱電素子の各電極板ににそれぞれ
接合される。In the thermoelectric module manufactured as described above, the lead wire (32) for connecting the device is inserted into the groove (34) of the base (11), and a conductive brazing material such as solder is used. It is respectively joined to each electrode plate of the thermoelectric element which becomes a base end and an end of electric series.
【0026】なお、仕切部(13)の凹所(14)に半田を充填
する前に、銅材(図示せず)を入れておき、電極板どうし
を、銅材と共に半田付けすることもできる。銅は導電性
にすぐれるため、熱電素子間の電気抵抗を低減できる利
点がある。銅材は、線材又は粉末など、どんな形態でも
可能である。Before the solder is filled in the recess (14) of the partition (13), a copper material (not shown) may be put in, and the electrode plates may be soldered together with the copper material. . Since copper has excellent conductivity, there is an advantage that the electric resistance between thermoelectric elements can be reduced. The copper material can be in any form, such as wire or powder.
【0027】本発明は、上記実施例の構成に限定される
ものでなく、特許請求の範囲の記載の範囲内で種々の変
形が可能であることは理解されるべきである。It should be understood that the present invention is not limited to the configuration of the above-described embodiment, and that various modifications are possible within the scope of the claims.
【図1】熱電モジュールが組み立てられた状態を示す斜
視図である。FIG. 1 is a perspective view showing a state where a thermoelectric module is assembled.
【図2】(a)は熱電モジュールの基体の平面図、(b)は
(a)のA−A'線に沿う断面図である。FIG. 2 (a) is a plan view of a base of a thermoelectric module, and FIG.
It is sectional drawing which follows the AA 'line of (a).
【図3】基体の孔に熱電素子を配置する工程の説明図で
ある。FIG. 3 is an explanatory view of a step of arranging a thermoelectric element in a hole of a base.
【図4】基体の孔に熱電素子が配置された状態を示す断
面図である。FIG. 4 is a cross-sectional view showing a state where a thermoelectric element is arranged in a hole of a base.
【図5】熱電素子の電極板が半田付けされた状態を示す
断面図である。FIG. 5 is a cross-sectional view showing a state where an electrode plate of the thermoelectric element is soldered.
【図6】基体と電極板に平面研削又は切削加工を施す工
程の説明図である。FIG. 6 is an explanatory view of a step of performing surface grinding or cutting on a base and an electrode plate.
【図7】基体と電極板の表面に電気絶縁層を形成した実
施例の断面図である。FIG. 7 is a cross-sectional view of an embodiment in which an electric insulating layer is formed on the surfaces of a base and an electrode plate.
【図8】従来の熱電モジュールの分解斜視図である。FIG. 8 is an exploded perspective view of a conventional thermoelectric module.
【図9】従来の熱電モジュールの作製方法を説明する図
である。FIG. 9 is a diagram illustrating a method for manufacturing a conventional thermoelectric module.
(1) 熱電モジュール (11) 基体 (12) 孔 (13) 仕切部 (14) 凹所 (18) 電極板 (21) p型熱電素子 (22) n型熱電素子 (25) ロー材 (36) 電気絶縁層 (1) Thermoelectric module (11) Base (12) Hole (13) Partition (14) Recess (18) Electrode plate (21) P-type thermoelectric element (22) N-type thermoelectric element (25) Raw material (36) Electrical insulation layer
Claims (4)
型熱電材料(16)が接合されたp型熱電素子(21)と、対向
する一対の電極板(18)(18)の間にn型熱電材料(17)が接
合されたn型熱電素子(22)を交互に並べて格子状に配置
し、全体が電気的に直列となるように接続された熱電モ
ジュール(1)を作製する方法であって、 電気的に絶縁性の材料から形成された平板状の基体(11)
に、熱電素子を収容すべき孔(12)を所定の間隔をあけて
格子状に開設し、電気的直列の基端となる熱電素子が収
容される孔から、電気的直列の終端となる熱電素子が収
容される孔に至るまで、隣り合う孔と孔によって形成さ
れる仕切部(13)に対し、熱電素子の電極板の厚さにほぼ
相当する深さの凹所(14)を上下交互に形成し、基体(11)
の孔(12)の中に、p型熱電素子(21)とn型熱電素子(22)
を交互に配置し、電気的に直列となるように、基体(11)
の仕切部(13)の凹所(14)にロー材(25)を充填し、凹所(1
4)を挟んで隣り合う電極板(18)(18)どうしを交互にロー
付する工程を有することを特徴とする熱電モジュールの
作製方法。1. A p-electrode between a pair of opposed electrode plates (18) (18).
P-type thermoelectric element (21) to which the type-type thermoelectric material (16) is joined, and an n-type thermoelectric element (to which an n-type thermoelectric material (17) is joined between a pair of opposed electrode plates (18) and (18)) 22) are arranged alternately in a grid pattern, and a method for producing a thermoelectric module (1) connected so that the whole is electrically in series, comprising a flat plate formed of an electrically insulating material. Substrate (11)
At the same time, holes (12) for accommodating thermoelectric elements are opened in a grid at predetermined intervals, and a thermoelectric element serving as a terminal for electrical series is opened from a hole for accommodating a thermoelectric element serving as a base end of electric series. Until the hole in which the element is accommodated, the recess (14) having a depth approximately equivalent to the thickness of the electrode plate of the thermoelectric element is alternately arranged up and down with respect to the partition (13) formed by the adjacent holes and the hole. Formed on a substrate (11)
In the hole (12), a p-type thermoelectric element (21) and an n-type thermoelectric element (22)
Are alternately arranged, and the base (11) is electrically connected in series.
Fill the brazing material (25) into the recess (14) of the partition (13) of
4) A method for producing a thermoelectric module, comprising a step of alternately brazing electrode plates (18) and (18) adjacent to each other with the interposition therebetween.
の凹所(14)に銅材を配置する工程を有する請求項1に記
載の熱電モジュールの作製方法。2. A partition (13) before filling with a brazing material (25).
The method for manufacturing a thermoelectric module according to claim 1, further comprising a step of arranging a copper material in the recess (14).
(18)の表面を平面研削又は切削する工程をさらに有して
いる請求項1又は2に記載の熱電モジュールの作製方
法。3. A substrate (11) and an electrode plate after a brazing step.
The method for producing a thermoelectric module according to claim 1 or 2, further comprising a step of surface grinding or cutting the surface of (18).
(18)の表面に対し、電気的絶縁層(36)を被着する工程を
さらに有している請求項1乃至3の何れかに記載の熱電
モジュールの作製方法。4. A substrate (11) and an electrode plate after a surface grinding step.
The method for manufacturing a thermoelectric module according to any one of claims 1 to 3, further comprising a step of applying an electrical insulating layer (36) to the surface of (18).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9299701A JPH11135844A (en) | 1997-10-31 | 1997-10-31 | Manufacture of thermoionic module |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9299701A JPH11135844A (en) | 1997-10-31 | 1997-10-31 | Manufacture of thermoionic module |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11135844A true JPH11135844A (en) | 1999-05-21 |
Family
ID=17875933
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9299701A Withdrawn JPH11135844A (en) | 1997-10-31 | 1997-10-31 | Manufacture of thermoionic module |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11135844A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160082366A (en) * | 2014-12-26 | 2016-07-08 | 주식회사 제펠 | Thermoelectric module having anker parts of thermoelectric leg and method of manufacturing the module |
-
1997
- 1997-10-31 JP JP9299701A patent/JPH11135844A/en not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160082366A (en) * | 2014-12-26 | 2016-07-08 | 주식회사 제펠 | Thermoelectric module having anker parts of thermoelectric leg and method of manufacturing the module |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7204770B2 (en) | Double-sided cooling power module and manufacturing method thereof | |
US6306673B1 (en) | Thermoelectric conversion module and method of manufacturing the same | |
US5171372A (en) | Thermoelectric cooler and fabrication method | |
US5064476A (en) | Thermoelectric cooler and fabrication method | |
WO2014084363A1 (en) | Thermoelectric module | |
WO2005117153A1 (en) | Thermoelectric converter and its manufacturing method | |
JP2008098197A (en) | Thermoelectric conversion element and its fabrication process | |
US3449173A (en) | Thermoelectric couple with soft solder electrically connecting semi-conductors and method of making same | |
JP2000022224A (en) | Manufacture of thermoelectric element and manufacture thereof | |
US20030193087A1 (en) | Peltier module with durable power supply lines and exothermic module with built-in cooler | |
JP3569836B2 (en) | Thermoelectric device | |
JPH11135844A (en) | Manufacture of thermoionic module | |
JPH09321355A (en) | Thermoelectric unit | |
US20190334074A1 (en) | Thermoelectric module | |
JPH11163424A (en) | Manufacture of thermoelectric module | |
JPH11135845A (en) | Thermoionic module | |
JPH08162680A (en) | Thermo-electric converter | |
JPH1187787A (en) | Production of thermoelectrtc module | |
JPH10313134A (en) | Manufacture of thermoelectric module | |
JPH11177152A (en) | Thermoelectric module | |
JPWO2017056549A1 (en) | Thermoelectric module | |
JPH0629581A (en) | Thermoelectric element | |
JP4280064B2 (en) | Method for manufacturing thermoelectric conversion module | |
KR102724948B1 (en) | Heat dissipation fin with improved bonding strength and durability by brazing bonding by inserting the pin into the hole | |
JP2003234515A (en) | Thermoelectric module |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20050104 |