JP2000332310A - Manufacture of thermoelectric module - Google Patents

Manufacture of thermoelectric module

Info

Publication number
JP2000332310A
JP2000332310A JP11140939A JP14093999A JP2000332310A JP 2000332310 A JP2000332310 A JP 2000332310A JP 11140939 A JP11140939 A JP 11140939A JP 14093999 A JP14093999 A JP 14093999A JP 2000332310 A JP2000332310 A JP 2000332310A
Authority
JP
Japan
Prior art keywords
thermoelectric
copper
thermoelectric element
holes
type thermoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11140939A
Other languages
Japanese (ja)
Inventor
Shuzo Kagawa
修三 香川
Masanori Sakamoto
正則 酒本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP11140939A priority Critical patent/JP2000332310A/en
Publication of JP2000332310A publication Critical patent/JP2000332310A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a high-performance thermoelectric module which can perform heat exchange with a heat source of a high temperature exceeding 300 deg.C by electrically connecting thermoelectric elements together by thermally spraying copper. SOLUTION: The method includes steps of making holes 12 for accommodation of thermoelectric elements in a substrate 11 in the form of a lattice as spaced by a predetermined interval, providing recesses 14 of a depth corresponding to nearly a thickness of electrode plates of the elements in partitions 13 defined by the adjacent holes extended from starting one of an electrically series-connected thermoelectric-element hole row to end one thereof vertically alternately, alternately arranging (p) and (n) type thermoelectric elements 21 and 22 in the holes 12 of the substrate 11, and thermally spraying copper 51 into the recesses 14 to electrically connect adjacent electrode plates 18 together with the recesses 14 disposed therebetween.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱電モジュールの
作製方法に関するものである。
[0001] The present invention relates to a method for manufacturing a thermoelectric module.

【0002】[0002]

【従来の技術】熱電モジュールは、p型熱電素子とn型
熱電素子が電極板を介して電気的に直列となるように接
合されたもので、熱電素子に温度差を与えると電位差が
発生し、また電流を流すと、その電流の向きにより吸熱
又は発熱する性質を有する。前者の性質はゼーベック効
果と呼ばれ、例えばゴミ焼却炉の廃熱による発電の如き
熱電発電用に開発されており、後者の性質はペルチェ効
果と呼ばれ、例えば半導体製造プロセスにおける恒温装
置、エレクトロデバイスの冷却等の熱電冷却に幅広く利
用されている。
2. Description of the Related Art A thermoelectric module is a module in which a p-type thermoelectric element and an n-type thermoelectric element are joined via an electrode plate so as to be electrically connected in series. When a temperature difference is applied to the thermoelectric element, a potential difference is generated. Also, when a current is passed, it has a property of absorbing or generating heat depending on the direction of the current. The former property is called the Seebeck effect and has been developed for thermoelectric power generation such as power generation by waste heat of a garbage incinerator, and the latter property is called the Peltier effect. It is widely used for thermoelectric cooling such as cooling.

【0003】熱電モジュール(1)として、図12に示す
ように、電極(18)(18)が接合されたp型熱電素子(21)と
n型熱電素子(22)を、半田(25)によって電気的に直列に
接続したものがある。この熱電モジュール(1)は、図1
3に示すように、電気絶縁性の基体(11)を用いて作製さ
れる。基体(11)には、熱電素子が収容される孔(12)を形
成する仕切部(13)が格子状に形成されており、各孔(12)
に熱電素子を収容したときに、すべての熱電素子が電気
的に直列接続されるように、各仕切部(13)には、熱電素
子の電極板(18)の厚さにほぼ相当する深さの凹所(14)が
上下交互に形成されている。基体(11)の各孔(12)に、熱
電素子を収容し、凹所(14)に半田(25)を流し込んで、図
12に示すように、隣り合う熱電素子の電極板どうしを
電気的に接続することによって、熱電モジュール(1)が
作製される。
As a thermoelectric module (1), as shown in FIG. 12, a p-type thermoelectric element (21) and an n-type thermoelectric element (22) to which electrodes (18) and (18) are joined are soldered (25). Some are electrically connected in series. This thermoelectric module (1) is shown in FIG.
As shown in FIG. 3, it is manufactured using an electrically insulating substrate (11). On the base (11), partition portions (13) forming holes (12) for accommodating thermoelectric elements are formed in a lattice shape, and each hole (12)
Each partition (13) has a depth substantially equivalent to the thickness of the thermoelectric element electrode plate (18) so that the thermoelectric elements are electrically connected in series when accommodated. Are formed alternately up and down. The thermoelectric elements are accommodated in the holes (12) of the base (11), and the solder (25) is poured into the recesses (14), and the electrode plates of the adjacent thermoelectric elements are electrically connected as shown in FIG. By connecting to the thermoelectric module (1), the thermoelectric module (1) is manufactured.

【0004】[0004]

【発明が解決しようとする課題】熱電モジュールの発電
効率は、熱電素子に与える温度差に大きく依存してお
り、発電効率を高めるには、高温側の温度を高くし、低
温側の温度を低くすることによって、熱電素子により大
きな温度差を与える必要がある。熱電材料は、用いられ
る材料によって異なるが、例えば、BiTe系の材料の
場合、約350℃程度までの温度域であれば、性能の劣
化を招来することなく使用できる。しかしながら、通常
の半田の融点は約183℃、また、高融点半田の場合で
も融点は約285℃であるため、熱電モジュールに接す
る熱源の温度が、これら半田の融点よりも高いと、半田
が溶融してしまい、十分な導電性を維持できなくなる。
このため、熱電モジュールの使用可能温度は、熱電材料
ではなく、半田によって制約を受ける。例えば、100
個の熱電素子からなる熱電モジュールの場合、素子間の
半田による接合部は99箇所存在する。熱電素子は、直
列に接続されているから、半田接合部の1箇所でも導通
が不十分になると、熱電モジュール全体に電流が流れ
ず、作動しない。このため、熱電素子間の電気的な接合
状態を良好に維持することは、熱電モジュールを作製
し、使用する上で、非常に重要である。
The power generation efficiency of the thermoelectric module largely depends on the temperature difference applied to the thermoelectric elements. To increase the power generation efficiency, the temperature on the high temperature side must be increased and the temperature on the low temperature side must be decreased. Therefore, it is necessary to give a larger temperature difference to the thermoelectric element. The thermoelectric material varies depending on the material used. For example, in the case of a BiTe-based material, it can be used without deteriorating its performance in a temperature range up to about 350 ° C. However, the melting point of ordinary solder is about 183 ° C., and even in the case of high melting point solder, the melting point is about 285 ° C. If the temperature of the heat source in contact with the thermoelectric module is higher than the melting points of these solders, the solder will melt. As a result, sufficient conductivity cannot be maintained.
For this reason, the usable temperature of the thermoelectric module is limited by the solder, not the thermoelectric material. For example, 100
In the case of a thermoelectric module composed of individual thermoelectric elements, there are 99 solder joints between the elements. Since the thermoelectric elements are connected in series, if even one of the solder joints becomes insufficiently conductive, no current flows through the entire thermoelectric module, and the thermoelectric module does not operate. For this reason, it is very important to maintain a good electrical connection state between the thermoelectric elements when manufacturing and using the thermoelectric module.

【0005】また、半田に含まれる鉛は、その使用を規
制されつつあり、半田を使用することなく熱電モジュー
ルを作製することが望まれている。
[0005] Further, the use of lead contained in solder is being regulated, and it is desired to produce a thermoelectric module without using solder.

【0006】このため、発明者らは、半田よりも融点の
高い銀ロウを用いて、熱電素子間のロウ付けを試みた。
しかしながら、銀ロウは融点が620℃以上と高すぎる
ため、ロウ付けの際に、温度が上がりすぎて熱電素子を
傷めてしまう不都合があった。
[0006] For this reason, the inventors have tried to braze the thermoelectric elements using a silver brazing material having a higher melting point than solder.
However, since the melting point of silver brazing is as high as 620 ° C. or higher, there has been an inconvenience that the temperature is excessively increased during brazing and the thermoelectric element is damaged.

【0007】本発明は、銅の溶射によって熱電素子どう
しを電気的に接続し、300℃を越える高温の熱源との
熱交換を可能とした高性能の熱電モジュールの作製方法
を提供することを目的とする。
An object of the present invention is to provide a method of manufacturing a high-performance thermoelectric module in which thermoelectric elements are electrically connected to each other by thermal spraying of copper to enable heat exchange with a heat source having a high temperature exceeding 300 ° C. And

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、本発明の請求項1に記載の熱電素子の作製方法は、
対向する一対の電極板(18)(18)の間にp型熱電材料(16)
が接合されたp型熱電素子(21)と、対向する一対の電極
板(18)(18)の間にn型熱電材料(17)が接合されたn型熱
電素子(22)を交互に並べて格子状に配置し、全体が電気
的に直列となるように接続された熱電モジュールを作製
する方法であって、電気的に絶縁性の材料から形成され
た平板状の基体(11)に、熱電素子を収容すべき孔(12)を
所定の間隔を開けて格子状に開設し、電気的直列の基端
となる熱電素子が収容される孔から、電気的直列の終端
となる熱電素子が収容される孔に至るまで、隣り合う孔
と孔によって形成される仕切部(13)に、熱電素子の電極
板の厚さにほぼ相当する深さの凹所(14)を上下交互に形
成する工程、基体(11)の孔(12)の中に、p型熱電素子(2
1)とn型熱電素子(22)を交互に配置する工程、基体(11)
の仕切部(13)の凹所(14)に銅(51)を溶射し、凹所(14)を
挟んで隣り合う電極板(18)(18)どうしを交互に電気的に
接続する工程を有するものである。
Means for Solving the Problems To solve the above problems, a method for manufacturing a thermoelectric element according to claim 1 of the present invention comprises:
P-type thermoelectric material (16) between a pair of opposed electrode plates (18) (18)
P-type thermoelectric element (21) and an n-type thermoelectric element (22) in which an n-type thermoelectric material (17) is joined between a pair of opposed electrode plates (18) and (18) are alternately arranged. This is a method for producing a thermoelectric module arranged in a lattice and connected so that the whole is electrically connected in series.A thermoelectric module is formed on a flat substrate (11) formed of an electrically insulating material. Holes (12) for accommodating elements are opened in a grid at predetermined intervals, and a thermoelectric element serving as the terminal end of the electric series is accommodated from the hole accommodating the thermoelectric element serving as the base end of the electric series. Forming recesses (14) of a depth substantially equivalent to the thickness of the electrode plate of the thermoelectric element alternately up and down in a partition portion (13) formed by adjacent holes and holes until the holes are formed. , A p-type thermoelectric element (2
Step of alternately arranging 1) and n-type thermoelectric element (22), base (11)
The step of spraying copper (51) on the recess (14) of the partition (13) and electrically connecting the adjacent electrode plates (18) and (18) alternately with the recess (14) interposed therebetween. Have

【0009】本発明の請求項2に記載の熱電素子の作製
方法は、請求項1に記載の方法において、凹所(14)を挟
んで隣り合う電極板(18)(18)の向かい合う端縁には、電
極板(18)(18)への銅(51)の溶射面積を大きくするため
に、予め傾斜を形成する工程を有している。
According to a second aspect of the present invention, there is provided a method for manufacturing a thermoelectric element according to the first aspect, wherein the opposed edges of the electrode plates (18) (18) adjacent to each other with the recess (14) interposed therebetween. The method includes a step of forming a slope in advance in order to increase a sprayed area of the copper (51) on the electrode plates (18) (18).

【0010】また、本発明の請求項3に記載の熱電素子
の作製方法は、対向する一対の電極板(18)(18)の間にp
型熱電材料(16)が接合されたp型熱電素子(21)と、対向
する一対の電極板(18)(18)の間にn型熱電材料(17)が接
合されたn型熱電素子(22)を交互に並べて格子状に配置
し、全体が電気的に直列となるように接続された熱電モ
ジュールを作製する方法であって、電気的に絶縁性の材
料から形成された平板状の基体(11)に、熱電素子を収容
すべき孔(12)を所定の間隔を開けて格子状に開設し、電
気的直列の基端となる熱電素子が収容される孔から、電
気的直列の終端となる熱電素子が収容される孔に至るま
で、隣り合う孔と孔によって形成される仕切部(13)に、
該仕切部(13)の上端面よりも凹んだ凹所(14)を上下交互
に形成する工程、基体(11)の孔(12)の中に、p型熱電素
子(21)とn型熱電素子(22)を仕切部(13)の上端面よりも
電極板(18)が低くなるように交互に配置する工程、電極
板(18)及び仕切部(13)の凹所(14)に銅(51)を溶射する工
程を有する。
In the method of manufacturing a thermoelectric element according to a third aspect of the present invention, the method comprises the steps of:
P-type thermoelectric element (21) to which the type-type thermoelectric material (16) is joined, and an n-type thermoelectric element (to which an n-type thermoelectric material (17) is joined between a pair of opposed electrode plates (18) and (18)) 22) are alternately arranged in a grid pattern to produce a thermoelectric module in which the whole is electrically connected in series, wherein the flat substrate is formed of an electrically insulating material. In (11), holes (12) for accommodating thermoelectric elements are opened in a grid pattern at predetermined intervals, and a hole for accommodating a thermoelectric element serving as a base end of electric series is connected to a terminal of electric series. Until the hole in which the thermoelectric element to be housed is located, the partition (13) formed by adjacent holes and holes,
A step of alternately forming upper and lower recesses (14) recessed from the upper end surface of the partition (13); a p-type thermoelectric element (21) and an n-type thermoelectric element are formed in holes (12) of a base (11); A step of alternately arranging the elements (22) so that the electrode plate (18) is lower than the upper end surface of the partition (13); copper is inserted into the recesses (14) of the electrode plate (18) and the partition (13); (51) is sprayed.

【0011】さらに、本発明の請求項4に記載の熱電素
子の作製方法は、上記作製方法において、銅(51)の溶射
前に、電極板(18)の銅(51)が溶射されるべき面に粗面加
工を施す工程を含むものである。粗面加工として、サン
ドブラスト処理を例示することができる。
Further, in the method for manufacturing a thermoelectric element according to claim 4 of the present invention, the copper (51) of the electrode plate (18) should be sprayed before the copper (51) is sprayed. This includes a step of performing roughening on the surface. Sand blasting can be exemplified as the rough surface processing.

【0012】[0012]

【作用及び効果】請求項1に記載の熱電素子の作製方法
によれば、銅(51)を基体(11)の凹所(14)に溶射すること
によって電極板どうしが電気的に接続される。溶射の場
合、噴霧状の銅を電極板(18)に吹き付けていくため、銅
が熱電素子に与えるの熱量は小さく、素子材料が熱によ
って傷んでしまうことはない。銅は、アルミニウムと比
べて酸化されにくく、溶射層の電気抵抗が低いこと、ま
た、銅の熱膨張率は、16.5×10-6/Kであり、熱電
材料にBiTeを用いた場合の16〜18×10-6/Kと
ほぼ同じであり、熱ストレスを受けにくい利点がある。
さらに銅は、熱伝導率も銀と共に高いから、熱と電気を
伝えるための熱電モジュールの電極材料として最適であ
る。
According to the method of manufacturing a thermoelectric element according to the first aspect, the electrode plates are electrically connected to each other by spraying copper (51) onto the recess (14) of the base (11). . In the case of thermal spraying, since spray-like copper is sprayed on the electrode plate (18), the amount of heat given by the copper to the thermoelectric element is small, and the element material is not damaged by the heat. Copper is less susceptible to oxidation than aluminum, the thermal resistance of the sprayed layer is low, and the coefficient of thermal expansion of copper is 16.5 × 10 −6 / K. When BiTe is used as a thermoelectric material, It is almost the same as 16 to 18 × 10 −6 / K, which is advantageous in that it is less susceptible to thermal stress.
Further, copper has a high thermal conductivity together with silver, and is therefore most suitable as an electrode material of a thermoelectric module for transmitting heat and electricity.

【0013】請求項2に記載の熱電素子の作製方法は、
電極板(18)の銅(51)が溶射されるべき箇所に予め傾斜を
形成しておくことによって、溶射される銅(51)が、電極
板(18)に平行ではなく、角度をもった状態で電極板に当
たるから、銅(51)と電極板(18)との接合度を高めること
ができ、また、溶射された銅(51)がクラックや剥離を生
じることもない。また、電極板の端縁に傾斜を形成する
ことによって、銅(51)が溶射される面積を大きくするこ
とができる。従って、溶射された銅(51)と電極板(18)と
の間の電気抵抗も小さくでき、導電性を高めることがで
きる。電極板間を銅(51)で接合することによって、半田
に比べて高い温度(約300℃以上)の熱源と接触させる
ことができ、熱電モジュールの発電効率を高めることが
できる。
According to a second aspect of the present invention, there is provided a method for manufacturing a thermoelectric element.
By forming a slope in advance at the place where the copper (51) of the electrode plate (18) is to be sprayed, the sprayed copper (51) is not parallel to the electrode plate (18) but has an angle. Since the copper plate (51) hits the electrode plate in this state, the degree of bonding between the copper (51) and the electrode plate (18) can be increased, and the sprayed copper (51) does not crack or peel. Further, by forming the slope at the edge of the electrode plate, the area where the copper (51) is sprayed can be increased. Therefore, the electrical resistance between the sprayed copper (51) and the electrode plate (18) can be reduced, and the conductivity can be increased. By joining the electrode plates with copper (51), the electrode plates can be brought into contact with a heat source having a higher temperature (about 300 ° C. or higher) than solder, and the power generation efficiency of the thermoelectric module can be increased.

【0014】請求項3に記載の熱電素子の作製方法は、
電極板に対して、銅(51)を略直角に溶射させることがで
き、また、電極板の全面に銅(51)の溶射を行なうことが
できるから、電極板と溶射される銅(51)との接合度を高
めることができる。また、電極板と溶射される銅(51)と
の接触面積が大きいから、接合部における電気的接触抵
抗をさらに小さくすることができる。電極板は銅(51)で
接合しているから、上記と同様に、半田に比べて高い温
度(約300℃以上)の熱源と接触させることができ、熱
電モジュールの発電効率を高めることができる。
According to a third aspect of the present invention, there is provided a method for manufacturing a thermoelectric element.
Copper (51) can be sprayed at a substantially right angle to the electrode plate, and copper (51) can be sprayed on the entire surface of the electrode plate. And the degree of joining with the same. Further, since the contact area between the electrode plate and the copper (51) to be sprayed is large, the electric contact resistance at the joint can be further reduced. Since the electrode plate is joined with copper (51), it can be brought into contact with a heat source having a higher temperature (about 300 ° C. or higher) than solder, as described above, and the power generation efficiency of the thermoelectric module can be increased .

【0015】請求項4に記載の熱電素子の作製方法によ
れば、銅(51)が溶射される電極板(18)の表面に粗面加工
が施されているから、銅(51)と電極板との接合をより強
固なものとすることができる。
According to the method of manufacturing a thermoelectric element according to the fourth aspect, since the surface of the electrode plate (18) on which the copper (51) is sprayed is roughened, the copper (51) and the electrode Bonding with the plate can be made stronger.

【0016】[0016]

【発明の実施の形態】<実施形態1>熱電モジュール
(1)は、矩形平板状の基体(11)を用いて作製される。該
基体(11)には、図1及び図2に示すように、所定の間隔
を存して、熱電材料を収容すべき孔(12)が格子状に形成
されており、隣り合う孔(12)と孔(12)との間には、仕切
部(13)が形成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 Thermoelectric Module
(1) is manufactured using a rectangular flat base (11). As shown in FIGS. 1 and 2, holes (12) for accommodating the thermoelectric material are formed in the base (11) in a lattice pattern at predetermined intervals, and adjacent holes (12) are formed. ) And the hole (12), a partition (13) is formed.

【0017】孔の個数は、所望される発電容量に応じた
熱電素子の個数に基づいて設定される。以下では、孔が
36個開設された基体(11)を用いて説明し、説明をわか
りやすくするために、図1において、電気的直列接続の
基端となる基体(11)の左下の孔(12)から順に位置1−
1、位置1−2、位置1−3とし、電気的直列接続の終
端となる孔(12)を位置6−6とする。基体(11)は、セラ
ミック又は耐熱性プラスチック材などの電気絶縁性材料
から作られる。基体(11)の望ましい材料として、例えば
コージェライト(2MgO・2Al23・5SiO2)を
挙げることができる。
The number of holes is set based on the number of thermoelectric elements according to a desired power generation capacity. In the following, description will be made using the base body (11) having 36 holes, and in order to make the description easy to understand, in FIG. 1, the lower left hole (11) of the base body (11) serving as the base end of the electrical series connection is shown. Position 1-in order from 12)
1, position 1-2, position 1-3, and the hole (12) at the end of the electrical series connection is position 6-6. The substrate (11) is made of an electrically insulating material such as a ceramic or a heat-resistant plastic material. Desirable material for the base body (11), for example, can be mentioned cordierite (2MgO · 2Al 2 O 3 · 5SiO 2).

【0018】仕切部(13)には、熱電素子の電極板の厚さ
にほぼ相当する深さの凹所(14)が上下交互に形成され
る。この凹所(14)は、隣り合う電極板どうしを接続する
ための銅(51)を充填するのに必要なスペースである。よ
り具体的に説明すると、凹所(14)は、位置1−1と位置
1−2の間の仕切部(13)の下側(図1では見えない)、位
置1−2と位置1−3の間の仕切部(13)の上側という順
で、上下交互に形成される。隣り合う列どうしの孔につ
いては、例えば、位置1−6と位置2−1の間の仕切部
(13)の上側に凹所(14)が形成されている。
In the partition portion (13), recesses (14) having a depth substantially corresponding to the thickness of the electrode plate of the thermoelectric element are formed alternately in the upper and lower directions. The recess (14) is a space necessary for filling copper (51) for connecting adjacent electrode plates. More specifically, the recess (14) is located below the partition (13) between the position 1-1 and the position 1-2 (not visible in FIG. 1), the position 1-2 and the position 1-1-1. The upper and lower portions are alternately formed in the order of the upper side of the partition portion (13). For holes between adjacent rows, for example, a partition between the positions 1-6 and 2-1
A recess (14) is formed on the upper side of (13).

【0019】基体(11)には、機器接続用のリード線(32)
(32)を収容するための溝(34)(34)が位置1−1と位置6
−6の孔(12)(12)に夫々開設されている。
The base (11) has lead wires (32) for connecting devices.
Grooves (34) and (34) for receiving (32) are located at positions 1-1 and 6
-6 holes (12) and (12), respectively.

【0020】基体(11)の孔(12)には、p型熱電素子(21)
とn型熱電素子(22)が夫々収容される。p型熱電素子(2
1)は、対向する一対の電極板(18)(18)の間にp型熱電材
料(16)が接合され、n型熱電素子(22)は、対向する一対
の電極板(18)(18)の間にn型熱電材料(17)が接合され
る。これら熱電素子は、金型の中に、電極板(18)を入
れ、その上に熱電材料粉末を充填した後、電極板(18)を
載せて、ホットプレスすることにより作製される。
In the hole (12) of the base (11), a p-type thermoelectric element (21)
And an n-type thermoelectric element (22) are respectively housed. p-type thermoelectric element (2
1), a p-type thermoelectric material (16) is joined between a pair of opposed electrode plates (18) and (18), and the n-type thermoelectric element (22) has a pair of opposed electrode plates (18) and (18). ) Is joined to the n-type thermoelectric material (17). These thermoelectric elements are produced by placing an electrode plate (18) in a mold, filling a thermoelectric material powder thereon, placing the electrode plate (18) thereon, and hot pressing.

【0021】p型熱電材料の例として、(Bi2Te3)
1-x(Sb2Te3)xであってxが0.70〜0.85のも
の、n型熱電材料の例として、(Bi2Te3)1-x(Bi2
Se3)xであってxが0.05〜0.15のものを挙げる
ことができる。なお、組成比は、原子数比である。電極
板には、熱と電気を伝えやすく、熱電材料と熱膨張率が
ほぼ同じ銅が最適である。この銅板は、熱電材料(特に
Te)と電極板の銅が溶け合って拡散するのを防止する
ために、熱電材料と接触する側の面に、Niメッキを施
したり、又はMo若しくはTiを蒸着したものを使用す
ることが望ましい。
As an example of a p-type thermoelectric material, (Bi 2 Te 3 )
1-x (Sb 2 Te 3 ) x where x is 0.70 to 0.85, and as an example of an n-type thermoelectric material, (Bi 2 Te 3 ) 1-x (Bi 2
Se 3 ) x wherein x is 0.05 to 0.15. The composition ratio is a ratio of the number of atoms. For the electrode plate, copper which is easy to conduct heat and electricity and has substantially the same coefficient of thermal expansion as the thermoelectric material is optimal. In order to prevent the thermoelectric material (especially Te) and the copper of the electrode plate from melting and diffusing, the copper plate is plated with Ni or Mo or Ti is deposited on the surface in contact with the thermoelectric material. It is desirable to use one.

【0022】電極板(18)には、熱電素子(21)(22)を基体
(11)の孔(12)に夫々収容したときに、凹所(14)と対向す
る端面に、図3に示すような傾斜を形成しておくことが
望ましい。傾斜は、研削などによって形成することがで
き、形成された傾斜面(41)には、溶射された銅(51)の接
合性を高めるために、サンドブラスト処理などを施し
て、表面を粗くしておくことが望ましい。傾斜面(41)
は、電極板(18)を熱電材料とホットプレスする前に予め
電極板(18)に形成しておいてもよいし、電極板を熱電材
料とホットプレスし、熱電素子を作製した後に加工し形
成してもよい。
On the electrode plate (18), thermoelectric elements (21) and (22) are
It is desirable to form a slope as shown in FIG. 3 on the end face facing the recess (14) when each is accommodated in the hole (12) of (11). The inclination can be formed by grinding or the like, and the formed inclined surface (41) is subjected to sand blasting or the like to improve the bondability of the sprayed copper (51), so that the surface is roughened. It is desirable to keep. Inclined surface (41)
Before hot pressing the electrode plate (18) with the thermoelectric material, the electrode plate (18) may be formed in advance on the electrode plate (18), or the electrode plate may be hot pressed with the thermoelectric material to form a thermoelectric element and then processed. It may be formed.

【0023】傾斜面(41)を形成する場合、傾斜角度θ
(図3参照)は、勾配が60度以下となるように形成する
ことが望ましく、45度以下となるように形成すること
がより望ましい。勾配が60度よりも大きくなると、傾
斜面(41)と溶射される銅(51)との接触角が小さくなるか
ら、電極板と銅(51)との接合が不十分となり、熱電発電
を繰り返すうちに、電極板(18)と銅(51)との電気的接合
が不十分になって、内部抵抗が増大する可能性があるた
めである。
When forming the inclined surface (41), the inclination angle θ
(See FIG. 3) is preferably formed so that the gradient is 60 degrees or less, more preferably 45 degrees or less. When the gradient is larger than 60 degrees, the contact angle between the inclined surface (41) and the copper (51) to be sprayed becomes small, so the bonding between the electrode plate and the copper (51) becomes insufficient, and the thermoelectric power generation is repeated. During this time, the electrical connection between the electrode plate (18) and the copper (51) may become insufficient and the internal resistance may increase.

【0024】なお、傾斜面(41)は、熱電素子の一対の電
極板の内、少なくとも高温側の電極板に形成しておく。
低温側の電極板にも、傾斜面(41)を形成して、高温側と
同様に銅を溶射して電気的に接続してもよいが、低温側
は、半田の融点を超えるような温度にまで加熱されない
ため、従来と同様に半田にて接続してもよい。鉛の使用
が規制される場合には、低温側にも傾斜面(41)を形成
し、銅(51)を溶射することが望ましい。なお、以下で
は、両方の電極板(18)(18)に傾斜面(41)を形成した熱電
素子を用いて説明を行なう。
The inclined surface (41) is formed on at least the high-temperature side electrode plate of the pair of electrode plates of the thermoelectric element.
An inclined surface (41) may also be formed on the electrode plate on the low-temperature side, and copper may be sprayed and electrically connected similarly to the high-temperature side, but the temperature on the low-temperature side may exceed the melting point of the solder. , And may be connected by solder as in the conventional case. When the use of lead is restricted, it is desirable to form an inclined surface (41) on the low temperature side and spray copper (51). In the following, description will be made using a thermoelectric element in which inclined surfaces (41) are formed on both electrode plates (18).

【0025】傾斜面(41)(41)が夫々形成された熱電素子
(21)(22)について、図4に示すように、傾斜面(41)が仕
切部(13)の凹所(14)と対向するように、p型熱電素子(2
1)とn型熱電素子(22)を交互に収容する。すべての孔(1
2)に熱電素子を収容した後、隣り合う熱電素子間の傾斜
面(41)(41)と凹所(14)とによって形成される部分に、銅
(51)を溶射する。溶射は、図5に矢印で示すように、基
体(11)に対して略垂直な方向から実施する。電極板(18)
に傾斜面(41)を形成した場合には、基体(11)に対して、
略垂直な方向から銅(51)の溶射を行なっても、傾斜面(4
1)に角度を持って当たるから、溶射された銅(51)が傾斜
面(41)に十分に溶着する。従って、隣り合う熱電素子(2
1)(22)の電極板(18)(18)どうしの導電性も低下すること
がない。
A thermoelectric element having inclined surfaces (41) and (41), respectively.
As for (21) and (22), as shown in FIG. 4, the p-type thermoelectric element (2) is so set that the inclined surface (41) faces the recess (14) of the partition (13).
1) and the n-type thermoelectric element (22) are alternately accommodated. All holes (1
After accommodating the thermoelectric element in 2), copper is formed in the portion formed by the inclined surface (41) (41) and the recess (14) between the adjacent thermoelectric elements.
Spray (51). The thermal spraying is performed from a direction substantially perpendicular to the substrate (11) as shown by an arrow in FIG. Electrode plate (18)
When the inclined surface (41) is formed on the base (11),
Even if thermal spraying copper (51) from a substantially vertical direction, the inclined surface (4
Since it hits 1) at an angle, the sprayed copper (51) is sufficiently welded to the inclined surface (41). Therefore, the adjacent thermoelectric element (2
1) The conductivity between the electrode plates (18) and (18) of (22) does not decrease.

【0026】基体(11)の両面に銅(51)の溶射を施した
後、図6に一点鎖線で示すように、平面研削を行なうこ
とによって、図7に示すような熱電モジュールが作製さ
れる。なお、基体(11)の溝(34)(34)には、機器接続用の
リード線(32)(32)を挿入し、位置1−1のp型熱電素子
(21)(電気的直列の基端)と、位置6−6のn型熱電素子
(22)(電気的直列の終端)の電極板(18)に夫々接続する
(図7参照)。
After the thermal spraying of copper (51) on both surfaces of the substrate (11), the surface is ground as shown by a dashed line in FIG. 6 to produce a thermoelectric module as shown in FIG. . In addition, lead wires (32) (32) for device connection are inserted into the grooves (34) (34) of the base (11), and the p-type thermoelectric element at the position 1-1 is inserted.
(21) (base end of electrical series) and n-type thermoelectric element at positions 6-6
(22) Connect to (Electrical series termination) electrode plate (18) respectively
(See FIG. 7).

【0027】<実施例2>実施例2は、熱電素子(21)(2
2)を、図8に示すように、基体(11)の孔(12)に収容した
ときに、仕切部(13)よりも電極板が低くなる大きさに形
成し、図9に示すように、電極板(18)と凹所(14)の両方
に、銅(51)を略直角方向から溶射することによって、熱
電素子(21)(22)を電気的に接続するものである。
<Embodiment 2> In Embodiment 2, the thermoelectric elements (21) (2)
As shown in FIG. 8, when the electrode plate 2 is accommodated in the hole 12 of the base 11, the electrode plate is formed smaller than the partition portion 13. As shown in FIG. The thermoelectric elements (21) and (22) are electrically connected to both the electrode plate (18) and the recess (14) by spraying copper (51) from a substantially right angle direction.

【0028】電極板(18)の上には、溶射された銅(51)の
層が形成されるから、銅(51)の溶射代を考慮して、電極
板(18)の厚さは薄くしておくことが望ましい。電極板(1
8)は、厚さ約0.2〜0.7mm程度にすることが望まし
い。熱電材料(16)(17)に薄い電極板(18)を形成するに
は、予め薄く形成された電極板(18)を熱電材料にホット
プレスしたり、厚めの電極板(18)を熱電材料にホットプ
レスし、その後に平面研削などによって電極板(18)の表
面を削ればよい。電極板(18)の表面には、溶射される銅
(51)との接合度を高めるために、銅(51)の溶射される部
分に、予めサンドブラスト処理などによる粗面加工を施
しておくことが望ましい。
Since the sprayed copper (51) layer is formed on the electrode plate (18), the thickness of the electrode plate (18) is reduced in consideration of the thermal spraying allowance of the copper (51). It is desirable to keep. Electrode plate (1
8) is desirably about 0.2 to 0.7 mm in thickness. To form a thin electrode plate (18) on the thermoelectric material (16) (17), a thin electrode plate (18) formed in advance is hot-pressed on the thermoelectric material, or a thicker electrode plate (18) is Hot pressing, and then the surface of the electrode plate (18) may be ground by surface grinding or the like. Copper sprayed on the surface of the electrode plate (18)
In order to increase the degree of bonding with (51), it is desirable that a portion to be sprayed with copper (51) be roughened in advance by sandblasting or the like.

【0029】基体(11)は、実施例1と同じものを用いる
ことができ、上記熱電素子(21)(22)を、図8に示すよう
に、仕切部(13)よりも電極板(18)が低くなるように各孔
(12)に配置する。この状態で、図9に示すように、電極
板(18)及び仕切部(13)の凹所(14)に銅(51)を溶射して、
隣り合う熱電素子(21)(22)の電極板(18)どうしを溶射さ
れた銅(51)によって接続する。溶射は、図9に矢印で示
すように、基体(11)に対して、略垂直な方向から実施す
る。
As the base (11), the same one as in the first embodiment can be used. As shown in FIG. 8, the thermoelectric elements (21) and (22) are placed on the electrode plate (18) rather than the partition (13). )
Place it in (12). In this state, as shown in FIG. 9, copper (51) was sprayed on the electrode plate (18) and the concave portion (14) of the partition portion (13),
Electrode plates (18) of adjacent thermoelectric elements (21) (22) are connected to each other by thermal sprayed copper (51). The thermal spraying is performed from a direction substantially perpendicular to the substrate (11) as shown by an arrow in FIG.

【0030】銅(51)の溶射を基体(11)の両面に施した
後、図10に一点鎖線で示すように、凹所(14)の形成さ
れていない仕切部(13)の先端が露出する程度まで平面研
削を行ない、実施例1と同様に機器接続用のリード線
(図示せず)を接続することによって、熱電素子が直列に
接続された熱電モジュール(1)が作製される。
After the copper (51) is sprayed on both sides of the substrate (11), as shown by the dashed line in FIG. 10, the tip of the partition (13) where the recess (14) is not formed is exposed. Surface grinding is performed to the extent necessary, and the lead wire for connecting the equipment as in the first embodiment.
By connecting (not shown), a thermoelectric module (1) in which thermoelectric elements are connected in series is manufactured.

【0031】本実施例においては、電極板に対して、銅
(51)を略直角に溶射させることができ、また、電極板の
全面に銅(51)の溶射を行なうことができるから、電極板
と溶射される銅(51)との接合度を実施例1に比べて、さ
らに高めることができる。また、電極板と溶射される銅
(51)との接触面積が大きいから、接合部における電気的
接触抵抗を小さくすることができる。
In this embodiment, the electrode plate is made of copper
(51) can be sprayed substantially at a right angle, and copper (51) can be sprayed on the entire surface of the electrode plate. It can be further increased compared to 1. Also, copper sprayed with the electrode plate
Since the contact area with (51) is large, the electrical contact resistance at the joint can be reduced.

【0032】なお、実施例2についても、銅(51)の溶射
による電極板(18)(18)の接合は、少なくとも熱電モジュ
ール(1)の高温側となる面に実施すればよく、他方の低
温側の面は半田付けによって電極板の接合を行なっても
よい。半田付けの場合は、電極板は薄肉化しなくてもよ
い。
In the second embodiment as well, the bonding of the electrode plates (18) and (18) by thermal spraying of copper (51) may be performed at least on the surface on the high temperature side of the thermoelectric module (1). The electrode plate may be joined to the low-temperature side by soldering. In the case of soldering, the electrode plate need not be thinned.

【0033】[0033]

【実施例】実施例2の熱電モジュールについて、片面に
のみ、銅(51)を溶射して熱電素子の接合を行ない、他方
の面は半田によって接合した熱電モジュールを作製し、
熱電モジュール両面の温度差が約300℃となるまで高
温度側を加熱し(低温側は室温)、30分間維持した後、
温度差が約80℃になるまで降温させたときの発電出力
を測定した。結果を図11に示す。図11を参照する
と、熱電モジュールの発電出力は、温度差の2乗にほぼ
比例して増大しており、温度差が約300℃の状態で
も、出力が安定している。また、昇温時と降温時の発電
出力も、測定誤差範囲内で一致しており、再現性も得ら
れた。このように、本発明の熱電モジュールは、従来の
半田接合による熱電モジュールの使用温度(半田の融点
以下)よりも、高い温度域にて使用することができ、そ
の出力も再現性があり安定していることがわかる。
EXAMPLE Regarding the thermoelectric module of Example 2, a thermoelectric element was formed by spraying copper (51) only on one side to join the thermoelectric elements and joining the other side by soldering.
Heat the high temperature side until the temperature difference between both sides of the thermoelectric module is about 300 ° C (low temperature side is room temperature), and after maintaining for 30 minutes,
The power generation output when the temperature was lowered until the temperature difference reached about 80 ° C. was measured. The results are shown in FIG. Referring to FIG. 11, the power generation output of the thermoelectric module increases almost in proportion to the square of the temperature difference, and the output is stable even when the temperature difference is about 300 ° C. In addition, the power generation output at the time of temperature rise and the power output at the time of temperature fall were the same within the measurement error range, and reproducibility was obtained. As described above, the thermoelectric module of the present invention can be used in a temperature range higher than the working temperature of the conventional thermoelectric module by soldering (less than the melting point of solder), and its output is reproducible and stable. You can see that it is.

【0034】上記実施例の説明は、本発明を説明するた
めのものであって、特許請求の範囲に記載の発明を限定
し、或は範囲を減縮する様に解すべきではない。又、本
発明の各部構成は上記実施例に限らず、特許請求の範囲
に記載の技術的範囲内で種々の変形が可能である。
The description of the above embodiments is for the purpose of illustrating the present invention, and should not be construed as limiting the invention described in the appended claims or reducing the scope thereof. Further, the configuration of each part of the present invention is not limited to the above embodiment, and various modifications can be made within the technical scope described in the claims.

【図面の簡単な説明】[Brief description of the drawings]

【図1】基体の平面図である。FIG. 1 is a plan view of a base.

【図2】図1の線A−Aに沿う矢視断面図である。FIG. 2 is a sectional view taken along line AA of FIG.

【図3】実施例1に使用される熱電素子の斜視図であ
る。
FIG. 3 is a perspective view of a thermoelectric element used in the first embodiment.

【図4】熱電素子を収容した状態の実施例1の基体の断
面図である。
FIG. 4 is a cross-sectional view of the base of the first embodiment in a state in which a thermoelectric element is housed.

【図5】銅の溶射部分の拡大断面図である。FIG. 5 is an enlarged sectional view of a sprayed portion of copper.

【図6】銅の溶射後の基体の断面図である。FIG. 6 is a cross-sectional view of the substrate after thermal spraying of copper.

【図7】熱電モジュールの斜視図である。FIG. 7 is a perspective view of a thermoelectric module.

【図8】熱電素子を収容した状態の実施例2の基体の断
面図である。
FIG. 8 is a cross-sectional view of a base body according to a second embodiment in which a thermoelectric element is housed.

【図9】銅の溶射を行なっている状態を示す基体の断面
図である。
FIG. 9 is a cross-sectional view of the base body showing a state where copper is being thermally sprayed.

【図10】銅の溶射後の基体の断面図である。FIG. 10 is a cross-sectional view of the substrate after thermal spraying of copper.

【図11】本発明の熱電モジュールに温度差を与えたと
きの発電出力を示すグラフである。
FIG. 11 is a graph showing a power generation output when a temperature difference is given to the thermoelectric module of the present invention.

【図12】従来の熱電モジュールの断面図である。FIG. 12 is a sectional view of a conventional thermoelectric module.

【図13】従来の熱電モジュールの組立工程を示す断面
図である。
FIG. 13 is a cross-sectional view illustrating a process of assembling a conventional thermoelectric module.

【符号の説明】[Explanation of symbols]

(1) 熱電モジュール (11) 基体 (13) 仕切部 (14) 凹所 (21) p型熱電素子 (22) n型熱電素子 (41) 傾斜面 (51) 銅 (1) Thermoelectric module (11) Base (13) Partition (14) Recess (21) P-type thermoelectric element (22) N-type thermoelectric element (41) Inclined surface (51) Copper

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 対向する一対の電極板(18)(18)の間にp
型熱電材料(16)が接合されたp型熱電素子(21)と、対向
する一対の電極板(18)(18)の間にn型熱電材料(17)が接
合されたn型熱電素子(22)を交互に並べて格子状に配置
し、全体が電気的に直列となるように接続された熱電モ
ジュールを作製する方法であって、 電気的に絶縁性の材料から形成された平板状の基体(11)
に、熱電素子を収容すべき孔(12)を所定の間隔を開けて
格子状に開設し、電気的直列の基端となる熱電素子が収
容される孔から、電気的直列の終端となる熱電素子が収
容される孔に至るまで、隣り合う孔と孔によって形成さ
れる仕切部(13)に、熱電素子の電極板の厚さにほぼ相当
する深さの凹所(14)を上下交互に形成する工程、 基体(11)の孔(12)の中に、p型熱電素子(21)とn型熱電
素子(22)を交互に配置する工程、 基体(11)の仕切部(13)の凹所(14)に銅(51)を溶射し、凹
所(14)を挟んで隣り合う電極板(18)(18)どうしを交互に
電気的に接続する工程を有することを特徴とする熱電モ
ジュールの作製方法。
1. A p-electrode between a pair of opposed electrode plates (18) (18).
P-type thermoelectric element (21) to which the type-type thermoelectric material (16) is joined, and an n-type thermoelectric element (to which an n-type thermoelectric material (17) is joined between a pair of opposed electrode plates (18) and (18)) 22) are alternately arranged in a grid pattern to produce a thermoelectric module in which the whole is electrically connected in series, comprising: a plate-shaped base formed from an electrically insulating material. (11)
At the same time, holes (12) for accommodating thermoelectric elements are opened in a grid pattern at predetermined intervals, and a thermoelectric element, which serves as a terminal end of an electric series, is opened from a hole for accommodating a thermoelectric element serving as a base end of an electric series. Until the hole in which the element is accommodated, recesses (14) with a depth approximately equivalent to the thickness of the electrode plate of the thermoelectric element are alternately arranged up and down in the partition (13) formed by adjacent holes and holes. Forming, a step of alternately arranging p-type thermoelectric elements (21) and n-type thermoelectric elements (22) in holes (12) of the base (11), and forming a partition (13) of the base (11). A step of spraying copper (51) on the recess (14) and alternately electrically connecting the electrode plates (18) (18) adjacent to each other with the recess (14) interposed therebetween. How to make a module.
【請求項2】 凹所(14)を挟んで隣り合う電極板(18)(1
8)の向かい合う端縁には、電極(18)(18)への銅(51)の溶
射面積を大きくするために、予め傾斜を形成する工程を
有している請求項1に記載の熱電モジュールの作製方
法。
2. Electrode plates (18) (1) adjacent to each other across a recess (14).
The thermoelectric module according to claim 1, further comprising a step of forming a slope on the opposite edge of (8) in order to increase a sprayed area of the copper (51) on the electrodes (18). Method of manufacturing.
【請求項3】 対向する一対の電極板(18)(18)の間にp
型熱電材料(16)が接合されたp型熱電素子(21)と、対向
する一対の電極板(18)(18)の間にn型熱電材料(17)が接
合されたn型熱電素子(22)を交互に並べて格子状に配置
し、全体が電気的に直列となるように接続された熱電モ
ジュールを作製する方法であって、 電気的に絶縁性の材料から形成された平板状の基体(11)
に、熱電素子を収容すべき孔(12)を所定の間隔を開けて
格子状に開設し、電気的直列の基端となる熱電素子が収
容される孔から、電気的直列の終端となる熱電素子が収
容される孔に至るまで、隣り合う孔と孔によって形成さ
れる仕切部(13)に、該仕切部(13)の上端面よりも凹んだ
凹所(14)を上下交互に形成する工程、 基体(11)の孔(12)の中に、p型熱電素子(21)とn型熱電
素子(22)を仕切部(13)の上端面よりも電極板(18)が低く
なるように交互に配置する工程、 電極板(18)及び仕切部(13)の凹所(14)に銅(51)を溶射す
る工程を有しており、 隣り合う熱電素子(21)(22)の電極板(18)どうしを溶射さ
れた銅(51)によって接続することを特徴とする熱電モジ
ュールの作製方法。
3. A voltage p between a pair of opposed electrode plates (18) (18).
P-type thermoelectric element (21) to which the type-type thermoelectric material (16) is joined, and an n-type thermoelectric element (to which an n-type thermoelectric material (17) is joined between a pair of opposed electrode plates (18) and (18)) 22) are alternately arranged in a grid pattern to produce a thermoelectric module in which the whole is electrically connected in series, comprising: a plate-shaped base formed from an electrically insulating material. (11)
At the same time, holes (12) for accommodating thermoelectric elements are opened in a grid pattern at predetermined intervals, and a thermoelectric element, which serves as a terminal end of an electric series, is opened from a hole for accommodating a thermoelectric element serving as a base end of an electric series. Until the hole in which the element is housed, recesses (14) recessed from the upper end surface of the partition (13) are alternately formed in the partition (13) formed by adjacent holes and holes. In the process, in the hole (12) of the base (11), the p-type thermoelectric element (21) and the n-type thermoelectric element (22) are arranged such that the electrode plate (18) is lower than the upper end surface of the partition (13). And a step of spraying copper (51) on the electrode plate (18) and the recess (14) of the partition part (13), so that the adjacent thermoelectric elements (21) and (22) A method for manufacturing a thermoelectric module, comprising connecting electrode plates (18) with thermally sprayed copper (51).
【請求項4】 電極板(18)には、溶射前に、銅(51)が溶
射されるべき面に粗面加工を施す工程を含んでいる請求
項1乃至請求項3の何れかに記載の熱電モジュールの作
製方法。
4. The method according to claim 1, wherein the electrode plate (18) includes a step of performing a roughening process on a surface on which the copper (51) is to be thermally sprayed before the thermal spraying. Method for manufacturing a thermoelectric module.
JP11140939A 1999-05-21 1999-05-21 Manufacture of thermoelectric module Withdrawn JP2000332310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11140939A JP2000332310A (en) 1999-05-21 1999-05-21 Manufacture of thermoelectric module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11140939A JP2000332310A (en) 1999-05-21 1999-05-21 Manufacture of thermoelectric module

Publications (1)

Publication Number Publication Date
JP2000332310A true JP2000332310A (en) 2000-11-30

Family

ID=15280340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11140939A Withdrawn JP2000332310A (en) 1999-05-21 1999-05-21 Manufacture of thermoelectric module

Country Status (1)

Country Link
JP (1) JP2000332310A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9834917B2 (en) 2012-03-01 2017-12-05 Phoenix Product Development Limited Toilet pan body and its method of manufacturing
CN113732432A (en) * 2021-10-18 2021-12-03 东莞先导先进科技有限公司 Welding jig for thermoelectric refrigerator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9834917B2 (en) 2012-03-01 2017-12-05 Phoenix Product Development Limited Toilet pan body and its method of manufacturing
US10612223B2 (en) 2012-03-01 2020-04-07 Phoenix Products Development Limited Toilet pan body and its method for manufacturing
CN113732432A (en) * 2021-10-18 2021-12-03 东莞先导先进科技有限公司 Welding jig for thermoelectric refrigerator

Similar Documents

Publication Publication Date Title
JP3982080B2 (en) Thermoelectric module manufacturing method and thermoelectric module
US5064476A (en) Thermoelectric cooler and fabrication method
JPH09199765A (en) Thermoelectric conversion module and manufacture thereof
JP5671569B2 (en) Thermoelectric conversion module
US8426720B2 (en) Micro thermoelectric device and manufacturing method thereof
JPH09199766A (en) Manufacture of thermoelectric conversion module
JP2001267642A (en) Method of manufacturing thermoelectric conversion module
JPH11214733A (en) Solar cell
EP2975660A1 (en) Thermoelectric conversion module
JP2005175399A (en) Photovoltaic cell manufacturing method and photovoltaic cell
JP5713526B2 (en) Thermoelectric conversion module, cooling device, power generation device and temperature control device
JP2000022224A (en) Manufacture of thermoelectric element and manufacture thereof
CN103022338B (en) Manufacturing method of cascade temperature-difference power generating device
US3449173A (en) Thermoelectric couple with soft solder electrically connecting semi-conductors and method of making same
JP2000332310A (en) Manufacture of thermoelectric module
US10833237B2 (en) Thermoelectric module
JPH0992891A (en) Thermoelectric element and thermoelectric module
JP4719861B2 (en) Thermoelectric element and thermoelectric power generation module
JPS5864075A (en) Manufacture of thermopile
JP4280064B2 (en) Method for manufacturing thermoelectric conversion module
JPH11163424A (en) Manufacture of thermoelectric module
JPH10313134A (en) Manufacture of thermoelectric module
JPH06169108A (en) Thermoelectric element
JPH11135845A (en) Thermoionic module
KR102333422B1 (en) Bulk thermoelectric element and manufacturing method thereof

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060801