JPH111338A - Production of optical fiber base material - Google Patents

Production of optical fiber base material

Info

Publication number
JPH111338A
JPH111338A JP9153822A JP15382297A JPH111338A JP H111338 A JPH111338 A JP H111338A JP 9153822 A JP9153822 A JP 9153822A JP 15382297 A JP15382297 A JP 15382297A JP H111338 A JPH111338 A JP H111338A
Authority
JP
Japan
Prior art keywords
base material
gas
optical fiber
soot
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9153822A
Other languages
Japanese (ja)
Inventor
Masami Terajima
正美 寺嶋
Hitoshi Iinuma
均 飯沼
Hideo Hirasawa
秀夫 平沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP9153822A priority Critical patent/JPH111338A/en
Publication of JPH111338A publication Critical patent/JPH111338A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01406Deposition reactors therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/0144Means for after-treatment or catching of worked reactant gases
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/42Assembly details; Material or dimensions of burner; Manifolds or supports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/50Multiple burner arrangements
    • C03B2207/52Linear array of like burners
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an optical fiber base material in good workability and in a good yield by uniformly controlling the temperature of a reaction oven main body, accumulating a clad portion on a starting core base material in the reaction oven and subsequently converting the obtained soot into sintered glass. SOLUTION: This method for producing an optical fiber base material comprises setting a core base material 3 welded to a dummy portion 11 in a reaction over main body 10, rotating the set core main material 3 with a rotation motor 7, charging oxygen gas, hydrogen gas and SiCl4 gas as a raw material into plural large oxyhydrogen flame burners 8 having large diameters, respectively, traversing the burners 8 in the longitudinal direction of the core base material 3 and simultaneously accumulating soot generated by the flame hydrolysis of the raw material gas. A jacket 1 for circulating a cooling medium is attached to the periphery of the reaction oven main body 10, and the cooling medium is circulated in the jacket. Thus, the temperature of a combustion gas is controlled at 50-120 deg.C to prevent the local thermal distortion of the reaction oven main body 10. The oxygen gas, hydrogen gas and the raw material gas can thereby be charged in large amounts, respectively, and the soot base material 4 can be accumulated at a high accumulation rate. The soot base material 4 is charged in a sintering oven and subsequently subjected to a dehydrative sintering glass- forming reaction to give an ingot in which foreign matters, bubbles, etc. are not recognized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、作業性・歩留が良
好な光ファイバ母材の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an optical fiber preform having good workability and yield.

【0002】[0002]

【従来の技術】光ファイバ母材インゴットは、例えば出
発コア母材の表面に OVD法(外付け法)により製造され
た場合、脱水、焼結等の工程を経て母材インゴットとな
る。 OVD法で出発コア母材の表面にスート(多孔質ガラ
ス母材)を堆積させる工程で生産速度を向上させる一般
的方法としては、ガラス原料ガスを供給して酸水素火炎
中で加水分解させSiO2のガラス微粒子を堆積させる、バ
ーナーを太径化する、そのバーナーの数を増やす、また
原料ガスの供給量を増加する等の方法がある。原料ガス
を供給するバーナーを太径化してその供給量を増す方法
では、出発コア母材の表面にスートを堆積させる初期に
おいて、そのガラス微粒子の付着が極めて悪い。また複
数のバーナーを用いた場合は炎の干渉があり、堆積効率
は思うように良好にならない。バーナーの数を増やす方
法では、一般に知られている出発コア母材に対してバー
ナーを平行にかつ左右に移動させた場合、この方法の欠
点である堆積されたスートの左右両端に不良部ができて
しまう。生産性を向上させるために原料ガスを増量して
高速度堆積を行うと、それに伴い発生する熱量が反応炉
に熱負荷として金属の歪み現象となり、反応炉の内面の
凹凸が顕著に現れる。この凹凸が経時的に増加すると、
燃焼ガスの発熱により膨張する時に振動が発生する。こ
の振動が反応炉内面に付着していた異物・煤(シリカ
粉)を飛散させ、堆積中のスート表面に付着させる。こ
のスートを焼結ガラス化すると異物・煤を起点に泡が発
生し、このインゴットを光ファイバ母材プリフォームと
した時、泡がその加工工程の作業性・歩留に影響する場
合がある。従って OVD法によりクラッド部を堆積させる
反応炉は、材質・構造・燃焼ガス量等に大きな制約があ
るため堆積速度に限界があり、高速化の妨げになってい
る。このため、 OVD法を用いて光ファイバ用ガラス母材
を製造する方法においてスート堆積速度を飛躍的に向上
させるには、これらの問題を解決する必要がある。
2. Description of the Related Art When an optical fiber preform ingot is manufactured on the surface of a starting core preform by, for example, an OVD method (external attachment method), the preform becomes a preform ingot through processes such as dehydration and sintering. As a general method for improving the production rate in the step of depositing soot (porous glass base material) on the surface of the starting core base material by the OVD method, a glass raw material gas is supplied, and the raw material gas is hydrolyzed in an oxyhydrogen flame to produce SiO 2. There are methods of depositing the glass fine particles of No. 2 , increasing the diameter of the burner, increasing the number of the burners, and increasing the supply amount of the raw material gas. In the method of increasing the supply amount by increasing the diameter of the burner for supplying the raw material gas, the adhesion of the glass particles is extremely poor at the initial stage of depositing soot on the surface of the starting core base material. Further, when a plurality of burners are used, there is interference of a flame, and the deposition efficiency is not improved as expected. In the method of increasing the number of burners, when the burners are moved in parallel and left and right with respect to the generally known starting core base material, defective parts are formed on the left and right ends of the deposited soot, which is a disadvantage of this method. Would. When high-speed deposition is performed by increasing the amount of source gas in order to improve productivity, the amount of heat generated as a result thereof causes a metal strain phenomenon as a heat load on the reaction furnace, and concavities and convexities on the inner surface of the reaction furnace are remarkably exhibited. When this unevenness increases over time,
Vibration occurs when the combustion gas expands due to heat generation. This vibration causes foreign matter and soot (silica powder) adhering to the inner surface of the reactor to be scattered and attached to the soot surface during deposition. When this soot is sintered and vitrified, bubbles are generated from foreign matter and soot as starting points. When this ingot is used as an optical fiber preform, the bubbles may affect the workability and yield in the processing step. Therefore, a reactor for depositing a clad portion by the OVD method has a great limitation on a material, a structure, a combustion gas amount, and the like, so that a deposition rate is limited, which hinders an increase in speed. Therefore, in order to dramatically increase the soot deposition rate in a method of manufacturing a glass preform for an optical fiber using the OVD method, it is necessary to solve these problems.

【0003】[0003]

【発明が解決しようとする課題】本発明の課題は、 OVD
法を用いて光ファイバ用ガラス母材を製造する方法にお
いて、ガラス微粒子堆積用バーナーを複数本用い、かつ
原料ガスを増量して高速度堆積を行う時、そのスートの
表面に反応炉の熱歪みにより発生する振動が原因で起こ
る異物・泡を防止し、得られたインゴットを光ファイバ
用プリフォームに加工する際に良好な作業性・歩留が得
られるガラス母材を製造することである。
The object of the present invention is to provide an OVD
In the method of manufacturing a glass preform for optical fiber using the method, when using a plurality of burners for depositing fine glass particles and increasing the amount of raw material gas to perform high-speed deposition, the surface of the soot is subjected to thermal distortion of the reactor. An object of the present invention is to produce a glass base material which prevents foreign substances and bubbles caused by vibrations caused by the above, and provides good workability and yield when processing the obtained ingot into an optical fiber preform.

【0004】[0004]

【課題を解決するための手段】従来のように出発コア母
材の表面にガラス微粒子を堆積する OVD法は、堆積初期
においては酸水素ガス量・原料ガス量をコントロールし
て炎を絞り、ガラス微粒子がコア母材の表面に付着しや
すくし、スート径が大きくなるにつれてガス量を増や
し、堆積速度を上げる方法で良好なスートを得ていた。
そこで、更に高速度で堆積でき、光ファイバ用プリフォ
ームとする時に作業性・歩留が良好なガラス母材を得る
方法を検討した結果、原料ガスの増量による熱負荷の増
加にも歪みによる変形を起こさない反応炉を用いて合成
する方法を見いだした。すなわち本発明は、外付け法に
より反応炉で出発コア母材にクラッド部を堆積させ、得
られたスートを焼結ガラス化して光ファイバ母材を製造
する方法において、前記反応炉本体を均一な温度にコン
トロールすることを特徴とするものである。以下、本発
明の詳細を説明する。
Means for Solving the Problems Conventionally, the OVD method of depositing glass fine particles on the surface of a starting core base material controls the amount of oxyhydrogen gas and the amount of raw material gas in the initial stage of deposition to reduce the flame, Fine soot has been obtained by making the fine particles easily adhere to the surface of the core base material, increasing the gas amount as the soot diameter increases, and increasing the deposition rate.
Therefore, as a result of examining a method of obtaining a glass base material that can be deposited at a higher speed and has good workability and yield when forming a preform for an optical fiber, the deformation due to the distortion due to the increase in the heat load due to the increase of the raw material gas is also considered. A method for synthesizing using a reaction furnace which does not cause quenching has been found. That is, the present invention provides a method of manufacturing an optical fiber preform by depositing a clad portion on a starting core preform in a reaction furnace by an external method and sintering the obtained soot to produce an optical fiber preform. It is characterized by controlling the temperature. Hereinafter, details of the present invention will be described.

【0005】[0005]

【発明の実施の形態】OVD法でスートを合成する場合、
反応炉の中で出発コア母材の外周に酸素・水素火炎中に
原料ガスを供給して堆積させる。その際大型のスートを
より高速で合成するためには多量の酸素・水素を供給す
る必要があり、この燃焼熱が反応炉に多大な影響を与え
る。原料ガスとして四塩化珪素を用いた場合、反応副生
成物として塩酸が発生する。この燃焼ガスは系外に排出
されるが残存する塩酸によって反応炉が腐食するという
問題が発生する。従って一般的には耐食性のSUS 材料等
で反応炉を製作するが、高速合成化に伴い熱負荷が増大
してくるとヒートサイクルによる熱履歴で反応炉材料に
歪みが発生し、SUS 材料の場合は熱伝導率が小さいこと
からその現象が顕著に現れる。そこで本発明は、反応炉
の熱負荷を低減し、また炉内面の温度分布を均一にする
ため、反応炉本体を均一な温度にコントロールすること
で、反応炉の変形等を防止することができる。これらの
方法で異物・泡等を含まない光ファイバ母材スートを高
速合成することが可能となった。
BEST MODE FOR CARRYING OUT THE INVENTION When synthesizing soot by the OVD method,
A source gas is supplied and deposited in an oxygen / hydrogen flame on the outer periphery of the starting core base material in the reactor. At that time, in order to synthesize a large soot at a higher speed, it is necessary to supply a large amount of oxygen and hydrogen, and this combustion heat greatly affects the reaction furnace. When silicon tetrachloride is used as a source gas, hydrochloric acid is generated as a reaction by-product. This combustion gas is discharged out of the system, but the remaining hydrochloric acid causes a problem that the reactor is corroded. Therefore, in general, the reactor is made of corrosion-resistant SUS material, etc., but if the thermal load increases with the high-speed synthesis, the reactor history will be distorted due to the heat history due to the heat cycle, and in the case of SUS material, Has a small thermal conductivity, so that phenomenon is remarkable. Therefore, the present invention can prevent the deformation and the like of the reactor by controlling the temperature of the reactor main body to a uniform temperature in order to reduce the thermal load of the reactor and to make the temperature distribution on the inner surface of the reactor uniform. . With these methods, it has become possible to synthesize an optical fiber preform soot free of foreign matter and bubbles at a high speed.

【0006】以下に、本発明を図面に基いて説明する。
図1は、本発明に用いられる光ファイバ母材の製造装置
の一例を示したものであり、図1の(a)は側面図、図
1の(b)は(a)の断面図である。図中1は冷媒循環
用ジャケット、2はスートのテーパー部、3はコア母
材、4はスート母材、5は酸水素火炎バーナー、6は排
気フード、7は回転用モータ、8は酸水素火炎バーナー
のトラバース(往復運動)用モータ、9はバーナーガイ
ド機構、10は反応炉本体、11はダミー部である。
The present invention will be described below with reference to the drawings.
FIGS. 1A and 1B show an example of an optical fiber preform manufacturing apparatus used in the present invention. FIG. 1A is a side view, and FIG. 1B is a sectional view of FIG. . In the figure, 1 is a jacket for refrigerant circulation, 2 is a tapered portion of soot, 3 is a core base material, 4 is a soot base material, 5 is an oxyhydrogen flame burner, 6 is an exhaust hood, 7 is a rotation motor, and 8 is oxyhydrogen. A traverse (reciprocating motion) motor for the flame burner, 9 is a burner guide mechanism, 10 is a reactor main body, and 11 is a dummy part.

【0007】反応炉10にジャケット1を設け、冷媒を
循環させて燃焼ガスの温度以下で反応炉本体を均一に冷
却することにより、局部的な熱歪みを防止することがで
きる。冷媒は従来公知のものを用いればよい。
[0007] By providing the jacket 1 in the reactor 10 and circulating the refrigerant to uniformly cool the reactor body below the temperature of the combustion gas, local thermal distortion can be prevented. A conventionally known refrigerant may be used.

【0008】反応炉本体の温度は、120 ℃を超えるとそ
の効果が薄れ、50℃未満ではスート堆積初期に反応炉の
内面に反応副生成物の塩酸が結露し、腐食の原因になる
ため、50℃以上、120 ℃以下の範囲にコントロールする
ことが好ましい。
When the temperature of the reactor main body exceeds 120 ° C., its effect is diminished, and when it is lower than 50 ° C., hydrochloric acid as a reaction by-product condenses on the inner surface of the reactor at the initial stage of soot deposition, causing corrosion. It is preferable to control the temperature within a range of 50 ° C. or more and 120 ° C. or less.

【0009】出発コア母材3の表面にガラス微粒子を堆
積する方法で合成反応を行う反応炉10の周囲に、冷媒
を循環するためのジャケット1を取り付けた製造装置を
用い、従来使用しているバーナーよりも太径大型のバー
ナー5を複数本取り付け、コア母材の長手方向にトラバ
ースさせながらガラス微粒子を堆積させる。本発明で
は、堆積が進むなかで、従来は反応炉の表面に燃焼ガス
の発熱の影響で歪み(凹凸)ができるため実施できなか
った、多量の酸素ガス・水素ガス・原料ガス量を供給す
る条件で、スート4の生産を行うことができる。
A manufacturing apparatus having a jacket 1 for circulating a refrigerant around a reaction furnace 10 for performing a synthesis reaction by depositing glass fine particles on the surface of the starting core base material 3 is conventionally used. A plurality of burners 5 larger in diameter and larger than the burner are attached, and glass particles are deposited while traversing in the longitudinal direction of the core base material. In the present invention, a large amount of oxygen gas / hydrogen gas / source gas is supplied while the deposition proceeds, which could not be performed because the surface of the reactor was distorted (irregular) due to the heat generated by the combustion gas. The production of the soot 4 can be performed under the conditions.

【0010】目標量の堆積を行ったスートを焼結炉に入
れ、脱水焼結ガラス化してインゴットを作製する。この
インゴットを確認したところ、ガラス化された部分の異
物・泡等は見られず、従来の製造方法によるインゴット
と全く遜色なく、しかも同程度のサイズのインゴットを
合成するのに要する時間は、従来法の約1/2 に低減する
ことができる。このインゴットを所望の径の光ファイバ
用プリフォームに加工したところ、異物・泡などが見ら
れず、従来試みた高速合成法での不良部分の発生などが
大幅に改善されるため、良好な作業性・歩留が得られ
る。
[0010] The soot on which the target amount has been deposited is placed in a sintering furnace, and dehydrated and sintered to form an ingot. When this ingot was confirmed, no foreign matter or bubbles were found in the vitrified part, and it was no inferior to the ingot produced by the conventional manufacturing method, and the time required to synthesize an ingot of the same size was It can be reduced to about 1/2 of the law. When this ingot was processed into a preform for optical fiber of the desired diameter, no foreign matter or bubbles were observed, and the occurrence of defective parts in the conventionally attempted high-speed synthesis method was greatly improved. The property and yield can be obtained.

【0011】以上は、反応炉にジャケットを設け、冷媒
を循環させて反応炉本体を均一に冷却する方法である
が、本発明は特にこの方法に限定されるものではなく、
反応炉本体を均一な温度にコントロールできる方法であ
ればよい。
The above is a method in which the reactor is provided with a jacket and the coolant is circulated to uniformly cool the reactor main body. However, the present invention is not particularly limited to this method.
Any method can be used as long as the temperature of the reactor main body can be controlled to a uniform temperature.

【0012】[0012]

【実施例】次に、本発明の実施例を挙げる。 (実施例)図1(a)、(b)に示す光ファイバ母材の
製造装置を用意した。密閉型反応炉本体10は耐熱性・
耐食性を考慮したオーステナイト系ステンレス鋼により
製作された光ファイバ用スート製造装置である。ジャケ
ット部1には、冷媒の温度をコントロールする機構を有
する設備(図示せず)から50℃に調整された冷媒を循環
させた。出発コア母材3は外径25mm、長さ1200mmのシン
グルモード光ファイバ用に屈折率を調整したコア用石英
ガラス棒とし、ダミー用石英棒11と溶接してこれを密
封型反応炉10内の回転用モータ7に取り付けた。前記
冷媒を循環させながら回転用モータ7を40rpm で回転さ
せると共に2本の酸水素火炎バーナー5に、原料供給装
置(図示せず)から火炎形成用ガスとして酸素ガス75リ
ットル/分、水素ガス150 リットル/分、キャリアーガ
スとして酸素ガス9リットル/分に同伴して、ガラス原
料ガスのSiCl4 38g/分を導入した。この2本のバーナ
ーをモータ8により150mm/分の速度で1600mmの範囲で母
材の長手方向に往復運動させ、SiCl4 の火炎加水分解で
発生したSiO2ガラス微粒子をコア用石英ガラス3に堆積
させた。堆積が進むにつれて更に原料ガス・酸素ガス・
水素ガスの量を増量して、24時間後に外径が230mm のス
ートを得た。堆積終了直前には、原料供給装置からバー
ナー5に火炎形成用ガスとして酸素ガス150 リットル/
分、水素ガス300 リットル/分、キャリアーガスとして
酸素ガス15リットル/分に同伴して、ガラス原料ガスの
SiCl4 80g/分でバーナーに供給し、平均堆積速度28g
/分の高速合成を行った。目標量の外径230mm の堆積を
行ったスートを焼結炉に入れ、通常の後工程条件で脱水
焼結ガラス化して透明な光ファイバ用母材インゴットを
製造した。このインゴットの異物・泡を目視で確認した
結果を表1に示す。ガラス化された部分に異物・泡は見
られず、従来速度の堆積方法によるインゴットと全く遜
色なかった。このインゴットを所望の径の光ファイバ用
プリフォームに加工したところ、異物・泡などは見られ
なかった。また反応終了後、反応炉の内面を確認したと
ころ、その形状は反応前と変化はなく、凹凸などは全く
見られなかった。
Next, examples of the present invention will be described. (Example) An apparatus for manufacturing an optical fiber preform shown in FIGS. 1A and 1B was prepared. The closed reactor body 10 has heat resistance
This is an optical fiber soot manufacturing apparatus made of austenitic stainless steel in consideration of corrosion resistance. Refrigerant adjusted to 50 ° C. was circulated through the jacket 1 from equipment (not shown) having a mechanism for controlling the temperature of the refrigerant. The starting core preform 3 is a quartz glass rod for the core whose refractive index has been adjusted for a single mode optical fiber having an outer diameter of 25 mm and a length of 1200 mm, which is welded to the quartz rod 11 for the dummy, and which is welded in the sealed reactor 10. It was attached to the rotation motor 7. The rotation motor 7 is rotated at 40 rpm while the refrigerant is circulated, and two oxyhydrogen flame burners 5 are supplied from a raw material supply device (not shown) as oxygen forming gas at 75 liter / min. The glass raw material gas, SiCl 4, 38 g / min was introduced along with 9 liter / min of oxygen gas as a carrier gas at a rate of 1 liter / min. The two burners are reciprocated in the longitudinal direction of the base material by the motor 8 at a speed of 150 mm / min within a range of 1600 mm, and the SiO 2 glass fine particles generated by the flame hydrolysis of SiCl 4 are deposited on the quartz glass 3 for the core. I let it. As the deposition proceeds, the raw material gas, oxygen gas,
After increasing the amount of hydrogen gas, a soot having an outer diameter of 230 mm was obtained 24 hours later. Immediately before the end of the deposition, 150 liters of oxygen gas as a flame forming gas was supplied from the raw material supply device to the burner 5.
300 l / min of hydrogen gas and 15 l / min of oxygen gas as a carrier gas
Supply SiCl 4 to the burner at 80 g / min, average deposition rate 28 g
/ Min high-speed synthesis. The soot on which the target diameter of 230 mm was deposited was placed in a sintering furnace, and dehydrated and sintered into glass under ordinary post-process conditions to produce a transparent optical fiber preform ingot. Table 1 shows the result of visually confirming foreign matter and bubbles of the ingot. No foreign matter or bubbles were observed in the vitrified portion, which was inferior to the ingot obtained by the conventional deposition method. When this ingot was processed into a preform for an optical fiber having a desired diameter, no foreign matter or bubbles were observed. After the completion of the reaction, the inner surface of the reaction furnace was checked. As a result, the shape was unchanged from that before the reaction, and no irregularities were observed.

【0013】更に上記条件で反応を繰り返し、25回に至
る過程で反応炉の内面を確認したが、形状の変化は確認
できなかった。また10回目、25回目に製造したインゴッ
トの異物・泡を目視で確認した結果を表1に併記する。
なお、表1の泡は直径0.5mm 以上のもの、異物は泡以外
のものとした。
Further, the reaction was repeated under the above conditions, and the inner surface of the reactor was confirmed in the course of reaching 25 times, but no change in the shape was confirmed. Table 1 also shows the results of visually confirming foreign matter and bubbles of the ingots manufactured at the 10th and 25th times.
The bubbles in Table 1 had a diameter of 0.5 mm or more, and the foreign substances were other than bubbles.

【0014】[0014]

【表1】 [Table 1]

【0015】(比較例)反応炉に冷媒循環用ジャケット
部がない以外は、実施例1と同様の製造装置及び製造ガ
ス条件で、スートを合成した。このスートを実施例と同
様に焼結炉で脱水焼結ガラス化して透明な光ファイバ用
母材インゴットを製造した。このインゴットの異物・泡
等を目視で確認した結果を表1に併記する。このインゴ
ットを所望の径に加工し、異物・泡等を確認したとこ
ろ、その存在がはっきり認められ、その部分の除去に多
くの時間を費やし、また歩留を低下させた。反応終了
後、反応炉の内面を確認したところ、その形状は反応前
とは微妙に変化が見られ、凹凸が僅かに確認された。
Comparative Example A soot was synthesized using the same production apparatus and production gas conditions as in Example 1 except that the reactor did not have a jacket for cooling medium circulation. This soot was dehydrated and sintered into a glass in a sintering furnace in the same manner as in the example to produce a transparent optical fiber base material ingot. Table 1 also shows the results of visually confirming foreign matter, bubbles, and the like of the ingot. When this ingot was processed to a desired diameter and foreign matters and bubbles were confirmed, the presence thereof was clearly recognized, and much time was required for removing the portion, and the yield was reduced. After completion of the reaction, the inner surface of the reaction furnace was checked. As a result, the shape was slightly changed from that before the reaction, and slight irregularities were confirmed.

【0016】上記条件で反応を繰り返して行くと更にこ
の傾向が顕著に現れ、でき上がったインゴットの異物・
泡等が増加した。反応を繰り返し、10回目に製造したイ
ンゴットの異物・泡を目視で確認した結果を表1に併記
する。なお10回目の時点で反応炉の劣化が著しく、続行
を断念した。反応を繰り返して行く過程で原因を究明す
ると、1回反応が終了すると反応炉の内面形状が変化
し、特に前記凹凸の位置がズレることが確認された。母
材インゴットの異物・泡等は凹凸の大きい部分の位置に
相当することから、この反応炉の内面が熱歪みにより変
形する際に振動を起こし、表面に付着したガラス微粒子
や異物が落下し、堆積途中のスート表面に付着するもの
と推測される。反応を繰り返す中で反応炉の劣化を抑制
するためには、原料ガスの供給量を低減する以外に方法
が見出せなかった。表1から、従来の方法による高速合
成法での不良部分の発生等が、実施例では大幅に改善さ
れたことがわかる。
When the reaction is repeated under the above-mentioned conditions, this tendency becomes more conspicuous, and the foreign matter of the finished ingot is
Bubbles etc. increased. The reaction was repeated, and the results of visually confirming foreign substances and bubbles of the ingot produced at the tenth time are also shown in Table 1. At the tenth time, the reactor was significantly deteriorated, and the operation was abandoned. When the cause was investigated in the course of repeating the reaction, it was confirmed that once the reaction was completed, the inner surface shape of the reactor changed, and in particular, the position of the irregularities was shifted. Since the foreign matter and bubbles of the base material ingot correspond to the position of the portion having large irregularities, when the inner surface of the reaction furnace is deformed due to thermal strain, vibration occurs, and glass fine particles and foreign matter attached to the surface fall, It is presumed that it adheres to the soot surface during deposition. In order to suppress the deterioration of the reactor during the repetition of the reaction, no method was found other than reducing the supply amount of the raw material gas. From Table 1, it can be seen that the occurrence of defective portions and the like in the high-speed synthesis method according to the conventional method has been greatly improved in the example.

【0017】[0017]

【発明の効果】本発明によれば、光ファイバ母材の高速
合成で反応炉に大きな熱負荷が発生した場合でも、熱歪
みによる反応炉内面の変形を防ぎ、異物等の混入を阻止
することができ、異物・泡等の低減した光ファイバ母材
を得ることができる。これによって、光ファイバ母材を
所定の径のプリフォームに加工する際、良好な作業性・
歩留が得られる。
According to the present invention, even when a large thermal load is generated in the reactor due to the high-speed synthesis of the optical fiber preform, deformation of the inner surface of the reactor due to thermal strain is prevented and foreign substances are prevented from being mixed. Thus, an optical fiber preform with reduced foreign matter and bubbles can be obtained. Thereby, when processing the optical fiber preform into a preform of a predetermined diameter, good workability and
Yield is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に用いられる光ファイバ母材の製造装置
の概略図であり、(a)はその側面図、(b)は(a)
の断面図である。
FIG. 1 is a schematic view of an apparatus for manufacturing an optical fiber preform used in the present invention, (a) is a side view thereof, and (b) is (a).
FIG.

【符号の説明】[Explanation of symbols]

1‥‥‥冷媒循環用ジャケット 2‥‥‥スートの
テーパー部 3‥‥‥コア母材 4‥‥‥スート母
材 5‥‥‥バーナー 6‥‥‥排気フー
ド 7‥‥‥回転用モータ 8‥‥‥バーナー
トラバース用モータ 9‥‥‥バーナーガイド機構 10‥‥反応炉本
体 11‥‥ダミー部
1 ‥‥‥ Refrigerant jacket 2 ‥‥‥ Soot taper 3 ‥‥‥ Core base material 4 ‥‥‥ Soot base material 5 ‥‥‥ Burner 6 ‥‥‥ Exhaust hood 7 ‥‥‥ Rotary motor 8 ‥モ ー タ Motor for burner traverse 9 ‥‥‥ Burner guide mechanism 10 ‥‥ Reactor body 11 ‥‥ Dummy part

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 外付け法により反応炉で出発コア母材に
クラッド部を堆積させ、得られたスートを焼結ガラス化
して光ファイバ母材を製造する方法において、前記反応
炉本体を均一な温度にコントロールすることを特徴とす
る光ファイバ母材の製造方法。
1. A method of manufacturing an optical fiber preform by depositing a clad portion on a starting core preform in a reactor by an external method and sintering the obtained soot to produce an optical fiber preform. A method for producing an optical fiber preform, comprising controlling the temperature.
【請求項2】 反応炉にジャケットを設けて、冷媒を循
環させ、反応炉本体を燃焼ガスの温度以下に均一に冷却
して局部的な熱歪みを防止する請求項1に記載の光ファ
イバ母材の製造方法。
2. The optical fiber mother according to claim 1, wherein a jacket is provided in the reactor to circulate a refrigerant, and the reactor body is uniformly cooled to a temperature equal to or lower than the temperature of the combustion gas to prevent local thermal distortion. The method of manufacturing the material.
【請求項3】 反応炉本体の温度を50℃以上、120 ℃以
下の範囲にコントロールする請求項1または2に記載の
光ファイバ母材の製造方法。
3. The method for producing an optical fiber preform according to claim 1, wherein the temperature of the reactor main body is controlled within a range from 50 ° C. to 120 ° C.
JP9153822A 1997-06-11 1997-06-11 Production of optical fiber base material Pending JPH111338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9153822A JPH111338A (en) 1997-06-11 1997-06-11 Production of optical fiber base material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9153822A JPH111338A (en) 1997-06-11 1997-06-11 Production of optical fiber base material

Publications (1)

Publication Number Publication Date
JPH111338A true JPH111338A (en) 1999-01-06

Family

ID=15570858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9153822A Pending JPH111338A (en) 1997-06-11 1997-06-11 Production of optical fiber base material

Country Status (1)

Country Link
JP (1) JPH111338A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003000609A1 (en) * 2001-06-25 2003-01-03 Pirelli & C. S.P.A. Device and method for manufacturing a preform for optical fibres by chemical vapour deposition
US8387416B2 (en) 2001-06-25 2013-03-05 Prysmian Cavi E Sistemi Energia S.R.L. Device and method for manufacturing a preform for optical fibres by chemical vapour deposition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003000609A1 (en) * 2001-06-25 2003-01-03 Pirelli & C. S.P.A. Device and method for manufacturing a preform for optical fibres by chemical vapour deposition
US8387416B2 (en) 2001-06-25 2013-03-05 Prysmian Cavi E Sistemi Energia S.R.L. Device and method for manufacturing a preform for optical fibres by chemical vapour deposition

Similar Documents

Publication Publication Date Title
US7437893B2 (en) Method for producing optical glass
JP4614782B2 (en) Method for producing quartz glass preform for optical fiber
CN111615499A (en) Method for manufacturing optical fiber preform, method for manufacturing optical fiber, and optical fiber
JPH111338A (en) Production of optical fiber base material
CN110028235B (en) Optical fiber preform based on continuous melting quartz sleeve and manufacturing method thereof
JP5163416B2 (en) Method for producing porous glass base material
US20050076680A1 (en) Method and apparatus for manufacturing optical fiber preforms using the outside vapor deposition process
JP4495070B2 (en) Method for producing porous preform for optical fiber
JP2010037133A (en) Optical fiber preform, method of producing optical fiber preform and glass rod for producing optical fiber preform
JP6581637B2 (en) Porous glass base material manufacturing apparatus and manufacturing method
JP2005060148A (en) Optical fiber preform production method, optical fiber preform, optical fiber production method, and optical fiber
JPH11349345A (en) Production of porous preform
JP4176978B2 (en) Manufacturing method of large optical fiber preform
JP2003226545A (en) Method for manufacturing optical fiber preform and device for manufacturing optical fiber preform
JPH07330366A (en) Manufacturing of preform for optical fiber
JP3148194B2 (en) Method for producing porous glass base material
JPS5924097B2 (en) Glass body manufacturing method
JP2003040623A (en) Method for producing fine glass particle heap
JP2003020243A (en) Method for manufacturing ingot of optical fiber preform
JP2003286033A (en) Method and apparatus for manufacturing glass particulate deposit
JP4472308B2 (en) Method for producing porous quartz base material
JP3587032B2 (en) Manufacturing method of optical fiber preform
JP5907565B2 (en) Burner for manufacturing porous glass base material
JP3064276B1 (en) Apparatus for producing porous preform for optical fiber and glass rod for optical fiber
WO2005066085A1 (en) Process for producing porous preform for optical fiber and glass preform

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050204

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20050420