JP4495070B2 - Method for producing porous preform for optical fiber - Google Patents

Method for producing porous preform for optical fiber Download PDF

Info

Publication number
JP4495070B2
JP4495070B2 JP2005334096A JP2005334096A JP4495070B2 JP 4495070 B2 JP4495070 B2 JP 4495070B2 JP 2005334096 A JP2005334096 A JP 2005334096A JP 2005334096 A JP2005334096 A JP 2005334096A JP 4495070 B2 JP4495070 B2 JP 4495070B2
Authority
JP
Japan
Prior art keywords
optical fiber
target rod
outer diameter
porous preform
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005334096A
Other languages
Japanese (ja)
Other versions
JP2007137718A (en
Inventor
耕次 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2005334096A priority Critical patent/JP4495070B2/en
Publication of JP2007137718A publication Critical patent/JP2007137718A/en
Application granted granted Critical
Publication of JP4495070B2 publication Critical patent/JP4495070B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/50Multiple burner arrangements
    • C03B2207/54Multiple burner arrangements combined with means for heating the deposit, e.g. non-deposition burner

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

本発明は、外付け法による光ファイバ用多孔質母材の製造方法に関するものであり、特に、光ファイバ用多孔質母材の割れの防止に関するものである。   The present invention relates to a method for manufacturing a porous preform for an optical fiber by an external method, and particularly to prevention of cracking of the porous preform for an optical fiber.

光ファイバ用多孔質母材(以降、単に多孔質母材と呼ぶ。)のクラッド部の合成方法として、図1に示すような製造装置を用いる外付け法が知られている。具体的な方法は以下の通りである。
まず、VAD法などによって製造されたコアを含むコア用多孔母材を、脱水、ガラス化し、コアロッドを形成する。得られたコアロッドを所定の外径に加熱延伸して、その両端に支持部材3a、3bを溶着し、ターゲットロッド1を形成する。次いで、得られたターゲットロッド1を図1に示すような製造装置の保持部材2a、2bにセットし、ターゲットロッド1を回転させながら該ターゲットロッド1の長手方向(矢印A方向)に沿ってガラス微粒子合成用バーナ4を往復移動させ、該ターゲットロッド1の外周にガラス微粒子堆積層5を形成する。
As a method for synthesizing a clad portion of a porous preform for optical fibers (hereinafter simply referred to as a porous preform), an external method using a manufacturing apparatus as shown in FIG. 1 is known. A specific method is as follows.
First, a core base material including a core manufactured by a VAD method or the like is dehydrated and vitrified to form a core rod. The obtained core rod is heated and stretched to a predetermined outer diameter, and support members 3a and 3b are welded to both ends thereof to form the target rod 1. Next, the obtained target rod 1 is set on the holding members 2a and 2b of the manufacturing apparatus as shown in FIG. 1, and the target rod 1 is rotated along the longitudinal direction (arrow A direction) while rotating the target rod 1. The fine particle synthesis burner 4 is reciprocated to form a glass fine particle deposition layer 5 on the outer periphery of the target rod 1.

しかしながら、この製造方法によってガラス微粒子堆積層5を合成すると、ガラス微粒子の堆積成長にともなってその両端部にテーパ部6が形成される。ここでテーパ部6とは、該ガラス微粒子堆積層5の外径が一定な部分(中央部7)に比べて外径が1%以上小さい部分を意味する。テーパ部6はガラス微粒子合成用バーナ4による加熱量が少なく、中央部7より密度が小さいため割れが生じやすい。
そこで、テーパ部6の密度を高くするために、多孔質母材の製造装置に、ガラス微粒子合成用バーナ4の他にテーパ部を焼き締める補助バーナ8a、8bを設ける方法がある。この方法によれば、ガラス微粒子堆積層5を製造中にテーパ部6を補助バーナ8a、8bによって焼き締め、テーパ部の密度を高くすることができる。
However, when the glass fine particle deposition layer 5 is synthesized by this manufacturing method, the tapered portions 6 are formed at both ends thereof as the glass fine particles are deposited and grown. Here, the taper portion 6 means a portion whose outer diameter is smaller by 1% or more than the portion (center portion 7) where the outer diameter of the glass fine particle deposition layer 5 is constant. Since the taper portion 6 is less heated by the glass fine particle synthesizing burner 4 and has a lower density than the central portion 7, cracks are likely to occur.
Therefore, in order to increase the density of the tapered portion 6, there is a method of providing auxiliary burners 8a and 8b for baking the tapered portion in addition to the glass fine particle synthesizing burner 4 in the porous base material manufacturing apparatus. According to this method, the taper portion 6 can be baked by the auxiliary burners 8a and 8b during the production of the glass fine particle deposition layer 5 to increase the density of the taper portion.

近年、技術の発達によって従来の多孔質母材よりも大型の多孔質母材を製造することが可能となってきた。
しかしながら、製造中の多孔質ガラス母材の外径が大きくになるとその両端部に位置するテーパ部6にさらに割れが生じやすくなるという問題が生じた。
これを解決する方法として、特許文献1にはテーパ部をリング状のバーナによって焼き締めながら多孔質母材を製造する方法が開示されている。
In recent years, with the development of technology, it has become possible to produce a porous preform larger than the conventional porous preform.
However, when the outer diameter of the porous glass base material being manufactured is increased, there has been a problem that the taper portions 6 located at both ends thereof are more likely to be cracked.
As a method for solving this, Patent Document 1 discloses a method of manufacturing a porous base material while baking a tapered portion with a ring-shaped burner.

特開平6−329431号公報Japanese Patent Laid-Open No. 6-329431

しかしながら、特許文献1に示す方法では円周方向には一定した加熱が可能であるが、長手方向(回転軸方向)には加熱範囲が狭く、振れと呼ばれるターゲットロッド1の回転軸が一定に定まらず、円を成す様に移動してしまう現象が起きることがあった。振れが大きい状態で製造された多孔質母材は、それをガラス化して得られる光ファイバ母材およびさらにそれを線引きして得られる光ファイバの偏心が大きい問題が生じる。   However, in the method shown in Patent Document 1, constant heating is possible in the circumferential direction, but the heating range is narrow in the longitudinal direction (rotation axis direction), and the rotation axis of the target rod 1 called deflection is constant. In some cases, the phenomenon of moving like a circle occurred. The porous preform manufactured with a large runout has a problem that the eccentricity of the optical fiber preform obtained by vitrification of the porous preform and the optical fiber obtained by drawing it is large.

本発明は、上記に鑑みてなされたものであって、大型の光ファイバ用多孔質母材を製造しても振れおよび割れがともに生じにくい光ファイバ用多孔質母材の製造方法を提供することを目的とする。   The present invention has been made in view of the above, and provides a method for producing a porous optical fiber preform that is less likely to cause vibration and cracking even when a large-sized porous preform for an optical fiber is produced. With the goal.

前記目的を達成すべく本発明の請求項1記載の光ファイバ用多孔質母材の製造方法は、火炎加水分解反応により合成したガラス微粒子を回転するターゲットロッドの外周に堆積させる光ファイバ用多孔質母材の製造方法において、前記ガラス微粒子の堆積成長にともなって前記光ファイバ用多孔質母材の端部に形成されるテーパ部を補助バーナによって焼き締めながら前記ガラス微粒子を堆積させ、前記補助バーナ火炎の最高温度は450℃以上650℃以下であり、前記ターゲットロッドの外径をd(mm)、前記光ファイバ用多孔質母材の完成時の中央部の外径をDs(mm)とし、前記ガラス微粒子の堆積開始時に、前記補助バーナにより前記ターゲットロッド表面が400℃以上に加熱される領域Rの前記光ファイバ用多孔質母材の完成時の最小テーパ部外径をDt1(mm)、最大テーパ部外径をDt2(mm)、としたとき、Dt1およびDt2が以下の式を満たすように、前記補助バーナを設置することを特徴とする。
Dt1=(Ds−d)/100×A1+d
Dt2=(Ds−d)/100×A2+d
A1≧10、A2≦80
A2−A1≧40
ここで、A1、A2は、0以上、100以下の任意の数である。

In order to achieve the above object, a method for producing a porous optical fiber preform according to claim 1 of the present invention comprises depositing glass fine particles synthesized by a flame hydrolysis reaction on the outer periphery of a rotating target rod. the method of manufacturing a preform, depositing the glass fine particles while tightening burn the tapered portion with the deposition growth of glass particles is formed on the end portion of the porous preform for the optical fiber by the auxiliary burner, said auxiliary burner The maximum temperature of the flame is 450 ° C. or more and 650 ° C. or less, the outer diameter of the target rod is d (mm), and the outer diameter of the central portion of the porous optical fiber preform is Ds (mm). At the start of the deposition of the glass fine particles, the optical fiber porous preform in the region R in which the target rod surface is heated to 400 ° C. or higher by the auxiliary burner. The auxiliary burner is installed such that Dt1 and Dt2 satisfy the following formula, where Dt1 (mm) is the minimum outer diameter of the tapered portion and Dt2 (mm) is the maximum outer diameter of the tapered portion. And
Dt1 = (Ds−d) / 100 × A1 + d
Dt2 = (Ds−d) / 100 × A2 + d
A1 ≧ 10, A2 ≦ 80
A2-A1 ≧ 40
Here, A1 and A2 are arbitrary numbers of 0 or more and 100 or less.

このようにしてなる本発明の請求項1記載の光ファイバ用多孔質母材の製造方法によれば、大型の光ファイバ用多孔質母材を製造しても振れおよび割れが生じにくく、歩留まりよく光ファイバ用多孔質母材の製造が可能である。
また、補助バーナの設定および配置を容易に最適化でき、多孔質母材の製造装置間におけるテーパ部の焼き締め具合のばらつきも小さくできる。
According to the method for producing a porous optical fiber preform according to claim 1 of the present invention thus formed, even if a large-scale porous preform for optical fiber is produced, vibration and cracking are unlikely to occur, and the yield is high. It is possible to manufacture a porous preform for an optical fiber.
Further, the setting and arrangement of the auxiliary burner can be easily optimized, and the variation in the degree of the taper portion between the porous base material manufacturing apparatuses can be reduced.

以上に述べたように本発明の光ファイバ用多孔質母材の製造方法によれば、大型の光ファイバ用多孔質母材を製造しても振れおよび割れがともに生じにくい光ファイバ用多孔質母材の製造方法が提供される。   As described above, according to the method for producing a porous optical fiber preform according to the present invention, even if a large-scale optical fiber preform is produced, both the vibration and cracking hardly occur. A method of manufacturing the material is provided.

以下、図面を用いて本発明の光ファイバ用多孔質母材の製造方法を詳細に説明する。
まず、VAD法などによって製造されたコアを含むコア用多孔質体を、脱水、ガラス化し、コアロッドを形成する。得られたコアロッドを所定の外径に加熱延伸して、その両端に支持部材3a、3bを溶着し、ターゲットロッド1を形成する。次いで、得られたターゲットロッド1を図1に示すような製造装置の保持部材2a、2bにセットし、ターゲットロッド1を回転させながら該ターゲットロッド1の長手方向(矢印A方向)に沿ってガラス微粒子合成用バーナ4を往復移動させ、該ターゲットロッド1の外周にガラス微粒子堆積層5を形成する。
また、該ガラス微粒子堆積層5の両端部に位置するテーパ部6を焼き締めて、テーパ部6の密度を高くするための補助バーナ8a、8bが前記ターゲットロッド1の両端部に設けられている。
Hereinafter, the manufacturing method of the porous preform for an optical fiber of the present invention will be described in detail with reference to the drawings.
First, a core porous body including a core manufactured by a VAD method or the like is dehydrated and vitrified to form a core rod. The obtained core rod is heated and stretched to a predetermined outer diameter, and support members 3a and 3b are welded to both ends thereof to form the target rod 1. Next, the obtained target rod 1 is set on the holding members 2a and 2b of the manufacturing apparatus as shown in FIG. 1, and the target rod 1 is rotated along the longitudinal direction (arrow A direction) while rotating the target rod 1. The fine particle synthesis burner 4 is reciprocated to form a glass fine particle deposition layer 5 on the outer periphery of the target rod 1.
Further, auxiliary burners 8a and 8b for increasing the density of the taper portion 6 by baking the taper portion 6 located at both end portions of the glass fine particle deposition layer 5 are provided at both end portions of the target rod 1. .

この製造方法を用いて、多孔質母材を製造した。具体的には、外径40mm、長さ1000mmのコアロッドの両端に支持部材3a、3bを溶着してターゲットロッド1を形成し、保持部材2a、2bに保持して回転させ、補助バーナ8a、8bでテーパ部6を焼き締めながら多孔質母材の外径が200mmになるまでガラス微粒子合成用バーナ4を往復移動させてガラス微粒子を堆積させた。
このとき、補助バーナ8a、8bを配置する場所および供給する酸水素量を種々に変化させて多孔質母材を製造し、割れおよび振れの発生を調べた。なお、本実施例においては、補助バーナに供給する酸水素量は合成開始から終了まで一定とした。
A porous base material was manufactured using this manufacturing method. Specifically, the support rods 3a and 3b are welded to both ends of a core rod having an outer diameter of 40 mm and a length of 1000 mm to form the target rod 1 and held and rotated by the holding members 2a and 2b, and the auxiliary burners 8a and 8b. Then, the glass fine particle synthesis burner 4 was moved back and forth until the outer diameter of the porous base material reached 200 mm while baking the taper portion 6 to deposit glass fine particles.
At this time, the porous base material was manufactured by changing the place where the auxiliary burners 8a and 8b are disposed and the amount of oxyhydrogen to be supplied in various ways, and the occurrence of cracks and runout was examined. In this example, the amount of oxyhydrogen supplied to the auxiliary burner was constant from the start to the end of synthesis.

また、合成開始時のターゲットロッド1のテーパ部6が形成される領域における温度分布をサーモビュアにて測定し、表面温度が400℃以上となる領域を調べた。表面温度が400℃以上になる領域を広くするためには補助バーナ8a、8bをターゲットロッド1の回転軸方向と平行になる方向に角度を変えればよく、温度が低くなりすぎる場合は、供給する酸水素量を増やせばよい。逆に表面温度が400℃以上になる領域を狭くするためには、補助バーナ8a、8bをターゲットロッド1の回転軸方向と垂直になる方向に角度を変えればよい。また、補助バーナ8a、8bをターゲットロッド1の回転軸方向に平行移動させることで、表面温度が400℃以上になる領域を移動させることができる。   Moreover, the temperature distribution in the area | region where the taper part 6 of the target rod 1 at the time of a synthesis | combination is formed was measured with the thermoviewer, and the area | region where surface temperature became 400 degreeC or more was investigated. In order to widen the region where the surface temperature becomes 400 ° C. or higher, the angle of the auxiliary burners 8a and 8b may be changed in a direction parallel to the rotational axis direction of the target rod 1, and if the temperature is too low, supply What is necessary is just to increase the amount of oxyhydrogen. Conversely, in order to narrow the region where the surface temperature is 400 ° C. or higher, the angle of the auxiliary burners 8a and 8b may be changed in a direction perpendicular to the rotation axis direction of the target rod 1. In addition, by moving the auxiliary burners 8a and 8b in the direction of the rotation axis of the target rod 1, the region where the surface temperature is 400 ° C. or higher can be moved.

また、このとき合成開始時の補助バーナ8a、8bのターゲットロッド1の回転軸と垂直方向の火炎幅は、ターゲットロッド1とほぼ同等とした。ここで火炎幅とは目視にて観察できる火炎の幅を意味する。火炎幅をこのようにすることで、合成される多孔質母材を円周方向に均等に焼き締めることができる。補助バーナ8a、8bのターゲットロッド1の回転軸と垂直方向の火炎幅は、供給する酸水素量を増やすか、補助バーナ8a、8bをターゲットロッド1に近づけることで、広げることができる。   At this time, the flame width in the direction perpendicular to the rotation axis of the target rod 1 of the auxiliary burners 8a and 8b at the start of the synthesis was made substantially equal to that of the target rod 1. Here, the flame width means a flame width that can be visually observed. By making the flame width in this way, the synthesized porous base material can be evenly baked in the circumferential direction. The flame width in the direction perpendicular to the rotation axis of the target rod 1 of the auxiliary burners 8a and 8b can be widened by increasing the amount of oxyhydrogen supplied or bringing the auxiliary burners 8a and 8b closer to the target rod 1.

表1に表面温度が400℃以上となる領域と割れ、振れの発生およびスート密度を示す。 Table 1 shows regions where the surface temperature is 400 ° C. or higher, cracks, occurrence of runout, and soot density.

Figure 0004495070
Figure 0004495070

表1において、「加熱領域」は、図2に示すガラス微粒子の堆積開始時に、補助バーナにより前記ターゲットロッド表面が400℃以上に加熱される領域Rの、多孔質母材の完成時の最小テーパ部外径をDt1(mm)、最大テーパ部外径をDt2(mm)、としたとき、Dt1=(Ds−d)/100×A1+d、Dt2=(Ds−d)/100×A2+dで表されるA1とA2の値を示している。
ここで、図2に示すようにdはターゲットロッドの外径を、Dsは多孔質母材の完成時の中央部の外径を示し、単位は何れも(mm)である。
すなわち、A1とA2はターゲットロッドの外径dを0%、多孔質母材の完成時の中央部の外径Dsを100%としたときの400℃以上に加熱される領域Rの完成時の最小外径と最大外径のDsに対する外径比率をそれぞれ示しており、0以上、100以下の任意の数である。
In Table 1, the “heating region” is the minimum taper when the porous base material is completed in the region R in which the target rod surface is heated to 400 ° C. or more by the auxiliary burner at the start of the deposition of the glass fine particles shown in FIG. When the outer diameter of the part is Dt1 (mm) and the outer diameter of the maximum taper part is Dt2 (mm), it is expressed as Dt1 = (Ds−d) / 100 × A1 + d, Dt2 = (Ds−d) / 100 × A2 + d The values of A1 and A2 are shown.
Here, as shown in FIG. 2, d indicates the outer diameter of the target rod, Ds indicates the outer diameter of the central portion when the porous base material is completed, and the unit is (mm).
That is, A1 and A2 are those at the time of completion of the region R that is heated to 400 ° C. or higher when the outer diameter d of the target rod is 0% and the outer diameter Ds of the central portion when the porous base material is completed is 100%. The ratio of the outer diameter to the Ds of the minimum outer diameter and the maximum outer diameter is shown, and is an arbitrary number of 0 or more and 100 or less.

また、表1において補助バーナの火力は補助バーナ1本あたりに供給する酸水素の量を示し、単位は(リットル/分)である。さらに、「割れ」は、製造途中で割れた場合を×、割れなかったものは○としている。また、「振れ」は、中心軸に対する振れ量が1mm以上だったものを×、0.5mm以上だったものを△、0.5mm未満だったものを○としている。
なお、中央部とテーパ部の密度は製造終了後、多孔質母材の形状を計測した後に破壊し、中央部とテーパ部に堆積していたスートの重量を測定することにより求めた。
In Table 1, the heating power of the auxiliary burner indicates the amount of oxyhydrogen supplied per auxiliary burner, and the unit is (liter / minute). Furthermore, “cracking” is marked as “X” when cracked in the middle of production, and “◯” when cracked. In addition, “shake” is indicated as “x” when the shake amount with respect to the central axis is 1 mm or more, “Δ” when it is 0.5 mm or more, and “◯” when it is less than 0.5 mm.
The density of the central portion and the taper portion was determined by measuring the shape of the porous base material after the completion of the production, and then breaking and measuring the weight of the soot deposited on the central portion and the taper portion.

表1からわかるように、前記ガラス微粒子の堆積開始時に、前記補助バーナにより前記ターゲットロッド表面が400℃以上に加熱される領域が、A1が10以上、A2が80以下の範囲以内であり、A2−A1が40以上となるように、前記補助バーナを設置することで、割れ、振れの両方が良好な結果が得られている。   As can be seen from Table 1, at the start of the deposition of the glass fine particles, the area where the surface of the target rod is heated to 400 ° C. or higher by the auxiliary burner is within a range where A1 is 10 or more and A2 is 80 or less. By installing the auxiliary burner so that -A1 is 40 or more, favorable results of both cracking and deflection are obtained.

A1が5以下となるとターゲットロッドが高温に加熱されてしまい、振れが大きくなってしまう。また、A2が90以上となると合成用バーナと補助バーナが干渉して、割れが発生しやすくなる。
また、A2−A1が30以下ではテーパ部の一部分のみが高温となるため、ターゲットロッドが軟化しやすく、振れが発生しやすい。
割れ、振れともに良好であったものの中央部とテーパ部の密度比は1.15倍以上2.00倍以下であった。
なお、補助バーナ火炎の最高温度は450℃以上650℃以下となるように、酸水素の供給量を調整することが好ましい。
When A1 is 5 or less, the target rod is heated to a high temperature, and the deflection becomes large. Further, when A2 is 90 or more, the synthesis burner and the auxiliary burner interfere with each other, and cracking is likely to occur.
In addition, when A2-A1 is 30 or less, only a part of the tapered portion becomes high temperature, so that the target rod is easily softened and is likely to be shaken.
Although both cracking and deflection were good, the density ratio between the central portion and the tapered portion was 1.15 times or more and 2.00 times or less.
In addition, it is preferable to adjust the supply amount of oxyhydrogen so that the maximum temperature of the auxiliary burner flame is 450 ° C. or higher and 650 ° C. or lower.

本発明の多孔質母材の製造方法を用いれば、大型の光ファイバ用多孔質母材を製造しても振れおよび割れがともに生じにくいだけでなく、補助バーナの位置を容易に最適化でき、多孔質母材の製造装置間におけるテーパ部の焼き締め具合のばらつきも小さくできる。   If the method for producing a porous preform of the present invention is used, not only is it difficult to cause both vibration and cracking even if a large porous preform for an optical fiber is produced, the position of the auxiliary burner can be easily optimized, Variations in the degree of baking of the tapered portion between the porous base material manufacturing apparatuses can also be reduced.

なお、本実施例では、供給する酸水素量を変化させずに製造した例についてのみ説明しているが、製造過程で徐々に酸水素量を変化させてもよい。この場合も補助バーナ火炎の最高温度が450℃以上650℃以下となるように、酸水素の供給量を調整することが好ましい。
また、本実施例では、ターゲットロッド1を固定し、ガラス微粒子合成用バーナ4を所定速度で移動させる製造装置についてのみ説明しているが、これはガラス微粒子合成用バーナ4を固定し、ターゲットロッド1を所定速度で移動させる製造装置においても同様である。また、前記実施例ではターゲットロッド1を鉛直に保持した、いわゆる縦型の製造装置についてのみ説明しているが、ターゲットロッド1を水平に保持する横型の製造装置においても本発明は適用できる。
In addition, although the present Example demonstrates only the example manufactured without changing the amount of oxyhydrogen supplied, you may change the amount of oxyhydrogen gradually in a manufacture process. Also in this case, it is preferable to adjust the supply amount of oxyhydrogen so that the maximum temperature of the auxiliary burner flame is 450 ° C. or higher and 650 ° C. or lower.
In the present embodiment, only the manufacturing apparatus that fixes the target rod 1 and moves the glass particle synthesis burner 4 at a predetermined speed has been described. The same applies to a manufacturing apparatus that moves 1 at a predetermined speed. Moreover, although only the so-called vertical manufacturing apparatus that holds the target rod 1 vertically has been described in the above embodiment, the present invention can be applied to a horizontal manufacturing apparatus that holds the target rod 1 horizontally.

外付け法によるコアスートの製造装置の一例を示す模式図である。It is a schematic diagram which shows an example of the manufacturing apparatus of the core soot by an external attachment method. 本発明の光ファイバ用多孔質母材のテーパ部を示す模式図である。It is a schematic diagram which shows the taper part of the porous preform | base_material for optical fibers of this invention.

符号の説明Explanation of symbols

1 ターゲットロッド
2a、2b 保持部材
3a、3b 支持部材
4 ガラス微粒子合成用バーナ
5 ガラス微粒子堆積層
6 テーパ部
7 中央部
8a、8b 補助バーナ
DESCRIPTION OF SYMBOLS 1 Target rod 2a, 2b Holding member 3a, 3b Support member 4 Burner for glass particle synthesis | combination 5 Glass particle deposition layer 6 Tapered part 7 Center part 8a, 8b Auxiliary burner

Claims (1)

火炎加水分解反応により合成したガラス微粒子を回転するターゲットロッドの外周に堆積させる光ファイバ用多孔質母材の製造方法において、
前記ガラス微粒子の堆積成長にともなって前記光ファイバ用多孔質母材の端部に形成されるテーパ部を補助バーナによって焼き締めながら前記ガラス微粒子を堆積させ、
前記補助バーナ火炎の最高温度は450℃以上650℃以下であり、
前記ターゲットロッドの外径をd(mm)、前記光ファイバ用多孔質母材の完成時の中央部の外径をDs(mm)とし、
前記ガラス微粒子の堆積開始時に、前記補助バーナにより前記ターゲットロッド表面が400℃以上に加熱される領域Rの前記光ファイバ用多孔質母材の完成時の最小テーパ部外径をDt1(mm)、最大テーパ部外径をDt2(mm)、としたとき、
Dt1およびDt2が以下の式を満たすように、前記補助バーナを設置することを特徴とする光ファイバ用多孔質母材の製造方法。
Dt1=(Ds−d)/100×A1+d
Dt2=(Ds−d)/100×A2+d
A1≧10、A2≦80
A2−A1≧40
ここで、A1、A2は、0以上、100以下の任意の数である。
In the method for producing a porous preform for optical fiber in which glass fine particles synthesized by a flame hydrolysis reaction are deposited on the outer periphery of a rotating target rod,
Along with the deposition growth of the glass fine particles, the glass fine particles are deposited while baking the taper portion formed at the end of the optical fiber porous preform with an auxiliary burner,
The maximum temperature of the auxiliary burner flame is 450 ° C. or more and 650 ° C. or less,
The outer diameter of the target rod is d (mm), and the outer diameter of the central portion when the optical fiber porous preform is completed is Ds (mm).
At the start of deposition of the glass fine particles, the minimum outer diameter of the tapered portion at the time of completion of the optical fiber porous preform in the region R where the target rod surface is heated to 400 ° C. or more by the auxiliary burner is Dt1 (mm), When the maximum taper portion outer diameter is Dt2 (mm),
The method for producing a porous optical fiber preform, wherein the auxiliary burner is installed so that Dt1 and Dt2 satisfy the following formula.
Dt1 = (Ds−d) / 100 × A1 + d
Dt2 = (Ds−d) / 100 × A2 + d
A1 ≧ 10, A2 ≦ 80
A2-A1 ≧ 40
Here, A1 and A2 are arbitrary numbers of 0 or more and 100 or less.
JP2005334096A 2005-11-18 2005-11-18 Method for producing porous preform for optical fiber Active JP4495070B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005334096A JP4495070B2 (en) 2005-11-18 2005-11-18 Method for producing porous preform for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005334096A JP4495070B2 (en) 2005-11-18 2005-11-18 Method for producing porous preform for optical fiber

Publications (2)

Publication Number Publication Date
JP2007137718A JP2007137718A (en) 2007-06-07
JP4495070B2 true JP4495070B2 (en) 2010-06-30

Family

ID=38201042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005334096A Active JP4495070B2 (en) 2005-11-18 2005-11-18 Method for producing porous preform for optical fiber

Country Status (1)

Country Link
JP (1) JP4495070B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107759071A (en) * 2016-08-22 2018-03-06 信越化学工业株式会社 The manufacture device and manufacture method of powder accumulation body
CN107759070A (en) * 2016-08-16 2018-03-06 信越化学工业株式会社 The manufacture device and manufacture method of powder accumulation body

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6409405B2 (en) * 2014-08-21 2018-10-24 住友電気工業株式会社 Method for producing glass particulate deposit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0585761A (en) * 1991-09-30 1993-04-06 Shinetsu Quartz Prod Co Ltd Porous glass base material
JP2003212584A (en) * 2002-01-25 2003-07-30 Furukawa Electric Co Ltd:The Method for manufacturing optical fiber preform
JP2004269284A (en) * 2003-03-05 2004-09-30 Sumitomo Electric Ind Ltd Method of manufacturing porous glass material and glass material less in fluctuation of outside diameter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0585761A (en) * 1991-09-30 1993-04-06 Shinetsu Quartz Prod Co Ltd Porous glass base material
JP2003212584A (en) * 2002-01-25 2003-07-30 Furukawa Electric Co Ltd:The Method for manufacturing optical fiber preform
JP2004269284A (en) * 2003-03-05 2004-09-30 Sumitomo Electric Ind Ltd Method of manufacturing porous glass material and glass material less in fluctuation of outside diameter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107759070A (en) * 2016-08-16 2018-03-06 信越化学工业株式会社 The manufacture device and manufacture method of powder accumulation body
CN107759071A (en) * 2016-08-22 2018-03-06 信越化学工业株式会社 The manufacture device and manufacture method of powder accumulation body

Also Published As

Publication number Publication date
JP2007137718A (en) 2007-06-07

Similar Documents

Publication Publication Date Title
JP3131162B2 (en) Manufacturing method of optical fiber preform
EP0578244B1 (en) Method for drawing glass preform for optical fiber
JP4495070B2 (en) Method for producing porous preform for optical fiber
CN106045302B (en) Method for producing porous glass substrate
JP4614782B2 (en) Method for producing quartz glass preform for optical fiber
JP4690979B2 (en) Optical fiber preform manufacturing method
JP2007210856A (en) Method for production of optical fiber preform
JP5904967B2 (en) Burner for manufacturing porous glass base material
JP6979000B2 (en) Manufacturing method of glass base material for optical fiber
JP7115095B2 (en) Manufacturing method of preform for optical fiber
JPH0463018B2 (en)
JP6006186B2 (en) Method for producing porous glass deposit for optical fiber
JP5678467B2 (en) Glass base material manufacturing method
US20080053155A1 (en) Optical fiber preform having large size soot porous body and its method of preparation
JP5533205B2 (en) Glass base material manufacturing method
JP3917022B2 (en) Method for producing porous preform for optical fiber
KR100632155B1 (en) Manufacturing method of optical fiber base material
WO2022065482A1 (en) Method and facility for producing optical fiber base material
JP2017226569A (en) Production method of optical fiber preform, and production method of glass fine particle deposit
JP5907565B2 (en) Burner for manufacturing porous glass base material
JP2770103B2 (en) Manufacturing method of optical fiber preform
JP4483434B2 (en) Manufacturing method of glass base material
JP4252871B2 (en) Optical fiber preform manufacturing method
JPH1121143A (en) Production of preform for optical fiber
JPH0986948A (en) Production of porous glass base material for optical fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100325

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100408

R151 Written notification of patent or utility model registration

Ref document number: 4495070

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350