JP2003020243A - Method for manufacturing ingot of optical fiber preform - Google Patents

Method for manufacturing ingot of optical fiber preform

Info

Publication number
JP2003020243A
JP2003020243A JP2001204616A JP2001204616A JP2003020243A JP 2003020243 A JP2003020243 A JP 2003020243A JP 2001204616 A JP2001204616 A JP 2001204616A JP 2001204616 A JP2001204616 A JP 2001204616A JP 2003020243 A JP2003020243 A JP 2003020243A
Authority
JP
Japan
Prior art keywords
optical fiber
ingot
silica powder
solvent
fiber preform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001204616A
Other languages
Japanese (ja)
Inventor
Masami Terajima
正美 寺嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2001204616A priority Critical patent/JP2003020243A/en
Publication of JP2003020243A publication Critical patent/JP2003020243A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/0128Manufacture of preforms for drawing fibres or filaments starting from pulverulent glass
    • C03B37/01291Manufacture of preforms for drawing fibres or filaments starting from pulverulent glass by progressive melting, e.g. melting glass powder during delivery to and adhering the so-formed melt to a target or preform, e.g. the Plasma Oxidation Deposition [POD] process
    • C03B37/01294Manufacture of preforms for drawing fibres or filaments starting from pulverulent glass by progressive melting, e.g. melting glass powder during delivery to and adhering the so-formed melt to a target or preform, e.g. the Plasma Oxidation Deposition [POD] process by delivering pulverulent glass to the deposition target or preform where the powder is progressively melted, e.g. accretion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing an ingot of an optical fiber preform so that a clad layer can be fast deposited without requiring a large- scale facility for treating waste gas, that the ingot of the optical fiber preform obtained by vitrifying the clad layer does not contain foreign matter or bubbles and that, when the ingot is stretched into a preform, a glass preform for an optical fiber having excellent optical characteristics can be obtained with a high yield. SOLUTION: In the method for manufacturing the ingot of the optical fiber preform by the outside vapor-phase deposition method by depositing glass fine particles on a start core preform 1 to form a clad layer and sintering and vitrifying the obtained soot deposit 9, silica powder is dispersed in a solvent and sprayed. Immediately after the silica powder deposits on the surface of the start core preform 1, heat energy necessary to volatilize the solvent is supplied.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、出発コア母材にク
ラッド層を高速堆積することができ、良好な光学特性を
有する光ファイバ母材インゴット(以下、単に母材イン
ゴットと称する)の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an optical fiber base material ingot (hereinafter simply referred to as a base material ingot) capable of depositing a clad layer on a starting core base material at high speed and having good optical characteristics. Regarding

【0002】[0002]

【従来の技術】母材インゴットは、例えば、OVD法
(外付け法)により、出発コア母材の周面にガラス微粒子
(シリカ粉)を堆積させてクラッド層を形成した後、脱
水,焼結等の工程を経て透明ガラス化される。OVD法
により出発コア母材の表面にシリカ粉を堆積させる工程
で、一般的に知られている方法は、原料ガスを供給して
酸水素火炎中で加水分解させ、生成するシリカ粉を堆積
させる方法である。
2. Description of the Related Art A base material ingot is manufactured by, for example, the OVD method.
By the (external method), glass fine particles are formed on the peripheral surface of the starting core base material
After (silica powder) is deposited to form a clad layer, it is made into vitrified through processes such as dehydration and sintering. In the step of depositing silica powder on the surface of the starting core base material by the OVD method, a generally known method is to supply a raw material gas and hydrolyze it in an oxyhydrogen flame to deposit the generated silica powder. Is the way.

【0003】近年、より大型の光ファイバ用ガラス母材
が要望されている。しかしながら大型のスート堆積体
(多孔質ガラス母材)をより高速で合成するためには、
多量の酸素・水素を供給する必要があり、この燃焼熱が
反応装置に多大な悪影響を与える。さらに、原料ガスと
してSiCl4を用いた場合、反応副生物としてHClガ
スが生成し、排ガス中にHClガスが多量に含まれる。
この排ガスは反応系外に排出されるが、残存するHCl
によって反応炉が腐蝕される。
In recent years, there has been a demand for a larger glass base material for optical fibers. However, in order to synthesize a large soot deposit (porous glass base material) at higher speed,
It is necessary to supply a large amount of oxygen and hydrogen, and this heat of combustion has a great adverse effect on the reactor. Further, when SiCl 4 is used as the raw material gas, HCl gas is produced as a reaction by-product, and the exhaust gas contains a large amount of HCl gas.
This exhaust gas is discharged to the outside of the reaction system, but the remaining HCl
Corrodes the reactor.

【0004】特に、排ガス処理に関しては、燃焼排ガス
が高温で、クラッド層に堆積しなかったシリカ粉を含む
酸性ガスであることから、大規模なシリカ粉とHClの
除去設備が必要であった。さらに、露点以下のHClは
殆どの金属材料を腐蝕するため、排ガス処理設備の耐久
性改善が大きな問題となっていた。このようなことか
ら、OVD法を用いて大型の光ファイバ用ガラス母材を
製造するには、生産性の向上とともに、設備の耐久性を
改善する必要があり、これには上述の問題を解決する必
要があった。
In particular, for exhaust gas treatment, since the combustion exhaust gas is a high temperature and is an acidic gas containing silica powder not deposited on the clad layer, a large-scale facility for removing silica powder and HCl was required. Further, since HCl having a dew point or lower corrodes most metal materials, improving durability of exhaust gas treatment equipment has been a serious problem. Therefore, in order to manufacture a large glass base material for an optical fiber by using the OVD method, it is necessary to improve productivity as well as durability of equipment, which solves the above problems. Had to do.

【0005】珪素化学反応論から見ても、SiCl4を原
料として使用する反応装置を考えた場合、原料の純度管
理は重要な問題である。例えば、コスト的に有利なSi
(CH3)Cl3やSi(CH3) 2Cl2は、危険物第4類に該
当することに加えて、SiCl4に比べ反応速度が遅いた
め、バーナーから出発コア母材までの反応距離が異な
り、反応が完結しない状態で堆積されることになり、堆
積されたクラッド層の物理特性が大きく異なってしま
う。従って、外付け法によりクラッド層を堆積させる反
応装置・排ガス処理設備は、材質・構造・燃焼させるガ
ス量等に大きな制約を受ける。そのため堆積速度等に限
界があり、堆積の高速化、低コスト化の妨げになってい
た。
From the viewpoint of the chemical reaction theory of silicon, when considering a reactor using SiCl 4 as a raw material, control of the purity of the raw material is an important issue. For example, cost-effective Si
(CH 3) Cl 3 or Si (CH 3) 2 Cl 2, in addition to corresponding to the hazardous materials fourth class, since reaction rate is slow compared with SiCl 4, the reaction distance from the burner to the starting core preform However, the physical properties of the deposited clad layer are significantly different from each other. Therefore, the reactor / exhaust gas treatment facility for depositing the cladding layer by the external method is greatly restricted by the material, structure, amount of gas to be burned, and the like. Therefore, there is a limit to the deposition rate and the like, which hinders high-speed deposition and cost reduction.

【0006】[0006]

【発明が解決しようとする課題】そこで、本発明の目的
は、大規模な排ガス処理設備を必要とせず、クラッド層
を高速堆積することができ、これを透明ガラス化して得
られる母材インゴットに異物・泡等が無く、さらに、延
伸してプリフォームとしたとき、優れた光学特性を有す
る光ファイバ用ガラス母材が高い歩留で得られる、母材
インゴットの製造方法を提供することである。
Therefore, an object of the present invention is to provide a base material ingot which does not require a large-scale exhaust gas treatment facility and can deposit a clad layer at a high speed and which is obtained by vitrifying the clad layer. It is to provide a method for producing a base material ingot, which is free from foreign matter, bubbles, etc., and when it is drawn into a preform to obtain a glass base material for an optical fiber having excellent optical characteristics with a high yield. .

【0007】[0007]

【課題を解決するための手段】本発明の母材インゴット
の製造方法は、外付け法により出発コア母材にガラス微
粒子を堆積させてクラッド層を形成し、得られたスート
堆積体を焼結し透明ガラス化して母材インゴットを製造
する方法において、シリカ粉を溶媒に分散させて噴霧
し、シリカ粉が出発コア母材の表面に付着した直後に、
該溶媒が揮散するのに必要な熱エネルギーを供給するこ
とを特徴としている。
The method for manufacturing a base material ingot according to the present invention is to deposit glass fine particles on a starting core base material by an external attachment method to form a clad layer, and sinter the obtained soot deposit body. Then, in the method of producing a base material ingot by transparent vitrification, silica powder is dispersed and sprayed in a solvent, immediately after the silica powder is attached to the surface of the starting core base material,
It is characterized by supplying the thermal energy necessary for the solvent to volatilize.

【0008】上記シリカ粉は、SiCl4、Si(CH3)
Cl3及びSi(CH3)2Cl2等のシラン化合物を火炎加水
分解反応で合成したものを使用するのが好ましい。シリ
カ粉を溶媒に分散させて吹き付けるに際し、シリカ粉と
熱エネルギーをそれぞれ別の供給手段で供給するのが好
ましく、シリカ粉を分散させる溶媒には水が良い。ま
た、供給する熱エネルギーは酸水素火炎が良く、溶媒を
揮散させるために供給する熱エネルギー源の水素量が、
溶媒100重量部に対して1モル以上とするのが好まし
い。本発明の母材インゴットは、上記製造方法を用いて
製造される。
The above silica powder is composed of SiCl 4 , Si (CH 3 )
It is preferable to use a silane compound synthesized by flame hydrolysis reaction such as Cl 3 and Si (CH 3 ) 2 Cl 2 . When the silica powder is dispersed and sprayed in a solvent, it is preferable to supply the silica powder and the thermal energy by different supply means, and the solvent in which the silica powder is dispersed is preferably water. Also, the oxyhydrogen flame is good as the thermal energy to be supplied, and the amount of hydrogen of the thermal energy source supplied to volatilize the solvent is
It is preferably 1 mol or more with respect to 100 parts by weight of the solvent. The base material ingot of the present invention is manufactured using the above manufacturing method.

【0009】[0009]

【発明の実施の形態】本発明者は、上記課題を鋭意検討
した結果、溶媒に分散させたシリカ粉を出発コア母材の
表面に噴霧し堆積させることによって、母材インゴット
を製造する方法に着目した。ところが、堆積したクラッ
ド層中には溶媒が残存していることが判明し、堆積終了
後に除去しようとすると、亀裂が生じるという新たな問
題が発生した。これを解決するには、噴霧されたシリカ
粉が出発コア母材の表面に付着した直後に、溶媒を含ま
ないように揮散させる必要があることを見出し、本発明
を達成したものである。
DETAILED DESCRIPTION OF THE INVENTION As a result of diligent study of the above problems, the present inventor has found a method for producing a base material ingot by spraying and depositing silica powder dispersed in a solvent on the surface of a starting core base material. I paid attention. However, it was found that the solvent remained in the deposited clad layer, and when it was attempted to be removed after completion of the deposition, a new problem of cracking occurred. In order to solve this, it was found that it is necessary to volatilize the sprayed silica powder so that it does not contain a solvent immediately after it is attached to the surface of the starting core base material, and the present invention has been accomplished.

【0010】本発明において、出発コア母材の表面にガ
ラス微粒子を堆積させるには、シリカ粉を溶媒に分散さ
せ、塗装等に用いられるスプレーノズルを使用して、圧
縮空気で加圧噴霧する。このとき噴霧されたシリカ粉が
出発コア母材の表面に付着した直後に、溶媒を含まない
ようにするために、堆積用容器(反応容器)は予め加熱
しておき、シリカ粉の付着箇所から溶媒が排ガス中に揮
散し易くしておくと良い。また、シリカ粉を分散させた
溶媒は、噴霧後揮散し易いようにその沸点近傍の温度ま
で昇温しておくと良い。なお、この溶媒としては、水が
好ましく、その他、不燃性溶媒等を使用することもでき
る。
In the present invention, in order to deposit the glass fine particles on the surface of the starting core base material, silica powder is dispersed in a solvent and sprayed under pressure with compressed air using a spray nozzle used for coating or the like. Immediately after the sprayed silica powder adheres to the surface of the starting core base material, the deposition container (reaction container) is preheated in order to prevent the solvent from being contained. It is recommended that the solvent be easily volatilized in the exhaust gas. In addition, the solvent in which the silica powder is dispersed may be heated to a temperature near its boiling point so that the solvent is easily vaporized after spraying. As the solvent, water is preferable, and other nonflammable solvents can be used.

【0011】しかしながら、堆積が進むにしたがって、
溶媒である水は揮散しにくくなり、目標量堆積されたス
ート堆積体が保管中に亀裂を起こす、という不良が発生
することがある。この亀裂発生の防止を図るために、溶
媒である水が蒸発するのに必要な熱エネルギー、すなわ
ち噴霧量の蒸発潜熱に相当する熱エネルギーを供給し、
スート堆積体中に水分が残らないように揮散させる。こ
の熱エネルギーは酸水素火炎が良く、供給する水素量を
溶媒100重量部に対して1モル以上とするのが良い。
水素量が1モル未満では熱エネルギーが不足し、水分を
充分に揮散させることができない。
However, as the deposition progresses,
Water, which is the solvent, is less likely to volatilize, and a soot deposit that has been deposited in a target amount may crack during storage, which may cause a defect. In order to prevent the occurrence of cracks, the heat energy necessary for the solvent water to evaporate, that is, the heat energy equivalent to the latent heat of vaporization of the spray amount is supplied,
Volatilize so that water does not remain in the soot deposit. This heat energy is good for an oxyhydrogen flame, and the amount of hydrogen supplied is preferably 1 mol or more per 100 parts by weight of the solvent.
If the amount of hydrogen is less than 1 mol, the heat energy will be insufficient and the water cannot be sufficiently volatilized.

【0012】上記のようにして目標量の堆積を終えたス
ート堆積体を焼結炉に入れ、脱水・焼結し、透明ガラス
化した後、得られた母材インゴットを検査したところ、
ガラス化された部分に異物や泡等は見られず、品質的に
従来の製造方法で得られるものと全く遜色なかったが、
従来法が排ガス中にHClガスを多量に含むのに対し
て、本発明の製造方法によれば排ガス中にHClガスを
全く含まないことである。さらに、インゴットを所望の
径に加工したところ、異物や泡など見られず、従来必要
とされた煩雑な排ガス処理工程がなくなり、設備機器の
不具合発生が大幅に改善される。
[0012] The soot deposit body, which has been deposited with the target amount as described above, is placed in a sintering furnace, dehydrated and sintered, and made into transparent vitrified material, and the obtained base material ingot is inspected.
No foreign matter or bubbles were found in the vitrified part, which was comparable in quality to that obtained by the conventional manufacturing method.
Whereas the conventional method contains a large amount of HCl gas in the exhaust gas, the manufacturing method of the present invention does not contain HCl gas at all in the exhaust gas. Further, when the ingot is processed to have a desired diameter, foreign matters and bubbles are not seen, the complicated exhaust gas treatment step conventionally required is eliminated, and the trouble occurrence of the equipment is significantly improved.

【0013】さらに、本発明の製造方法によれば、シリ
カ粉は、金属珪素にMeClを反応させて合成したSi
(CH3)Cl3やSi(CH3)2Cl2等の粗製シランを専用
のシリカ合成設備を用いて、精製することなく酸水素火
炎による加水分解反応で高速合成することができる。こ
の方法によれば、生成するシリカをほぼ完全に捕集する
ことができる。また、発生するHClガスも高濃度であ
るため効率よく回収でき、再利用できることから、クロ
ーズドシステムでシリカ粉を合成でき、環境に与える影
響の小さい製造システムを構築できる。
Further, according to the manufacturing method of the present invention, the silica powder is Si synthesized by reacting metallic silicon with MeCl.
Crude silanes such as (CH 3 ) Cl 3 and Si (CH 3 ) 2 Cl 2 can be rapidly synthesized by a hydrolysis reaction with an oxyhydrogen flame without purification using a dedicated silica synthesis facility. According to this method, the generated silica can be collected almost completely. Further, since the generated HCl gas has a high concentration, it can be efficiently collected and reused, so that silica powder can be synthesized in a closed system and a manufacturing system having a small influence on the environment can be constructed.

【0014】このようにして合成したシリカ粉を溶媒に
分散し噴霧して、出発コア母材の表面にシリカ粉を堆積
させてクラッド層を形成する。このときスート中に残存
する溶媒が原因による亀裂は、溶媒の蒸発潜熱に相当す
る量の熱エネルギーを加えることで改善され、スート堆
積体の高速合成が可能となり、これを透明ガラス化する
ことで異物・泡等を含まない母材インゴットが得られ
る。
The silica powder thus synthesized is dispersed in a solvent and sprayed to deposit the silica powder on the surface of the starting core base material to form a clad layer. At this time, cracks caused by the solvent remaining in the soot are improved by adding thermal energy in an amount equivalent to the latent heat of vaporization of the solvent, and high-speed synthesis of the soot deposit is possible. A base material ingot that does not contain foreign matter or bubbles can be obtained.

【0015】[0015]

【実施例】(原料溶液の調製)出発原料としてSiC
l4、Si(CH3)Cl3、Si(CH3) 2Cl2等からなる粗
精製のシラン混合物を使用し、シリカ粉製造用専用バ一
ナーを用いて、酸水素火炎中での加水分解反応により、
嵩密度0.098のシリカ粉を合成した。このシリカ粉
の合成法は、従来の外付法による多孔質ガラス母材の製
造方法で合成される量に比べ、数十倍から数百倍の速度
でシリカ粉を製造することができる。また、排気ガスも
必要最小限であるため、生成するHClガスも効率よく
回収でき、排ガス処理設備も極めて効率的な規模で対応
可能である。次に、純水100重量部に対して該シリカ
粉80重量部を均一に分散させ、原料溶液を調製した。
[Example] (Preparation of raw material solution) SiC as a starting material
Using a crudely purified silane mixture consisting of 1, 4 , Si (CH 3 ) Cl 3 , Si (CH 3 ) 2 Cl 2, etc., using a dedicated burner for producing silica powder, hydrolysis in an oxyhydrogen flame was performed. By the decomposition reaction,
A silica powder having a bulk density of 0.098 was synthesized. This silica powder synthesizing method can produce silica powder at a rate of several tens to several hundreds of times compared with the amount synthesized by the conventional method for producing a porous glass preform by an external method. Further, since the exhaust gas is the minimum necessary amount, the generated HCl gas can also be efficiently recovered, and the exhaust gas treatment facility can be handled on an extremely efficient scale. Next, 80 parts by weight of the silica powder was uniformly dispersed in 100 parts by weight of pure water to prepare a raw material solution.

【0016】(実施例1)図1は、本実施例で使用した
一例としての多孔質ガラス母材(スート堆積体)の密閉型
製造装置であり、図2は、図1に示した製造装置の概略
側面図である。先ず、外径25mmφ、長さ1200m
mのシングルモード光ファイバ用に屈折率を調整した石
英ガラス製の出発コア母材1に、石英ガラス製のダミー
棒2を溶接し、これを熱媒循環用ジャケット3の中に設
置された出発コア母材1の回転機構4に取り付け、40
rpmで回転させた。なお、ジャケット3内には、温度制
御機構を備えた熱媒供給装置により140℃に温度調整
された熱媒、例えば空気を循環させた。
(Embodiment 1) FIG. 1 is an example of a closed type manufacturing apparatus for a porous glass base material (soot deposit) used in this embodiment, and FIG. 2 is a manufacturing apparatus shown in FIG. It is a schematic side view of. First, outer diameter 25mmφ, length 1200m
A quartz glass starting core base material 1 whose refractive index is adjusted for a single mode optical fiber of m is welded with a quartz glass dummy rod 2, and this is placed in a heating medium circulating jacket 3. Attached to the rotating mechanism 4 of the core base material 1, 40
Rotated at rpm. In addition, in the jacket 3, a heat medium whose temperature was adjusted to 140 ° C. by a heat medium supply device having a temperature control mechanism, for example, air was circulated.

【0017】次いで、ガイド機構5に沿って往復運動自
在に、180mm間隔でセットされた2個の噴霧ノズル
(芙蓉精機製、ルミナスプレーガンPR-30-1.0)6
に、図示しない原料供給装置より、先に調製した原料溶
液を95℃に保ちながら120g/minずつ供給し、0.3
5MpaのN2ガスで噴霧した。同時に、噴霧ノズル6と
同期して動く加熱用バーナー7にH227L/min、O2
5L/minを供給し、この酸水素火炎でスートの堆積表面
を加熱し、溶媒である水を揮散させた。
Next, two spray nozzles set at 180 mm intervals so that they can freely reciprocate along the guide mechanism 5.
(Made by Fuyo Seiki, Lumina spray gun PR-30-1.0) 6
In addition, from the raw material supply device (not shown), the previously prepared raw material solution was supplied at 120 g / min while maintaining the temperature at 95 ° C.
It was atomized with 5 Mpa N 2 gas. At the same time, the heating burner 7 that operates in synchronization with the spray nozzle 6 is supplied with H 2 27 L / min and O 2 1.
5 L / min was supplied and the soot deposition surface was heated by this oxyhydrogen flame to volatilize water as a solvent.

【0018】噴霧ノズル6は、トラバース用モータ8を
回転させて速度200mm/minで、1600mmの範囲
をガイド機構5に沿って往復運動させ、回転する出発コ
ア母材1の周面にシリカ粉を堆積させた。出発コア母材
1もしくはスート堆積体9に付着しなかったシリカ粉を
系外に排出するために、温度制御機構を備えた空気加熱
器11で140℃に調整した空気をジャケット3内に供
給した。
The spray nozzle 6 rotates the traverse motor 8 at a speed of 200 mm / min to reciprocate along a guide mechanism 5 in a range of 1600 mm, so that silica powder is deposited on the peripheral surface of the rotating starting core base material 1. Deposited. In order to discharge the silica powder that did not adhere to the starting core base material 1 or the soot deposit 9 out of the system, air adjusted to 140 ° C. by the air heater 11 equipped with a temperature control mechanism was supplied into the jacket 3. .

【0019】堆積が進むにつれて、スート堆積体の径と
重量から近似的に求めたスート堆積体中の水分量によ
り、供給する空気温度と量をコンピュータで制御しなが
ら、さらに原料溶液の量を増量し、28時間後に外径が
220mmφのスート堆積体を得た。堆積終了直前に
は、原料供給装置より150g/minの原料溶液を供給
し、平均堆積速度26g/minで高速堆積した。この間、
加熱用バーナにはH234L/min、O219L/minを供給
し、生じた酸水素火炎でスートの堆積表面を加熱し、溶
媒を揮散させながら堆積を行った。なお、供給する酸素
・水素の量は、溶媒である純水の蒸発潜熱にほぼ等しい
発熱量を生じる量とするのが効果的である。
As the deposition progresses, the amount of water in the soot deposit is approximately calculated from the diameter and weight of the soot deposit while controlling the temperature and amount of air to be supplied by the computer while further increasing the amount of the raw material solution. Then, after 28 hours, a soot deposit having an outer diameter of 220 mmφ was obtained. Immediately before the completion of the deposition, a raw material supply device supplied a raw material solution at a rate of 150 g / min to perform high-speed deposition at an average deposition rate of 26 g / min. During this time,
H 2 34 L / min and O 2 19 L / min were supplied to the heating burner, the soot deposition surface was heated by the generated oxyhydrogen flame, and deposition was performed while volatilizing the solvent. It should be noted that it is effective that the amount of oxygen / hydrogen supplied is such that a calorific value approximately equal to the latent heat of vaporization of pure water as a solvent is generated.

【0020】目標量堆積して得たスート堆積体は、48
hr放置してもその表面になんら変化が見られず、焼結炉
に入れ、脱水・焼結し透明ガラス化した母材インゴット
を検査したところ、ガラス化された部分に異物や泡等は
見られず、従来の製造方法で得られるものと品質的に全
く遜色なかった。また、酸性の排ガス処理、設備機器の
腐蝕等の重要な問題点は大幅に改善された。
The soot deposit obtained by depositing the target amount is 48
No change was observed on the surface even after standing for hr, and when the base material ingot was placed in a sintering furnace and dehydrated / sintered to form a transparent vitrified base material, no foreign matter or bubbles were found in the vitrified part. The quality was not inferior to that obtained by the conventional manufacturing method. In addition, important problems such as acidic exhaust gas treatment and corrosion of equipment have been greatly improved.

【0021】(比較例1)図3は、本比較例で使用した
多孔質ガラス母材(スート堆積体)の密閉型製造装置の概
略正面図である。先ず、外径25mmφ、長さ1200
mmのシングルモード光ファイバ用に屈折率を調整した
石英ガラス製の出発コア母材21に、石英ガラス製のダ
ミー棒22を溶接し、これを熱媒循環用ジャケット23
の中に設置された出発コア母材21の回転機構24に取
り付け、40rpmで回転させた。なお、ジャケット23
内には、温度制御機構を備えた熱媒供給装置により14
0℃に温度調整された熱媒を循環させた。
(Comparative Example 1) FIG. 3 is a schematic front view of a closed type manufacturing apparatus for a porous glass base material (soot deposit) used in this comparative example. First, outer diameter 25mmφ, length 1200
A dummy rod 22 made of quartz glass is welded to a starting core base material 21 made of quartz glass whose refractive index is adjusted for a mm single mode optical fiber, and this is used as a heating medium circulating jacket 23.
It was attached to the rotating mechanism 24 of the starting core base material 21 installed in the above and was rotated at 40 rpm. The jacket 23
There is a heating medium supply device with a temperature control mechanism
The heating medium whose temperature was adjusted to 0 ° C. was circulated.

【0022】次いで、ガイド機構25に沿って往復運動
自在に、180mm間隔でセットされた2個の噴霧ノズ
ル(芙蓉精機製、ルミナスプレーガンPR-30-1.0)2
6に、先に調製した原料溶液を95℃に保ちながら12
0g/minずつ供給し、0.35MpaのN2ガスで噴霧し
た。
Next, two spray nozzles (made by Fuyo Seiki, Lumina Spray Gun PR-30-1.0) set at 180 mm intervals so that they can freely reciprocate along the guide mechanism 25.
6. While keeping the raw material solution prepared above at 95 ° C,
It was supplied at a rate of 0 g / min and sprayed with 0.35 Mpa of N 2 gas.

【0023】噴霧ノズル26を、トラバース用モータ2
8を回転させて速度200mm/minで、1600mmの
範囲をガイド機構25に沿って往復運動させ、回転する
出発コア母材21の周面に噴霧ノズル26からシリカ粉
を堆積させた。出発コア母材21もしくはスート堆積体
29に付着しなかったシリカ粉を系外に排出するため
に、温度制御機構を備えた空気加熱器で140℃に調整
した空気をジャケット23内に供給した。
The spray nozzle 26 is connected to the traverse motor 2
8 was rotated at a speed of 200 mm / min to reciprocate in a range of 1600 mm along the guide mechanism 25, and silica powder was deposited from the spray nozzle 26 on the peripheral surface of the rotating starting core base material 21. In order to discharge the silica powder that did not adhere to the starting core base material 21 or the soot deposit 29 to the outside of the system, air adjusted to 140 ° C. was supplied into the jacket 23 by an air heater equipped with a temperature control mechanism.

【0024】堆積が進むにつれて、さらに原料溶液の量
を増量し、28時間後に外径が220mmφのスート堆
積体を得た。堆積終了直前には、原料供給装置より15
0g/minの原料溶液を供給し、平均堆積速度26g/minで
高速堆積した。
As the deposition progressed, the amount of the raw material solution was further increased, and after 28 hours, a soot deposit having an outer diameter of 220 mmφ was obtained. Immediately before the end of deposition, 15
A raw material solution of 0 g / min was supplied, and high-speed deposition was performed at an average deposition rate of 26 g / min.

【0025】目標量堆積して得たスート堆積体を脱水・
焼結し、透明ガラス化した母材インゴットを次工程待ち
のため保管している時に、スート堆積体の表面に亀裂が
入る不良が発生することが判った。又、スート堆積体の
仕上がり外径が大きくなるにつれて、その傾向が顕著に
現れることも判った(表1参照)。なお、上記実施例1,比
較例1で得られたスート堆積体の不良発生状況と、これ
らを脱水・焼結し透明ガラス化した母材インゴットの光
学特性の測定結果を表1に示した。
Dehydrate the soot deposit obtained by depositing the target amount
It was found that when the sintered and transparent vitrified base material ingot was stored for the next step, a defect that cracks were formed on the surface of the soot deposit body. It was also found that this tendency became more prominent as the finished outer diameter of the soot stack increased (see Table 1). Table 1 shows the defect occurrence states of the soot deposits obtained in Examples 1 and Comparative Example 1 and the measurement results of the optical characteristics of the base material ingots that were dehydrated and sintered to be vitrified.

【0026】[0026]

【表1】 [Table 1]

【0027】表1に認められるように、実施例1の母材
インゴットは外径が大きくなっても、比較例1のものの
ように保管中に亀裂が発生することはなく、光学特性も
遜色なかった。なお、表1において、外観欄の異物は泡
以外の物の数であり、泡は直径0.5mmφ以上の泡数
である。亀裂の発生状況欄はその経時変化をみたもので
あり、光学特性欄は、母材インゴットを線引きして得た
光ファイバの光学特性を測定したものである。なお、実
施例1は、母材インゴット10本の平均値を、比較例1
は、母材インゴット10本から亀裂品を除いての平均値
を記載している。
As can be seen from Table 1, even if the base material ingot of Example 1 has a large outer diameter, cracks do not occur during storage as in Comparative Example 1 and the optical characteristics are comparable. It was In Table 1, the foreign matter in the appearance column is the number of things other than bubbles, and the number of bubbles is 0.5 mmφ or more. The crack generation status column shows changes over time, and the optical property column measures optical properties of an optical fiber obtained by drawing a base material ingot. In addition, in Example 1, the average value of 10 base material ingots was compared with Comparative Example 1
Indicates the average value of 10 base material ingots excluding cracked products.

【0028】[0028]

【発明の効果】本発明によれば、出発コア母材の周面
に、溶媒にシリカ粉を分散させた溶液を噴霧することに
より、シリカ粉を高速で堆積させることができ、同時
に、供給した溶媒の蒸発潜熱に相当する熱エネルギーを
供給することで、スート堆積体には、堆積過程で発生す
る亀裂を防止することができ、目標量堆積後の保管中に
おいても亀裂は発生しない。これを焼結して透明ガラス
化した母材インゴットは、従来の方法で製造した物と同
程度の品質を有し、異物・泡等が少なく光学特性にも優
れている。また、製造設備は、SiCl4などの原料ガ
スを火炎加水分解させる必要がないため、耐熱性、耐酸
性等について考慮する必要がなく、加えて従来のような
複雑なガス制御系も必要としない。さらに、環境に影響
を与える排ガス処理も小規模な装置で十分な効果が得ら
れる。このように本発明によれば、大型の母材インゴッ
トを高速で、かつ環境にやさしく製造することができ
る。
According to the present invention, the silica powder can be deposited at a high speed by spraying the solution in which the silica powder is dispersed in the solvent on the peripheral surface of the starting core base material, and at the same time, the silica powder is supplied. By supplying the thermal energy corresponding to the latent heat of vaporization of the solvent, the soot deposit can be prevented from cracking during the deposition process, and the soot deposit does not crack during storage after the target amount is deposited. The base material ingot, which is obtained by sintering this into a transparent glass, has a quality comparable to that of a product manufactured by a conventional method, has few foreign matters and bubbles, and has excellent optical characteristics. Further, since the manufacturing facility does not need to flame-hydrolyze the raw material gas such as SiCl 4 , it is not necessary to consider heat resistance, acid resistance, etc., and in addition, a complicated gas control system as in the past is not required. . Furthermore, exhaust gas treatment that affects the environment can be sufficiently achieved with a small-scale device. As described above, according to the present invention, a large-sized base material ingot can be manufactured at high speed and in an environment-friendly manner.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例1で用いた多孔質ガラス母材(スート
堆積体)製造装置の概略正面図である。
FIG. 1 is a schematic front view of a porous glass base material (soot deposit body) manufacturing apparatus used in Example 1.

【図2】 図1に示した製造装置の概略側面図である。FIG. 2 is a schematic side view of the manufacturing apparatus shown in FIG.

【図3】 比較例1で用いた多孔質ガラス母材(スート
堆積体)製造装置の概略正面図である。
FIG. 3 is a schematic front view of a porous glass base material (soot deposit body) manufacturing apparatus used in Comparative Example 1.

【符号の説明】[Explanation of symbols]

1,21. 出発コア母材、 2,22. ダミー棒、 3,23. 熱媒循環用ジャケット、 4,24. 回転機構、 5,25. ガイド機構、 6,26. 噴霧ノズル、 7. 加熱用バ一ナー、 8,28. トラバース用モータ、 9,29. スート堆積体、 10,30. 排気フード、 11,31. 空気加熱器。 1,21. Starting core matrix, 2,22. Dummy stick, 3,23. Jacket for circulating heat medium, 4, 24. Rotation mechanism, 5,25. Guide mechanism, 6,26. Spray nozzle, 7. Heating burner, 8, 28. Motor for traverse, 9, 29. Soot deposit, 10, 30. Exhaust hood, 11, 31. Air heater.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 外付け法により出発コア母材にガラス微
粒子を堆積させてクラッド層を形成し、得られたスート
堆積体を焼結し透明ガラス化して光ファイバ母材インゴ
ットを製造する方法において、シリカ粉を溶媒に分散さ
せて噴霧し、シリカ粉が出発コア母材の表面に付着した
直後に、該溶媒が揮散するのに必要な熱エネルギーを供
給することを特徴とする光ファイバ母材インゴットの製
造方法。
1. A method for producing an optical fiber preform ingot by depositing glass fine particles on a starting core preform by an external attachment method to form a clad layer, and sintering the obtained soot deposit to form transparent vitrification. , An optical fiber preform, characterized in that silica powder is dispersed in a solvent and sprayed, and immediately after the silica powder adheres to the surface of the starting core preform, the thermal energy necessary for the solvent to volatilize is supplied. Ingot manufacturing method.
【請求項2】 シリカ粉が、SiCl4、Si(CH3)Cl
3及びSi(CH3)2Cl 2等のシラン化合物を火炎加水分
解反応で合成したものである請求項1に記載の光ファイ
バ母材インゴットの製造方法。
2. Silica powder is SiClFour, Si (CH3) Cl
3And Si (CH3)2Cl 2Silane compounds such as
The optical fiber according to claim 1, which is synthesized by a desolvation reaction.
Manufacturing method of base metal ingot.
【請求項3】 シリカ粉を溶媒に分散させて吹き付ける
に際し、シリカ粉と熱エネルギーをそれぞれ別の供給手
段で供給する請求項1又は2に記載の光ファイバ母材イ
ンゴットの製造方法。
3. The method for producing an optical fiber preform ingot according to claim 1, wherein when the silica powder is dispersed in a solvent and sprayed, the silica powder and the thermal energy are supplied by different supply means.
【請求項4】 シリカ粉を分散させる溶媒が水である請
求項1乃至3のいずれかに記載の光ファイバ母材インゴ
ットの製造方法。
4. The method for producing an optical fiber preform ingot according to claim 1, wherein the solvent in which the silica powder is dispersed is water.
【請求項5】 供給する熱エネルギーが酸水素火炎であ
る請求項1乃至4のいずれかに記載の光ファイバ母材イ
ンゴットの製造方法。
5. The method for producing an optical fiber preform ingot according to claim 1, wherein the thermal energy supplied is an oxyhydrogen flame.
【請求項6】 溶媒を揮散させるために供給する熱エネ
ルギー源の水素量が、溶媒100重量部に対して1モル
以上である請求項1乃至5のいずれかに記載の光ファイ
バ母材インゴットの製造方法。
6. The optical fiber preform ingot according to claim 1, wherein the amount of hydrogen of the thermal energy source supplied for volatilizing the solvent is 1 mol or more per 100 parts by weight of the solvent. Production method.
【請求項7】 請求項1乃至6のいずれかに記載の製造
方法を用いて製造されたものであることを特徴とする光
ファイバ母材インゴット。
7. An optical fiber preform ingot manufactured by using the manufacturing method according to any one of claims 1 to 6.
JP2001204616A 2001-07-05 2001-07-05 Method for manufacturing ingot of optical fiber preform Pending JP2003020243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001204616A JP2003020243A (en) 2001-07-05 2001-07-05 Method for manufacturing ingot of optical fiber preform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001204616A JP2003020243A (en) 2001-07-05 2001-07-05 Method for manufacturing ingot of optical fiber preform

Publications (1)

Publication Number Publication Date
JP2003020243A true JP2003020243A (en) 2003-01-24

Family

ID=19041054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001204616A Pending JP2003020243A (en) 2001-07-05 2001-07-05 Method for manufacturing ingot of optical fiber preform

Country Status (1)

Country Link
JP (1) JP2003020243A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008094228A1 (en) 2007-01-29 2008-08-07 Brown David P Method and apparatus for continuous or batch optical fiber preform and optical fiber production
CN105330140A (en) * 2015-11-30 2016-02-17 中天科技精密材料有限公司 Preparing method of high purity quartz sleeve for large-size optical fiber preform
US11345606B2 (en) 2017-02-17 2022-05-31 David Brown Deposition particles and a method and apparatus for producing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008094228A1 (en) 2007-01-29 2008-08-07 Brown David P Method and apparatus for continuous or batch optical fiber preform and optical fiber production
EP2158169A1 (en) * 2007-01-29 2010-03-03 David P. Brown Method and apparatus for continuous or batch optical fiber preform and optical fiber production
EP2158169A4 (en) * 2007-01-29 2013-08-28 David P Brown Method and apparatus for continuous or batch optical fiber preform and optical fiber production
CN105330140A (en) * 2015-11-30 2016-02-17 中天科技精密材料有限公司 Preparing method of high purity quartz sleeve for large-size optical fiber preform
CN105330140B (en) * 2015-11-30 2018-11-09 中天科技精密材料有限公司 A kind of preparation method of large-scale optical fiber prefabricating stick high purity quartz casing
US11345606B2 (en) 2017-02-17 2022-05-31 David Brown Deposition particles and a method and apparatus for producing the same

Similar Documents

Publication Publication Date Title
JP2001510134A (en) Method and apparatus for forming silica by combustion of a liquid reactant using a heater
CN105330140A (en) Preparing method of high purity quartz sleeve for large-size optical fiber preform
JP4043768B2 (en) Manufacturing method of optical fiber preform
CN1197798C (en) Method for producing fibre-optical precast stick
JP2003020243A (en) Method for manufacturing ingot of optical fiber preform
JP2006206356A (en) Quartz glass preform for optical fiber and its manufacturing method
JP2001294440A (en) Method for manufacturing preform ingot for optical fiber and preform for optical fiber obtained by processing this preform ingot
JP2014177390A (en) Burner for producing porous glass preform
KR102545711B1 (en) Apparatus and method for manufacturing porous glass preform
EP0156370B1 (en) Method for producing glass preform for optical fiber
EP3153478B1 (en) Apparatus for producing porous glass preform
JP5678467B2 (en) Glass base material manufacturing method
KR20020067992A (en) Method of forming soot preform
JPH11349345A (en) Production of porous preform
KR100235556B1 (en) Method for producing grass preform for optical fiber using thermal spraying of quartz powder
JP2985667B2 (en) Method for producing glass preform for optical fiber
JPS62297239A (en) Production of deposited glass soot
JP4230073B2 (en) Method for producing aluminum-added glass base material
WO2011136380A1 (en) Method for producing glass base material
CN116288247A (en) Intelligent regulation double-control system for inhibiting D4 polymerization to generate gel
JPH111338A (en) Production of optical fiber base material
JP5907565B2 (en) Burner for manufacturing porous glass base material
CN117208915A (en) High-purity optical coated silicon dioxide and preparation method thereof
JPS5924097B2 (en) Glass body manufacturing method
JPS60260433A (en) Manufacture of base material for optical fiber