JPH11132164A - Scroll compressor - Google Patents

Scroll compressor

Info

Publication number
JPH11132164A
JPH11132164A JP29669497A JP29669497A JPH11132164A JP H11132164 A JPH11132164 A JP H11132164A JP 29669497 A JP29669497 A JP 29669497A JP 29669497 A JP29669497 A JP 29669497A JP H11132164 A JPH11132164 A JP H11132164A
Authority
JP
Japan
Prior art keywords
pressure
valve
scroll member
bypass
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29669497A
Other languages
Japanese (ja)
Other versions
JP4126736B2 (en
Inventor
Isamu Tsubono
勇 坪野
Kenichi Oshima
健一 大島
Atsushi Shimada
敦 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP29669497A priority Critical patent/JP4126736B2/en
Publication of JPH11132164A publication Critical patent/JPH11132164A/en
Application granted granted Critical
Publication of JP4126736B2 publication Critical patent/JP4126736B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • F04C29/124Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps
    • F04C29/126Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps of the non-return type
    • F04C29/128Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps of the non-return type of the elastic type, e.g. reed valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/24Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • F04C28/26Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves using bypass channels
    • F04C28/265Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves using bypass channels being obtained by displacing a lateral sealing face

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Rotary Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide high performance in the whole operation area by arranging a back face excessive intermediate pressure area to apply pressure slightly larger than intermediate pressure between suction pressure and delivery pressure to a turning back face being the anti-compression space side of an end plate of a scroll member. SOLUTION: An opposite surface side space of a valve element 100a leads to an intermediate pressure chamber 68 where a time average becomes intermediate pressure being pressure between suction pressure and delivery pressure by an intermediate side conducting passage 2α. Therefore, when pressure of a back face excessive intermediate pressure area 99 becomes higher than excessive intermediate pressure being a constant value correspondent to pressing force of a differential pressure regulating valve spring 100c in this intermediate pressure, the valve element 100a moves to the differential pressure regulating valve spring 100c side. As a result, among gas and oil in a turning side surface area 67, one except flowing in a suction chamber 60 through a slidingly movable surface flows in the intermediate pressure chamber 68 through a back face side conducting passage 2β, a clearance between the valve element 100a and a valve seal surface 2j, a side surface of the valve element 100a, a valve hole 2f and an intermediate side conducting passage 2α. As a result, volumetric efficiency is improved, and a small and large capacity compressor is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、スクロール圧縮機
に関わり、広い運転範囲における全断熱効率及び信頼性
を向上させる構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scroll compressor, and more particularly, to a structure for improving overall adiabatic efficiency and reliability in a wide operating range.

【0002】[0002]

【従来の技術】従来のスクロール圧縮機は、図51の公
知例のように、圧縮室内の圧力が吐出圧よりも高くなる
ことを抑制するバイパス弁を設けるとともに、吐出圧等
の高圧となっている流体供給部から流体を旋回スクロー
ル部材の背面に供給し、弁体と押付けばねからなる弁装
置を介して吸込系へ逃がす流路を設けていた。この結
果、旋回背面の圧力は吸込系の圧力よりも弁装置内の押
付けばねの強さに応じて概略一定値だけ大きい値に制御
され、これにより、両スクロール部材が互いに押付け合
う力を広い運転範囲において小さく設定でき、高い性能
を実現していた(第31回空気調和・冷凍連合講演会論
文集H9.4.1発行)。
2. Description of the Related Art A conventional scroll compressor is provided with a bypass valve for suppressing a pressure in a compression chamber from becoming higher than a discharge pressure as shown in a known example of FIG. There is provided a flow path for supplying a fluid from the fluid supply unit to the back surface of the orbiting scroll member and releasing the fluid to a suction system via a valve device including a valve body and a pressing spring. As a result, the pressure on the back of the orbit is controlled to a value larger than the pressure of the suction system by a substantially constant value in accordance with the strength of the pressing spring in the valve device. It could be set small in the range and high performance was realized (published by the 31st Air Conditioning and Refrigeration Union Lecture Paper Collection H9.4.1).

【0003】[0003]

【発明が解決しようとする課題】引き離し力は、圧縮室
部の流体の圧力分布とともに、吐出室の流体の圧力であ
る吐出圧で決まる。圧縮室部の流体の圧力分布は、極端
に大きな内部漏れがない限り、ほぼ吸込圧のみに依存す
る。一方、吐出圧と吸込圧は圧縮機の置かれている使用
環境下の設定により任意に変えることが可能なため、吐
出圧は吸込圧には依存しない。よって、引き離し力は独
立な二個のパラメータである吸込圧と吐出圧に依存す
る。引付力は引き離し力に対抗して両鏡板を引き付ける
ためにかける力であるため、スクロール部材の荷重変形
の観点からいって、その大きさは引き離し力と常にほぼ
同様のレベルであることが望ましい。また、その場合に
はスクロール部材とその支持部材との間に働く付勢力が
小さくなり、これらの間に相対運動がある場合にはそこ
での摩擦損失や摩耗の危険性が低減できるため、引付力
の大きさは常に引き離し力以上であるがほぼ同様のレベ
ルであることが望ましい。
The separation force is determined by the discharge pressure which is the pressure of the fluid in the discharge chamber together with the pressure distribution of the fluid in the compression chamber. The pressure distribution of the fluid in the compression chamber depends almost exclusively on the suction pressure, unless there is an extremely large internal leak. On the other hand, the discharge pressure does not depend on the suction pressure because the discharge pressure and the suction pressure can be arbitrarily changed according to the setting of the use environment where the compressor is placed. Thus, the separation force depends on two independent parameters, suction pressure and discharge pressure. Since the attraction force is a force applied to attract the two end plates against the separation force, from the viewpoint of the load deformation of the scroll member, it is desirable that the magnitude is always substantially the same level as the separation force. . In that case, the urging force acting between the scroll member and the support member is reduced, and when there is a relative movement between the scroll member and the support member, the risk of friction loss and wear there can be reduced. Although the magnitude of the force is always equal to or greater than the separating force, it is desirable that the magnitude is substantially the same.

【0004】しかし、実際の場合、スクロール部材には
軸線方向と垂直な方向の流体からの力や遠心力などがか
かるため、引付力はこれらにより発生する傾転モーメン
トにも対抗しなければならない。このため、運転条件毎
に、スクロール部材の鏡板を引き付けることができる大
きさのうちで付勢力が最小になる引付力を発生させる制
御をかけることが理想的となるが、コストを考えると、
特別な場合を除いて現実的には不可能である。そのた
め、実際の引付力付加手段は、引付力の大きさが、要求
される運転範囲全域において引き離し力の大きさに傾転
モーメントに対抗するための上乗せ分を加えた値を実現
するような比較的単純な機構にする。前述したように、
引き離し力は吸込圧と吐出圧により決まることから、引
付力付加手段は吸込圧と吐出圧に依存した機構としなけ
ればならない。
However, in the actual case, the scroll member receives a force from the fluid in a direction perpendicular to the axial direction, a centrifugal force, and the like. Therefore, the attraction force must counter the tilting moment generated by the force. . For this reason, for each operating condition, it is ideal to control the generation of the attraction force that minimizes the urging force among the sizes in which the end plate of the scroll member can be attracted, but considering the cost,
It is impossible in practice except in special cases. Therefore, the actual attraction force adding means realizes that the magnitude of the attraction force achieves a value obtained by adding an additional amount to counter the tilting moment to the magnitude of the separation force in the entire required operating range. A relatively simple mechanism. As previously mentioned,
Since the separating force is determined by the suction pressure and the discharge pressure, the attraction force applying means must have a mechanism depending on the suction pressure and the discharge pressure.

【0005】ところが、前記従来技術では、その引付力
付加手段を実現する方法として吸込圧+一定値(以後過
吸込圧値と記す)という吸込圧だけに依存した圧力を有
する背面過吸込圧領域を設定しているため、広い運転条
件で両鏡板が引き付けられるように前記過吸込圧値を設
定すると、付勢力が過大となる条件が生じ、その条件で
は、スクロール部材の変形による内部漏れの増大や付勢
部の摺動損失の増大による性能低下とともに、摺動部に
おける摩耗の危険性が高くなり信頼性の低下が生じると
いう問題があった。
However, in the prior art, as a method of realizing the attraction force applying means, a rear over-suction pressure region having a pressure dependent only on the suction pressure of suction pressure + constant value (hereinafter referred to as over-suction pressure value). Therefore, if the over-suction pressure value is set so that both end plates are attracted under a wide range of operating conditions, a condition may occur in which the biasing force becomes excessive, and under these conditions, internal leakage increases due to deformation of the scroll member. In addition to the performance degradation due to an increase in the sliding loss of the biasing portion and the urging portion, there is a problem that the danger of abrasion in the sliding portion increases and the reliability decreases.

【0006】本発明の目的は、前記従来技術の問題を解
決し運転条件全域で性能の高いスクロール圧縮機を提供
することにある。
An object of the present invention is to solve the above-mentioned problems of the prior art and to provide a scroll compressor having high performance in all operating conditions.

【0007】[0007]

【課題を解決するための手段】前記目的を達成するため
の第一の手段として、鏡板とそれに立設する渦巻き状の
スクロールラップを備えそのスクロールラップの立設す
る方向である軸線方向に垂直な面内を自転せずに旋回運
動する旋回スクロール部材と、鏡板とそれに立設する渦
巻き状のスクロールラップを備え少なくとも前記軸線方
向に垂直な面内の方向における運動が概略規制される非
旋回スクロール部材を噛み合わせ、それらスクロール部
材の間に概略閉塞して容積が縮小する圧縮室と、その圧
縮室側の流体の圧力による前記両スクロール部材の鏡板
を引き離す向きの引き離し力に対抗して前記両スクロー
ル部材の鏡板を引き付ける向きの引付力を各々の前記ス
クロール部材にかける引付力付加手段と、前記引付力と
前記引き離し力のベクトル和である付勢力の反力を各々
の前記スクロール部材に発生させるスクロール支持部材
と、流体を前記圧縮室に導入する吸込系と、前記圧縮室
内で加圧した流体を外部へ導出する吐出系を有する、ス
クロール圧縮機において、前記旋回スクロール部材にお
ける前記引付力付加手段の少なくとも一部は、前記旋回
スクロール部材の鏡板の反圧縮室側の面である旋回背面
に前記吸込室内の圧力である吸込圧と前記吐出系内の圧
力である吐出圧の間の中間圧よりもその中間圧の2割程
度の誤差内で一定の値だけ大きい圧力をかけるべく背面
過中間圧領域を設けて実現し、前記圧縮室の圧力が前記
吐出系内の圧力である吐出圧よりも高くなることを抑制
すべく圧力制御手段を設けた。
As a first means for achieving the above object, a head plate and a spiral scroll wrap provided on the end plate are provided, and the scroll plate is perpendicular to an axial direction in which the scroll wrap is provided. A orbiting scroll member that orbits without rotating in the plane, a non-orbiting scroll member that includes a head plate and a spiral scroll wrap standing upright and whose movement in at least a direction perpendicular to the axial direction is substantially restricted. And a compression chamber whose volume is reduced by substantially closing between the scroll members, and the two scroll members opposing a separating force in a direction of separating the end plates of the both scroll members due to the pressure of the fluid on the compression chamber side. Attraction force applying means for applying an attraction force in a direction of attracting the end plate of the member to each of the scroll members; A scroll support member for generating a reaction force of the urging force, which is the sum of the vectors, on each of the scroll members, a suction system for introducing a fluid into the compression chamber, and a discharge system for guiding a fluid pressurized in the compression chamber to the outside In the scroll compressor, at least a part of the attraction force applying means in the orbiting scroll member is a pressure in the suction chamber on a orbiting back surface which is a surface of the end plate of the orbiting scroll member on the side opposite to the compression chamber. It is realized by providing a back excessive intermediate pressure region to apply a pressure that is larger than the intermediate pressure between the suction pressure and the discharge pressure which is the pressure in the discharge system by a fixed value within an error of about 20% of the intermediate pressure. In addition, a pressure control means is provided to suppress the pressure of the compression chamber from becoming higher than the discharge pressure which is the pressure in the discharge system.

【0008】また、前記目的を達成するための第二の手
段として、鏡板とそれに立設する渦巻き状のスクロール
ラップを備えそのスクロールラップの立設する方向であ
る軸線方向に垂直な面内を自転せずに旋回運動する旋回
スクロール部材と、鏡板とそれに立設する渦巻き状のス
クロールラップを備え少なくとも前記軸線方向に垂直な
面内の方向における運動が概略規制される非旋回スクロ
ール部材を噛み合わせ、それらスクロール部材の間に概
略閉塞して容積が縮小する圧縮室と、その圧縮室側の流
体の圧力による前記両スクロール部材の鏡板を引き離す
向きの引き離し力に対抗して前記両スクロール部材の鏡
板を引き付ける向きの引付力を各々の前記スクロール部
材にかける引付力付加手段と、前記引付力と前記引き離
し力のベクトル和である付勢力の反力を各々の前記スク
ロール部材に発生させるスクロール支持部材と、流体を
前記圧縮室に導入する吸込系と、前記圧縮室内で加圧し
た流体を外部へ導出する吐出系を有する、スクロール圧
縮機において、前記非旋回スクロール部材のスクロール
支持部材を前記旋回スクロール部材とし、前記非旋回ス
クロール部材における前記引付力付加手段の少なくとも
一部は、前記非旋回スクロール部材の鏡板の反圧縮室側
の面である非旋回背面に前記吸込室内の圧力である吸込
圧と前記吐出系内の圧力である吐出圧の間の中間圧より
もその中間圧の2割程度の誤差内で一定の値だけ大きい
圧力をかけるべく背面過中間圧領域を設けて実現し、前
記圧縮室の圧力が前記吐出系内の圧力である吐出圧より
も高くなることを抑制すべく過圧縮抑制手段を設けた。
As a second means for achieving the above object, there is provided a head plate and a spiral scroll wrap provided on the end plate, and the head is rotated in a plane perpendicular to an axial direction in which the scroll wrap is provided. A non-orbiting scroll member that orbits without orbiting, and includes a head plate and a spiral scroll wrap standing upright, and a non-orbiting scroll member whose movement in at least a direction in a plane perpendicular to the axial direction is substantially restricted, A compression chamber whose volume is reduced by being substantially closed between the scroll members, and a head plate of the both scroll members opposed to a separating force in a direction of separating the head plates of the both scroll members due to the pressure of the fluid on the compression chamber side. Attraction force applying means for applying an attraction force in an attraction direction to each of the scroll members; and a vector sum of the attraction force and the separation force. A scroll support member for generating a reaction force of a certain urging force on each of the scroll members, a suction system for introducing a fluid into the compression chamber, and a discharge system for guiding a fluid pressurized in the compression chamber to the outside; In the scroll compressor, a scroll support member of the non-orbiting scroll member is the orbiting scroll member, and at least a part of the attraction force applying means in the non-orbiting scroll member is an anti-compression chamber of a head plate of the non-orbiting scroll member. A constant value within an error of about 20% of the intermediate pressure between the suction pressure, which is the pressure in the suction chamber, and the discharge pressure, which is the pressure in the discharge system, on the non-swirl back surface which is the side surface. A super-intermediate pressure region is provided to apply a pressure as large as possible. It provided with a control means.

【0009】また、前記目的を達成するための第三の手
段として、前記第一及び第二の手段とともに、前記吐出
系と前記背面過中間圧領域の間に設けた絞りを伴う吐出
背面間流路とその背面過中間圧領域と時間平均で概略前
記中間圧となる圧縮室である中間圧縮室の間に設けた背
面圧縮室間流路とその背面圧縮室間流路中に前記背面過
中間圧領域と前記中間圧縮室の圧力差を前記中間圧の2
割程度の誤差内で一定の値に制御すべく圧力差制御手段
を設けて、前記背面過中間圧領域の圧力の設定を行っ
た。
As a third means for achieving the above object, a flow between the discharge back surface and a throttle provided between the discharge system and the back intermediate pressure region together with the first and second means. And a back-over-compressor passage provided between the passage and the back-over-compressor pressure region and an intermediate-compression chamber, which is a compression chamber that becomes the above-described intermediate pressure on a time average. The pressure difference between the pressure region and the intermediate compression chamber
A pressure difference control means was provided to control the pressure to a constant value within an error of about a certain value, and the pressure in the rear intermediate pressure region was set.

【0010】また、前記目的を達成するための第四の手
段として、前記第一及び第二の手段とともに、前記吐出
系と前記背面過中間圧領域の間に設けた絞りを伴う吐出
背面間流路とその背面過中間圧領域と前記吸込系の間に
設けた背面吸込間流路とその背面吸込間流路中に前記背
面過中間圧領域と前記中間圧縮室の圧力差を前記中間圧
の2割程度の誤差内で一定の値に制御すべく圧力差制御
手段を設けて、前記背面過中間圧領域の圧力の設定を行
った。
[0010] As a fourth means for achieving the above object, a flow between a discharge back surface and a throttle provided between the discharge system and the back intermediate pressure region together with the first and second means. The pressure difference between the back excessive intermediate pressure region and the intermediate compression chamber in the back intake passage provided between the passage and the rear excessive intermediate pressure region and the suction system and the back intake passage. Pressure difference control means was provided to control the pressure to a constant value within an error of about 20%, and the pressure in the rear intermediate pressure region was set.

【0011】前記第一の手段は、前記旋回スクロール部
材の背面に吸込圧と吐出圧の間の中間圧よりも一定値
(以後、過中間圧値と称する)だけ大きい圧力をかける
背面過中間圧領域を設けるため、吸込圧よりも一定値だ
け大きい圧力をかける背面過吸込圧領域を設ける従来の
場合よりも、圧力レベルを吸込圧と吐出圧の間で自由に
設定できる点において前記従来技術よりも自由度があ
る。このため、広い運転範囲において、前記従来技術よ
りも付勢力を一層小さく設定でき、スクロール部材の変
形が抑えられ、圧縮室のシールの管理が容易になり、内
部漏れを抑制して全断熱効率の向上を実現できるという
効果がある。また、旋回スクロール部材とその支持部材
が相対運動を有する構成の場合には、摺動部に働く付勢
力が低減するため、そこにおける摺動損失や摩耗の危険
性が低減し、全断熱効率や信頼性の向上を実現できると
いう効果がある。
[0011] The first means is for applying a pressure to the rear surface of the orbiting scroll member that is higher than the intermediate pressure between the suction pressure and the discharge pressure by a constant value (hereinafter referred to as an excessive intermediate pressure value). In order to provide a region, compared to the conventional technology in that the pressure level can be freely set between the suction pressure and the discharge pressure, as compared with the conventional case in which a back over-suction pressure region in which a pressure larger than the suction pressure is applied by a fixed value is provided. There is also a degree of freedom. For this reason, in a wide operating range, the urging force can be set smaller than in the conventional technology, the deformation of the scroll member is suppressed, the management of the seal of the compression chamber is facilitated, the internal leakage is suppressed, and the total adiabatic efficiency is improved. There is an effect that improvement can be realized. In the case where the orbiting scroll member and the supporting member have a relative motion, the urging force acting on the sliding portion is reduced, so that the risk of sliding loss and wear there is reduced, and the total heat insulating efficiency and There is an effect that reliability can be improved.

【0012】前記第二の手段は、前記第一の手段の内容
を、非旋回スクロール部材を軸方向に可動とし非旋回背
面に背面過中間圧領域を設けて非旋回スクロール部材を
旋回スクロール部材に押し付ける方式のスクロール圧縮
機に適用したものであって、前記第一の手段による効果
と同様の効果を得る。
[0012] The second means may include the contents of the first means, wherein the non-orbiting scroll member is movable in the axial direction and a back excessive intermediate pressure area is provided on the non-orbiting rear surface to convert the non-orbiting scroll member to the orbiting scroll member. This is applied to a scroll compressor of a pressing system, and has the same effect as that of the first means.

【0013】前記第三の手段は、自らの吐出系から絞り
を伴う吐出背面間流路により前記背面過中間圧領域に圧
力を導入し、その圧力を圧力差制御手段を介して前記背
面圧縮室間流路により前記中間圧力室へ排出させるた
め、外部に圧力源を設ける必要がなくなる。この結果、
前記第一または第二の手段による効果とともに、外部か
らの助けを借りなくても圧縮機単体で運転が可能になる
ため、使い勝手を向上できるという効果がある。ここ
で、吐出背面間流路に絞りを設けているため、高圧の流
体が前記背面過中間圧領域に多量に流入することがなく
なる。このために、圧縮機の中で吸込系から吐出系へ短
絡的に流れて生じる能力の低下を回避できる。
The third means introduces a pressure from the own discharge system to the back intermediate pressure region through a discharge back surface flow path with a throttle, and controls the pressure via a pressure difference control means. Since the pressure is discharged to the intermediate pressure chamber by the interflow channel, it is not necessary to provide a pressure source outside. As a result,
In addition to the effects of the first and second means, the compressor can be operated alone without the need for external assistance, and thus there is an effect that usability can be improved. Here, since the restrictor is provided in the flow path between the discharge back surfaces, a large amount of high-pressure fluid does not flow into the back intermediate pressure region. For this reason, it is possible to avoid a reduction in the capacity caused by short-circuit flow from the suction system to the discharge system in the compressor.

【0014】前記第四の手段は、第三の手段において前
記背面過中間圧領域に導入した圧力を中間圧力室に排出
していたところを、吹込系に排出するように代えたもの
である。この結果、第三の手段において前記中間圧力室
へのガスの流入によって生じる指圧線図の膨らみがなく
なるため、全断熱効率を一層向上できるという効果があ
る。
The fourth means is such that the pressure introduced in the rear excess intermediate pressure area in the third means is discharged to the intermediate pressure chamber, and the pressure is discharged to the blowing system. As a result, since the swelling of the acupressure diagram caused by the gas flowing into the intermediate pressure chamber in the third means is eliminated, there is an effect that the total adiabatic efficiency can be further improved.

【0015】[0015]

【発明の実施の形態】本発明を、非旋回スクロール部材
がケーシングに対して固定された固定スクロール部材と
し、旋回スクロール部材の鏡板の反圧縮室側である旋回
背面に背面過中間圧領域を設け、要求される運転圧力条
件範囲で旋回スクロール部材のスクロール支持部材を前
記固定スクロール部材とした、すなわち旋回スクロール
部材を前記固定スクロール部材に押し付ける、横置き型
の旋回フロート式スクロール圧縮機に実施した第一の実
施例を、図1ないし図8に基づいて説明する。図1は圧
縮機の縦断面図、図2は固定スクロール部材の反スクロ
ールラップ側からの平面図、図3は固定スクロール部材
のスクロールラップ側からの平面図、図4は吐出圧のか
かる領域の説明図、図5は圧縮行程の説明図、図6はバ
イパス弁付近の縦断面図(図1におけるR部の拡大
図)、図7は圧力差制御弁付近の縦断面図(図1におけ
るP部の拡大図)、図8は圧力差制御弁の背圧室付近の
縦断面図(図7におけるQ部の拡大図)、図9は効果を
発揮する運転条件の説明図である。なお、この例は、圧
縮機の直径が、10mmから1000mm程度のものであ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention is a fixed scroll member in which a non-orbiting scroll member is fixed to a casing, and a rear excessive intermediate pressure area is provided on the orbiting back side of the end plate of the orbiting scroll member which is opposite to the compression chamber. In the required operating pressure condition range, the scroll support member of the orbiting scroll member was used as the fixed scroll member, that is, the orbiting scroll member was pressed against the fixed scroll member. One embodiment will be described with reference to FIGS. 1 is a longitudinal sectional view of the compressor, FIG. 2 is a plan view of the fixed scroll member from the scroll wrap side, FIG. 3 is a plan view of the fixed scroll member from the scroll wrap side, and FIG. FIG. 5 is an explanatory view of the compression stroke, FIG. 6 is a longitudinal sectional view near the bypass valve (an enlarged view of a portion R in FIG. 1), and FIG. 7 is a longitudinal sectional view near the pressure difference control valve (P in FIG. 1). FIG. 8 is a longitudinal sectional view (enlarged view of a portion Q in FIG. 7) of the vicinity of the back pressure chamber of the pressure difference control valve, and FIG. 9 is an explanatory diagram of operating conditions where the effect is exhibited. In this example, the diameter of the compressor is about 10 mm to 1000 mm.

【0016】まず、構造を説明する。First, the structure will be described.

【0017】旋回スクロール部材3は、鏡板3aにイン
ボリュートまたは代数螺線等を基本線とするスクロール
ラップ3bを立設し、その背面に旋回軸受3wを挿入し
た軸受保持部3sと、旋回オルダム溝3g,3hを設け
る。
The orbiting scroll member 3 is provided with a scroll wrap 3b having an involute or an algebraic spiral as a basic line on a head plate 3a, a bearing holding portion 3s having a orbital bearing 3w inserted on the back thereof, and an orbiting Oldham groove 3g. , 3h.

【0018】固定スクロール部材2は、鏡板2aにスク
ロールラップ2bを立設し、そのスクロールラップ歯先
面と同一面である非旋回基準面2uを設け、そこに周囲
溝2cを形成する。そして、歯底には四個のバイパス穴
2eが設けられる。ここでバイパス穴2eを四個設けた
理由は、形成される全ての圧縮室6に常にバイパス穴を
開口させるためである。このバイパス穴2eを覆うよう
にリード弁板であるバイパス弁板23xおよびその弁板
23xの開口度を制限するリテーナ23aをバイパスね
じ23hで固定する。また、中央近くには吐出穴2dが
開口している。また、歯底面の外縁側に吸込み掘込み2
qを設け、そこに背面から吸込みパイプ54を挿入する
ための吸込穴2vを設ける。
In the fixed scroll member 2, a scroll wrap 2b is erected on a head plate 2a, and a non-turn reference surface 2u which is the same plane as the scroll wrap tooth tip surface is provided, and a peripheral groove 2c is formed there. And four bypass holes 2e are provided in the tooth bottom. The reason why four bypass holes 2e are provided here is to always open the bypass holes in all the formed compression chambers 6. A bypass valve plate 23x, which is a reed valve plate, and a retainer 23a for limiting the opening degree of the valve plate 23x are fixed by a bypass screw 23h so as to cover the bypass hole 2e. Further, a discharge hole 2d is opened near the center. In addition, the suction digging 2
q, and a suction hole 2v for inserting the suction pipe 54 from the back is provided therein.

【0019】この吸込穴2vに前記吸込パイプ54を挿
入するが、そのときに弁体24aと逆止弁ばね24cを
入れ、吸込み側逆止弁24を形成する。さらに、固定ス
クロール部材2の外周にガスおよび油を流す複数個の流
通溝2rを設ける。そして、そのうちの一個にはモータ
線77を通す。前記周囲溝2cに背面側導通路2βと弁
穴2fを開け弁シール面または弁シール線2jを設け
る。そして、この弁穴2fの側面と、少なくともある期
間は概略閉塞した圧縮室に臨む歯底を繋ぐ中間側導通路
2αを設ける。この弁穴2fに板状の弁体100aと差
圧弁ばね100cを入れ、ばね位置決め突起100hに前記
差圧弁ばね100cの一端を挿入した状態で弁キャップ
100fを前記弁穴2fよりも直径の大きい弁キャップ
挿入部2kに圧入し、差圧制御弁100を形成する。
The suction pipe 54 is inserted into the suction hole 2v. At this time, the valve body 24a and the check valve spring 24c are inserted to form the suction side check valve 24. Further, a plurality of flow grooves 2r for flowing gas and oil are provided on the outer periphery of the fixed scroll member 2. The motor wire 77 is passed through one of them. A back side conduction path 2β and a valve hole 2f are formed in the peripheral groove 2c to provide a valve sealing surface or a valve sealing line 2j. Then, an intermediate side conduction path 2α is provided which connects the side face of the valve hole 2f and the tooth bottom facing the substantially closed compression chamber for at least a certain period. A plate-shaped valve body 100a and a differential pressure valve spring 100c are inserted into the valve hole 2f, and the valve cap 100f is moved to a valve having a larger diameter than the valve hole 2f in a state where one end of the differential pressure valve spring 100c is inserted into a spring positioning projection 100h. The differential pressure control valve 100 is formed by press-fitting into the cap insertion portion 2k.

【0020】このとき、前記差圧弁ばね100cは圧縮
され、前記弁体100aを前記弁シール面2jに押し付
ける。この押付力は過中間圧値を決定するため、これを
決める寸法である前記弁穴2fの深さと前記キャップ挿
入部2kの深さと前記弁体100aの厚さと前記差圧弁
ばね100cのばね定数及び自然長は精度良く管理しな
ければならない。特に前記差圧弁ばね100cの端部を
ばねの中心軸に概略垂直な面に仕上げておくことが必要
である。そうでないと、ばね100cを圧縮したときに
座屈が起こり、過中間圧値が異常に小さくなって、前記
旋回スクロール部材3が前記固定スクロール部材2から
離脱し正常な運転が不可能となる。また、前記弁キャッ
プ100fの外径を前記弁キャップ挿入部2kの径より
も小さくし押付力が正規の値になるところでこの弁キャ
ップ100fを拡管して止める方法もある。
At this time, the differential pressure valve spring 100c is compressed, and presses the valve body 100a against the valve seal surface 2j. Since this pressing force determines an excessive intermediate pressure value, the depths of the valve hole 2f, the depth of the cap insertion portion 2k, the thickness of the valve body 100a, the spring constant of the differential pressure valve spring 100c, The natural length must be managed accurately. In particular, it is necessary to finish the end of the differential pressure valve spring 100c on a plane substantially perpendicular to the center axis of the spring. Otherwise, buckling occurs when the spring 100c is compressed, and the excessive intermediate pressure value becomes abnormally small, so that the orbiting scroll member 3 separates from the fixed scroll member 2 and normal operation becomes impossible. There is also a method in which the outer diameter of the valve cap 100f is made smaller than the diameter of the valve cap insertion portion 2k, and the valve cap 100f is expanded and stopped when the pressing force becomes a regular value.

【0021】この時の押付力は、前記背面側導通路2β
に棒を挿入して前記弁体24aに一端を付け、その棒が
受ける力を検出する方法をとる。この方法の場合には、
上記した各部の寸法やばね定数の値を精度良く管理する
必要がなくなるため量産性が向上するという効果があ
る。これら二通りの方法とも組み立て完了時には、前記
弁キャップ100fの外周部と前記弁キャップ挿入部2
kの内周部の間は完全にシールされていなければならな
い。このシールを完全なものにするために、接着や溶接
を行ってもよい。ここで、前記ばね位置決め突起100
hの根元よりも先端の径を小さくしたテーパ形状にして
もよい。この場合、前記差圧弁ばね100cの端部が前記ば
ね位置決め突起100hの根元のみで固定されるため、
ばねの可動部は前記位置決め突起100hと接触せず、
ばねの自然長がばね単体時の自然長のまま確保される。
よって、過中間圧値の設定値からの誤差を小さく抑える
ことができるという特有の効果がある。
The pressing force at this time is the same as that of the back side conductive path 2β.
A method is adopted in which a rod is inserted into the valve body and one end is attached to the valve body 24a, and the force applied to the rod is detected. In this case,
Since there is no need to precisely control the dimensions and the values of the spring constants of the above-described parts, there is an effect that the mass productivity is improved. In both of these two methods, when the assembly is completed, the outer peripheral portion of the valve cap 100f and the valve cap insertion portion 2
The space between the inner circumferences of k must be completely sealed. Adhesion or welding may be performed to complete the seal. Here, the spring positioning protrusion 100
A tapered shape in which the diameter of the tip is smaller than the root of h may be used. In this case, since the end of the differential pressure valve spring 100c is fixed only at the base of the spring positioning projection 100h,
The movable portion of the spring does not contact the positioning protrusion 100h,
The natural length of the spring is maintained as it is when the spring is used alone.
Therefore, there is a specific effect that an error from the set value of the excessive intermediate pressure value can be reduced.

【0022】フレーム4は、外周部に前記固定スクロー
ル部材2を取り付ける固定取付け面4b、その内側に旋
回挾み込み面4dが設けられ、その挾み込み面4dには
一個または複数個の挾み込み面溝4αが設けられる。そ
のさらに内側には、オルダムリング5をフレーム4と旋
回スクロール部材3の間に配置するため、フレームオル
ダム溝4e,4f(ともに図示せず)を設ける。また、
中央部には軸シール4aと主軸受4mを設け、そのスク
ロール側にシャフトを受けるシャフトスラスト面4cを
設ける。その軸シール4aと主軸受4mの間の空間に向
かってフレーム側面から横穴4nが開口している。外周
面にはガスおよび油の流路となる複数の流通溝4hが設
けられる。そして、そのうちの一個にはモータ線77を
通す。
The frame 4 has a fixed mounting surface 4b for mounting the fixed scroll member 2 on the outer periphery thereof, and a revolving sandwiching surface 4d provided inside the fixed mounting surface 4b. A recessed surface groove 4α is provided. Further inside, in order to arrange the Oldham ring 5 between the frame 4 and the orbiting scroll member 3, frame Oldham grooves 4e and 4f (both not shown) are provided. Also,
A shaft seal 4a and a main bearing 4m are provided at the center, and a shaft thrust surface 4c for receiving the shaft is provided on the scroll side. A lateral hole 4n is opened from the side of the frame toward the space between the shaft seal 4a and the main bearing 4m. A plurality of flow grooves 4h serving as gas and oil flow paths are provided on the outer peripheral surface. The motor wire 77 is passed through one of them.

【0023】オルダムリング5の一面にフレーム突起部
5a,5b(ともに図示せず)が設けられ、もう一方の
面には旋回突起部5c,5dが設けられる。
Frame protrusions 5a and 5b (both not shown) are provided on one surface of the Oldham ring 5, and revolving protrusions 5c and 5d are provided on the other surface.

【0024】シャフト12には内部にシャフト給油孔1
2aと主軸受給油孔12bと軸シール給油孔12cと副
軸受給油孔12iが設けられる。また、その上部には径
の拡大したバランス保持部12hがあり、そこにシャフ
トバランス49が圧入される。さらに偏心部12fが設
けられる。
The shaft 12 has a shaft oil supply hole 1 therein.
2a, a main bearing lubrication hole 12b, a shaft seal lubrication hole 12c, and an auxiliary bearing lubrication hole 12i are provided. A balance holding portion 12h having an enlarged diameter is provided at an upper portion thereof, and a shaft balance 49 is press-fitted therein. Further, an eccentric portion 12f is provided.

【0025】ロータ15は積層鋼板15aに未着磁の永
久磁石(図示せず)を内蔵し、両端にロータバランス1
5c,15pを設ける。
The rotor 15 incorporates an unmagnetized permanent magnet (not shown) in a laminated steel plate 15a, and a rotor balance 1 at both ends.
5c and 15p are provided.

【0026】ステータ16は積層鋼板16bの外周部に
圧縮性ガスや油の流路となる複数のステータ溝16cを
設け、内部にコイル貫通穴16vが開いている。ここに
コイル16wが通り、コイルの折り返し部である副軸受
側コイルエンド部16xと主軸受側コイルエンド部16
yが前記ステータ16の両側に配される。ところで、こ
のステータ溝16cの代わりまたはステータ溝16cと
ともに前記積層鋼板16bの内部で前記コイル貫通穴1
6vより外側に貫通穴を開けてもよい。
The stator 16 is provided with a plurality of stator grooves 16c serving as flow paths for compressible gas and oil on the outer peripheral portion of the laminated steel plate 16b, and has a coil through hole 16v formed therein. The coil 16w passes here, and the sub-bearing side coil end 16x and the main bearing side coil end 16x, which are the folded portions of the coil, are provided.
y are arranged on both sides of the stator 16. By the way, in place of the stator groove 16c or together with the stator groove 16c, the coil through hole 1 is formed inside the laminated steel plate 16b.
A through hole may be formed outside 6v.

【0027】これらの構成要素を以下のように組み立て
る。まず、前記フレーム4の主軸受4aに前記シャフト
バランス49が圧入または接着された前記シャフト12
を挿入し、前記ロータ15を圧入または焼きばめする。
さらに、前記オルダムリング5を、前記フレームオルダ
ム溝4f,4eに前記オルダムリング5のフレーム突起
部5a,5b(ともに図示せず)を挿入して、前記フレ
ーム4に装着する。さらに、前記旋回スクロール部材3
を、その旋回オルダム溝3g,3hに前記オルダムリン
グ5の旋回突起部5c,5dを挿入し、旋回軸受3wに
前記シャフト12の前記偏心部12fを挿入しながら、
旋回挾み込み面4d上に装着する。
These components are assembled as follows. First, the shaft 12 in which the shaft balance 49 is press-fitted or bonded to the main bearing 4a of the frame 4
And press-fit or shrink-fit the rotor 15.
Further, the Oldham ring 5 is mounted on the frame 4 by inserting frame protrusions 5a and 5b (both not shown) of the Oldham ring 5 into the frame Oldham grooves 4f and 4e. Further, the orbiting scroll member 3
While inserting the turning protrusions 5c and 5d of the Oldham ring 5 into the turning Oldham grooves 3g and 3h and inserting the eccentric portion 12f of the shaft 12 into the turning bearing 3w,
It is mounted on the swivel pinching surface 4d.

【0028】この旋回スクロール部材3に前記固定スク
ロール部材2を噛み合わせ、前記シャフト12を廻しな
がら回転トルクの最小となる位置でカバーねじ53によ
り前記フレーム4に前記固定スクロール部材2を固定す
る。この時、前記旋回スクロール部材3の前記鏡板3a
の厚さが前記旋回挾み込み面4dと非旋回基準面2uの
間隔よりも5〜20μm程小さくなるようにし、前記旋
回スクロール部材3と前記固定スクロール部材2の軸線
方向における最大離間距離を規定する。また、前記旋回
スクロール部材3の背面に旋回過中間圧領域99を設け
る。
The fixed scroll member 2 is engaged with the orbiting scroll member 3, and the fixed scroll member 2 is fixed to the frame 4 by the cover screw 53 at a position where the rotational torque is minimized while rotating the shaft 12. At this time, the end plate 3a of the orbiting scroll member 3
The thickness of the orbiting scroll member 3 and the fixed scroll member 2 in the axial direction is determined so that the thickness of the orbiting scroll member 3 and the fixed scroll member 2 is smaller than the distance between the orbiting sandwiching surface 4d and the non-orbiting reference surface 2u. I do. Further, an orbiting excessive intermediate pressure area 99 is provided on the back surface of the orbiting scroll member 3.

【0029】次にあらかじめ前記ステータ16を焼きば
めまたは圧入するとともにガス抜き通路88aを有する
ガスカバー88が溶接された軸受支持板18を溶接また
は圧入した円筒ケーシング31に、上記の組立て部を挿
入し前記フレーム4または前記固定スクロール部材2の
側面にタック溶接を行う。ここで、タック溶接の代わり
に接着を行ってもよい。この時には、溶接による組立て
部の変形がなくなり性能が向上する。
Next, the above-mentioned assembly portion is inserted into the cylindrical casing 31 to which the bearing support plate 18 to which the gas cover 88 having the gas vent passage 88a has been welded or press-fitted is pre-fitted with the stator 16 or press-fitted. Then, tack welding is performed on the side surface of the frame 4 or the fixed scroll member 2. Here, bonding may be performed instead of tack welding. At this time, deformation of the assembled portion due to welding is eliminated, and the performance is improved.

【0030】これにより、前記ロータ12と前記ステー
タ16によってモータ19を形成し、前記軸受支持板1
8と前記フレーム4の間にモータ室62を形成する。次
に前記軸受支持板18の中央部の穴から出た前記シャフ
ト12の一端が軸受ハウジング70に装着した球面軸受
72の円筒穴に挿入されるように前記軸受ハウジングを
組み込み、前記シャフト12の回転トルクを検出しなが
ら軸受ハウジング70の位置を調整してその回転トルク
が最小になる位置で前記軸受ハウジング70を前記軸受
支持板18にスポット溶接する。
Thus, the motor 19 is formed by the rotor 12 and the stator 16, and the bearing support plate 1 is formed.
A motor chamber 62 is formed between the frame 8 and the frame 4. Next, the bearing housing is assembled so that one end of the shaft 12 protruding from the hole at the center of the bearing support plate 18 is inserted into the cylindrical hole of the spherical bearing 72 mounted on the bearing housing 70, and the rotation of the shaft 12 is performed. The position of the bearing housing 70 is adjusted while detecting the torque, and the bearing housing 70 is spot-welded to the bearing support plate 18 at a position where the rotational torque is minimized.

【0031】そして、給油管71を溶接した給油キャッ
プ90をシール73を挟んで前記軸受ハウジング70に
ねじ込む。ここで、給油管71は給油キャップ90を前
記軸受ハウジング70にねじ込んだ後に下方に曲げる。
また、曲った給油管のついたねじのない給油キャップを
ねじのない軸受ハウジングに挿入したうえでスポット溶
接してもよい。ここで、前記シール73を挟み込まずに
シールが行われるよう、シール面の精度を上げ、このシ
ール面の押付力を増大させてもよい。そして、前記円筒
ケーシング31に吐出管55が上部に溶接された底ケー
シング21を溶接し、貯油室80を形成する。給油管7
1の先端近くに、マグネット89を設ける。
Then, the oil supply cap 90 to which the oil supply pipe 71 is welded is screwed into the bearing housing 70 with the seal 73 interposed therebetween. Here, the oil supply pipe 71 is bent downward after screwing the oil supply cap 90 into the bearing housing 70.
Alternatively, a spotless welding cap with a bent oil supply pipe may be inserted into a threadless bearing housing. Here, the accuracy of the seal surface may be increased and the pressing force of the seal surface may be increased so that the seal is performed without sandwiching the seal 73. Then, the bottom casing 21 in which the discharge pipe 55 is welded to the upper part of the cylindrical casing 31 is welded to form an oil storage chamber 80. Refueling pipe 7
A magnet 89 is provided near the front end of the first.

【0032】また、前記円筒ケーシング31にハーメチ
ック端子22が上部に溶接された上ケーシング20を前
記ハーメチック端子22の内部側端子にモータ線77を
装着して溶接し、前記吸込みパイプ54を溶接して、固
定背面室61を形成する。この状態で、前記ステータ1
6に電流を流し、前記ロータ15内部の永久磁石15bを
着磁し、モータ19を形成する。その後、油を入れる。
Further, the upper casing 20 in which the hermetic terminal 22 is welded to the upper portion of the cylindrical casing 31 is welded by attaching a motor wire 77 to an inner terminal of the hermetic terminal 22 and welding the suction pipe 54. , The fixed rear chamber 61 is formed. In this state, the stator 1
6, a permanent magnet 15 b inside the rotor 15 is magnetized to form a motor 19. Then add the oil.

【0033】次に動作を説明する。まず、圧縮機起動直
後の動作を説明する。
Next, the operation will be described. First, the operation immediately after starting the compressor will be described.

【0034】前記モータ19を回転開始させることによ
り、前記シャフト12が回転し前記旋回スクロール部材
3が旋回運動を始める。ここで、前記オルダムリング5
があるために前記旋回スクロール部材3の自転が防止さ
れる。この動作により吸込室60内の圧縮性ガスが両ス
クロール部材の間に形成される圧縮室6に閉じ込められ
圧縮されて前記吐出穴2dから固定背面室61に吐出さ
れ始める。ところで、前記旋回スクロール部材3の前記
鏡板3aの厚さが前記旋回挾み込み面4dと非旋回基準
面2uの間隔よりも5〜20μm程小さくなるように
し、前記旋回スクロール部材3と前記固定スクロール部
材2の軸線方向における最大離間距離を規定している。
When the motor 19 starts rotating, the shaft 12 rotates and the orbiting scroll member 3 starts to orbit. Here, the Oldham ring 5
As a result, the rotation of the orbiting scroll member 3 is prevented. By this operation, the compressible gas in the suction chamber 60 is confined in the compression chamber 6 formed between the two scroll members, is compressed, and starts to be discharged from the discharge hole 2d to the fixed rear chamber 61. By the way, the thickness of the end plate 3a of the orbiting scroll member 3 is set to be smaller than the distance between the orbiting sandwiching surface 4d and the non-orbiting reference surface 2u by about 5 to 20 [mu] m, so that the orbiting scroll member 3 and the fixed scroll are fixed. The maximum separation distance in the axial direction of the member 2 is defined.

【0035】このため、圧縮機起動直後は、前記旋回ス
クロール部材3は前記圧縮室6内のガスによる引き離し
力で前記固定スクロール部材2から引き離され、前記フ
レーム4側に前記した距離だけ移動する。よって、鏡板
3aの反ラップ側と前記旋回挟み込み面4dが摺動し、
鏡板3aのラップ側と前記非旋回基準面2uの間には前
記した最大離間距離だけの隙間が形成される。同時に、
ラップの歯先と歯底間の隙間も同程度となるため、内部
漏れが大きく高効率な運転はできないが、5〜20μm
程度の最大離間距離であれば、モータ回転数を起動直後
に許容できる最高値程度まで上昇させることにより内部
漏れを抑制し、吸込圧を十分に下げるかまたは吐出圧を
十分に上昇させることができる。前記固定背面室61に
吐出されたガスは前記固定スクロール部材2および前記
フレーム4の外周にある流通溝2rおよび4hを通って
前記モータ室62に入る。
For this reason, immediately after the start of the compressor, the orbiting scroll member 3 is separated from the fixed scroll member 2 by the separating force of the gas in the compression chamber 6 and moves to the frame 4 by the distance described above. Therefore, the opposite lap side of the end plate 3a slides on the turning pinching surface 4d,
A gap is formed between the lap side of the end plate 3a and the non-swirl reference surface 2u by the maximum separation distance described above. at the same time,
Since the gap between the tooth tip and the tooth bottom of the lap is almost the same, internal leakage is large and high-efficiency operation cannot be performed.
If the maximum separation distance is approximately the same, the internal rotation can be suppressed by increasing the motor rotation speed to the maximum allowable value immediately after startup, and the suction pressure can be sufficiently reduced or the discharge pressure can be sufficiently increased. . The gas discharged into the fixed rear chamber 61 enters the motor chamber 62 through the fixed scroll member 2 and the flow grooves 2r and 4h formed on the outer periphery of the frame 4.

【0036】そのモータ室62に入ったガスは、前記ス
テータ溝16cを通りながら前記ステータ16を冷却
し、また、前記ロータ15の貫通穴15hを通りながら
ロータ15を冷却し、さらにロータとステータのギャッ
プを通って両者を冷却する。ここで、前記ステータ溝1
6cをなくすと、多量のガス及び油がロータと接触し
て、ロータの冷却が促進されるため、モータ効率が向上
するという特有の効果がある。その過程で、ガスは前記
モータ19の各部に衝突してその中に含まれている油を
分離する。分離された油は前記モータ室62の下部に落
ちる。前記モータ室62内部のガスは通気孔18bを通
過して前記貯油室80の上部に流入し、吐出パイプ55
より外部に出る。ここで、その通気孔18bの流路抵抗
により前記貯油室80の圧力は前記モータ室62の圧力
よりも低くなる。よって、前記モータ室62の油は導油
孔18aを通って前記貯油室80に流入する。このと
き、導油孔18aからはガスも同時に前記貯油室80に
流入し、前記貯油室80内の油中を気泡となって上昇す
るが、前記ガス抜き通路88bを設けているために気泡
はその内部を上昇し通路開口部88bから前記貯油室8
0上部のガス部に抜けるため、前記給油管71には気泡
が入らず、軸受の信頼性を向上できるという特有の効果
がある。
The gas entering the motor chamber 62 cools the stator 16 while passing through the stator groove 16c, cools the rotor 15 while passing through the through hole 15h of the rotor 15, and further cools the rotor and the stator. Cool both through the gap. Here, the stator groove 1
Eliminating 6c has a unique effect of improving motor efficiency because a large amount of gas and oil comes into contact with the rotor to promote cooling of the rotor. In the process, the gas collides with each part of the motor 19 and separates the oil contained therein. The separated oil falls to the lower part of the motor chamber 62. The gas inside the motor chamber 62 passes through the vent hole 18b and flows into the upper part of the oil storage chamber 80, and the discharge pipe 55
Get out more. Here, the pressure in the oil storage chamber 80 becomes lower than the pressure in the motor chamber 62 due to the flow path resistance of the ventilation hole 18b. Therefore, the oil in the motor chamber 62 flows into the oil storage chamber 80 through the oil guide hole 18a. At this time, gas also flows into the oil storage chamber 80 from the oil guide hole 18a at the same time and rises as oil bubbles in the oil in the oil storage chamber 80. The oil storage chamber 8 rises inside the oil storage chamber 8 through the passage opening 88b.
Since the gas flows to the upper gas portion, no air bubbles enter the oil supply pipe 71, and there is a specific effect that the reliability of the bearing can be improved.

【0037】以上より、前記モータ室62の油面を前記
ロータ15や前記シャフト12へかかることなく、油を
小形の圧縮機内部に蓄えることが可能となるため、高信
頼性の横置き圧縮機を小形で実現できるという本実施例
特有の効果がある。圧縮機起動直後の前記背面過中間圧
領域99の圧力は、前記したように前記フレーム4の前
記挟み込み面溝4αと鏡板3aのラップ側と前記非旋回
基準面2uの隙間により、吸込圧に近い圧力となってい
る。前記背面過中間圧領域99の前記圧力とほぼ吐出圧
に近い前記貯油室内80との差圧等により前記貯油室8
0の油は前記給油管71から前記給油キャップ90内に
入り、そこで毛細管現象や遠心力により前記球面軸受7
2の球面側の軸受部に供給される。
As described above, the oil level in the motor chamber 62 does not reach the rotor 15 or the shaft 12, and the oil can be stored in the small compressor. Can be realized in a small size, which is an effect unique to the present embodiment. Immediately after the compressor is started, the pressure in the back intermediate pressure region 99 is close to the suction pressure due to the gap between the sandwiching surface groove 4α of the frame 4 and the lap side of the end plate 3a and the non-swirl reference surface 2u, as described above. Pressure. The oil pressure in the oil storage chamber 8 is determined by a pressure difference between the pressure in the rear excess intermediate pressure area 99 and the oil storage chamber 80 which is almost close to the discharge pressure.
The oil of No. 0 enters the oil supply cap 90 from the oil supply pipe 71 where the spherical bearing 7
2 is supplied to the bearing portion on the spherical surface side.

【0038】さらに、断面積が大きいために流路抵抗の
ほとんどない前記シャフト給油孔12aに入り、一部は
遠心力が加わることにより前記副軸受給油孔12iを通
って前記球面軸受72の中心穴側の軸受部に供給され、
他の一部は同様に遠心力が加わることにより前記軸シー
ル給油穴12cを通って前記軸シール4aに供給され、
その他の一部は遠心力により前記主軸受給油孔12bを
通って前記主軸受4mに供給され、残りは旋回スクロー
ル部材3の背面中央部に達した後前記と同様の差圧と遠
心力により前記旋回軸受3wに供給される。
Further, the shaft enters the shaft oil supply hole 12a which has almost no flow path resistance because of its large cross-sectional area, and a part of the center hole of the spherical bearing 72 passes through the auxiliary bearing oil supply hole 12i when a centrifugal force is applied. Supplied to the side bearing,
The other part is similarly supplied to the shaft seal 4a through the shaft seal oil supply hole 12c by applying centrifugal force,
The other part is supplied to the main bearing 4m through the main bearing oil supply hole 12b by centrifugal force, and the rest reaches the center of the back surface of the orbiting scroll member 3 and then the same differential pressure and centrifugal force as described above. It is supplied to the swing bearing 3w.

【0039】この結果、前記旋回スクロール部材3背面
の中央部に吐出圧のかかる背面吐出圧領域95を形成す
る。前記主軸受4m及び前記旋回軸受3wに給油された
油はそこの摩擦で温度上昇した後に前記背面過中間圧領
域99へ入る。この時、軸受部における油の平均圧力は
前記背面過中間圧領域99の圧力よりも前記貯油室80
側の圧力に近い高圧であるため、前記背面過中間圧領域
99に吹き出す。この結果、軸受部の摩擦による温度上
昇と圧力の急激な低下により、油のガス成分の溶解度が
低下し、油に溶け込んでいたガス成分が一気に気化す
る。この時に気化熱を周囲から奪うので、この付近の温
度レベルを低く抑えるため前記主軸受4mや前記旋回軸
受3wの信頼性が向上するという特有の効果がある。
As a result, a back surface discharge pressure region 95 for applying a discharge pressure is formed at the center of the back surface of the orbiting scroll member 3. The oil supplied to the main bearing 4m and the slewing bearing 3w enters the rear excessive intermediate pressure area 99 after the temperature rises due to the friction there. At this time, the average pressure of the oil in the bearing portion is higher than the pressure in the back intermediate pressure region 99 in the oil storage chamber 80.
Since it is a high pressure close to the pressure on the side, it blows out to the back excessive intermediate pressure region 99. As a result, the solubility of the gas component of the oil decreases due to the temperature rise and the sharp decrease in the pressure due to the friction of the bearing portion, and the gas component dissolved in the oil evaporates at a stretch. At this time, since heat of vaporization is taken from the surroundings, there is a specific effect that the reliability of the main bearing 4m and the slewing bearing 3w is improved in order to suppress the temperature level in the vicinity thereof to be low.

【0040】また、ここでの油はミスト状になるため、
前記オルダムリング5の摺動部に確実に給油でき、信頼
性が向上するという特有の効果もある。この結果、前記
背面過中間圧領域99へ流入するガス量が圧縮機起動直
後に急激に増大する。このガスは、油とともに、前記挟
み込み面溝4α及び鏡板3aのラップ側と前記非旋回基
準面2uの隙間を通って前記吸込み室60に流入する
が、鏡板3aのラップ側と前記非旋回基準面2uの隙間
が小さいことと流れる流体中の油量が多く部分的にシー
ル部を形成するため、前記背面過中間圧領域99へ流入
する量に比較して流出する量が少なく、前記背面過中間
圧領域99の圧力が急激に上昇する。
Also, since the oil here becomes a mist,
The sliding portion of the Oldham ring 5 can be reliably lubricated, and there is a specific effect that reliability is improved. As a result, the amount of gas flowing into the rear excess intermediate pressure region 99 increases rapidly immediately after the start of the compressor. This gas flows into the suction chamber 60 together with the oil through the sandwiching surface groove 4α and the gap between the lap side of the end plate 3a and the non-swirl reference surface 2u. Since the gap of 2u is small and the amount of oil in the flowing fluid is large and partially forms a seal portion, the amount of outflow is smaller than the amount of inflow to the back excess intermediate pressure area 99, and the back excess The pressure in the pressure region 99 rises sharply.

【0041】この結果、吐出圧の上昇に伴う前記背面吐
出圧領域95内の圧力上昇の寄与とともに、前記旋回ス
クロール部材3にかかる引付力が急激に増大し、圧縮機
起動のほぼ直後もしくは非常に短時間で引付力の大きさ
が引離し力の大きさ以上となり、前記旋回スクロール部
材3は前記固定スクロール部材2に押し付けられる。こ
の結果、スクロールラップの歯先と歯底間の隙間が小さ
くなるかまたはなくなるために、前記圧縮室6の密閉性
が向上して、圧縮途中のガスの内部漏れ量が低減し、起
動直後に比較して性能が飛躍的に向上し、正規の運転状
態に移行する。
As a result, together with the contribution of the pressure increase in the back discharge pressure region 95 due to the rise of the discharge pressure, the attractive force applied to the orbiting scroll member 3 sharply increases, and almost immediately after the start of the compressor or in an emergency. In a short time, the magnitude of the attraction force becomes greater than the magnitude of the separation force, and the orbiting scroll member 3 is pressed against the fixed scroll member 2. As a result, the gap between the tooth tip and the tooth bottom of the scroll wrap is reduced or eliminated, so that the hermeticity of the compression chamber 6 is improved, the amount of internal leakage of gas during compression is reduced, and immediately after startup, The performance is dramatically improved as compared to the normal operation state.

【0042】次に、前記旋回スクロール部材3が前記固
定スクロール部材2に押し付けられた正規の運転時の動
作を説明する。
Next, the operation during normal operation in which the orbiting scroll member 3 is pressed against the fixed scroll member 2 will be described.

【0043】前記背面過中間圧領域99に流入したガス
及び油の全てが前記吸込み室60へ直接流れ込まない点
以外は、圧縮機起動直後と同様であるため、この部分の
みを説明する。前記背面過中間圧領域99に流入したガ
ス及び油は、前記挾み込み面溝4α及び前記鏡板3aの
反ラップ面と前記旋回挟み込み面4dの隙間を通って、
前記鏡板3aの側面と前記フレーム4の間の空間である
旋回側面領域67に入る。このうちの一部は、前記鏡板
3aのラップ側と前記非旋回基準面2uの両摺動面を潤
滑しながら前記吸込み室60に流入する。前記旋回側面
領域67と前記背面過中間圧領域99の間の流路抵抗は
小さいため、この旋回側面領域67の圧力は前記背面過
中間圧領域99の圧力にほぼ等しい。
Except that all the gas and oil flowing into the rear excess intermediate pressure area 99 do not directly flow into the suction chamber 60, the operation is the same as that immediately after the start of the compressor, so only this part will be described. The gas and oil flowing into the rear excess intermediate pressure region 99 pass through the sandwiching surface groove 4α and the gap between the anti-lap surface of the end plate 3a and the turning sandwiching surface 4d,
It enters a turning side surface area 67 which is a space between the side surface of the end plate 3a and the frame 4. Some of these flow into the suction chamber 60 while lubricating both sliding surfaces of the lap side of the end plate 3a and the non-swirl reference surface 2u. Since the flow resistance between the turning side surface region 67 and the back excessive intermediate pressure region 99 is small, the pressure in the turning side region 67 is substantially equal to the pressure in the rear excessive intermediate pressure region 99.

【0044】図8からわかるように、前記周囲溝2cは
常にこの旋回側面領域67と通じているため、この周囲
溝2c内の圧力は、前記背面過中間圧領域99の圧力と
なり、前記背面側導通路2βを経由して前記差圧制御弁
100の前記弁体100aのフレーム側の面には前記背
面過中間圧領域99の圧力がかかる。前記弁体100aの反
対面側の空間は、前記中間側導通路2αにより時間平均
が吸込圧と吐出圧の間の圧力である中間圧になる中間圧
力室68と通じているため、前記背面過中間圧領域99
の圧力が、前記中間圧よりも前記差圧弁ばね100cの
押付力に対応した一定値である過中間圧値よりも高くな
ると、前記弁体100aが前記差圧弁ばね100c側に
動く。この結果、前記旋回側面領域67内のガス及び油
のうちで摺動面を経由して前記吸込み室60に流入した
もの以外は、前記背面側導通路2β,前記弁体100c
と前記弁シール面2jの隙間,前記弁体100cの側
面,前記弁穴2f,前記中間側導通路2αを順次経由し
て、前記中間圧力室68に流入する。そして、圧縮室内
のガスと混ざって圧縮され前記吐出穴2dから吐出す
る。
As can be seen from FIG. 8, since the peripheral groove 2c always communicates with the turning side surface area 67, the pressure in the peripheral groove 2c becomes the pressure of the rear excessive intermediate pressure area 99, and The pressure of the back excess intermediate pressure region 99 is applied to the frame-side surface of the valve body 100a of the differential pressure control valve 100 via the conduction path 2β. The space on the opposite surface side of the valve element 100a communicates with the intermediate pressure chamber 68, which is an intermediate pressure whose time average is the pressure between the suction pressure and the discharge pressure by the intermediate conduction path 2α. Intermediate pressure area 99
Is higher than the intermediate pressure, that is, the excess intermediate pressure value which is a constant value corresponding to the pressing force of the differential pressure valve spring 100c, the valve body 100a moves toward the differential pressure valve spring 100c. As a result, except for the gas and oil in the swivel side surface region 67 which have flowed into the suction chamber 60 via the sliding surface, the back side passageway 2β, the valve body 100c
And through the gap between the valve seal surface 2j, the side surface of the valve body 100c, the valve hole 2f, and the intermediate side passageway 2α, and flows into the intermediate pressure chamber 68. Then, it is mixed with the gas in the compression chamber and compressed, and is discharged from the discharge hole 2d.

【0045】このように、吸込み室60に全量を戻さな
い結果、体積効率が向上し、小型で能力の大きい圧縮機
を提供できるという効果がある。このようにして、前記
背面過中間圧領域99の圧力は、前記中間圧よりも前記
差圧弁ばね100cの押付力に対応した一定値だけ高い
圧力に制御される。そして、前記中間圧は吸込圧と概略
比例する値に制御され、その比例定数は、前記中間側導
通路2αの中間圧力室側開口端のラップに沿ったラップ
巻き終わりからの距離に概略対応した値となる。前記バ
イパス弁23が前記中間圧力室68に開口する期間に開
くような条件では、バイパス弁23が開いたためにそれ
以降の中間圧力室の圧力が大きく上昇せず、開かないと
きよりも、比例定数の値は小さくなり、その低下率は、
前記バイパス弁23が前記中間圧力室68に開口する期
間における前記バイパス弁23の開口期間の割合が高い
ほど、大きくなる。これらをまとめると、前記過中間圧
領域99の圧力は以下のように概略制御される。
As described above, as a result of not returning the entire amount to the suction chamber 60, there is an effect that the volume efficiency is improved, and a compact and high-performance compressor can be provided. In this way, the pressure in the rear excess intermediate pressure region 99 is controlled to a pressure higher than the intermediate pressure by a constant value corresponding to the pressing force of the differential pressure valve spring 100c. The intermediate pressure is controlled to a value substantially proportional to the suction pressure, and the proportional constant roughly corresponds to the distance from the wrap end along the wrap of the intermediate pressure chamber side opening end of the intermediate side passageway 2α. Value. Under the condition that the bypass valve 23 opens during the period in which it opens into the intermediate pressure chamber 68, the pressure of the intermediate pressure chamber thereafter does not increase significantly due to the opening of the bypass valve 23, and the proportional constant is larger than when the bypass valve 23 does not open. Becomes smaller, and the decrease rate becomes
The larger the ratio of the opening period of the bypass valve 23 to the period during which the bypass valve 23 opens to the intermediate pressure chamber 68, the larger the ratio. In summary, the pressure in the excessive intermediate pressure region 99 is roughly controlled as follows.

【0046】A,B(過中間圧値),Cをある定数とし
て、 (a)前記バイパス弁23が前記中間圧力室68に開口
する期間に開かない運転条件時、背面過中間圧領域99
の圧力≒A・吸込圧+B (b)前記バイパス弁23が前記中間圧力室68に開口
する期間に開く運転条件時、背面過中間圧領域99の圧
力≒C・吸込圧+B (ここで、C<A) ここで、Aの値は、前記中間側導通路2αの中間圧力室
側開口端のラップに沿ったラップ巻き終わりからの距離
を変えることにより、任意に設定できる。これに伴って
Cの値も変わる。
Assuming that A, B (excess intermediate pressure value) and C are certain constants:
(B) When the bypass valve 23 is open during the period in which the bypass valve 23 is open to the intermediate pressure chamber 68, the pressure ΔC · suction pressure + B (where C <A) Here, the value of A can be arbitrarily set by changing the distance from the end of the wrap winding along the wrap of the intermediate pressure chamber side opening end of the intermediate side passageway 2α. Accordingly, the value of C also changes.

【0047】以上のように、過中間圧値とともに前記中
間圧を任意に設定できるため、圧縮機の使用条件に合わ
せて最適な中間圧と過中間圧値の組み合わせを選ぶこと
により、従来技術の場合よりも、要求される全運転範囲
で旋回スクロール部材を固定スクロール部材に押し付け
るとともに、広い運転条件範囲で付勢力を小さくし摺動
損失の小さい高性能な圧縮機を実現できるという効果が
ある。
As described above, the intermediate pressure can be arbitrarily set together with the excess intermediate pressure value. Therefore, by selecting an optimum combination of the intermediate pressure and the excess intermediate pressure value according to the operating conditions of the compressor, the conventional art can be used. As compared with the case, the orbiting scroll member is pressed against the fixed scroll member in the entire required operating range, and a high-performance compressor having a small urging force and a small sliding loss in a wide operating condition range can be realized.

【0048】また、この実施例の場合、前記吐出背面間
流路102は、その絞り部を軸受隙間とする前記主軸受
4m及び前記旋回軸受3wの給油流路が兼ねていること
はこれまでの説明から明らかであるから、外部の力を借
りることなく圧縮機自ら起動することが可能となるた
め、使い勝手が向上するという効果がある。
Further, in the case of this embodiment, the oil supply passage of the main bearing 4m and the swivel bearing 3w having the throttle portion as a bearing gap serves as the oil supply passage of the discharge back-to-back passage 102. As is clear from the description, the compressor itself can be started without using external force, and thus, there is an effect that usability is improved.

【0049】ところで、この前記背面過中間圧領域99
を経由するガスは、圧縮機の中で吐出系から圧縮途中の
前記中間圧力室68へ短絡する流れであり、スクロール
ラップにおける内部漏れと結果的には同様のものである
ため、極力少なくすることが必要である。ここでは前記
吐出背面間流路102の絞り流路である軸受隙間がある
ことから、この流量は非常に小さく、圧縮機の性能低下
は生じない。
By the way, the back intermediate pressure region 99
Is short-circuited from the discharge system in the compressor to the intermediate pressure chamber 68 in the middle of compression. is necessary. Here, since there is a bearing gap which is a throttle channel of the discharge back-to-back channel 102, the flow rate is very small, and the performance of the compressor does not decrease.

【0050】ここで、前記ガス抜き通路88bの内部に
は耐熱性繊維または耐熱性線材を編んだりランダムにか
らめて形成した多孔性固体88cを配置する。これによ
り、前記ガス抜き通路88b内部の油中を上昇する気泡
が油の表面まで達して潰れたときにミスト化した油を補
足するとともに、気泡の油中の上昇速度を低減してミス
ト化する油量の低減を実現し、この圧縮機からの吐出油
量の低減を実現するという効果がある。
Here, a porous solid 88c formed by knitting or randomly entangled heat-resistant fibers or heat-resistant wires is disposed inside the gas vent passage 88b. Thereby, the bubbles rising in the oil inside the degassing passage 88b reach the surface of the oil and are supplemented with the mist-formed oil when crushed, and the rising speed of the bubbles in the oil is reduced to form the mist. There is an effect that the amount of oil is reduced and the amount of oil discharged from the compressor is reduced.

【0051】さらに、油中に過飽和に溶解しているガス
成分の気化のきっかけとなる気泡核生成箇所になるた
め、油の粘度の低下を抑制でき、各軸受の信頼性を向上
するという効果がある。この多孔性固体88cの内部に
はドライヤの粒子を多数充填したドライヤ層88dを設
ける。このドライヤ層88dは、多孔性固体としての上
記した効果を有するとともに、油内の水分を除去する。
このガス抜き通路88bの内部では油が上昇するガスの
気泡により常時攪拌されるため、ドライヤの水分吸着効
率が高くなり、油内の水分を短時間で取り除くことが可
能となる。
Further, since the gas nucleus is formed at a location where bubble nuclei are generated to trigger gas components supersaturated in oil to be vaporized, a decrease in oil viscosity can be suppressed, and the effect of improving the reliability of each bearing can be improved. is there. A dryer layer 88d filled with a large number of dryer particles is provided inside the porous solid 88c. The dryer layer 88d has the above-described effect as a porous solid and removes moisture in oil.
Inside the gas vent passage 88b, the oil is constantly agitated by the gas bubbles of the rising gas, so that the moisture adsorption efficiency of the dryer increases, and the moisture in the oil can be removed in a short time.

【0052】この結果、油が加水分解を起こして酸等の
材料の摩耗を進行させる問題物質を生成するエステル系
等の油の場合には摺動部の信頼性を向上するという特有
の効果や、圧縮機内の錆の発生を抑制するという効果が
ある。
As a result, in the case of an ester-based oil or the like which produces a problematic substance which causes the oil to hydrolyze and cause the abrasion of a material such as an acid, a specific effect of improving the reliability of the sliding portion is obtained. This has the effect of suppressing the generation of rust in the compressor.

【0053】また、前記ドライヤ層88dは前記多孔性
固体88cに取囲まれているため、ドライヤの粒子同士
がこすれ合うような動きは生じず、さらに、ガスの主た
る流れは前記通路開口部18bであるから、このガス抜
き通路88b内のガスの流速は小さい。この結果、ドラ
イヤの粒子同士がこすれ合って固いドライヤの粉を生じ
ることがなくなるため、それが油内に混じって軸受等を
摩耗させるということもなく、信頼性が向上するという
特有の効果がある。
Since the dryer layer 88d is surrounded by the porous solid 88c, the particles of the dryer do not rub against each other. Therefore, the flow velocity of the gas in the gas vent passage 88b is small. As a result, since the particles of the dryer do not rub against each other to generate a hard dryer powder, they do not mix with the oil and wear the bearings and the like, and have a specific effect that the reliability is improved. .

【0054】このガスカバー88内に限らず、圧縮機の
油を貯める部分にドライヤを設けることにより、ドライ
ヤと油の接触時間を長くすることが可能となり、水分の
吸着率を大幅に高めることができ、信頼性が向上する。
特に、圧縮機外部の配管系内にドライヤを設置した場合
には、主として運転時だけ油内の水分を吸着するが、圧
縮機の油を貯める部分にドライヤを設けると、運転停止
時でも油内の水分を吸着することが可能となり、運転頻
度の低い使用条件にある圧縮機の信頼性を高くするのに
効果的である。
By providing a dryer not only in the gas cover 88 but also in the portion of the compressor where oil is stored, the contact time between the dryer and the oil can be lengthened, and the adsorption rate of moisture can be greatly increased. And reliability is improved.
In particular, when a dryer is installed in the piping system outside the compressor, water in the oil is mainly adsorbed only during operation. Water can be adsorbed, which is effective in increasing the reliability of the compressor under the operating conditions where the operation frequency is low.

【0055】また、前記固定スクロール部材2の鏡板2
aには、四個のバイパス穴2eが設けられている。これ
ら各々のバイパス穴2eのバイパス弁シール面2λを覆
う位置に弁部がくるように前記バイパス弁板23xを位
置決めし、リテーナ23aとともにバイパスねじ23h
で固定し、前記バイパス弁23を形成する。これによ
り、これらのバイパス弁23は、前記圧縮室6の圧力が
吐出系の一部である前記固定背面室61の圧力よりも大
きくなると開くことになる。前記固定背面室61の圧力
は吐出圧であるから、このバイパス弁は、前記圧縮室6
の圧力が吐出圧よりも高いときに前記圧縮室6と前記吐
出系を連通することになり、制御バイパスとなってい
る。実際には、前記バイパス弁シール面2λにおける圧
力分布やそこにある油の表面張力等により、このバイパ
ス弁23が開口するタイミングはわずかにずれる。
The end plate 2 of the fixed scroll member 2
a is provided with four bypass holes 2e. The bypass valve plate 23x is positioned so that the valve portion comes to a position covering the bypass valve seal surface 2λ of each of the bypass holes 2e, and the bypass screw 23h is provided together with the retainer 23a.
And the bypass valve 23 is formed. As a result, these bypass valves 23 are opened when the pressure in the compression chamber 6 becomes higher than the pressure in the fixed rear chamber 61 which is a part of the discharge system. Since the pressure in the fixed rear chamber 61 is the discharge pressure, this bypass valve is connected to the compression chamber 6.
When the pressure is higher than the discharge pressure, the compression chamber 6 and the discharge system are communicated with each other, thereby forming a control bypass. Actually, the timing at which the bypass valve 23 opens slightly shifts due to the pressure distribution on the bypass valve seal surface 2λ and the surface tension of the oil there.

【0056】このようにして、前記旋回スクロール部材
3の引付力付加手段として、前記過中間圧領域99を旋
回背面に設け、制御バイパスである前記バイパス弁23
も設けたため、過中間圧値を小さく設定でき、広い運転
範囲で付勢力を小さく設定できる。この結果、全断熱効
率や信頼性を広い運転範囲で高くできるという効果があ
る。
In this way, the excessive intermediate pressure region 99 is provided on the back of the orbit as an attractive force applying means for the orbiting scroll member 3, and the bypass valve 23 serving as a control bypass is provided.
Also, the excessive intermediate pressure value can be set small, and the urging force can be set small over a wide operating range. As a result, there is an effect that the total adiabatic efficiency and reliability can be increased in a wide operation range.

【0057】ところで、図5で示したように、前記圧縮
室6と前記固定背面室61を常につなぐように前記バイ
パス穴2eを四個設けたため、どのようなタイミングで
液圧縮が生じようとしても圧力が極端に上がる前に前記
バイパス弁が開いて流体は前記固定背面室61に排出さ
れる。この結果、ラップの損傷の危険性を回避し、信頼
性を向上できるという効果がある。また、極端に圧力比
の小さいポンプ運転に近い場合でも過圧縮を抑制できる
ため、低圧力比側の広い運転条件範囲で全断熱効率を高
くできるという効果がある。
By the way, as shown in FIG. 5, four bypass holes 2e are provided so as to always connect the compression chamber 6 and the fixed back chamber 61, so that liquid compression may occur at any timing. Before the pressure rises extremely, the bypass valve opens and the fluid is discharged into the fixed back chamber 61. As a result, there is an effect that the risk of damage to the wrap can be avoided and the reliability can be improved. In addition, overcompression can be suppressed even when the pump operation is extremely close to an extremely low pressure ratio, so that there is an effect that the overall adiabatic efficiency can be increased in a wide operating condition range on the low pressure ratio side.

【0058】ここで、この実施例の図1のP部を、図5
2に示すように、前記中間側導通路2αの中間圧力室側
開口端を概略閉塞する圧縮室には常に臨まない位置すな
わち吸込み室60に設けた場合には、上記式のAを1に
することができる。これに伴いCも1となる。この時
は、上記式から明らかなように、背面過中間圧領域99
の圧力は吸込圧+一定値に制御される。つまり、本実施
例の手段は、それを発展させると従来技術になるような
基本的な手段であることがわかる。よって、これまで記
した本実施例特有の効果及びこれ以後に記す実施例特有
の効果は、旋回スクロール部材の背面に吸込圧+一定値
の圧力をかける従来技術の実施例の効果でもある。
Here, the part P in FIG. 1 of this embodiment is
As shown in FIG. 2, A is set to 1 in the above equation when the intermediate side passage 2α is provided at a position which does not always face the compression chamber that substantially closes the opening end of the intermediate pressure chamber side, that is, at the suction chamber 60. be able to. Accordingly, C also becomes 1. At this time, as is apparent from the above equation, the back excessive intermediate pressure region 99
Is controlled to the suction pressure + a constant value. In other words, it can be understood that the means of this embodiment is a basic means that, if developed, becomes a conventional technique. Therefore, the effects specific to the present embodiment described above and the effects specific to the embodiments described hereinafter are also the effects of the prior art embodiment in which the suction pressure + a fixed value is applied to the back surface of the orbiting scroll member.

【0059】ここで、この実施例の図1のP部を、図5
3で示すように、前記中間側導通路2αの中間圧力室側
開口端を吸込圧となる連通溝2δに設けると、同様の効
果を得るとともに、前記弁穴2f内の圧力はラップの動
きによる局部的な圧力変動に影響されないため、旋回ス
クロール部材3の背面圧力の制御性が向上するという特
有の効果がある。
Here, the part P in FIG. 1 of this embodiment is
As shown by 3, if the intermediate pressure chamber side opening end of the intermediate side passageway 2α is provided in the communication groove 2δ serving as a suction pressure, the same effect is obtained, and the pressure in the valve hole 2f is caused by the movement of the wrap. Since it is not affected by local pressure fluctuation, there is a specific effect that the controllability of the back pressure of the orbiting scroll member 3 is improved.

【0060】ここで、この圧縮機の起動時に、前記吸込
パイプ54と連結する配管系や前記吐出管55と連結す
る配管系の両方または各一方を絞る動作を行うシステム
を設けるか作業者に行わせれば、吸込圧の低下または吐
出圧の上昇を一層確実に実現できる。この結果、前記旋
回スクロール部材3を前記固定スクロール部材2に押し
付ける正規の運転に一層短時間で移行できるという効果
が出てくる。
At the time of starting the compressor, a system for performing an operation of restricting both or each of the piping system connected to the suction pipe 54 and the piping system connected to the discharge pipe 55 is provided to the operator or provided to the operator. By doing so, a reduction in suction pressure or an increase in discharge pressure can be realized more reliably. As a result, there is an effect that the normal operation of pressing the orbiting scroll member 3 against the fixed scroll member 2 can be shifted in a shorter time.

【0061】ところでまた、前記旋回スクロール部材3
の鏡板3aの背面中央部にある前記軸受保持部3sの底
面には、前記シャフト給油孔12aからの吐出圧の油が
入ってくるため、旋回吐出圧領域95となっている(こ
こで、旋回吐出圧領域95は、旋回軸受3wの内径の領
域である)。しかも、その軸線方向から見た投影面積
は、吐出室の軸線方向からみた投影面積とそれを囲む圧
縮室の境界を形成する両スクロールラップの歯先面積の
半分の和の最大値と最小値との間になっているため、引
き離し力における吐出圧の寄与を考慮する必要性が低く
なる。よって、前記背面過中間圧領域99の圧力におけ
る過中間圧値をより小さく設定できるため、全断熱効率
及び信頼性を一層向上できるという効果がある。
The orbiting scroll member 3
The bottom surface of the bearing holding portion 3s at the center of the rear surface of the end plate 3a has a swirling discharge pressure region 95 because the oil of the discharge pressure from the shaft oil supply hole 12a enters. The discharge pressure region 95 is a region of the inner diameter of the swing bearing 3w). Moreover, the projected area viewed from the axial direction is the maximum value and the minimum value of the sum of the projected area viewed from the axial direction of the discharge chamber and half the tip area of both scroll wraps forming the boundary between the compression chambers surrounding the projected area. Therefore, it is not necessary to consider the contribution of the ejection pressure to the separation force. Therefore, since the excessive intermediate pressure value in the pressure in the rear excessive intermediate pressure region 99 can be set smaller, there is an effect that the overall adiabatic efficiency and reliability can be further improved.

【0062】ここで、投影面積の例を、図4に示す。こ
の図は、最内の圧縮室であるA1,A2が吐出室A3と
連通する瞬間を示したものである。連通直後とみなす
と、
Here, an example of the projected area is shown in FIG. This figure shows the moment when the innermost compression chambers A1 and A2 communicate with the discharge chamber A3. Assuming that it is immediately after communication,

【0063】[0063]

【数1】A1+A2+A3+K2+K3+S2+S3+
(K1+S1)/2 が問題としている投影面積の最大値となる。また、連通
直前とみなすと、 A3+(K3+S3)/2 となり、問題としている投影面積の最小値となる。
## EQU1 ## A1 + A2 + A3 + K2 + K3 + S2 + S3 +
(K1 + S1) / 2 is the maximum value of the projection area in question. Also, if it is considered immediately before communication, A3 + (K3 + S3) / 2, which is the minimum value of the projection area in question.

【0064】ここで、この圧縮機を、冷凍サイクル用圧
縮機として用いた場合、吸込圧と吐出圧の運転範囲は、
図9で示すように、吸込圧が高い条件では吐出圧は低く
なる。よって、制御バイパスがあると過圧縮は抑制もし
くは生じなくなるため、吸込圧が高くなっても引き離し
力は小さくなる。よって、過中間圧値を更に一層小さく
設定でき、全断熱効率や信頼性の向上を実現できるとい
う効果がある。冷凍サイクルは図9に示すような運転範
囲を要求する用途の一つであり、この効果はこれに限っ
たものではない。これ以外でも圧力条件において同様な
運転条件を要求する用途では、同様の効果がある。
Here, when this compressor is used as a compressor for a refrigeration cycle, the operating range of the suction pressure and the discharge pressure is as follows.
As shown in FIG. 9, the discharge pressure becomes low under the condition that the suction pressure is high. Therefore, if there is a control bypass, over-compression is suppressed or does not occur, so that even if the suction pressure increases, the separation force decreases. Therefore, there is an effect that the excessive intermediate pressure value can be set even smaller, and the overall adiabatic efficiency and reliability can be improved. The refrigeration cycle is one of applications requiring an operation range as shown in FIG. 9, and this effect is not limited to this. Other than this, the same effect is obtained in applications requiring similar operating conditions under pressure conditions.

【0065】次に、第二の実施例を図10の圧力差制御
弁付近の縦断面図(図1におけるP部の拡大図)に基づ
いて説明する。弁シール面100j及び背面側導通路10
0βを有する弁シール部材100iを固定スクロール部
材2の非旋回基準面2u側から開けた弁穴2fの開口部
付近に固定配置し凹部100gを設ける以外は、前記第
一の実施例と同様であるので、その他の部分の構造及び
動作及び効果の説明は省略する。弁シート面は差圧制御
弁100の開閉に伴い弁体100aでたたかれて摩耗が
生じやすいが、この弁シール部材100iをたたき摩耗
の少ない材質にすることにより、信頼性の高い差圧制御
弁を実現できるという特有の効果がある。例えば、固定
スクロール部材2の材質よりも硬度の高い材料にする。
さらに、前記凹部100gを形成したために、背面側導
通路の位置を周囲溝の位置に限定する必要がなくなり、
設計の自由度が向上するという特有の効果もある。
Next, a second embodiment will be described with reference to a longitudinal sectional view (an enlarged view of a portion P in FIG. 1) of the vicinity of the pressure difference control valve in FIG. Valve seal surface 100j and back side conduction path 10
This is the same as the first embodiment except that a valve seal member 100i having 0β is fixedly arranged near the opening of a valve hole 2f opened from the non-orbiting reference surface 2u side of the fixed scroll member 2 and a concave portion 100g is provided. Therefore, description of the structure, operation, and effects of the other parts will be omitted. The valve seat surface is liable to be worn by being hit by the valve body 100a as the differential pressure control valve 100 is opened and closed. There is a specific effect that a valve can be realized. For example, a material having a higher hardness than the material of the fixed scroll member 2 is used.
Furthermore, since the concave portion 100g is formed, it is not necessary to limit the position of the back side conduction path to the position of the peripheral groove,
There is also a specific effect that the degree of freedom in design is improved.

【0066】次に、第三の実施例を図11の圧力差制御
弁付近の縦断面図(図1におけるP部の拡大図)に基づ
いて説明する。背面過中間圧領域に導入したガス及び油
を吹込系に排出するようにした以外は前記第一の実施例
と同様なので、その他の部分の構造及び動作及び効果の
説明は省略する。前記第一の実施例において、弁穴2f
に吸込み室60と通じる吸込み側流通路2iを設け、弁
シート面をなくし、その側面の円筒面がシール面となる
円筒状弁体100dを板状の弁体の代わりに組み込ん
だ。前記円筒状弁体100dの差圧弁ばね100c側に
は中間圧がかかりその反対面には背面過中間圧領域99
の圧力がかかる。前記円筒状弁体100dの先端が前記吸込
み側流通路100iの位置まで移動した時に前記背面側
流通路2βと前記吸込み側流通路2iが通じて、背面圧
縮室間流路が開く構造であるから、前記吸込み側流路2
iの位置や差圧弁ばね100cのばね定数や自然長を変
えることにより過中間圧値を任意に設定できる。この結
果、第一の実施例において中間圧力室68へのガスの流
入によって生じる指圧線図の膨らみがなくなるため、全
断熱効率を向上できるという効果がある。
Next, a third embodiment will be described with reference to a longitudinal sectional view (enlarged view of a portion P in FIG. 1) near the pressure difference control valve in FIG. Since it is the same as the first embodiment except that the gas and oil introduced into the rear excess intermediate pressure region are discharged to the blowing system, the description of the structure, operation and effect of the other parts is omitted. In the first embodiment, the valve hole 2f
The suction-side flow passage 2i communicating with the suction chamber 60 is provided in the, the valve seat surface is eliminated, and a cylindrical valve body 100d having a cylindrical surface on its side serving as a sealing surface is incorporated in place of a plate-like valve body. An intermediate pressure is applied to the side of the differential pressure valve spring 100c of the cylindrical valve body 100d, and a back excessive intermediate pressure area 99 is provided on the opposite surface.
Pressure. When the distal end of the cylindrical valve body 100d moves to the position of the suction side flow passage 100i, the back side flow passage 2β and the suction side flow passage 2i communicate with each other, and the flow path between the back compression chambers is opened. , The suction side flow path 2
By changing the position i and the spring constant or natural length of the differential pressure valve spring 100c, the excessive intermediate pressure value can be set arbitrarily. As a result, in the first embodiment, since the swelling of the acupressure diagram caused by the gas flowing into the intermediate pressure chamber 68 is eliminated, there is an effect that the overall adiabatic efficiency can be improved.

【0067】また、前記円筒状弁体100dの円筒面に
リング状のシール部材である弁体シール100kを設け
てもよい。これにより、弁体側面のシールが確実になっ
て上記した指圧線図の膨らみが確実になくなるため、全
断熱効率を確実に向上できるという効果がある。また、
前記中間側導通路100βの中間圧力室側の端またはそ
れに近い部分に導通路キャピラリ100mを挿入しても
よい。これにより、中間圧力室の圧力変動による前記中
間側導通路2α内のガスの前記中間圧力室への出入り量
を低減できるため、これにより生じる指圧線図の膨らみ
が小さくなって、全断熱効率を向上できるという効果が
ある。
Further, a valve body seal 100k, which is a ring-shaped seal member, may be provided on the cylindrical surface of the cylindrical valve body 100d. As a result, the sealing on the side surface of the valve element is ensured, and the swelling of the acupressure diagram described above is reliably eliminated, so that there is an effect that the total heat insulation efficiency can be reliably improved. Also,
A conduction path capillary 100m may be inserted into the intermediate pressure chamber side end of the intermediate conduction path 100β or a portion near the end. Thereby, since the amount of gas in the intermediate side passageway 2α flowing into and out of the intermediate pressure chamber due to the pressure fluctuation of the intermediate pressure chamber can be reduced, the swelling of the acupressure diagram caused by this can be reduced, and the total adiabatic efficiency can be reduced. There is an effect that it can be improved.

【0068】次に、第四の実施例を図12の圧力差制御
弁付近の縦断面図(図1におけるP部の拡大図)に基づ
いて説明する。円筒溝2γ及び吸込み側導通路2iをそ
の円筒溝2γと連通溝2δの間に設けた以外は前記第三
の実施例と同様なので、その他の部分の構造及び動作及
び効果の説明は省略する。前記円筒溝100pを設ける
ことにより、吸込み側導通路2iと背面側導通路2βの
導通のタイミングが正確に規定できるため、量産時の過
中間圧値のばらつきを小さくできるという特有の効果が
ある。さらに、前記吸込み側流通路2iの吸込み室側の
開口位置を連通溝2δとした。シャフト12の一回転に
伴う連通溝2δ内の圧力変動は、圧縮室60内の他の部
分の圧力変動よりも小さいため、前記吸込み側導通路2
iと前記背面側導通路2βの導通時におけるそこの流量
が不安定に変動せず、前記差圧制御弁100の制御性を
向上できるという特有の効果がある。
Next, a fourth embodiment will be described with reference to a longitudinal sectional view near the pressure difference control valve in FIG. The third embodiment is the same as the third embodiment except that the cylindrical groove 2γ and the suction-side conduction path 2i are provided between the cylindrical groove 2γ and the communication groove 2δ, so that the description of the structure, operation, and effects of the other parts is omitted. By providing the cylindrical groove 100p, the timing of conduction between the suction-side conduction path 2i and the back-side conduction path 2β can be accurately defined, so that there is a unique effect that variation in the excessive intermediate pressure value during mass production can be reduced. Further, the opening position of the suction side flow passage 2i on the suction chamber side is defined as a communication groove 2δ. Since the pressure fluctuation in the communication groove 2δ due to one rotation of the shaft 12 is smaller than the pressure fluctuation in the other part in the compression chamber 60, the suction-side conduction path 2
There is a unique effect that the flow rate therethrough during the conduction between i and the back side conduction path 2β does not fluctuate in an unstable manner, and the controllability of the differential pressure control valve 100 can be improved.

【0069】次に、第五の実施例を図13の圧力差制御
弁の背圧室付近の縦断面図(図7,図11,図12にお
けるQ部の拡大図)に基づいて説明する。背面側導通路
2βの前記旋回側面領域67側の開口部を、前記周囲溝
2cからはずし、さらに鏡板3aが間欠的にふさぐよう
な位置に設けた以外は前記第一,第三及び第四の実施例
と同様なので、その他の部分の構造及び動作及び効果の
説明は省略する。圧縮機の起動直後の、前記旋回スクロ
ール部材3を固定スクロール部材2へ押付け始めた瞬間
において、前記旋回側面領域67より流体の抜ける流路
であった鏡板3aのラップ側の面と前記非旋回基準面2
uの隙間が瞬間的に遮断されるため、一気に前記旋回側
面領域67の圧力が上昇する。
Next, a fifth embodiment will be described with reference to a longitudinal sectional view (enlarged view of a Q portion in FIGS. 7, 11 and 12) of the pressure difference control valve in the vicinity of the back pressure chamber of FIG. The first, the third and the fourth except that the opening of the back side conduction path 2β on the side of the turning side surface area 67 is removed from the peripheral groove 2c, and the end plate 3a is intermittently closed. Since this embodiment is the same as the embodiment, the description of the structure, operation and effect of the other parts will be omitted. Immediately after the compressor is started, at the moment when the orbiting scroll member 3 starts to be pressed against the fixed scroll member 2, the surface of the end plate 3a on the lap side of the end plate 3a, which is the flow path through which the fluid escapes from the orbiting side surface region 67, and the non-orbiting reference. Face 2
Since the gap u is instantaneously shut off, the pressure in the turning side surface area 67 increases at a stretch.

【0070】前記背面側導通路2βの前記旋回側面領域
67側の開口部を前記周囲溝2cに設けた場合、この急
激な圧力上昇によって前記弁体100aに衝撃力がかか
り、前記弁体100aの過大な移動によるガスの抜け過
ぎが起こって引付力の低下が生じ、前記旋回スクロール
部材3が固定スクロール部材2から再び離脱するという
現象が起こりやすくなる。この現象が繰り返される場合
がまれに起こり、この時は、正規の運転状態へ移行する
ために長い時間を要するか最悪の場合は正規の運転状態
へ移行できなくなる危険性が生じる。
When the opening on the side of the turning side surface 67 of the back side conduction path 2β is provided in the peripheral groove 2c, an impact force is applied to the valve body 100a due to the rapid pressure increase, and the valve body 100a The phenomenon that the orbiting scroll member 3 separates from the fixed scroll member 2 again easily occurs because the gas is excessively removed due to excessive movement and the attractive force is reduced. In rare cases, this phenomenon is repeated, in which case it takes a long time to shift to the normal operating state, or in the worst case, there is a risk that the normal operating state cannot be transferred.

【0071】これに対して、本実施例では、鏡板3aに
よる開口部の間欠的な閉塞により、前記中間側導通路2
α内の圧力変化速度及び圧力変化量が緩和され、前記弁
体100aの過大な移動が抑制されてガスの抜け過ぎも
起こらず、前記旋回スクロール部材3は固定スクロール
部材2に安定して押し付けられる。この結果、圧縮機の
旋回スクロール部材3を固定スクロール部材2に押し付
けた正規の運転状態に常にスムーズに移行できるという
特有の効果がある。
On the other hand, in the present embodiment, the intermittent closing of the opening by the end plate 3a causes
The pressure change speed and the pressure change amount within α are reduced, the excessive movement of the valve body 100a is suppressed, the gas does not escape too much, and the orbiting scroll member 3 is stably pressed against the fixed scroll member 2. . As a result, there is a specific effect that the orbiting scroll member 3 of the compressor can always be smoothly shifted to the normal operation state in which the orbiting scroll member 3 is pressed against the fixed scroll member 2.

【0072】次に、第六の実施例を図14の圧力差制御
弁の背圧室付近の縦断面図(図7,図11,図12にお
けるP部の拡大図)に基づいて説明する。背面側導通路
2βの前記旋回側面領域67側の開口部を前記周囲溝2
cの傾斜面にかけ、前記背面側導通路2βと前記周囲溝
2cとの流路抵抗を第一の実施例と第五の実施例の間に
した以外は前記第一、第三、第四及び第五の実施例と同
様であるので、その他の部分の構造及び動作及び効果の
説明は省略する。圧縮機の起動直後の、前記旋回スクロ
ール部材3を固定スクロール部材2へ押付け始めた瞬間
において、鏡板3aによる開口部の閉塞は生じないが、
絞り部2γにより、前記中間側導通路2α内の圧力変化
速度及び圧力変化量が緩和され、前記弁体100aの過
大な移動が抑制されてガスの抜け過ぎも起こらず、前記
旋回スクロール部材3は固定スクロール部材2に安定し
て押し付けられる。この結果、圧縮機の旋回スクロール
部材3を固定スクロール部材2に押し付けた正規の運転
状態に常にスムーズに移行できるという特有の効果があ
る。
Next, a sixth embodiment will be described with reference to a longitudinal sectional view (enlarged view of a portion P in FIGS. 7, 11 and 12) of the vicinity of the back pressure chamber of the pressure difference control valve in FIG. The opening of the back side conduction path 2β on the side of the turning side surface area 67 is connected to the peripheral groove 2
c, except that the flow path resistance between the back side conduction path 2β and the peripheral groove 2c is between the first embodiment and the fifth embodiment. Since it is the same as the fifth embodiment, the description of the structure, operation, and effects of the other parts will be omitted. Immediately after the start of the compressor, at the moment when the orbiting scroll member 3 starts to be pressed against the fixed scroll member 2, the opening is not closed by the end plate 3 a,
The throttle portion 2γ reduces the pressure change speed and the pressure change amount in the intermediate-side passageway 2α, suppresses excessive movement of the valve body 100a, does not cause too much gas to escape, and the orbiting scroll member 3 It is stably pressed against the fixed scroll member 2. As a result, there is a specific effect that the orbiting scroll member 3 of the compressor can always be smoothly shifted to the normal operation state in which the orbiting scroll member 3 is pressed against the fixed scroll member 2.

【0073】さらに、前記弁体100aには前記旋回側
面領域67の圧力が常時かかるため、正規の運転状態に
移行した後の前記弁体100aの動作がスムーズにな
り、前記差圧制御弁100の制御性が向上するという特
有の効果がある。
Further, since the pressure of the revolving side surface area 67 is constantly applied to the valve element 100a, the operation of the valve element 100a after shifting to the normal operation state becomes smooth. There is a specific effect that controllability is improved.

【0074】次に、第七の実施例を図15のバイパス弁
付近の縦断面図(図1におけるR部の拡大図)に基づい
て説明する。固定スクロール部材2の鏡板2aにバイパ
ス弁23が入るバイパス掘込み2ωを設けた以外は前記
第一ないし第六の実施例と同様なので、その他の部分の
構造及び動作及び効果の説明は省略する。この結果、バ
イパス穴2eの長さが短くなり、それに伴って穴の容積
も小さくなる。図5に示すように、圧縮室6はスクロー
ルラップの周囲から中央に向かって移動するため、固定
スクロール部材に設けられ固定して動かないバイパス穴
2eは、吸込み室60あるいはある容積まで縮小した圧
縮室6に連通した後、一定の容積縮小が起こりそれに伴
う圧力上昇が起こった時点で、圧縮室6との連通が途絶
える。そして、その後にその周囲から移動してくる一つ
外側の圧縮室6と連通するまで、バイパス穴2eの圧縮
室側開口部はスクロールラップ3bの歯先面により閉じ
られる。
Next, a seventh embodiment will be described with reference to a longitudinal sectional view of the vicinity of the bypass valve in FIG. 15 (an enlarged view of a portion R in FIG. 1). This is the same as the first to sixth embodiments except that the end plate 2a of the fixed scroll member 2 is provided with the bypass digging 2ω into which the bypass valve 23 enters. Therefore, the description of the structure, operation and effect of the other parts will be omitted. As a result, the length of the bypass hole 2e is reduced, and the volume of the hole is accordingly reduced. As shown in FIG. 5, since the compression chamber 6 moves from the periphery of the scroll wrap toward the center, the bypass hole 2 e provided in the fixed scroll member and fixed and not moved is provided in the suction chamber 60 or the compression reduced to a certain volume. After communication with the chamber 6, the communication with the compression chamber 6 is interrupted at a point in time when a certain volume reduction occurs and the pressure increases accordingly. Then, the compression-chamber-side opening of the bypass hole 2e is closed by the tooth top surface of the scroll wrap 3b until it communicates with the one outer compression chamber 6 that moves from its surroundings thereafter.

【0075】このため、圧縮室6とバイパス穴2eが連
通開始した時点ですでにバイパス弁23が動作する条件
以外の条件では、バイパス穴2e内に閉じ込められたガ
スまたは油の圧力は、前記したスクロールラップ3bの
歯先面による密閉性が完全であれば、加熱による圧力上
昇を除くと、バイパス穴2eが圧縮室6との連通を遮断
した時点の高さに保たれる。前記歯先面の漏れがあると
場合により少し低下したり少し上昇したりするが、バイ
パス穴2e内に閉じ込められたガスまたは油の圧力が、
高いレベルであることに変わりはない。
For this reason, under conditions other than the condition where the bypass valve 23 is already operated when the communication between the compression chamber 6 and the bypass hole 2e is started, the pressure of the gas or oil confined in the bypass hole 2e is as described above. If the sealability of the scroll wrap 3b by the tooth tip surface is perfect, the height at the time when the communication with the compression chamber 6 is interrupted by the bypass hole 2e is maintained, except for the pressure increase due to heating. If the tip surface leaks, the pressure may slightly decrease or slightly increase depending on the case. However, the pressure of the gas or oil trapped in the bypass hole 2e increases.
It is still a high level.

【0076】よって、圧縮室6とバイパス穴2eが連通
開始した時点ですでにバイパス弁23が動作する条件以
外の条件では、バイパス穴2eが圧縮室6と連通を開始
するとき、バイパス穴2e内に閉じ込められたガスまた
は油が圧縮室6へ吹き出す現象が起こる。これは、実質
的な内部漏れであり、性能低下を引き起こす。よって、
本実施例のように、バイパス穴2eの容積が小さければ
吹き出す量が減るため、性能低下を抑制できるという特
有の効果がある。
Therefore, under conditions other than the condition where the bypass valve 23 is already operated at the time when the communication between the compression chamber 6 and the bypass hole 2e is started, when the bypass hole 2e starts to communicate with the compression chamber 6, the inside of the bypass hole 2e is A phenomenon occurs in which the gas or oil trapped in the air blows out to the compression chamber 6. This is a substantial endoleak and causes performance degradation. Therefore,
As in the present embodiment, if the volume of the bypass hole 2e is small, the amount of air blown out is reduced, so that there is a specific effect that the performance degradation can be suppressed.

【0077】次に、第八の実施例を図16のバイパス弁
付近の固定背面室61側の縦断面図(図1におけるR部
の固定背面室側の拡大図)に基づいて説明する。バイパ
ス穴2eのバイパス弁23側にバイパス穴面取り2εを
設けた以外は前記第一ないし七の実施例と同様なので、
その他の部分の構造及び動作及び効果の説明は省略す
る。バイパス弁シール面2λ上の圧力分布は、バイパス
弁23の動作状況により変化し、不確定である。よっ
て、この箇所の圧力が周囲の圧力よりも大幅に低い場合
には、前記バイパス穴2e内の圧力が前記固定背面室6
1の圧力よりも大幅に高くなるまで前記バイパス弁23
は開口せず、過圧縮の抑制が困難となり、過圧縮条件に
おける性能が低下する。
Next, an eighth embodiment will be described with reference to a longitudinal sectional view of the fixed back chamber 61 near the bypass valve in FIG. 16 (an enlarged view of the R section in FIG. 1 on the fixed back chamber side). Except that a bypass hole chamfer 2ε is provided on the bypass valve 23 side of the bypass hole 2e, it is the same as the first to seventh embodiments.
The description of the structure, operation, and effects of the other parts is omitted. The pressure distribution on the bypass valve seal surface 2λ changes depending on the operation state of the bypass valve 23 and is uncertain. Therefore, when the pressure at this location is much lower than the surrounding pressure, the pressure in the bypass hole 2e is
1 until the pressure is significantly higher than
Does not open, it is difficult to suppress overcompression, and performance under overcompression conditions is reduced.

【0078】逆に、この箇所の圧力が周囲の圧力よりも
大幅に高い場合には、前記バイパス穴2e内の圧力が前
記固定背面室61の圧力よりも大幅に低いところで前記
バイパス弁23が開口してしまうため、前記固定背面室
61から圧縮室6への逆流が生じ、実質的な内部漏れが
起こって性能が低下する。前記バイパス穴面取り2εを
設けることにより、圧力分布の不確定な部分である前記
バイパス弁シール面2λの面積を縮小できるため、上記
した性能低下現象が起こらないか、起こっても性能低下
の程度が小さくなるという特有の効果がある。ここで、
吐出圧が低いときには、シール面の面積が狭いために、
シール性が低下するという危険性が高くなる。
Conversely, if the pressure at this location is significantly higher than the surrounding pressure, the bypass valve 23 is opened when the pressure in the bypass hole 2e is significantly lower than the pressure in the fixed back chamber 61. As a result, backflow from the fixed rear chamber 61 to the compression chamber 6 occurs, causing substantial internal leakage and deteriorating performance. By providing the bypass hole chamfer 2ε, the area of the bypass valve sealing surface 2λ, which is an uncertain part of the pressure distribution, can be reduced. There is a specific effect that it becomes smaller. here,
When the discharge pressure is low, the area of the sealing surface is small,
The danger that the sealing performance is reduced increases.

【0079】この対策として、前記バイパス弁板23x
を平面でなく側面から見ると曲がった形状とし、図17
のように固定スクロール側に凹部がくるようにして固定
スクロールに固定するとよい。(ここで、この図17は
説明しやすさを考えて、極端に曲がったバイパス弁板2
3xを示しており、実際の曲がりは図17よりも小さ
い。)これにより、前記バイパス弁板23xは、常にそ
れ自身のばね力で前記バイパス弁シール面2λに押し付
けられるため、吐出圧が低い場合でも、安定したシール
性を確保でき、そこからの漏れが抑制されて性能が向上
するという特有の効果がある。また、逆に、固定スクロ
ール側に凸部がくるようにして固定スクロールに固定し
た場合、バイパス弁開口時の流路抵抗による過圧縮を抑
制するという効果が出てくる。
As a countermeasure, the bypass valve plate 23x
17 has a curved shape when viewed from the side rather than the plane, and FIG.
It is good to fix to a fixed scroll so that a concave part may come to the fixed scroll side as shown in FIG. (Here, FIG. 17 shows an extremely bent bypass valve plate 2 for ease of explanation.
3x, and the actual bending is smaller than that in FIG. This allows the bypass valve plate 23x to be constantly pressed against the bypass valve sealing surface 2λ by its own spring force, so that even when the discharge pressure is low, a stable sealing property can be ensured, and leakage from there is suppressed. There is a specific effect that the performance is improved by being performed. Conversely, when the fixed scroll is fixed to the fixed scroll so that the convex portion comes to the fixed scroll side, an effect of suppressing over-compression due to flow path resistance when the bypass valve is opened appears.

【0080】次に、第九の実施例を図18のバイパス弁
付近の固定背面室側の縦断面図(図1におけるR部の固
定背面室側の拡大図)に基づいて説明する。バイパス弁
のシール部を線状とするために、断面が半球状のバイパ
ス弁シール線2τを設けた以外は前記第八の実施例と同
様なので、その他の部分の構造及び動作及び効果の説明
は省略する。これは、前記した第八の実施例で行ったシ
ール面の面積を縮小する手段の極限と考えられ、効果も
第八の実施例と同様である。さらに、この手段の短所で
あるシール性の低下の対策も図17に示す方法が効果的
である。
Next, a ninth embodiment will be described with reference to a longitudinal sectional view of the fixed rear chamber side near the bypass valve in FIG. 18 (an enlarged view of the R section in FIG. 1 on the fixed rear chamber side). Except that a bypass valve sealing line 2τ having a hemispherical cross section is provided in order to make the sealing portion of the bypass valve linear, the structure, operation, and effects of the other portions are not described. Omitted. This is considered to be the limit of the means for reducing the area of the sealing surface performed in the eighth embodiment, and the effect is the same as that of the eighth embodiment. Further, the method shown in FIG. 17 is also effective in reducing the sealing property, which is a disadvantage of this means.

【0081】次に、第十の実施例を図19のバイパス弁
付近の縦断面図(図1におけるR部の拡大図)及び図2
0の円筒状リテーナの縦断面図に基づいて説明する。バ
イパス弁をリード弁と異なる構成にした以外は第一ない
し第九の実施例と同様であるため、その他の部分の構成
及び動作及び効果の説明は省略する。
Next, a tenth embodiment will be described with reference to a longitudinal sectional view (enlarged view of a portion R in FIG. 1) near the bypass valve in FIG.
A description will be given based on a vertical cross-sectional view of the cylindrical retainer No. 0. Since the configuration is the same as that of the first to ninth embodiments except that the bypass valve is configured differently from the reed valve, the description of the configuration, operation, and effects of the other parts is omitted.

【0082】まず、構成を説明する。前記バイパス穴2
eの固定背面室61側に円状バイパス弁板23yを配置
するための円筒状掘込み2σを設け、その底にバイパス
弁シール面2λを設ける。この円筒状掘込み2σの固定
背面室61側に拡大部2ρを設ける。この円筒状掘込み
2σに前記円状バイパス弁板23yを入れて、円筒状リ
テーナ23bを挿入し、前記固定スクロール部材2に固
定配置する。この円筒状リテーナ23bの圧縮室6側に
はバイパス弁ストッパ面23cがあり、その中央に中央
放出穴23e、その周囲に一個または複数の周辺放出穴
23fを設ける。これらの穴の総断面積は前記バイパス
穴2eの断面積程度かそれ以上とする。この時、挿入深
さは前記拡大部2ρの段付き部により規定されるため、
挿入時の組立て性がよいという特有の効果がある。ここ
で、このバイパス弁ストッパ面23cは、前記円状バイ
パス弁板23yが前記バイパス弁シール面2λから離れ
る最大距離を規定する。
First, the configuration will be described. The bypass hole 2
A cylindrical dug 2σ for arranging the circular bypass valve plate 23y is provided on the fixed back chamber 61 side of e, and a bypass valve seal surface 2λ is provided at the bottom thereof. An enlarged portion 2ρ is provided on the fixed rear chamber 61 side of the cylindrical dug 2σ. The circular bypass valve plate 23y is inserted into the cylindrical dug 2σ, the cylindrical retainer 23b is inserted, and fixedly disposed on the fixed scroll member 2. A bypass valve stopper surface 23c is provided on the compression chamber 6 side of the cylindrical retainer 23b, and a central discharge hole 23e is provided at the center thereof, and one or a plurality of peripheral discharge holes 23f are provided therearound. The total cross-sectional area of these holes is approximately equal to or larger than the cross-sectional area of the bypass hole 2e. At this time, the insertion depth is defined by the stepped portion of the enlarged portion 2ρ,
There is a unique effect that the assemblability at the time of insertion is good. Here, the bypass valve stopper surface 23c defines a maximum distance at which the circular bypass valve plate 23y is separated from the bypass valve seal surface 2λ.

【0083】この最大距離は、前記バイパス穴2eの断
面積程度またはこれ以上の断面積を確保するために、以
下の式に従って設定するとよい。バイパス穴直径をDと
すると、最大距離Lは、
The maximum distance may be set according to the following equation in order to secure a cross-sectional area of about the cross-sectional area of the bypass hole 2e or more. If the bypass hole diameter is D, the maximum distance L is

【0084】[0084]

【数2】L≒or>(πD2/4)/πD=D/4 で示す値とする。また、この円筒状リテーナ23bの固
定配置法であるが、圧入が一般的である。また前記拡大
部2ρの外周部と前記円筒状リテーナ23bの外周にテ
ーパねじを各々設け、それらをねじ込むことにより固定
配置する方法も考えられる。ただ、圧入やねじ止めを行
うと、前記固定スクロール部材2が変形する危険性が生
じる。
[Number 2] and L ≒ or> value indicated by (πD 2/4) / πD = D / 4. In addition, as for the fixed arrangement method of the cylindrical retainer 23b, press fitting is common. Further, a method is also conceivable in which tapered screws are provided on the outer peripheral portion of the enlarged portion 2ρ and the outer periphery of the cylindrical retainer 23b, and are fixedly arranged by screwing them. However, if press fitting or screwing is performed, there is a risk that the fixed scroll member 2 is deformed.

【0085】これを回避するために、接着が考えられ
る。また、二点鎖線で示すように、外周近くに外周掘込
み23gを設けて、前記円筒状リテーナ23bの外周面
の剛性を低くし、圧入に伴う前記固定スクロール部材2
へかかる力を小さくして前記固定スクロール部材2の変
形を回避する方法も考えられる。これらの方法により、
前記固定スクロール部材2の変形が抑制されるかなくな
り、スクロールラップ間の隙間の管理が容易となり量産
時の性能のばらつきが少ないという特有の効果がある。
In order to avoid this, adhesion is conceivable. Further, as shown by a two-dot chain line, an outer peripheral excavation 23g is provided near the outer periphery to reduce the rigidity of the outer peripheral surface of the cylindrical retainer 23b, and to reduce the rigidity of the fixed scroll member 2 caused by press-fitting.
A method of avoiding deformation of the fixed scroll member 2 by reducing the applied force is also conceivable. By these methods,
Deformation of the fixed scroll member 2 is suppressed or eliminated, and the management of the gap between the scroll wraps is facilitated, and there is a unique effect that the variation in performance during mass production is small.

【0086】次に、動作を説明する。通常、前記円状バ
イパス弁板23xは、その前記バイパス弁ストッパ面2
3c側の面にかかるほぼ吐出圧となる前記固定背面室6
1の圧力がもう一方の面にかかる圧縮室の圧力よりも高
いために、前記バイパス弁シール面2λに押し付けら
れ、前記バイパス弁23は閉じている。ところが、過圧
縮条件の場合には、圧縮室の圧力が吐出圧よりも高くな
ろうとするため、その時には前記円状バイパス弁板23
xは前記バイパス弁シール面2λから離れ、前記バイパ
ス弁23は開く。よって、圧縮室と前記固定背面室61
が通じ、圧縮室から流体が流失する。この流失は、圧縮
室内の圧力が前記固定背面室61の圧力と同じレベルに
なるか低くなるまで続く。
Next, the operation will be described. Usually, the circular bypass valve plate 23x has the bypass valve stopper surface 2
The fixed rear chamber 6 having substantially the discharge pressure applied to the surface on the 3c side.
Since the pressure of 1 is higher than the pressure of the compression chamber applied to the other surface, it is pressed against the seal surface 2λ of the bypass valve, and the bypass valve 23 is closed. However, under the over-compression condition, the pressure in the compression chamber tends to be higher than the discharge pressure.
x moves away from the bypass valve sealing surface 2λ, and the bypass valve 23 opens. Therefore, the compression chamber and the fixed rear chamber 61
And the fluid flows out of the compression chamber. This bleeding continues until the pressure in the compression chamber becomes the same level as or lower than the pressure in the fixed rear chamber 61.

【0087】以上のように、このバイパス弁23は、圧
縮室の圧力が吐出圧よりも高くなることを抑制するよう
に制御する制御バイパスの働きを行う。このバイパス弁
23は、バイパス穴の径よりもわずかにシール部等だけ
拡大した極めて小さい円状バイパス弁が配置できるだけ
の小さい掘込みを設けるだけで、バイパス穴の容積を縮
小できるため、前記した第七の実施例のように、大きな
掘込みを設ける必要がない。
As described above, the bypass valve 23 serves as a control bypass for controlling the pressure in the compression chamber to be suppressed from becoming higher than the discharge pressure. This bypass valve 23 can reduce the volume of the bypass hole only by providing a digging small enough to arrange a very small circular bypass valve which is slightly larger than the diameter of the bypass hole by a seal portion or the like. There is no need to provide a large digging as in the seventh embodiment.

【0088】よって、前記固定スクロール部材2の前記
鏡板2aの強度低下を抑制したうえで、バイパス穴内に
閉じ込められたガスまたは油の圧縮室への吹き出し量を
抑制できるため、固定スクロール部材の変形に伴うラッ
プ間隙間を小さく保持できるとともに前記したガスや油
の圧縮室への吹き出しによる実質的な内部漏れを抑制で
き、性能向上を図ることができるという特有の効果があ
る。
Therefore, since the strength of the end plate 2a of the fixed scroll member 2 is suppressed and the amount of gas or oil trapped in the bypass hole blown out to the compression chamber can be suppressed, the deformation of the fixed scroll member can be reduced. There is a specific effect that the gap between the wraps can be kept small, and the substantial internal leakage due to the blowing of the gas or oil into the compression chamber can be suppressed, and the performance can be improved.

【0089】これまでの実施例におけるリード弁方式の
バイパス弁は、バイパス弁自身の弾性により、開口度が
大きければ大きいほど閉じる向きの力が大きくなるた
め、大きい開口度が必要な場合に開口度が小さくなって
流路抵抗が大きくなり過圧縮が抑制しにくいという短所
があった。この実施例では、バイパス弁自身の弾性がな
いため、開口度が大きくても弁による閉じる向きの力は
発生しない。よって、バイパス弁の開口動作を妨げる力
がなくなるため、過圧縮が抑制しやすくなり、性能が向
上するという特有の効果もある。
In the bypass valve of the reed valve type in the embodiments described above, the greater the degree of opening, the greater the force in the closing direction due to the elasticity of the bypass valve itself. However, there is a disadvantage that the flow path resistance increases and overcompression is difficult to suppress. In this embodiment, since the bypass valve itself has no elasticity, no closing force is generated by the valve even if the opening degree is large. Therefore, since there is no force that hinders the opening operation of the bypass valve, overcompression is easily suppressed, and there is also a specific effect that performance is improved.

【0090】次に、第十一の実施例を図21のバイパス
弁付近の縦断面図(図1におけるR部の拡大図)に基づ
いて説明する。バイパス穴2eのバイパス弁側にバイパ
ス穴面取り2εを設けた以外は前記第十の実施例と同様
なので、その他の部分の構造及び動作及び効果の説明は
省略する。バイパス弁シール面2λ上の圧力分布は、バ
イパス弁23の動作状況により変化し、不確定である。
よって、この箇所の圧力が周囲の圧力よりも大幅に低い
場合には、前記バイパス穴2e内の圧力が前記固定背面
室61の圧力よりも大幅に高くなるまで前記バイパス弁
23は開口せず、過圧縮の抑制が困難となり、過圧縮条
件における性能が低下する。
Next, an eleventh embodiment will be described with reference to a longitudinal sectional view of the vicinity of the bypass valve in FIG. 21 (an enlarged view of a portion R in FIG. 1). Except that the bypass hole chamfering 2ε is provided on the bypass valve side of the bypass hole 2e, it is the same as the tenth embodiment, and the description of the structure, operation, and effects of the other parts is omitted. The pressure distribution on the bypass valve seal surface 2λ changes depending on the operation state of the bypass valve 23 and is uncertain.
Therefore, when the pressure at this location is significantly lower than the surrounding pressure, the bypass valve 23 does not open until the pressure in the bypass hole 2e becomes significantly higher than the pressure of the fixed back chamber 61, It becomes difficult to suppress overcompression, and performance under overcompression conditions decreases.

【0091】逆に、この箇所の圧力が周囲の圧力よりも
大幅に高い場合には、前記バイパス穴2e内の圧力が前
記固定背面室61の圧力よりも大幅に低いところで前記
バイパス弁23が開口してしまうため、前記固定背面室
61から圧縮室6への逆流が生じ、実質的な内部漏れが
起こって性能が低下する。前記バイパス穴面取り2εを
設けることにより、圧力分布の不確定な部分である前記
バイパス弁シール面2λの面積を縮小できるため、上記
した性能低下現象が起こらないか、起こっても性能低下
の程度が小さくなるという特有の効果がある。
Conversely, when the pressure at this point is significantly higher than the surrounding pressure, the bypass valve 23 is opened when the pressure in the bypass hole 2e is significantly lower than the pressure in the fixed back chamber 61. As a result, backflow from the fixed rear chamber 61 to the compression chamber 6 occurs, causing substantial internal leakage and deteriorating performance. By providing the bypass hole chamfer 2ε, the area of the bypass valve sealing surface 2λ, which is an uncertain part of the pressure distribution, can be reduced. There is a specific effect that it becomes smaller.

【0092】次に、第十二の実施例を図22のバイパス
弁付近の縦断面図(図1におけるR部の拡大図)に基づ
いて説明する。バイパス弁シール部を線状とするため
に、断面が半球状のバイパス弁シール線2τを設けた以
外は前記第十の実施例と同様なので、その他の部分の構
造及び動作及び効果の説明は省略する。これは、前記し
た第十一の実施例で行ったシール面の面積を縮小する手
段の極限と考えられ、効果は第十一の実施例と同様であ
り、その効果の程度は第十一の実施例よりも一層大き
い。
Next, a twelfth embodiment will be described with reference to a longitudinal sectional view of the vicinity of the bypass valve in FIG. 22 (an enlarged view of a portion R in FIG. 1). Except that a bypass valve seal line 2τ having a hemispherical cross section is provided in order to make the bypass valve seal portion linear, the structure, operation, and effects of the other portions are not described because they are the same as in the tenth embodiment. I do. This is considered to be the limit of the means for reducing the area of the sealing surface performed in the eleventh embodiment, and the effect is the same as that of the eleventh embodiment. It is even larger than in the example.

【0093】次に、第十三の実施例を図23の円状バイ
パス弁板の平面図に基づいて説明する。バイパス弁板の
シール部またはシール線(図23中のハッチング領域)
の外側に複数の弁体流路23iを設ける以外は前記第十
ないし十二の実施例と同様なので、その他の部分の構造
及び動作及び効果の説明は省略する。これにより、シー
ル部を確保しながら弁体のシール側からストッパ面側へ
抜ける流路断面積を拡大できるため、過圧縮損失をより
一層低減できるという特有の効果がある。ここで、この
円状バイパス弁板23yの外周の径を前記円筒状掘込み
2σに近くしてもよい。
Next, a thirteenth embodiment will be described with reference to a plan view of a circular bypass valve plate shown in FIG. Seal part or seal line of bypass valve plate (hatched area in FIG. 23)
Except for the provision of the plurality of valve body flow paths 23i outside the above, the structure is the same as that of the tenth to twelfth embodiments, and the description of the structure, operation, and effects of other parts is omitted. Thereby, the flow path cross-sectional area extending from the seal side of the valve body to the stopper surface side can be enlarged while securing the seal portion, and thus there is a specific effect that the overcompression loss can be further reduced. Here, the diameter of the outer periphery of the circular bypass valve plate 23y may be close to the cylindrical excavation 2σ.

【0094】このようにすると、弁体の前記円筒状掘込
み2σの中心軸方向に垂直な方向の動きが規制され、弁
体の前記中心軸方向の動きが滑らかになることから、過
圧縮損失が一層抑制でき、性能が向上するという特有の
効果がある。図23の弁体よりも図24の弁体の方が、
弁体流路の面積が大きく流路抵抗が小さいので、過圧縮
損失がより一層抑制でき、性能が向上するという特有の
効果がある。また、外周の径を前記円筒状掘込み2σに
近くした場合には、その部分の摺動面積が小さいので、
摩擦が小さく、弁体の前記中心軸方向の動きが一層滑ら
かになり、過圧縮損失が一層抑制でき、性能が一層向上
するという特有の効果がある。
In this way, the movement of the valve element in the direction perpendicular to the central axis direction of the cylindrical digging 2σ is restricted, and the movement of the valve element in the central axis direction becomes smooth. Can be further suppressed, and there is a specific effect that performance is improved. The valve body of FIG. 24 is better than the valve body of FIG.
Since the area of the valve element passage is large and the passage resistance is small, there is a specific effect that the overcompression loss can be further suppressed and the performance is improved. When the diameter of the outer periphery is close to the cylindrical dug 2σ, the sliding area at that portion is small.
Friction is small, and the movement of the valve element in the direction of the central axis is further smoothed, overcompression loss can be further suppressed, and performance is further improved.

【0095】次に、第十四の実施例を図25の円状バイ
パス弁板23yの縦断面図に基づいて説明する。円状バ
イパス弁板23yのバイパス弁ストッパ面側の外周に突
き出た外周突起部23jを設ける以外は前記第十三の実
施例のうちで、外周の径を前記円筒状掘込み2σの径に
近くしたものと同様なので、その他の部分の構造及び動
作及び効果の説明は省略する。これにより、この円状バ
イパス弁板23yが軸方向に垂直な軸を中心に回転しよ
うとしても、前記外周突起部23jがあるために、ほと
んど回転できなくなり、この円状バイパス弁23bの姿
勢が一層安定化し、軸方向の動作が確実になって、過圧
縮損失が一層抑制され、性能が一層向上するという特有
の効果がある。
Next, a fourteenth embodiment will be described with reference to a longitudinal sectional view of a circular bypass valve plate 23y of FIG. The thirteenth embodiment differs from the thirteenth embodiment in that the diameter of the outer periphery is close to the diameter of the cylindrical dug 2σ except that an outer peripheral projection 23j is provided on the outer periphery of the bypass valve stopper surface side of the circular bypass valve plate 23y. Therefore, the description of the structure, operation, and effects of the other parts is omitted. Thus, even if the circular bypass valve plate 23y attempts to rotate around an axis perpendicular to the axial direction, the circular bypass valve plate 23y can hardly rotate due to the presence of the outer peripheral projection 23j, and the posture of the circular bypass valve 23b is further increased. There is a specific effect that the operation is stabilized, the operation in the axial direction is ensured, the overcompression loss is further suppressed, and the performance is further improved.

【0096】また、この外周突起部23jは、この円状
バイパス弁板23yの剛性を高めるリブの役目をするた
め、同じ剛性でも弁体の厚みを薄くできるため、軽量と
なる。この結果、バイパス弁23の開閉動作の応答性を
向上でき、過圧縮損失が一層抑制され、性能が一層向上
するという特有の効果がある。ここで、前記弁体流路2
3iを前記外周突起部23jよりも内側まで食い込ませ
Xラインまでもってきて流路抵抗を一層低減してももち
ろん良い。また、この外周突起部23jをシール面側に
設けてもよい。この場合は、出っ張りの高さ及び内径を
バイパス弁シール面2λまたはバイパス弁シール線2τ
の基底部と干渉しないようにする。
The outer peripheral projection 23j serves as a rib for increasing the rigidity of the circular bypass valve plate 23y. Therefore, the thickness of the valve body can be reduced even with the same rigidity, so that the weight is reduced. As a result, the responsiveness of the opening / closing operation of the bypass valve 23 can be improved, and there is a specific effect that the excessive compression loss is further suppressed and the performance is further improved. Here, the valve element flow path 2
Of course, the flow path resistance may be further reduced by bringing the 3i into the inside of the outer peripheral projection 23j and bringing it to the X line. Further, the outer peripheral projection 23j may be provided on the seal surface side. In this case, the height and inner diameter of the protrusion are set to the bypass valve sealing surface 2λ or the bypass valve sealing line 2τ.
So as not to interfere with the base of the

【0097】次に、第十五の実施例を図26の円錐状バ
イパス弁体の縦断面図に基づいて説明する。円錐状バイ
パス弁体23zと固定スクロール部材2がバイパス弁シ
ール面2λの時は円錐状にする以外は前記第十四の実施
例と同様なので、その他の部分の構造及び動作及び効果
の説明は省略する。これにより、バイパス弁の開口時の
シール面またはシール線における流れは滑らかになるの
で、過圧縮損失が一層抑制され、性能が一層向上すると
いう特有の効果がある。ここで、弁体及びシール面の円
錐面を図27のように球面としてもよい。このようにす
ると弁体が傾いてもシールは行われるため、このバイパ
ス弁における閉口時の漏れを確実に回避できるという特
有の効果がある。また、この円錐状バイパス弁体23z
を比重の小さいアルミ合金やプラスチック材としてもよ
い。これにより、軽量化でき、バイパス弁23の開閉動
作の応答性を向上でき、過圧縮損失が一層抑制され、性
能が一層向上するという特有の効果がある。
Next, a fifteenth embodiment will be described with reference to a longitudinal sectional view of a conical bypass valve element shown in FIG. When the conical bypass valve body 23z and the fixed scroll member 2 have the bypass valve sealing surface 2λ, they are the same as the fourteenth embodiment except that they have a conical shape. I do. Thereby, since the flow on the seal surface or the seal line when the bypass valve is opened becomes smooth, there is a specific effect that the overcompression loss is further suppressed and the performance is further improved. Here, the conical surfaces of the valve body and the sealing surface may be spherical surfaces as shown in FIG. In this way, the sealing is performed even if the valve body is tilted, so that there is a unique effect that the leakage at the time of closing the bypass valve can be reliably avoided. Also, this conical bypass valve body 23z
May be an aluminum alloy or a plastic material having a small specific gravity. Thereby, the weight can be reduced, the responsiveness of the opening / closing operation of the bypass valve 23 can be improved, the overcompression loss is further suppressed, and the performance is further improved.

【0098】次に、第十六の実施例を図28の円筒状リ
テーナの縦断面図に基づいて説明する。円筒状リテーナ
23bのバイパス弁ストッパ面23cを含む部分をプラ
スチック等の金属よりも柔軟な材料にした別体ストッパ
部23wにする以外は前記第十ないし十五の実施例と同
様なので、その他の部分の構造及び動作及び効果の説明
は省略する。これにより、バイパス弁の開口時に弁体が
バイパス弁ストッパ面23cと衝突したときの音を小さ
くできるという特有の効果がある。この別体ストッパ部
23wは円筒状リテーナ23bの他の部分にインサート
成形してもよいし、接着してもよい。また、この円筒状
リテーナ23b全体をプラスチック等の金属よりも柔軟
な材料にしてももちろんよい。
Next, a sixteenth embodiment will be described with reference to a longitudinal sectional view of a cylindrical retainer shown in FIG. Except that the portion including the bypass valve stopper surface 23c of the cylindrical retainer 23b is a separate stopper portion 23w made of a material softer than metal such as plastic, the same as in the tenth to fifteenth embodiments, the other portions are the same. The description of the structure, operation, and effects of is omitted. Thereby, there is a specific effect that the sound when the valve body collides with the bypass valve stopper surface 23c when the bypass valve is opened can be reduced. This separate stopper portion 23w may be insert-molded or bonded to another portion of the cylindrical retainer 23b. The entire cylindrical retainer 23b may be made of a material such as plastic, which is more flexible than metal.

【0099】次に、第十七の実施例を図29の円筒状リ
テーナの縦断面図に基づいて説明する。円筒状リテーナ
を、プレス成形に適した、全域の厚さが概略一定の形状
にする以外は前記第十ないし十五の実施例と同様なの
で、その他の部分の構造及び動作及び効果の説明は省略
する。これにより、プレス成形で加工すると、加工コス
トの低減を実現できるという特有の効果がある。また、
この円筒状リテーナ23bの剛性が小さいため、前記固定
スクロール部材2に圧入する場合には、圧入代を過大に
とっても前記固定スクロール部材2に性能の低下をもた
らすほどの変形は生じることがなく、低い加工精度で量
産化が可能となり、加工コストの低減を実現できるとい
う特有の効果がある。
Next, a seventeenth embodiment will be described with reference to a longitudinal sectional view of a cylindrical retainer shown in FIG. The cylindrical retainer is the same as the tenth to fifteenth embodiments except that the thickness of the entire region is approximately constant, which is suitable for press molding. Therefore, the description of the structure, operation, and effects of other parts is omitted. I do. Accordingly, there is a specific effect that the processing cost can be reduced when processing is performed by press molding. Also,
Since the rigidity of the cylindrical retainer 23b is small, when the press-fitting is performed on the fixed scroll member 2, even if the press-fitting allowance is excessively large, the fixed scroll member 2 is not deformed so as to deteriorate the performance, and is low. There is a unique effect that mass production can be performed with processing accuracy and processing cost can be reduced.

【0100】次に、第十八の実施例を図30のバイパス
弁23の主要部拡大縦断面図に基づいて説明する。円筒
状リテーナ23bと円状バイパス弁板23xまたは円錐
状弁体23zの間にバイパスばね23kを設ける以外は
前記第十ないし十七の実施例と同様なので、その他の部
分の構造及び動作及び効果の説明は省略する。
Next, an eighteenth embodiment will be described with reference to an enlarged longitudinal sectional view of a main part of the bypass valve 23 shown in FIG. Except that a bypass spring 23k is provided between the cylindrical retainer 23b and the circular bypass valve plate 23x or the conical valve body 23z, the structure is the same as that of the tenth to seventeenth embodiments. Description is omitted.

【0101】このバイパスばね23kを圧縮ばねとして
用いた場合、バイパス弁23が閉じているときには弁体
23x,23zがバイパス弁シール面2λまたはバイパ
ス弁シール線2τに押し付けられているため、その時の
シール性が向上し、内部漏れが低減して性能が向上する
という特有の効果がある。
When the bypass spring 23k is used as a compression spring, the valve bodies 23x and 23z are pressed against the bypass valve seal surface 2λ or the bypass valve seal line 2τ when the bypass valve 23 is closed. There is a specific effect that the performance is improved, the internal leakage is reduced, and the performance is improved.

【0102】ところで、このバイパスばね23kの一端
と弁体23x,23z、及び、バイパスばね23kの他
端と円筒状リテーナ23bを固定したうえで、このバイ
パス弁23が閉じた時にわずかに引っ張り状態となるよ
うにバイパスばね23kの自然長を設定してもよい。こ
れにより実現する制御バイパスは、圧縮室の圧力が吐出
圧に達するわずかに前のタイミングで開く。
By the way, one end of the bypass spring 23k and the valve bodies 23x and 23z, and the other end of the bypass spring 23k and the cylindrical retainer 23b are fixed, and when the bypass valve 23 is closed, it is slightly pulled. The natural length of the bypass spring 23k may be set so as to be as follows. The control bypass realized by this is opened slightly before the pressure of the compression chamber reaches the discharge pressure.

【0103】これまでの実施例で述べた制御バイパスで
は、そのバイパスの開き始めの流路断面積が小さいため
に、過圧縮を回避するに足る制御バイパス内の流れが生
じず、過圧縮はかなり残り、過圧縮条件下での過圧縮損
失による性能低下を起こすとともに、過中間圧値の設定
を大きめにする一因となり、不足圧縮条件時の付勢力増
大による性能低下を起こした。ここで示したように、制
御バイパスを引っ張りばねで構成することにより、圧縮
室の圧力が吐出圧に達するわずかに前のタイミングで制
御バイパスが開くため、圧縮室圧力と吐出圧が同一にな
った時にはそのバイパスの流路断面積は大きくなってお
り、過圧縮を大幅に低減できる。この結果、過圧縮条件
下では過圧縮損失低減による性能向上を実現するととも
に、過中間圧値の設定値を小さくできるために、不足圧
縮条件時の付勢力低減による性能向上を実現できるとい
う特有の効果がある。
In the control bypass described in the previous embodiments, since the flow passage cross-sectional area at the start of opening of the bypass is small, there is no flow in the control bypass sufficient to avoid over-compression, and the over-compression is considerably large. In addition, performance degradation due to over-compression loss under over-compression conditions was caused, and this was also a factor in increasing the setting of the over-intermediate pressure value, resulting in performance degradation due to an increase in the urging force under under-compression conditions. As shown here, by forming the control bypass with a tension spring, the control bypass is opened slightly before the pressure of the compression chamber reaches the discharge pressure, so that the compression chamber pressure and the discharge pressure are the same. At times, the flow passage cross-sectional area of the bypass is large, so that excessive compression can be greatly reduced. As a result, under the over-compression condition, the performance can be improved by reducing the over-compression loss, and since the set value of the over-intermediate pressure value can be reduced, the performance can be improved by reducing the urging force under the under-compression condition. effective.

【0104】また、弁体に外周突起部23jがあるもの
の場合、外周突起部23jの内周に前記バイパスばね2
3kがちょうどゆるく圧入されるような寸法形状にして
もよい。この結果、前記バイパスばね23kの中心軸と
弁体の中心軸を常に合わせておくことが可能となるた
め、バイパス弁23が閉じているときの前記バイパスば
ね23kの縮み量または伸び量が常に一定となり、バイ
パス弁の開く条件が一定し、安定した性能を実現できる
という特有の効果がある。特に前記外周突起部23jの
高さが前記バイパスばね23kの素線の半径以上でかつ
直径程度であるとなお良い。この場合、そのバイパスば
ね23kの伸縮をほとんど阻害せずに弁体と前記バイパ
スばね23kが接続できるため、動作時のばね定数を常
時概略一定に保持でき、バイパス弁23の動作の確実性
を確保できるという特有の効果がある。
When the valve body has an outer peripheral projection 23j, the bypass spring 2 is provided on the inner periphery of the outer peripheral projection 23j.
The shape may be such that 3k is just loosely press-fitted. As a result, the center axis of the bypass spring 23k and the center axis of the valve body can always be aligned, so that the amount of contraction or expansion of the bypass spring 23k when the bypass valve 23 is closed is always constant. Thus, there is a specific effect that the condition for opening the bypass valve is constant and stable performance can be realized. In particular, it is more preferable that the height of the outer peripheral projection 23j is equal to or larger than the radius of the element wire of the bypass spring 23k and approximately equal to the diameter. In this case, since the valve body and the bypass spring 23k can be connected to each other without substantially hindering the expansion and contraction of the bypass spring 23k, the spring constant during operation can be kept substantially constant at all times, and the operation reliability of the bypass valve 23 is ensured. There is a special effect that it can be done.

【0105】また、図31のように、図30の実施例と
は反対に弁体のバイパス穴2e側にバイパスばね23k
を設けてもよい。この時には、図30の実施例のときと
逆にバイパスばね23kの設定状態を用いて同様の効果
を得ることができる。
As shown in FIG. 31, a bypass spring 23k is provided in the bypass hole 2e side of the valve body, contrary to the embodiment of FIG.
May be provided. At this time, the same effect can be obtained by using the setting state of the bypass spring 23k, contrary to the embodiment of FIG.

【0106】次に、第十九の実施例を図32の円筒状リ
テーナの中央突起部の表面の拡大縦断面図に基づいて説
明する。中央突起部23pを先端に向かうにつれて細く
なるようなテーパ形状とする以外は前記第十八の実施例
と同様なので、その他の部分の構造及び動作及び効果の
説明は省略する。これにより、そのバイパスばね23kの
伸縮を阻害せずに円筒状リテーナ23bと前記バイパス
ばね23kを接続できるため、動作時のばね定数を常時
概略一定に保持でき、バイパス弁23の動作の確実性を
確保できるという特有の効果がある。また、図33のよ
うに、前記中央突起部23pの付け根に前記バイパスば
ね23kの端部のリングがはまるばね溝23qを設けて
もよい。このようにすると、前記バイパスばね23kの
姿勢が安定するため、バイパス弁23の動作が一層確実
になるという特有の効果がある。
Next, a nineteenth embodiment will be described with reference to an enlarged vertical sectional view of the surface of the central projection of the cylindrical retainer shown in FIG. The structure is the same as that of the eighteenth embodiment except that the central protruding portion 23p is tapered so that the center protruding portion 23p becomes thinner toward the front end, so that the description of the structure, operation, and effects of the other portions is omitted. Accordingly, the cylindrical retainer 23b and the bypass spring 23k can be connected without obstructing the expansion and contraction of the bypass spring 23k. Therefore, the spring constant during operation can be kept substantially constant at all times, and the operation of the bypass valve 23 can be reliably performed. There is a specific effect that it can be secured. Further, as shown in FIG. 33, a spring groove 23q into which a ring at the end of the bypass spring 23k fits may be provided at the base of the central projection 23p. With this configuration, since the posture of the bypass spring 23k is stabilized, there is a unique effect that the operation of the bypass valve 23 is further ensured.

【0107】次に、第二十の実施例を図34のバイパス
弁付近の縦断面図(図1におけるR部の拡大図)及び図
35の自己ばね型円状バイパス弁板23mの平面図に基
づいて説明する。これらの図の部分以外は前記第十ない
し十九の実施例と同様なので、その他の部分の構造及び
動作及び効果の説明は省略する。自己ばね型円状バイパ
ス弁板23mは、周囲の弁挟み込み部23tと中央の円
形状の弁本体23rを四本の放射状弁保持部23sでつ
ないだ構造を有している。バイパス穴2eの反ラップ側
に円筒状掘込み2σを設ける。
Next, a twentieth embodiment will be described with reference to a longitudinal sectional view (enlarged view of a portion R in FIG. 1) near the bypass valve in FIG. 34 and a plan view of a self-spring circular bypass valve plate 23m in FIG. It will be described based on the following. Since the parts other than those shown in these figures are the same as those of the tenth to nineteenth embodiments, the description of the structure, operation and effect of the other parts will be omitted. The self-spring circular bypass valve plate 23m has a structure in which a surrounding valve sandwiching portion 23t and a central circular valve body 23r are connected by four radial valve holding portions 23s. A cylindrical dug 2σ is provided on the side opposite to the lap of the bypass hole 2e.

【0108】この底部には、外周に固定挟み込み面2
θ、中央部にバイパス弁シール面2λまたはバイパス弁
シール線2τを形成し、それらを概略同一面とする。こ
の円筒状掘込み2σに自己ばね型円状バイパス弁板23
mを入れ、前記弁挟み込み部23tを前記固定挟み込み
面2θに載せ、さらに前記弁本体23rを前記バイパス
弁シール面2λに載せる。そして、ばね押さえ付リテー
ナ23uを前記円筒状掘込み2σに圧入または接着し、
その外周の底面で前記弁挟み込み部23tを押さえて、
前記自己ばね型円状バイパス弁板23mを固定配置し、
バイパス弁23を形成する。このばね押さえ付リテーナ
23uには、上述した実施例で用いた円筒状リテーナ2
3bと同様の働きをする、中央放出穴23eや周辺放出
穴23fのいずれかまたはその両方、バイパス弁ストッ
パ面23cが設けられている。
On the bottom, a fixed sandwiching surface 2
θ, a bypass valve sealing surface 2λ or a bypass valve sealing line 2τ is formed at the center, and these are made substantially the same surface. The self-spring type circular bypass valve plate 23
m, the valve sandwiching portion 23t is placed on the fixed sandwiching surface 2θ, and the valve body 23r is further placed on the bypass valve seal surface 2λ. Then, the retainer 23u with a spring retainer is press-fitted or bonded to the cylindrical digging 2σ,
By pressing the valve pinching portion 23t on the bottom surface of the outer periphery,
The self-spring circular bypass valve plate 23m is fixedly arranged,
A bypass valve 23 is formed. The retainer with spring retainer 23u includes the cylindrical retainer 2 used in the above-described embodiment.
Either or both of the central discharge hole 23e and the peripheral discharge hole 23f, and the bypass valve stopper surface 23c, which have the same function as that of the valve 3b, are provided.

【0109】これにより、上述した実施例のように、弁
体と別体のばねを設けることなく、弁体に組み込まれた
前記放射状弁保持部23sの弾性によって、このバイパ
ス弁23が開口した後で再び閉じるときの動作の確実性
を向上できるという特有の効果がある。ここで、この放
射状弁保持部は四本となっているが何本でもよい。特
に、二本以上で、前記自己ばね型円状バイパス弁板23
mの中心を通る直線で線対称となるような直線が存在す
る形状とすれば一層良い。これにより、このバイパス弁
23が開口した時でも、弁本体23rの姿勢は、バイパ
ス弁シール面2λに概略平行となる。よって、バイパス
穴2eから円筒状掘込み2σに流出するガスの流れが偏
らないため、流路抵抗が小さくなり、過圧縮損失が一層
低減でき、性能向上できるという特有の効果がある。
As a result, the elasticity of the radial valve holding portion 23s incorporated in the valve body allows the bypass valve 23 to be opened after the bypass valve 23 is opened, without providing a separate spring from the valve body as in the above-described embodiment. There is a specific effect that the certainty of the operation when closing again can be improved. Here, the number of the radial valve holding portions is four, but any number may be used. In particular, the self-spring type circular bypass valve plate 23
It is even better if the shape has a straight line which is symmetrical with a straight line passing through the center of m. Thus, even when the bypass valve 23 is opened, the posture of the valve body 23r is substantially parallel to the bypass valve sealing surface 2λ. Therefore, since the flow of the gas flowing out of the bypass hole 2e to the cylindrical digging 2σ is not biased, the flow path resistance is reduced, the overcompression loss can be further reduced, and the performance can be improved.

【0110】また、前記固定挟み込み面2θを前記バイ
パス弁シール面2λより浅くしてもよい。この場合に
は、第十八の実施例のうちで、バイパスばねを引張り状
態で用いた場合と同様の作用を生じる。よって、過圧縮
条件下では過圧縮損失低減による性能向上を実現すると
ともに、過中間圧値の設定値を小さくできるために、不
足圧縮条件時の付勢力低減による性能向上を実現できる
という特有の効果がある。また、前記固定挟み込み面2
θを前記バイパス弁シール面2λより深くしてもよい。
この場合には、第十八の実施例のうちで、バイパスばね
を圧縮状態で用いた場合と同様の作用を生じる。よっ
て、内部漏れが低減して性能が向上するという特有の効
果がある。
The fixed sandwiching surface 2θ may be shallower than the bypass valve sealing surface 2λ. In this case, the same operation as in the eighteenth embodiment when the bypass spring is used in a tensioned state is produced. Therefore, under the over-compression condition, the performance can be improved by reducing the over-compression loss, and the setting value of the over-intermediate pressure value can be reduced. There is. In addition, the fixed sandwiching surface 2
θ may be deeper than the bypass valve sealing surface 2λ.
In this case, the same operation as in the eighteenth embodiment when the bypass spring is used in a compressed state is produced. Therefore, there is a specific effect that the internal leakage is reduced and the performance is improved.

【0111】次に、第二十一の実施例を図36,図3
7,図38の自己ばね型円状バイパス弁板23mの平面
図に基づいて説明する。弁挟み込み部23tと中央の円
形状の弁本体23rを各々、二本,三本,四本の迷路状
弁保持部23nでつなぐ以外は前記第二十の実施例と同
様なので、その他の部分の構造及び動作及び効果の説明
は省略する。この迷路状弁保持部23nの面に垂直な方
向における剛性は、前記第二十の実施例の放射状弁保持
部23sと比較して、かなり小さいところまで設計でき
るうえに、それ以外の方向の剛性は、同程度に大きい。
前者の剛性は、バイパス弁23が開口した後で閉じよう
とする動作に移行するためのきっかけを与えるために必
要なものであり、小さいほうがよい。これに反し、後者
の剛性は、弁本体23rをバイパス弁シール面2λまた
はバイパス弁シール線2τ上の正規の位置に常に戻すた
めに必要なものであり、大きいほどよい。これより、バ
イパス弁の動作をより理想に近いものにできるという特
有の効果がある。
Next, the twenty-first embodiment will be described with reference to FIGS.
A description will be given based on a plan view of the self-spring circular bypass valve plate 23m shown in FIG. The same as in the twentieth embodiment except that the valve pinching portion 23t and the central circular valve body 23r are connected by two, three, and four maze-shaped valve holding portions 23n, respectively. The description of the structure, operation, and effects is omitted. The rigidity in the direction perpendicular to the plane of the maze-shaped valve holding portion 23n can be designed to be considerably smaller than that of the radial valve holding portion 23s of the twentieth embodiment. Are equally large.
The former stiffness is necessary to give an opportunity to shift to an operation of closing after the bypass valve 23 opens, and the smaller the better, the better. On the other hand, the latter rigidity is necessary for always returning the valve body 23r to the normal position on the bypass valve seal surface 2λ or the bypass valve seal line 2τ, and the greater the rigidity, the better. Thus, there is a specific effect that the operation of the bypass valve can be made closer to ideal.

【0112】次に、第二十二の実施例を図39の旋回ス
クロール部材3の縦断面図及び図40の差圧制御弁10
0の縦断面図(図39におけるT部の拡大図)に基づい
て説明する。図1におけるP部を差圧制御弁がない図1
のままとし、図39,図40で示した部分以外は前記第
一と第二、及び、第五ないし二十一の実施例と同様なの
で、その他の部分の構造及び動作及び効果の説明は省略
する。旋回スクロール部材3の鏡板3aの背面過中間圧
領域99側に弁穴3fを設け、その底にばね位置決め突
起3h及び中間側導通路3αを設ける。ここで、この中
間側導通路3αは、前記中間圧力室68が形成される旋
回スクロール部材3の歯底部に開口している。
Next, a twenty-second embodiment will be described with reference to a longitudinal sectional view of the orbiting scroll member 3 shown in FIG. 39 and the differential pressure control valve 10 shown in FIG.
The description will be made based on a vertical cross-sectional view of FIG. FIG. 1 without the differential pressure control valve in the P section in FIG. 1
39 and 40 are the same as those of the first and second embodiments and the fifth to twenty-first embodiments except for the portions shown in FIGS. 39 and 40, and therefore the description of the structure, operation, and effects of other portions is omitted. I do. A valve hole 3f is provided on the back intermediate pressure region 99 side of the end plate 3a of the orbiting scroll member 3, and a spring positioning projection 3h and an intermediate conduction path 3α are provided at the bottom thereof. Here, the intermediate-side conduction path 3α opens at the tooth bottom of the orbiting scroll member 3 in which the intermediate pressure chamber 68 is formed.

【0113】この弁穴3fに差圧弁ばね100cと弁体
100aを挿入した後に、弁シール面100j及び貫通
した穴である背面側導通路100βを有する弁シール部
材100iで前記弁穴3fにふたをする。ここで、この
弁シール部材100iは、圧入するか接着して旋回スク
ロール部材3に固定配置する。弁シール部材には外周掘
込み100mがあるため、この弁シール部材100iを
旋回スクロール部材3に圧入しても旋回スクロール部材
3はほとんど変形しない。このようにして形成した差圧
制御弁100は、旋回スクロール部材3に形成されたと
いう違いはあるが、第一の実施例の差圧制御弁とまった
く同一の動作を行う(よって、同一の名称である差圧制
御弁と称する)ため、その動作及び効果の説明は省略す
る。この実施例では、前記中間側導通路3αの構造が簡
単になるという特有の効果がある。
After inserting the differential pressure valve spring 100c and the valve body 100a into the valve hole 3f, the valve hole 3f is covered with a valve seal member 100i having a valve seal surface 100j and a through hole 100β which is a through hole. I do. Here, the valve seal member 100i is fixedly arranged on the orbiting scroll member 3 by press-fitting or bonding. Since the valve seal member has an outer peripheral excavation of 100 m, even if the valve seal member 100i is pressed into the orbiting scroll member 3, the orbiting scroll member 3 hardly deforms. Although the differential pressure control valve 100 formed in this way has a difference that it is formed on the orbiting scroll member 3, it performs exactly the same operation as the differential pressure control valve of the first embodiment (therefore, the same name). Therefore, the description of the operation and effect thereof will be omitted. In this embodiment, there is a specific effect that the structure of the intermediate side conduction path 3α is simplified.

【0114】また、前記中間側導通路3αを中間圧力室
68ではなく吸込み室60に設けた場合(図40を図3
9のV部の拡大図とする)も考えられる。この時は、背
面過中間圧領域の圧力は吸込圧よりも概略一定値だけ高
い圧力すなわち背面過吸込圧に設定され、効果等は、背
面過中間圧の場合と同様である。
When the intermediate side passage 3α is provided not in the intermediate pressure chamber 68 but in the suction chamber 60 (FIG.
9 (an enlarged view of the portion V). At this time, the pressure in the back intermediate pressure region is set to a pressure that is approximately a fixed value higher than the suction pressure, that is, the back excessive suction pressure, and the effect and the like are the same as in the case of the back excessive intermediate pressure.

【0115】次に、本発明を、非旋回スクロール部材を
軸線方向に可動とし、その鏡板の反圧縮室側に背面過中
間圧領域を設けて、要求される運転圧力条件範囲で非旋
回スクロール部材のスクロール支持部材を主に旋回スク
ロール部材とした、すなわち非旋回スクロール部材を旋
回スクロール部材に押し付けた、縦置き型の非旋回フロ
ート式スクロール圧縮機に実施した第二十三の実施例
を、図41ないし図46に基づいて説明する。図41は
圧縮機の縦断面図、図42は差圧制御弁付近の縦断面図
(図41におけるP部の拡大図)、図43は差圧制御弁
の弁体の平面図、図44はばね姿勢保持円筒の横断面
図、図45は上ケーシング及び圧力隔壁を取り除いたと
きの上面図、図46は非旋回スクロール部材上面中央部
の拡大図である。
Next, according to the present invention, the non-orbiting scroll member is made movable in the axial direction, and the rear intermediate pressure region is provided on the side of the end plate opposite to the compression chamber so that the non-orbiting scroll member can be operated within the required operating pressure condition range. The twenty-third embodiment implemented in a vertically mounted non-orbiting float scroll compressor in which the scroll support member is mainly a orbiting scroll member, that is, a non-orbiting scroll member is pressed against the orbiting scroll member, FIG. This will be described with reference to FIGS. 41 is a longitudinal sectional view of the compressor, FIG. 42 is a longitudinal sectional view near the differential pressure control valve (an enlarged view of a portion P in FIG. 41), FIG. 43 is a plan view of a valve element of the differential pressure control valve, and FIG. FIG. 45 is a cross-sectional view of the spring attitude holding cylinder, FIG. 45 is a top view when the upper casing and the pressure partition are removed, and FIG. 46 is an enlarged view of the central portion of the upper surface of the non-orbiting scroll member.

【0116】まず、構造を説明する。First, the structure will be described.

【0117】旋回スクロール部材3は、鏡板3aにスク
ロールラップ3bが立設し、その背面には旋回オルダム
溝3g,3hと旋回軸受3wを圧入した軸受保持部3s
とスラスト面3dが配置されている。
In the orbiting scroll member 3, a scroll wrap 3b is erected on a head plate 3a, and a bearing holder 3s in which orbital grooves 3g and 3h and a orbital bearing 3w are press-fitted is provided on the back surface thereof.
And a thrust surface 3d.

【0118】非旋回スクロール部材2は、鏡板2aにス
クロールラップ2bが立設し、その背面の中央部に中央
台部2wを設け、そこには吐出穴2dと複数のバイパス
穴2eが開いている。このバイパス穴2eにリード弁板
であるバイパス弁板23xとリテーナ23aをバイパス
ねじ23hで固定し、バイパス弁23を設ける。前記中
央台部2wの周囲にはシール溝2sを設ける。また、背
面外周近くには外周突起部2tが設けられ、前記中央台
部2wとの間に背面凹部2xを設ける。
In the non-orbiting scroll member 2, a scroll wrap 2b is provided upright on a head plate 2a, and a central base 2w is provided at a central portion on the back surface thereof. . A bypass valve 23x and a retainer 23a, which are reed valve plates, are fixed to the bypass hole 2e with a bypass screw 23h, and a bypass valve 23 is provided. A seal groove 2s is provided around the center base 2w. An outer peripheral projection 2t is provided near the outer periphery of the rear surface, and a rear concave portion 2x is provided between the outer peripheral protrusion 2t and the central base 2w.

【0119】そして、この背面凹部2xに弁穴2fを掘
り込み、その底からスクロールラップ側の中間圧力室6
8へ中間側導通路2αを開ける。その弁穴2fの底には
ばね位置決め突起2lを設ける。ここで、前記弁穴2f
には、以下に述べる差圧制御弁100を組み込む。ま
ず、内周に流通縦溝100qを設けたプラスチック等で
作られたばね姿勢保持円筒100pを圧入または接着す
る。次に、前記弁穴2fの底にあるばね位置決め突起2
lに差圧弁ばね100cを挿入し、その他端に、外周に
弁流路100rを設けた弁体100aを載せる。
Then, a valve hole 2f is dug into the rear recess 2x, and from the bottom thereof, the intermediate pressure chamber 6 on the scroll wrap side is formed.
8, the intermediate side conduction path 2α is opened. A spring positioning projection 21 is provided at the bottom of the valve hole 2f. Here, the valve hole 2f
Incorporates a differential pressure control valve 100 described below. First, a spring attitude holding cylinder 100p made of plastic or the like and provided with a flow longitudinal groove 100q on the inner periphery is press-fitted or bonded. Next, the spring positioning projection 2 at the bottom of the valve hole 2f
1, a differential pressure valve spring 100c is inserted, and a valve body 100a provided with a valve flow path 100r on the outer periphery is placed on the other end.

【0120】そして、弁シール面100jと背面側導通
路100βを有する弁シール部材100iを前記弁穴2
fの弁穴拡大部2yに圧入または接着または溶接する。
このとき、前記差圧弁ばね100cは圧縮され、前記弁
体100aを前記弁シール面100jに押し付ける。こ
の押付力は過中間圧値を決定するため、これを決める寸
法である前記弁穴2fの深さと前記弁穴拡大部2yの深
さと前記差圧弁ばね100cのばね定数及び自然長及び
軸方向に対する両端部の直交度は精度良く管理しなけれ
ばならない。
Then, the valve seal member 100i having the valve seal surface 100j and the back-side conduction path 100β is connected to the valve hole 2
f, press-fitting, bonding or welding to the enlarged valve hole portion 2y.
At this time, the differential pressure valve spring 100c is compressed, and presses the valve body 100a against the valve seal surface 100j. Since this pressing force determines an excessive intermediate pressure value, the depth of the valve hole 2f, the depth of the valve hole enlarged portion 2y, the spring constant of the differential pressure valve spring 100c, the natural length, and the axial direction, which are dimensions for determining the intermediate pressure value, are determined. The orthogonality at both ends must be managed accurately.

【0121】フレーム4には、外周部に前記非旋回スク
ロール部材2を板状のスクロール取り付けばね75を介
して取り付ける突起した複数箇所のスクロール取付部4
qとその内側に滑りスラスト軸受4gとフレームオルダ
ム溝4e,4f(ともに図示せず)が設けられる。そし
て、その外周部には、複数個の吸込溝4rが設けられ
る。また、滑りスラスト軸受4gには環状や径方向に線
状の油溝4iが設けられる。また、中央部には軸シール
4aと主軸受4mを設け、そのスクロール側にシャフト
を受けるシャフトスラスト面4cを設ける。このフレー
ム4の上面の一番低い部分からフレーム下面に抜ける油
排出路4sを設ける。前記軸シール4aと前記主軸受4
mの間の空間に向かってフレーム側面から横穴4nが開
口している。
The frame 4 has a plurality of projecting scroll mounting portions 4 on the outer peripheral portion of which the non-orbiting scroll member 2 is mounted via a plate-shaped scroll mounting spring 75.
and a sliding thrust bearing 4g and frame Oldham grooves 4e and 4f (both not shown) are provided on the inside thereof. A plurality of suction grooves 4r are provided on the outer peripheral portion. The sliding thrust bearing 4g is provided with an annular or radial oil groove 4i in the radial direction. Further, a shaft seal 4a and a main bearing 4m are provided in the center, and a shaft thrust surface 4c for receiving the shaft is provided on the scroll side. An oil discharge path 4s is provided to pass from the lowest part of the upper surface of the frame 4 to the lower surface of the frame. The shaft seal 4a and the main bearing 4
A lateral hole 4n is opened from the side of the frame toward the space between m.

【0122】オルダムリング5の一面にフレーム突起部
5a,5b(ともに図示せず)が設けられ、もう一方の
面には旋回突起部5c,5dが設けられる。
The Oldham ring 5 is provided with frame projections 5a and 5b (both not shown) on one surface, and is provided with turning projections 5c and 5d on the other surface.

【0123】圧力隔壁74には、中央部に吐出開口部7
4cと内周部下部に内周シール溝74aと下面中央付近
に外周シール溝74bが設けられる。この二個のシール
溝の間の下面と上面を連通する絞りを伴う吐出背面間流
路74dを設ける。ここでは、微小な径の穴を有する別
ピースを圧入して形成する。
The pressure partition 74 has a discharge opening 7 at the center.
4c, an inner peripheral seal groove 74a is provided below the inner peripheral portion, and an outer peripheral seal groove 74b is provided near the center of the lower surface. A flow path 74d between the back and the discharge is provided with a throttle that communicates the lower surface and the upper surface between the two seal grooves. Here, another piece having a small diameter hole is press-fitted and formed.

【0124】シャフト12には内部にシャフト給油孔1
2aと主軸受給油孔12bと軸シール給油孔12cと副
軸受給油孔12iが設けられる。また、その上部には径
の拡大した軸受保持部12wがあり、ここに、シャフト
バランス49が圧入される。更にその上部には偏心部1
2fがある。
The shaft 12 has a shaft oil supply hole 1 inside.
2a, a main bearing lubrication hole 12b, a shaft seal lubrication hole 12c, and an auxiliary bearing lubrication hole 12i are provided. A bearing holding portion 12w having an enlarged diameter is provided at an upper portion thereof, and a shaft balance 49 is press-fitted therein. Further on the eccentric part 1
There is 2f.

【0125】ロータ15及びステータ16は、前記第一
の公知例と同一であるため説明は省略する。
Since the rotor 15 and the stator 16 are the same as those in the first known example, description thereof will be omitted.

【0126】これらの構成要素を以下のように組み立て
る。まず、前記フレーム4の前記主軸受4mに前記シャ
フト12を挿入し前記ロータ15を固定する。次に、前
記オルダムリング5を、前記フレーム4の前記フレーム
オルダム溝4e,4f(ともに図示せず)に前記オルダ
ムリング5の前記フレーム突起部5a,5b(ともに図
示せず)を挿入するようにして、装着する。
These components are assembled as follows. First, the shaft 12 is inserted into the main bearing 4m of the frame 4, and the rotor 15 is fixed. Next, the Oldham ring 5 is inserted into the frame Oldham grooves 4e and 4f (both not shown) of the frame 4 so that the frame projections 5a and 5b (both not shown) of the Oldham ring 5 are inserted. And attach it.

【0127】次に、前記旋回スクロール部材2を、シャ
フト12の偏心部12fに前記旋回軸受3wを挿入し、
前記オルダムリング5の前記旋回突起部5c,5dに前
記旋回オルダム溝3g,3hを挿入し、前記フレーム4
の前記滑りスラスト軸受4gに前記スラスト面3dを載
せて、組み込む。
Next, the orbiting scroll member 2 is inserted into the eccentric portion 12f of the shaft 12 by inserting the orbiting bearing 3w,
The rotating Oldham grooves 3g, 3h are inserted into the rotating protrusions 5c, 5d of the Oldham ring 5, and the frame 4
The thrust surface 3d is mounted on the sliding thrust bearing 4g, and incorporated.

【0128】次に、あらかじめスクロール取り付けばね
75を三本のばね取り付けねじ57でねじ止めした前記
非旋回スクロール部材2を、スクロールラップが噛み合
わさるようにして前記フレーム4のフレーム取付部4q
の上面に載せる。以上のように各要素を組み込んだ上
で、前記シャフト12か前記ロータ15を回しながら、
カバーねじ53により前記非旋回スクロール部材2を前
記フレーム4に固定する。
Next, the non-orbiting scroll member 2 in which the scroll mounting spring 75 is screwed in advance with three spring mounting screws 57 is moved so that the scroll wrap is engaged with the frame mounting portion 4q of the frame 4.
Place on top of While incorporating each element as described above, while rotating the shaft 12 or the rotor 15,
The non-orbiting scroll member 2 is fixed to the frame 4 by a cover screw 53.

【0129】次に、予め前記吸込みパイプ54とハーメ
チック端子22が溶接されている前記円筒ケーシング3
1へ、前記ステータ16を焼きばめまたは圧入し、その
ハーメチック端子22の内部側端子へ前記モータ線77
を装着してから、前記軸受支持板18を圧入または溶接
する。そして、上記の組立部を挿入して前記フレーム4
の側面にタック溶接を行う。
Next, the cylindrical casing 3 to which the suction pipe 54 and the hermetic terminal 22 are welded in advance.
1, the stator 16 is shrink-fitted or press-fitted, and the motor wire 77 is inserted into the terminal inside the hermetic terminal 22.
After mounting, the bearing support plate 18 is press-fitted or welded. Then, the above-mentioned assembly part is inserted and the frame 4 is inserted.
Tack welding on the side of

【0130】次に、前記軸受支持板18の中央部の穴か
ら出た前記シャフト12の一端が軸受ハウジング70に
装着した球面軸受72の円筒穴に挿入されるように前記
軸受ハウジングを組み込み、前記シャフト12の回転ト
ルクを検出しながら軸受ハウジング70の位置を調整し
てその回転トルクが最小になる位置で前記軸受ハウジン
グ70を前記軸受支持板18にスポット溶接する。その
軸受ハウジング70の下面に前記シャフト給油孔12a
に給油するように給油ポンプ56が設けられる。また、
この時、前記フレーム4と前記軸受支持板18との間に
はモータ室62が形成される。そして、前記円筒ケーシ
ング31に底ケーシング21を溶接し、貯油室80を形
成する。
Next, the bearing housing is assembled so that one end of the shaft 12 coming out of the hole at the center of the bearing support plate 18 is inserted into the cylindrical hole of the spherical bearing 72 mounted on the bearing housing 70. The position of the bearing housing 70 is adjusted while detecting the rotation torque of the shaft 12, and the bearing housing 70 is spot-welded to the bearing support plate 18 at a position where the rotation torque is minimized. The shaft lubrication hole 12a is formed in the lower surface of the bearing housing 70.
A refueling pump 56 is provided so as to refuel. Also,
At this time, a motor chamber 62 is formed between the frame 4 and the bearing support plate 18. Then, the bottom casing 21 is welded to the cylindrical casing 31 to form an oil storage chamber 80.

【0131】次に、前記圧力隔壁74の前記内周シール
溝74aと前記外周シール溝74bに各々内周シール5
1と外周シール58を挿入しながら、前記円筒ケーシン
グ31に被せる。この時、前記非旋回スクロール部材2
の上面の前記内周シール57と前記外周シール58の間
に前記非旋回スクロール部材2の背面過中間圧領域99
が設けられる。そして、吐出管55が上部に溶接された
上ケーシング20を、更にその上に被せて、溶接する。
この時、前記非旋回スクロール部材2の上面の前記内周
シール57の内側の領域が、前記非旋回スクロール部材
2の背面吐出圧領域95となる。そして、前記圧力隔壁
74と前記上ケーシング20の間に非旋回背面室61が
形成される。この状態で、前記ステータ16に電流を流
し、前記ロータ15内部の永久磁石15bを着磁し、モ
ータ19を形成する。最後に、油を入れる。
Next, the inner peripheral seal groove 74a and the outer peripheral seal groove 74b of the
1 and cover the cylindrical casing 31 while inserting the outer peripheral seal 58. At this time, the non-orbiting scroll member 2
Between the inner peripheral seal 57 and the outer peripheral seal 58 on the upper surface of the upper surface of the non-orbiting scroll member 2.
Is provided. Then, the upper casing 20 to which the discharge pipe 55 is welded is further placed thereon and welded.
At this time, the area inside the inner peripheral seal 57 on the upper surface of the non-orbiting scroll member 2 becomes the back discharge pressure area 95 of the non-orbiting scroll member 2. A non-swirl rear chamber 61 is formed between the pressure partition wall 74 and the upper casing 20. In this state, a current is applied to the stator 16 to magnetize the permanent magnet 15b inside the rotor 15, thereby forming a motor 19. Finally, add the oil.

【0132】次に、動作を説明する。Next, the operation will be described.

【0133】前記吸い込みパイプ54から前記吸込み室
60へ吸い込まれたガスは、前記旋回スクロール部材3
の旋回運動により前記圧縮室6内で圧縮され、前記吐出
孔2dより前記非旋回スクロール部材2の上部の前記非
旋回背面室61に吐出される。そのガスは、前記吐出パ
イプ55より圧縮機外部へ出る。
The gas sucked into the suction chamber 60 from the suction pipe 54 is supplied to the orbiting scroll member 3.
Is compressed in the compression chamber 6 by the orbital movement of the scroll member, and is discharged from the discharge hole 2d to the non-orbiting rear chamber 61 above the non-orbiting scroll member 2. The gas exits the compressor through the discharge pipe 55.

【0134】前記非旋回スクロール部材2は、前記圧縮
室6内部のガス圧により前記旋回スクロール部材3から
離間する方向の引き離し力を受けるが、前記背面過中間
圧領域99と前記背面吐出圧領域95からの圧力による
引付力により、前記旋回スクロール部材3に押し付けら
れる。よって、非旋回スクロール部材2の付勢力は前記
旋回スクロール部材3から与えられる。
The non-orbiting scroll member 2 receives a separating force in a direction away from the orbiting scroll member 3 due to the gas pressure inside the compression chamber 6, but the back excessive intermediate pressure region 99 and the back discharge pressure region 95. The orbiting scroll member 3 is pressed against the orbiting scroll member 3 by the attraction force due to the pressure from. Therefore, the urging force of the non-orbiting scroll member 2 is given from the orbiting scroll member 3.

【0135】一方、前記旋回スクロール部材3には引付
力はなく、旋回背面の滑りスラスト軸受により付勢力を
得ている。この結果、スクロール部材の歯先と歯底の隙
間は拡大せず圧縮動作を持続することができる。ここ
で、前記背面過中間圧領域99の圧力制御法は、まず、
絞りを伴う前記吐出背面間流路74dにより吐出系から
吐出圧を導入し、前記差圧制御弁100により、圧力を
制御する。これは、前記した実施例で軸受を通ってきた
ガス及び油により圧力導入を行っていた点が異なるだけ
である。
On the other hand, the orbiting scroll member 3 has no attraction force, and obtains the urging force by the sliding thrust bearing on the orbiting back surface. As a result, the gap between the tooth tip and the tooth bottom of the scroll member is not enlarged, and the compression operation can be continued. Here, the pressure control method of the back excess intermediate pressure region 99 is as follows.
A discharge pressure is introduced from a discharge system by the discharge back surface flow path 74d with a throttle, and the pressure is controlled by the differential pressure control valve 100. This is different from the above-described embodiment only in that pressure is introduced by gas and oil passing through the bearing.

【0136】これにより、前記過吸込圧領域99への圧
力導入のみを考えた設計ができるため、最適設計が可能
となる。また、バイパス弁23も前記第一ないし第八の
実施例と同様に設けているため、これらの組み合わせに
より、これらの実施例と同様に、広い運転範囲で全断熱
効率及び信頼性の向上した圧縮機を提供できるという効
果がある。また、前記背面吐出圧領域95の軸線方向に
おける投影面積を、前記第一の実施例で説明した内容の
大きさとしたので、過中間圧値を更に一層小さく設定で
きるため、広い運転範囲にわたり全断熱効率及び信頼性
を向上できるという効果がある。
As a result, it is possible to perform a design considering only the introduction of pressure into the over-suction pressure region 99, so that an optimum design is possible. In addition, since the bypass valve 23 is also provided in the same manner as in the first to eighth embodiments, the combination thereof improves the compression efficiency with improved overall adiabatic efficiency and reliability over a wide operating range as in these embodiments. There is an effect that a machine can be provided. Further, since the projected area in the axial direction of the back discharge pressure region 95 is set to the size described in the first embodiment, the excessive intermediate pressure value can be set even smaller. There is an effect that efficiency and reliability can be improved.

【0137】圧縮機の底に溜っている油は、前記給油ポ
ンプ56により、前記シャフト給油孔12aを通って前
記旋回軸受12cに給油される。また、前記横給油孔1
2bを経由して前記主軸受4aに給油される。その油
は、前記旋回背圧室11に入った後に、一部は前記油溝
4iを通って滑りスラスト軸受4を潤滑しつつ前記吸込
み室60に入り、その他は、前記油排出路4sを通っ
て、前記モータ室62に入った後、前記貯油室80に戻
る。
The oil remaining at the bottom of the compressor is supplied to the orbiting bearing 12c by the oil supply pump 56 through the shaft oil supply hole 12a. In addition, the horizontal lubrication hole 1
The oil is supplied to the main bearing 4a via 2b. After the oil enters the turning back pressure chamber 11, a part of the oil enters the suction chamber 60 while sliding through the oil groove 4i and lubricating the thrust bearing 4, and the other passes through the oil discharge path 4s. After entering the motor chamber 62, it returns to the oil storage chamber 80.

【0138】また、前記圧力隔壁74は、その下部にガ
スの層を形成するため、前記非旋回背面室61内の高温
のガスからの熱が前記圧縮室6へ伝わることを防止する
ため、加熱による全断熱効率の低下を抑制できるという
本実施例特有の効果がある。
The pressure bulkhead 74 forms a gas layer at the lower portion thereof, so that the heat from the high-temperature gas in the non-swirl back chamber 61 is prevented from being transmitted to the compression chamber 6. This has an effect peculiar to the present embodiment that a decrease in the total adiabatic efficiency due to this can be suppressed.

【0139】ところで、前記背面過中間圧領域99への
圧力導入法として、前記吐出背面間流路74dを設ける
代わりに、前記内周シール51に微小な溝を設けたりし
てシール性を低下させ、そこを通る前記非旋回背面室6
1からの漏れ込み流れを利用してもよい。また、前記内
周シール51を取り除いて隙間ばめとし、その隙間を管
理する方法もある。
As a method for introducing pressure into the back intermediate pressure region 99, instead of providing the discharge back-to-back flow path 74d, a minute groove is provided in the inner peripheral seal 51 to reduce the sealing property. The non-swirl rear chamber 6 passing therethrough
A leak flow from one may be used. There is also a method of removing the inner peripheral seal 51 to form a clearance fit and managing the clearance.

【0140】また、前記差圧制御弁100の前記ばね姿
勢保持円筒100pの内周に、流通縦溝100qを設け
ているため、この差圧制御弁100を通過するガスや油
の流路抵抗が小さくなり、確実な背圧制御を実現すると
いう特有の効果がある。
Since the flow longitudinal groove 100q is provided on the inner periphery of the spring attitude holding cylinder 100p of the differential pressure control valve 100, the flow resistance of the gas or oil passing through the differential pressure control valve 100 is reduced. This has the unique effect of reducing the size and realizing reliable back pressure control.

【0141】ここで、この実施例の図41のP部を、図
54に示すように、前記中間側導通路2αの中間圧力室
側開口端を概略閉塞する圧縮室には常に臨まない位置す
なわち吸込み室60に設けた場合には、背面過中間圧領
域99の圧力は吸込圧+一定値に制御される。つまり、
本実施例の手段は、それを発展させると従来技術になる
ような基本的な手段であることがわかる。よって、これ
まで記した本実施例特有の効果及びこれ以後に記す実施
例特有の効果は、旋回スクロール部材の背面に吸込圧+
一定値の圧力をかける従来技術の実施例の効果でもあ
る。
Here, as shown in FIG. 54, the portion P in FIG. 41 of this embodiment is positioned at a position which does not always face the compression chamber which substantially closes the opening end of the intermediate side passageway 2α on the side of the intermediate pressure chamber. When provided in the suction chamber 60, the pressure in the rear intermediate pressure region 99 is controlled to the suction pressure + a fixed value. That is,
It can be seen that the means of the present embodiment is a basic means which, if developed, becomes the prior art. Therefore, the effects specific to the present embodiment described above and the effects specific to the embodiments described hereinafter are the same as the suction pressure +
This is also the effect of the prior art embodiment applying a constant pressure.

【0142】次に、第二十四の実施例を図47の差圧制
御弁付近の縦断面図(図41におけるP部の拡大図)に
基づいて説明する。弁ケース100nの内部で一旦差圧
制御弁100を組み立てた上で、非旋回スクロール部材
2の弁穴2fに圧入または接着する以外は前記第二十三
の実施例とほぼ同様なので、その他の部分の構造及び動
作及び効果の説明は省略する。これにより、細かい作業
となる差圧制御弁100の組み立てを圧縮機の組み立てと
は別に行うことが可能となるため、組み立て性が向上す
るという特有の効果がある。また、前記二十三の実施例
にあったばね位置決め突起2lをなくして、ばね姿勢保
持円筒100pの下部に内径の小さい下部突出部100
sを設け、そこで差圧弁ばね100cを固定する方式と
したため、この差圧弁ばね100cが圧縮されてそのコ
イル径が拡大しても、一層確実にこの差圧弁ばね100
cが位置決めされるため、制御性のよい差圧制御弁10
0を実現できるという特有の効果がある。
Next, a twenty-fourth embodiment will be described with reference to a longitudinal sectional view of the vicinity of the differential pressure control valve in FIG. 47 (an enlarged view of a portion P in FIG. 41). Except for once assembling the differential pressure control valve 100 inside the valve case 100n and then press-fitting or adhering it into the valve hole 2f of the non-orbiting scroll member 2, it is almost the same as the twenty-third embodiment. The description of the structure, operation, and effects of is omitted. Thus, the differential pressure control valve 100, which is a fine work, can be assembled separately from the compressor assembling, and there is a specific effect that the assemblability is improved. In addition, the spring positioning projection 21 of the twenty-third embodiment is eliminated, and the lower projection 100 having a small inner diameter is provided below the spring attitude holding cylinder 100p.
s is provided and the differential pressure valve spring 100c is fixed there. Therefore, even if the differential pressure valve spring 100c is compressed and its coil diameter is enlarged, the differential pressure valve spring 100c is more reliably secured.
c is positioned, so that the differential pressure control valve 10 has good controllability.
0 is realized.

【0143】次に、第二十五の実施例を図48の固定ス
クロール部材の縦断面図及び図49のバイパス弁付近の
縦断面図(図48におけるT部の拡大図)に基づいて説
明する。これらの図で示す部分以外は前記第二十四の実
施例と同様なので、その他の部分の構造及び動作及び効
果の説明は省略する。非旋回スクロール部材2の中央台
部を別体とした別体中央台部43を用い、それが収まる
非旋回スクロール部材2の掘込みの底部に円筒状掘込み
2σを設ける。この円筒状掘込み2σの内部に前記第十
八の実施例におけるバイパス弁と同様のバイパス弁23
を構成する。
Next, a twenty-fifth embodiment will be described with reference to a longitudinal sectional view of the fixed scroll member shown in FIG. 48 and a longitudinal sectional view of the vicinity of the bypass valve shown in FIG. 49 (an enlarged view of a portion T in FIG. 48). . The parts other than those shown in these figures are the same as those in the twenty-fourth embodiment, and the description of the structure, operation, and effects of the other parts will be omitted. Using a separate central base 43 which is separate from the central base of the non-orbiting scroll member 2, a cylindrical dug 2σ is provided at the bottom of the dug of the non-orbiting scroll member 2 in which the central base 43 is accommodated. A bypass valve 23 similar to the bypass valve in the eighteenth embodiment is provided inside the cylindrical dug 2σ.
Is configured.

【0144】このバイパス弁23を組み立てた後、前記
別体中央台部43を、その底面にあるリテーナ挿入掘込
み43aに円筒状リテーナ23bが入るような角度で、
前記非旋回スクロール部材2に固定配置する。このリテ
ーナ挿入掘込み43aには、非旋回背面室61につなが
るバイパス通路43dが開口している。この時、台部シ
ール59により、前記別体中央台部43の側面をシール
する。この結果、非旋回フロート式スクロール圧縮機に
おいて、前記第十八の実施例のようなバイパス弁を設定
可能となり、その時のバイパス弁の効果と同様の効果が
ある。ここで、前記別体中央台部43にリテーナ挿入掘
込み43aを設けたため、これが、前記別体中央台部4
3を非旋回スクロール部材に挿入するときの、位置決め
穴の役目をすることになり、組み立て性が向上するとい
う特有の効果がある。
After assembling the bypass valve 23, the separate center base 43 is set at an angle such that the cylindrical retainer 23b enters the retainer insertion dug 43a on the bottom surface.
The non-orbiting scroll member 2 is fixedly arranged. A bypass passage 43d leading to the non-swirl rear chamber 61 is opened in the retainer insertion dug 43a. At this time, the side face of the separate central base 43 is sealed by the base seal 59. As a result, in the non-orbiting float scroll compressor, the bypass valve as in the eighteenth embodiment can be set, and the same effect as that of the bypass valve at that time can be obtained. Here, since the separate central base portion 43 is provided with the retainer insertion dug 43a, this is
It serves as a positioning hole when the 3 is inserted into the non-orbiting scroll member, and has a specific effect that the assemblability is improved.

【0145】最後に、第二十六の実施例を図50の差圧
制御弁付近の縦断面図(図41におけるP部の拡大図)
に基づいて説明する。円筒状リテーナ23bの穴及び別
体中央台部43に設けていたバイパス通路をなくし、バ
イパス溝2zを設けた以外は前記第二十五の実施例と同
様なので、その他の部分の構造及び動作及び効果の説明
は省略する。これにより、バイパス弁を通過した流体の
流路の形成が容易となるので、加工性が向上するという
特有の効果がある。
Finally, a twenty-sixth embodiment is a longitudinal sectional view of the vicinity of the differential pressure control valve shown in FIG. 50 (an enlarged view of a portion P in FIG. 41).
It will be described based on. Except that the hole of the cylindrical retainer 23b and the bypass passage provided in the separate central base portion 43 are eliminated, and the bypass groove 2z is provided, the structure is the same as that of the twenty-fifth embodiment, so the structure, operation, and The description of the effect is omitted. This facilitates formation of the flow path of the fluid that has passed through the bypass valve, and has a specific effect of improving workability.

【0146】[0146]

【発明の効果】本発明によれば、広範囲な圧力運転範囲
において、全断熱効率及び信頼性が高く、使い勝手の良
いスクロール圧縮機を提供できるという効果がある。
According to the present invention, there is an effect that it is possible to provide a scroll compressor which is high in total adiabatic efficiency and reliability and easy to use in a wide pressure operation range.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第一の実施例である圧縮機の縦断面図。FIG. 1 is a longitudinal sectional view of a compressor according to a first embodiment.

【図2】図1の固定スクロール部材の反スクロールラッ
プ側からの平面図。
FIG. 2 is a plan view of the fixed scroll member of FIG. 1 as viewed from a side opposite to the scroll wrap.

【図3】第一の実施例の固定スクロール部材のスクロー
ルラップ側からの平面図。
FIG. 3 is a plan view of the fixed scroll member according to the first embodiment as viewed from the scroll wrap side.

【図4】第一の実施例の吐出圧のかかる領域の説明図。FIG. 4 is an explanatory diagram of a region where a discharge pressure is applied according to the first embodiment.

【図5】第一の実施例の圧縮行程の説明図。FIG. 5 is an explanatory diagram of a compression stroke according to the first embodiment.

【図6】第一の実施例のバイパス弁付近の縦断面図(図
1におけるR部の拡大図)。
FIG. 6 is a longitudinal sectional view of the vicinity of a bypass valve according to the first embodiment (an enlarged view of a portion R in FIG. 1).

【図7】第一の実施例の圧力差制御弁付近の縦断面図
(図1におけるP部の拡大図)。
FIG. 7 is a vertical cross-sectional view of the vicinity of the pressure difference control valve according to the first embodiment (an enlarged view of a portion P in FIG. 1).

【図8】第一の実施例の圧力差制御弁の背圧室付近の縦
断面図(図7におけるQ部の拡大図)。
FIG. 8 is a longitudinal sectional view of the vicinity of the back pressure chamber of the pressure difference control valve according to the first embodiment (an enlarged view of a portion Q in FIG. 7).

【図9】冷凍サイクル用圧縮機として用いられた場合の
運転が要求される圧力域を示す図。
FIG. 9 is a diagram showing a pressure range in which operation is required when used as a refrigeration cycle compressor.

【図10】第二の実施例の圧力差制御弁付近の縦断面図
(図1におけるP部の拡大図)。
FIG. 10 is a vertical cross-sectional view of the vicinity of the pressure difference control valve according to the second embodiment (an enlarged view of a portion P in FIG. 1).

【図11】第三の実施例の圧力差制御弁付近の縦断面図
(図1におけるP部の拡大図)。
FIG. 11 is a vertical cross-sectional view of the vicinity of a pressure difference control valve according to a third embodiment (an enlarged view of a portion P in FIG. 1).

【図12】第四の実施例の圧力差制御弁付近の縦断面図
(図1におけるP部の拡大図)。
FIG. 12 is a vertical cross-sectional view of the vicinity of a pressure difference control valve according to a fourth embodiment (an enlarged view of a portion P in FIG. 1).

【図13】第五の実施例の圧力差制御弁の背圧室付近の
縦断面図(図7,図11,図12におけるQ部の拡大
図)。
FIG. 13 is a longitudinal sectional view of the vicinity of a back pressure chamber of a pressure difference control valve according to a fifth embodiment (an enlarged view of a Q portion in FIGS. 7, 11, and 12).

【図14】第六の実施例の圧力差制御弁の背圧室付近の
縦断面図(図7,図11,図12におけるQ部の拡大
図)。
FIG. 14 is a longitudinal sectional view of the vicinity of a back pressure chamber of a pressure difference control valve according to a sixth embodiment (an enlarged view of a Q portion in FIGS. 7, 11, and 12).

【図15】第七の実施例のバイパス弁付近の縦断面図
(図1におけるR部の拡大図)。
FIG. 15 is a vertical cross-sectional view of the vicinity of a bypass valve according to a seventh embodiment (an enlarged view of a portion R in FIG. 1).

【図16】第八の実施例のバイパス弁付近の固定背面室
側の縦断面図(図1におけるR部の固定背面室側の拡大
図)。
FIG. 16 is a vertical cross-sectional view of the fixed rear chamber side near the bypass valve according to the eighth embodiment (an enlarged view of the R section in FIG. 1 on the fixed rear chamber side).

【図17】第八の実施例の変形例のバイパス弁の側面
図。
FIG. 17 is a side view of a bypass valve according to a modified example of the eighth embodiment.

【図18】第九の実施例のバイパス弁付近の固定背面室
側の縦断面図(図1におけるR部の固定背面室側の拡大
図)。
FIG. 18 is a vertical cross-sectional view of the fixed rear chamber side near the bypass valve according to the ninth embodiment (an enlarged view of the R section in FIG. 1 on the fixed rear chamber side).

【図19】第十の実施例のバイパス弁付近の縦断面図
(図1におけるR部の拡大図)。
FIG. 19 is a longitudinal sectional view of the vicinity of a bypass valve according to a tenth embodiment (an enlarged view of a portion R in FIG. 1).

【図20】第十の実施例の円筒状リテーナの縦断面図。FIG. 20 is a longitudinal sectional view of a cylindrical retainer according to a tenth embodiment.

【図21】第十一の実施例のバイパス弁付近の縦断面図
(図1におけるR部の拡大図)。
FIG. 21 is a longitudinal sectional view of the vicinity of a bypass valve according to an eleventh embodiment (an enlarged view of a portion R in FIG. 1).

【図22】第十二の実施例のバイパス弁付近の縦断面図
(図1におけるR部の拡大図)。
FIG. 22 is a longitudinal sectional view of the vicinity of a bypass valve according to a twelfth embodiment (an enlarged view of a portion R in FIG. 1).

【図23】第十三の実施例の円状バイパス弁板の平面
図。
FIG. 23 is a plan view of a circular bypass valve plate according to a thirteenth embodiment.

【図24】第十三の実施例のストッパ部材の斜視図。FIG. 24 is a perspective view of a stopper member according to a thirteenth embodiment.

【図25】第十四の実施例の円状バイパス弁板の縦断面
図。
FIG. 25 is a longitudinal sectional view of a circular bypass valve plate according to a fourteenth embodiment.

【図26】第十五の実施例の円錐状バイパス弁体の縦断
面図。
FIG. 26 is a longitudinal sectional view of a conical bypass valve element according to a fifteenth embodiment.

【図27】第十五の実施例の変形例のバイパス弁体の縦
断面図。
FIG. 27 is a longitudinal sectional view of a bypass valve element according to a modification of the fifteenth embodiment.

【図28】第十六の実施例の変形例の実施例の円筒状リ
テーナ23bの縦断面図。
FIG. 28 is a longitudinal sectional view of a cylindrical retainer 23b according to a modification of the sixteenth embodiment.

【図29】第十七の実施例の円筒状リテーナの縦断面
図。
FIG. 29 is a longitudinal sectional view of a cylindrical retainer according to a seventeenth embodiment.

【図30】第十八の実施例のバイパス弁の主要部拡大縦
断面図。
FIG. 30 is an enlarged longitudinal sectional view of a main part of a bypass valve according to an eighteenth embodiment.

【図31】第十八の実施例の変更例のバイパス弁の主要
部拡大縦断面図。
FIG. 31 is an enlarged longitudinal sectional view of a main part of a bypass valve according to a modification of the eighteenth embodiment.

【図32】第十九の実施例の円筒状リテーナの中央突起
部の表面の拡大縦断面図。
FIG. 32 is an enlarged vertical sectional view of the surface of the central projection of the cylindrical retainer according to the nineteenth embodiment.

【図33】第十九の実施例のバイパス弁の主要部拡大縦
断面図。
FIG. 33 is an enlarged longitudinal sectional view of a main part of a bypass valve according to a nineteenth embodiment.

【図34】第二十の実施例のバイパス弁付近の縦断面図
(図1におけるR部の拡大図)。
FIG. 34 is a vertical cross-sectional view of the vicinity of a bypass valve according to a twentieth embodiment (an enlarged view of a portion R in FIG. 1).

【図35】第二十の実施例の自己ばね型円状バイパス弁
板の平面図。
FIG. 35 is a plan view of a self-spring circular bypass valve plate according to a twentieth embodiment.

【図36】第二十一の実施例の自己ばね型円状バイパス
弁板の平面図。
FIG. 36 is a plan view of a self-spring circular bypass valve plate according to a twenty-first embodiment.

【図37】第二十一の実施例の変形例の自己ばね型円状
バイパス弁板の平面図。
FIG. 37 is a plan view of a self-spring circular bypass valve plate according to a modification of the twenty-first embodiment.

【図38】第二十一の実施例の第二の変形例の自己ばね
型円状バイパス弁板の平面図。
FIG. 38 is a plan view of a self-spring circular bypass valve plate according to a second modification of the twenty-first embodiment.

【図39】第二十二の実施例の旋回スクロール部材の縦
断面図。
FIG. 39 is a longitudinal sectional view of the orbiting scroll member according to the twenty-second embodiment.

【図40】第二十二の実施例の差圧制御弁付近の縦断面
図(図39におけるT部の拡大図)。
FIG. 40 is a longitudinal sectional view of the vicinity of the differential pressure control valve according to the twenty-second embodiment (an enlarged view of a portion T in FIG. 39).

【図41】第二十三の実施例の縦断面図。FIG. 41 is a longitudinal sectional view of a twenty-third embodiment.

【図42】第二十三の実施例の差圧制御弁付近の縦断面
図(図41におけるP部の拡大図)。
FIG. 42 is a longitudinal sectional view of the vicinity of the differential pressure control valve according to the twenty-third embodiment (an enlarged view of a portion P in FIG. 41).

【図43】第二十三の実施例の差圧制御弁の弁体の平面
図。
FIG. 43 is a plan view of a valve body of a differential pressure control valve according to a twenty-third embodiment.

【図44】第二十三の実施例のばね姿勢保持円筒の横断
面図。
FIG. 44 is a cross-sectional view of the spring attitude holding cylinder of the twenty-third embodiment.

【図45】第二十三の実施例の上ケーシング及び圧力隔
壁を取り除いたときの上面図。
FIG. 45 is a top view of the twenty-third embodiment when the upper casing and the pressure partition are removed.

【図46】第二十三の実施例の非旋回スクロール部材上
面中央部の拡大図。
FIG. 46 is an enlarged view of the center of the upper surface of the non-orbiting scroll member according to the twenty-third embodiment.

【図47】第二十四の実施例の差圧制御弁付近の縦断面
図(図41におけるP部の拡大図)。
FIG. 47 is a longitudinal sectional view of the vicinity of the differential pressure control valve according to the twenty-fourth embodiment (an enlarged view of a portion P in FIG. 41).

【図48】第二十五の実施例の固定スクロール部材の縦
断面図。
FIG. 48 is a longitudinal sectional view of a fixed scroll member of the twenty-fifth embodiment.

【図49】第二十五の実施例のバイパス弁付近の縦断面
図(図48におけるT部の拡大図)。
FIG. 49 is a longitudinal sectional view of the vicinity of the bypass valve according to the twenty-fifth embodiment (an enlarged view of a portion T in FIG. 48);

【図50】第二十六の実施例のバイパス弁付近の縦断面
図(図48におけるT部の拡大図)。
50 is a longitudinal sectional view of the vicinity of the bypass valve according to the twenty-sixth embodiment (an enlarged view of a portion T in FIG. 48).

【図51】従来例の縦断面図。FIG. 51 is a longitudinal sectional view of a conventional example.

【図52】背面過中間圧領域の極限である背面過吸込圧
領域を設定した場合の差圧制御弁付近の縦断面図(図1
におけるP部の拡大図)。
FIG. 52 is a vertical cross-sectional view of the vicinity of the differential pressure control valve when a back over-suction pressure region which is the limit of the back over-intermediate pressure region is set (FIG. 1)
FIG.

【図53】背面過中間圧領域の極限である背面過吸込圧
領域を設定した他の場合の差圧制御弁付近の縦断面図
(図1におけるP部の拡大図)。
FIG. 53 is a vertical cross-sectional view (an enlarged view of a portion P in FIG. 1) of the vicinity of the differential pressure control valve in another case in which a rear excessive suction pressure region which is the limit of the rear excessive intermediate pressure region is set.

【図54】背面過中間圧領域の極限である背面過吸込圧
領域を設定した他の場合の差圧制御弁付近の縦断面図
(図41におけるP部の拡大図)。
FIG. 54 is a vertical cross-sectional view (an enlarged view of a portion P in FIG. 41) of the vicinity of the differential pressure control valve in another case where a rear excessive suction pressure region which is the limit of the rear excessive intermediate pressure region is set.

【符号の説明】[Explanation of symbols]

2…固定スクロール部材(非旋回スクロール部材)、2
e…バイパス穴、2i…吸込み側導通路、2α…中間側
導通路、2β…背面側導通路、2λ…バイパス弁シール
面、2τ…バイパス弁シール線、3…旋回スクロール部
材、3α…中間側導通路、4…フレーム、5…オルダム
リング、6…圧縮室、12…シャフト、19…モータ、
23…バイパス弁、23x…バイパス弁板、23y…円
状バイパス弁板、60…吸込み室、61…固定背面室
(非旋回背面室)、62…モータ室、67…旋回側面領
域、68…中間圧力室、95…背面吐出圧領域、96…
吐出室、99…背面過中間圧領域(背面過吸込圧領域)、
100…差圧制御弁、100a…弁体、100c…差圧弁ば
ね、100j…弁シール面、100β…背面側導通路、
100c…差圧弁ばね、102…吐出背面間流路。
2 ... fixed scroll member (non-orbiting scroll member), 2
e: bypass hole, 2i ... suction side conduction path, 2α ... middle side conduction path, 2β ... rear side conduction path, 2λ ... bypass valve sealing surface, 2τ ... bypass valve sealing line, 3 ... revolving scroll member, 3α ... middle side Conduction path, 4 ... frame, 5 ... Oldham ring, 6 ... compression chamber, 12 ... shaft, 19 ... motor,
23 ... bypass valve, 23x ... bypass valve plate, 23y ... circular bypass valve plate, 60 ... suction chamber, 61 ... fixed rear chamber (non-rotating rear chamber), 62 ... motor chamber, 67 ... rotating side area, 68 ... middle Pressure chamber, 95: Back discharge pressure area, 96 ...
Discharge chamber, 99 ... rear excessive intermediate pressure area (rear excessive suction pressure area),
100: differential pressure control valve, 100a: valve body, 100c: differential pressure valve spring, 100j: valve seal surface, 100β: back side conduction path,
100c: Differential pressure valve spring, 102: Flow path between discharge back surfaces.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】鏡板とそれに立設する渦巻き状のスクロー
ルラップを備えそのスクロールラップの立設する軸線方
向に垂直な面内を旋回運動する旋回スクロール部材と、
鏡板とそれに立設する渦巻き状のスクロールラップを備
え少なくとも前記軸線方向に垂直な面内の方向における
運動が概略規制される非旋回スクロール部材を噛み合わ
せ、それらスクロール部材の間に概略閉塞して容積が縮
小する圧縮室と、その圧縮室側の流体の圧力による前記
両スクロール部材の鏡板を引き離す向きの引き離し力に
対抗して前記両スクロール部材の鏡板を引き付ける向き
の引付力を各々の前記スクロール部材にかける引付力付
加手段と、前記引付力と前記引き離し力のベクトル和で
ある付勢力の反力を各々の前記スクロール部材に発生さ
せるスクロール支持部材と、流体を前記圧縮室に導入す
る吸込系と、前記圧縮室内で加圧した流体を外部へ導出
する吐出系を有するスクロール圧縮機において、 前記旋回スクロール部材における前記引付力付加手段の
少なくとも一部は、前記旋回スクロール部材の鏡板の反
圧縮室側の面である旋回背面に前記吸込室内の圧力であ
る吸込圧と、前記吐出系内の圧力である吐出圧の間の中
間圧よりもその中間圧の2割程度の誤差内で一定の値だ
け大きい圧力をかける背面過中間圧領域を設けて実現
し、前記圧縮室の圧力が前記吐出系内の圧力である吐出
圧よりも高くなることを抑制すべく圧力制御手段を設け
ることを特徴とするスクロール圧縮機。
An orbiting scroll member having a head plate and a spiral scroll wrap standing upright on the head plate, and orbiting in a plane perpendicular to the axial direction on which the scroll wrap stands up;
A non-orbiting scroll member that includes a head plate and a spiral scroll wrap standing upright and that is substantially restricted in at least a direction in a plane perpendicular to the axial direction is engaged, and the volume is substantially closed by being closed between the scroll members. Each of the scrolls has a pulling force in a direction of pulling the head plates of the scroll members against a separating force in a direction of pulling the head plates of the both scroll members apart due to the pressure of the fluid in the compression chamber. Means for applying an attractive force to a member, a scroll support member for generating a reaction force of an urging force, which is a vector sum of the attractive force and the separating force, to each of the scroll members, and introducing a fluid into the compression chamber. In a scroll compressor having a suction system and a discharge system that leads a fluid pressurized in the compression chamber to the outside, the orbiting scroll member At least a part of the attraction force applying means is a suction pressure, which is a pressure in the suction chamber, on the orbiting back surface, which is a surface of the end plate of the orbiting scroll member on the anti-compression chamber side, and a pressure in the discharge system. This is realized by providing a back-over-intermediate-pressure area for applying a pressure that is larger than the intermediate pressure between the discharge pressures by a fixed value within an error of about 20% of the intermediate pressure, and the pressure of the compression chamber is reduced within the discharge system. A scroll compressor comprising a pressure control means for suppressing a pressure higher than a discharge pressure.
JP29669497A 1997-10-29 1997-10-29 Scroll compressor Expired - Fee Related JP4126736B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29669497A JP4126736B2 (en) 1997-10-29 1997-10-29 Scroll compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29669497A JP4126736B2 (en) 1997-10-29 1997-10-29 Scroll compressor

Publications (2)

Publication Number Publication Date
JPH11132164A true JPH11132164A (en) 1999-05-18
JP4126736B2 JP4126736B2 (en) 2008-07-30

Family

ID=17836883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29669497A Expired - Fee Related JP4126736B2 (en) 1997-10-29 1997-10-29 Scroll compressor

Country Status (1)

Country Link
JP (1) JP4126736B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020088379A (en) * 2001-05-18 2002-11-27 마츠시타 덴끼 산교 가부시키가이샤 A scroll compressor and method of driving the same
KR100397561B1 (en) * 2001-08-20 2003-09-13 주식회사 엘지이아이 Apparatus for preventing over-load in scroll compressor
JP2005163655A (en) * 2003-12-03 2005-06-23 Hitachi Ltd Scroll compressor
JP2007138828A (en) * 2005-11-18 2007-06-07 Hitachi Appliances Inc Scroll fluid machine and refrigeration cycle device
WO2009017157A1 (en) * 2007-08-01 2009-02-05 Sanden Corporation Scroll type fluid machine
CN101900115A (en) * 2009-06-01 2010-12-01 日立空调·家用电器株式会社 Cyclone compressor
CN102042222A (en) * 2009-10-14 2011-05-04 三菱电机株式会社 Scroll compressor
EP2434159A2 (en) 2010-09-28 2012-03-28 Mitsubishi Electric Corporation Scroll compressor with a check valve
WO2012127753A1 (en) * 2011-03-24 2012-09-27 三洋電機株式会社 Scroll compression device and assembling method for scroll compression device
WO2012131904A1 (en) * 2011-03-29 2012-10-04 日立アプライアンス株式会社 Scroll compressor
JP2015092067A (en) * 2013-11-08 2015-05-14 株式会社デンソー Compressor, and refrigeration cycle device
JP2015209925A (en) * 2014-04-28 2015-11-24 日立アプライアンス株式会社 Unidirectional valve and fluid system with unidirectional valve
US9388808B2 (en) 2011-03-24 2016-07-12 Panasonic Intellectual Property Management Co., Ltd. Scroll compression device
US9494155B2 (en) 2011-03-24 2016-11-15 Panasonic Intellectual Property Management Co., Ltd. Scroll compression device
US9581160B2 (en) 2011-03-24 2017-02-28 Panasonic Intellectual Property Management Co. Ltd. Scroll compression device
WO2020004220A1 (en) * 2018-06-29 2020-01-02 株式会社デンソー Horizontal scroll compressor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9470230B2 (en) * 2011-04-25 2016-10-18 Johnson Controls-Hitachi Air Conditioning Technology (Hong Kong) Limited Refrigerant compressor and refrigeration cycle apparatus using the same

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020088379A (en) * 2001-05-18 2002-11-27 마츠시타 덴끼 산교 가부시키가이샤 A scroll compressor and method of driving the same
KR100397561B1 (en) * 2001-08-20 2003-09-13 주식회사 엘지이아이 Apparatus for preventing over-load in scroll compressor
JP2005163655A (en) * 2003-12-03 2005-06-23 Hitachi Ltd Scroll compressor
JP4520731B2 (en) * 2003-12-03 2010-08-11 日立アプライアンス株式会社 Scroll compressor
JP2007138828A (en) * 2005-11-18 2007-06-07 Hitachi Appliances Inc Scroll fluid machine and refrigeration cycle device
WO2009017157A1 (en) * 2007-08-01 2009-02-05 Sanden Corporation Scroll type fluid machine
CN101900115A (en) * 2009-06-01 2010-12-01 日立空调·家用电器株式会社 Cyclone compressor
JP2010276001A (en) * 2009-06-01 2010-12-09 Hitachi Appliances Inc Scroll compressor
CN102042222A (en) * 2009-10-14 2011-05-04 三菱电机株式会社 Scroll compressor
RU2472035C1 (en) * 2010-09-28 2013-01-10 Мицубиси Электрик Корпорейшн Scroll compressor
EP2434159A2 (en) 2010-09-28 2012-03-28 Mitsubishi Electric Corporation Scroll compressor with a check valve
CN103429898B (en) * 2011-03-24 2016-01-13 三洋电机株式会社 The assembling method of scroll compression device and scroll compression device
US10227982B2 (en) 2011-03-24 2019-03-12 Panasonic Intellectual Property Management Co., Ltd. Scroll compression device
CN103429898A (en) * 2011-03-24 2013-12-04 三洋电机株式会社 Scroll compression device and assembling method for scroll compression device
WO2012127753A1 (en) * 2011-03-24 2012-09-27 三洋電機株式会社 Scroll compression device and assembling method for scroll compression device
US9581160B2 (en) 2011-03-24 2017-02-28 Panasonic Intellectual Property Management Co. Ltd. Scroll compression device
US9494155B2 (en) 2011-03-24 2016-11-15 Panasonic Intellectual Property Management Co., Ltd. Scroll compression device
US9388808B2 (en) 2011-03-24 2016-07-12 Panasonic Intellectual Property Management Co., Ltd. Scroll compression device
JP5507756B2 (en) * 2011-03-29 2014-05-28 日立アプライアンス株式会社 Scroll compressor
US9091266B2 (en) 2011-03-29 2015-07-28 Hitachi Appliances, Inc. Scroll compressor having a back pressure control valve for opening and closing a communication path in a stationary scroll
WO2012131904A1 (en) * 2011-03-29 2012-10-04 日立アプライアンス株式会社 Scroll compressor
WO2015068328A1 (en) * 2013-11-08 2015-05-14 株式会社デンソー Compressor and refrigeration cycle device
JP2015092067A (en) * 2013-11-08 2015-05-14 株式会社デンソー Compressor, and refrigeration cycle device
JP2015209925A (en) * 2014-04-28 2015-11-24 日立アプライアンス株式会社 Unidirectional valve and fluid system with unidirectional valve
WO2020004220A1 (en) * 2018-06-29 2020-01-02 株式会社デンソー Horizontal scroll compressor
CN112368480A (en) * 2018-06-29 2021-02-12 株式会社电装 Transverse scroll compressor
CN112368480B (en) * 2018-06-29 2023-04-11 株式会社电装 Transverse scroll compressor

Also Published As

Publication number Publication date
JP4126736B2 (en) 2008-07-30

Similar Documents

Publication Publication Date Title
JP3874469B2 (en) Scroll compressor
JPH11132164A (en) Scroll compressor
US10781817B2 (en) Compressor having centrifugation and differential pressure structure for oil supplying
JP2010525240A (en) Compressor and oil supply structure thereof
JP2007138868A (en) Scroll compressor
JP2778585B2 (en) Scroll gas compressor
JPWO2018225155A1 (en) Scroll compressor and refrigeration cycle device
JP4123551B2 (en) Scroll compressor
JP2001055988A (en) Scroll compressor
JP2790126B2 (en) Scroll gas compressor
JP2785807B2 (en) Scroll gas compressor
JPH0343691A (en) Scroll compressor
JP4330563B2 (en) Scroll compressor
JP4262701B2 (en) Scroll compressor
JP2785806B2 (en) Scroll gas compressor
JP2870490B2 (en) Scroll gas compressor
JP2529355B2 (en) Hermetic electric gas compressor
JP4262700B2 (en) Scroll compressor
JP2870488B2 (en) Scroll gas compressor
JP4585984B2 (en) Scroll compressor
JP2009257340A (en) Scroll compressor
WO2022244240A1 (en) Compressor
JP4320005B2 (en) Scroll compressor
JPH06249164A (en) Scroll compressor
JPH08303366A (en) Scroll gas compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041028

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20041028

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080422

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080505

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees