JP2529355B2 - Hermetic electric gas compressor - Google Patents

Hermetic electric gas compressor

Info

Publication number
JP2529355B2
JP2529355B2 JP63159991A JP15999188A JP2529355B2 JP 2529355 B2 JP2529355 B2 JP 2529355B2 JP 63159991 A JP63159991 A JP 63159991A JP 15999188 A JP15999188 A JP 15999188A JP 2529355 B2 JP2529355 B2 JP 2529355B2
Authority
JP
Japan
Prior art keywords
bearing
oil
compression
lubricating oil
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63159991A
Other languages
Japanese (ja)
Other versions
JPH029987A (en
Inventor
勝晴 藤尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63159991A priority Critical patent/JP2529355B2/en
Publication of JPH029987A publication Critical patent/JPH029987A/en
Application granted granted Critical
Publication of JP2529355B2 publication Critical patent/JP2529355B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は密閉形電動圧縮機の油分離・給油と電動機の
冷却に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to oil separation and refueling of a hermetic electric compressor and cooling of the electric motor.

従来の技術 回転式、スクリュウ式、スクロール式などの冷媒圧縮
機に使用する潤滑油は、摺動部の潤滑に供するのは勿論
のこと、適切な圧縮室密封部材の製作困難な理由で適切
量の潤滑油を吸入冷媒ガスに混入させ、圧縮室隙間を油
膜密封して圧縮冷媒ガス漏れを防ぎ、圧縮効率を高める
ためにも用いられている。
2. Description of the Related Art Lubricating oil used in rotary, screw, scroll, etc. refrigerant compressors is used not only for lubrication of sliding parts, but also for the reason that it is difficult to manufacture an appropriate compression chamber sealing member. It is also used to improve the compression efficiency by mixing the lubricating oil of (1) with the intake refrigerant gas and sealing the compression chamber gap with an oil film to prevent the compressed refrigerant gas from leaking.

特に、低振動、低騒音特性に優れたスクロール冷媒圧
縮機などは、圧縮室を形成する部品の渦巻き形状の複雑
さから高い寸法精度部の確保の困難性と寸法精度の大き
なバラツキによる弊害を解放するために、積極的な潤滑
油の油膜を利用したシール効果により、渦巻部寸法精度
の適正化と圧縮機性能の安定化を期待することが大き
い。例えば特開昭57−8386号公報で開示されているよう
に、吐出室に連通する油溜の潤滑油を圧縮室にインジェ
クションする方法が知れられている。
In particular, scroll refrigerant compressors with excellent low vibration and low noise characteristics eliminate the adverse effects of difficulty in securing high dimensional accuracy and large variations in dimensional accuracy due to the complicated spiral shape of the components that form the compression chamber. Therefore, it is often expected that the dimensional accuracy of the spiral portion is optimized and the compressor performance is stabilized by the positive sealing effect using the oil film of the lubricating oil. For example, as disclosed in JP-A-57-8386, a method is known in which lubricating oil in an oil reservoir communicating with the discharge chamber is injected into the compression chamber.

しかし、この方法も吐出冷媒ガス中の潤滑油を分離し
て油溜に回収することが前提条件である。
However, this method also has a prerequisite that the lubricating oil in the discharged refrigerant gas is separated and collected in the oil reservoir.

この方法として第3図のように、吐出冷媒ガスを電動
機設置空間に放出し、吐出冷媒ガス中の潤滑油の慣性力
を利用して潤滑油を吐出冷媒ガスから分離する構成が示
されている。
As this method, as shown in FIG. 3, a configuration is shown in which the discharged refrigerant gas is discharged to the electric motor installation space and the lubricating oil is separated from the discharged refrigerant gas by using the inertial force of the lubricating oil in the discharged refrigerant gas. .

同図は密閉容器301内にスクロール圧縮部302と油溜30
8を下部に、電動機303を上部に配置して収納している。
スクロール圧縮部302の吐出口と、電動機303の下部空間
316とが、密閉容器301を貫通して設けた吐出管310によ
り連通され、密閉容器301の上部端面壁に設けた吐出配
管312と電動機303の上部空間317との間に油分離器313が
設けられた構成である(実開昭57−69991号公報)。
The figure shows a scroll compression unit 302 and an oil sump 30 in a closed container 301.
8 is placed in the lower part and electric motor 303 is placed in the upper part for storage.
Discharge port of scroll compression unit 302 and lower space of electric motor 303
316 is communicated with a discharge pipe 310 provided through the closed container 301, and an oil separator 313 is provided between the discharge pipe 312 provided on the upper end wall of the closed container 301 and the upper space 317 of the electric motor 303. This is the configuration (Japanese Utility Model Publication No. 57-69991).

発明が解決しようとする課題 しかしながら、上記の第3図のような吐出管310を電
動機303の下部空間316に開口させる構成では、吐出冷媒
ガスから潤滑油を効果的に分離させるために、下部空間
316を大きくする必要がある。この下部空間316を大きく
することは、圧縮部に連結する電動機303を圧縮部から
遠ざけることになり、圧縮部と電動機303の回転子との
間を連結する駆動軸に大きな曲げモーメントが作用し、
駆動軸に大きな曲がりを与える。この駆動軸の曲がり
は、駆動軸を支持する圧縮部の軸受部に異常な片当り現
象を与え、軸受部の損傷を招く。また、この駆動軸の曲
がりは、電動機303の固定子と回転子との間のエアギャ
ップに不釣合いを与える。その結果、固定子と回転子と
の間に生じる電磁力に不釣合が生じ、駆動軸に増々大き
な曲げモーメントが作用し、駆動軸の曲がりを大きくす
る。圧縮機高速運転時にはこの曲がりが増大し、軸受部
に致命的な損傷を与える。また、曲がった駆動軸が高速
回転することによって、圧縮機には過大な振動と騒音と
が生じるという課題があった。
However, in the configuration in which the discharge pipe 310 as shown in FIG. 3 is opened in the lower space 316 of the electric motor 303, in order to effectively separate the lubricating oil from the discharged refrigerant gas, the lower space is reduced.
316 needs to be increased. Increasing the lower space 316 causes the electric motor 303 connected to the compression unit to move away from the compression unit, and a large bending moment acts on the drive shaft connecting the compression unit and the rotor of the electric motor 303,
Gives a large bend to the drive shaft. The bending of the drive shaft gives an abnormal one-sided contact phenomenon to the bearing portion of the compression portion supporting the drive shaft, resulting in damage to the bearing portion. In addition, the bending of the drive shaft imbalances the air gap between the stator and the rotor of the electric motor 303. As a result, the electromagnetic force generated between the stator and the rotor becomes unbalanced, and a larger bending moment acts on the drive shaft, increasing the bending of the drive shaft. This bending increases during high-speed operation of the compressor, causing fatal damage to the bearing. Further, there is a problem in that the compressor causes excessive vibration and noise due to the high speed rotation of the bent drive shaft.

上述の課題を改善する方策として、第4図と第5図の
構成が考えられている。
As measures for improving the above-mentioned problems, the configurations shown in FIGS. 4 and 5 are considered.

すなわち、第4図は密閉容器401の上部端面壁401aと
油分離器413との間の上部空間416と吐出口とを吐出管41
0で連通し、吐出配管412の開口端を油分離器413の下部
にまで延長させた構成である(特開昭57−83681号公
報)。
That is, FIG. 4 shows that the upper space 416 between the upper end wall 401a of the closed container 401 and the oil separator 413 and the discharge port are connected to the discharge pipe 41.
The structure is such that the discharge pipe 412 communicates with each other at 0 and the open end of the discharge pipe 412 is extended to the lower portion of the oil separator 413 (Japanese Patent Laid-Open No. 57-83681).

また、第5図は、密閉容器501の上部端面壁501に接続
した吐出配管522と吐出管510との間に適当な幅と長さを
有した油分離器523を、電動機503の上部コイルエンドの
上部に配置した構成である(特開昭57−83681号公
報)。
Further, FIG. 5 shows an oil separator 523 having an appropriate width and length between the discharge pipe 522 and the discharge pipe 510 connected to the upper end wall 501 of the closed container 501, and the upper coil end of the electric motor 503. Is arranged on the upper part of the (Japanese Patent Laid-Open No. 57-83681).

しかしながら、上記の第4図のような吐出配管412の
開口端を油分離器413の下端にまで延長させた構成で
は、電動機と圧縮部との距離を短くする一方、上部空間
416を大きくすることによって吐出冷媒ガスから潤滑油
を効果的に分離できるが、駆動軸が圧縮部の側でのみ支
持されているので、駆動軸の曲がり発生とそれに基づく
軸受部の損傷および騒音・振動発生について、根本的な
解決策にならない。また、上部空間416を大きくする必
要から、圧縮機が大形化するという課題があった。
However, in the structure in which the opening end of the discharge pipe 412 as shown in FIG. 4 is extended to the lower end of the oil separator 413, the distance between the electric motor and the compression unit is shortened while the upper space is reduced.
By increasing the size of 416, the lubricating oil can be effectively separated from the discharged refrigerant gas, but since the drive shaft is supported only on the side of the compression part, bending of the drive shaft and damage to the bearing part and noise due to it will occur. It is not a fundamental solution to vibration generation. In addition, there is a problem that the size of the compressor becomes large because the upper space 416 needs to be large.

また、第5図の構成も第4図の場合と同様の課題があ
った。
Further, the configuration of FIG. 5 has the same problem as in the case of FIG.

一方、圧縮機を大型化させずに吐出冷媒ガスからの潤
滑油分離を効果的にできる方法が特公昭41−11507号公
報に開示されている。
On the other hand, Japanese Patent Publication No. 41-11507 discloses a method capable of effectively separating lubricating oil from discharged refrigerant gas without increasing the size of the compressor.

すなわち、上部に電動機を連設した圧縮部をその内部
が高圧雰囲気の密閉容器に収納し、圧縮冷媒ガスを最終
的に機外に送出する高圧放出管を電動機に対して圧縮部
と反対側の密閉容器の端部に設け、さらに一端が電動機
の反圧縮部側のコイルエンド側面または端面に向けて近
接開口し、他端が圧縮部の上部排気室に接続され、かつ
密閉容器を迂回して配管された密閉容器外側の管を設
け、回転子の回転による渦巻作用によってガス気流から
潤滑油を分離し、その潤滑油を収集する油溜を電動機の
底部に設け、電動機に連接する駆動軸を圧縮部でのみ支
持した構成である。
That is, the compression section in which the electric motor is connected to the upper part is housed in a closed container having a high-pressure atmosphere inside, and the high-pressure discharge pipe for finally delivering the compressed refrigerant gas to the outside of the machine is provided on the side opposite to the compression section with respect to the electric motor. It is provided at the end of the hermetic container, and one end is opened close to the side or end face of the coil end on the side opposite to the compression part of the electric motor, and the other end is connected to the upper exhaust chamber of the compression part and bypasses the hermetic container. A pipe outside the sealed container is provided, and the lubricating oil is separated from the gas flow by the swirling action of the rotor's rotation, and an oil reservoir for collecting the lubricating oil is provided at the bottom of the electric motor, and the drive shaft connected to the electric motor is installed. The structure is supported only by the compression unit.

この構成は、吐出冷媒ガスをコイルエンドに吹き付け
ることによって、冷媒ガス中の潤滑油を表面積の大きな
巻線コイルに付着捕捉でき、分離潤滑油が巻線コイル層
内を流下し、油溜に収集するので、上述のような大きな
油分離空間を必要とせず、圧縮機大型化を防ぐことがで
きる。
In this configuration, by blowing the discharged refrigerant gas to the coil end, the lubricating oil in the refrigerant gas can be attached and captured on the winding coil with a large surface area, and the separated lubricating oil flows down in the winding coil layer and is collected in the oil sump. Therefore, the large oil separation space as described above is not required, and the compressor can be prevented from increasing in size.

しかしながら、この構成も上記の第4図、第5図の場
合と同様に、駆動軸を圧縮部でのみ支持するので、圧縮
機高速運転時に、駆動軸の曲がり現象が発生して軸受部
の損傷と過大な振動・騒音を招くという課題があった。
However, also in this configuration, as in the case of FIGS. 4 and 5 described above, since the drive shaft is supported only by the compression portion, the bending phenomenon of the drive shaft occurs and the bearing portion is damaged during high-speed operation of the compressor. Therefore, there was a problem of causing excessive vibration and noise.

一方、軸受部の損傷と過大な振動・騒音発生を解決す
るための構成が特開昭62−126285号公報に開示されてい
る。
On the other hand, Japanese Patent Laid-Open No. 126285/1987 discloses a structure for solving the damage of the bearing and the generation of excessive vibration and noise.

すなわち、密閉容器内の上部にスクロール圧縮部を、
下部に電動機を収納し、底部に軸受潤滑のための油溜を
配置すると共に、電動機と連結する駆動軸を支持する軸
受が電動機の両側に配置された構成である。
That is, the scroll compression part at the top in the closed container,
The electric motor is housed in the lower portion, the oil reservoir for bearing lubrication is arranged in the bottom portion, and the bearings supporting the drive shaft connected to the electric motor are arranged on both sides of the electric motor.

しかしながら、この構成は、電動機と油溜のある空間
が吸入圧力に等しい低圧で、吐出圧力に等しい高圧空間
は圧縮部の上部に配置されており、圧縮室隙間の密封と
摺動面潤滑に供された潤滑油を吐出気体から分離させる
ための広い高圧空間を必要とするので、圧縮機が大型化
するという課題が残り、上述の課題を同時に解決できな
いという課題があった。
However, in this configuration, the space where the electric motor and the oil sump are at a low pressure equal to the suction pressure, and the high pressure space equal to the discharge pressure is located above the compression section, and is used for sealing the compression chamber gap and sliding surface lubrication. Since a wide high-pressure space for separating the generated lubricating oil from the discharged gas is required, the problem that the compressor becomes large remains, and there is a problem that the above problems cannot be solved at the same time.

そこで、本発明は電動機の両側で駆動軸を支持し、圧
縮部から排出された吐出気体を電動機の巻線コイルエン
ドに衝突させ潤滑油を分離すると共に、油分離と回収を
兼ねた軸受フレームによっても潤滑油を分離回収し、そ
の潤滑油を軸受部に供給して、小型で耐久性に優れ、且
つ、振動・騒音の少ない気体圧縮機を提供するものであ
る。
Therefore, in the present invention, the drive shaft is supported on both sides of the electric motor, the discharge gas discharged from the compression section is made to collide with the winding coil end of the electric motor to separate the lubricating oil, and the bearing frame also serves as oil separation and recovery. The present invention also provides a gas compressor that is small in size, excellent in durability, and low in vibration and noise by separating and recovering lubricating oil and supplying the lubricating oil to the bearing portion.

課題を解決するための手段 上記課題を解決するために本発明の密閉形電圧縮機
は、吐出気体通路途中の電動機の反圧縮部側のコイルエ
ンド部と密閉容器の端部に設けた吐出管との間に、電動
機の両側で支承される駆動軸の反圧縮部側を支承すべく
軸受フレームを設け、吐出気体に含まれる潤滑油の一部
がコイルエンド部と衝突した後、軸受フレームの周辺で
吐出気体から分離し、軸受フレームの中央部の軸受摺動
部に導かれる通路を軸受フレームに設けた構成である。
Means for Solving the Problems In order to solve the above problems, the hermetically-sealed electric compressor of the present invention is a discharge pipe provided at the end of a hermetically sealed container and a coil end portion on the side opposite to the compression portion of an electric motor in the middle of a discharge gas passage. A bearing frame to support the anti-compression part side of the drive shaft supported on both sides of the motor, and after a part of the lubricating oil contained in the discharge gas collides with the coil end part, The bearing frame is provided with a passage that is separated from the discharged gas at the periphery and is guided to the bearing sliding portion at the center of the bearing frame.

作用 本発明は上記構成によって、電動機のコイルエンド部
と軸受フレームとにより、圧縮部から排出された吐出気
体中に含まれる潤滑油が分離回収されて駆動軸を支持す
る軸受部に供給される。電動機の両側の軸受部で支持さ
れた駆動軸は、中央部での曲がりも少なく、軸受部で片
当り支持されることなく円滑に摺動回転する。
Operation According to the present invention, the lubricating oil contained in the discharge gas discharged from the compression section is separated and collected by the coil end section of the electric motor and the bearing frame, and is supplied to the bearing section supporting the drive shaft. The drive shaft supported by the bearings on both sides of the electric motor has little bending at the center, and can smoothly slide and rotate without being supported by one-sided bearings.

実施例 以下、本発明の実施例のスクロール冷媒圧縮機につい
て、図面を参照しながら説明する。
Embodiment Hereinafter, a scroll refrigerant compressor according to an embodiment of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例におけるスクロール冷媒圧
縮機の縦断面図を示し、第2図は主要部品の分解図を示
す。
FIG. 1 is a vertical sectional view of a scroll refrigerant compressor according to an embodiment of the present invention, and FIG. 2 is an exploded view of main parts.

第1図において、1は鉄製の密閉ケース(密閉容器)
で、その内部全体が吐出室2に連通する高圧雰囲気で、
上部にモータ(電動機)3、下部に圧縮部を配置し、モ
ータ3の回転子3aに固定された駆動軸4を支承する圧縮
部の本体フレーム5により、密閉ケース1の内部がモー
タ室6と吐出室2とに仕切られている。本体フレーム5
は軽量化と軸受部の熱発散を主目的とした熱伝導特性に
優れたアルミニウム合金製で、その外周部に、溶接性に
優れた鉄製のライナー8が焼ばめ固定され、ライナー8
の外周面が密閉ケース1に全周内接し、部分的に溶接固
定されている。
In FIG. 1, 1 is an iron-made closed case (closed container)
Then, in a high pressure atmosphere where the entire interior communicates with the discharge chamber 2,
A motor (electric motor) 3 is arranged in the upper part, a compression part is arranged in the lower part, and a main body frame 5 of the compression part which supports a drive shaft 4 fixed to a rotor 3a of the motor 3 makes the inside of the sealed case 1 a motor chamber 6. It is partitioned into the discharge chamber 2. Body frame 5
Is made of an aluminum alloy with excellent heat conduction characteristics mainly for weight reduction and heat dissipation of the bearing, and an iron liner 8 with excellent weldability is shrink-fitted and fixed to the outer periphery of the liner 8.
The outer peripheral surface is inscribed in the entire circumference of the closed case 1 and is partially welded and fixed.

モータ3の固定子3bの両端外周部は、密閉ケース1に
内接固定された軸受フレーム9と本体フレーム5によっ
て支持固定されている。駆動軸4は軸受フレーム9に設
けられた上部軸受10、本体フレーム5の上端部に設けら
れた下部軸受11、本体フレーム5の中央部に設けられた
主軸受12、本体フレーム5の上端面とモータ3の回転子
3aの下部端面との間に設けられたスラスト球軸受13とで
支持され、その下端部には、駆動軸4の主軸から偏心し
た偏心軸受14が設けられている。
The outer peripheral portions of both ends of the stator 3b of the motor 3 are supported and fixed by a bearing frame 9 and a main body frame 5 which are internally fixed to the hermetically sealed case 1. The drive shaft 4 includes an upper bearing 10 provided on the bearing frame 9, a lower bearing 11 provided on an upper end portion of the main body frame 5, a main bearing 12 provided on a central portion of the main body frame 5, an upper end surface of the main body frame 5. Rotor of motor 3
It is supported by a thrust ball bearing 13 provided between the lower end surface of 3a and an eccentric bearing 14 which is eccentric from the main shaft of the drive shaft 4 at its lower end.

本体フレーム5の下端面にはアルミニウム合金製の固
定スクロール15が固定されている。固定スクロール15は
渦巻き状の固定スクロールラップ15aと鏡板15bとから成
る。鏡板15bの中央部には、固定スクロールラップ15aの
巻始め部に開口する吐出ポート16が吐出室2にも連通し
て設けられ、固定スクロールラップ15aの外周部には吸
入室17が設けられている。
A fixed scroll 15 made of aluminum alloy is fixed to the lower end surface of the body frame 5. The fixed scroll 15 is composed of a spiral fixed scroll wrap 15a and an end plate 15b. A discharge port 16 that opens to the winding start portion of the fixed scroll wrap 15a is provided in the center of the end plate 15b so as to communicate with the discharge chamber 2, and a suction chamber 17 is provided on the outer peripheral portion of the fixed scroll wrap 15a. There is.

固定スクロールラップ15aに噛み合って圧縮室を形成
する渦巻き状の旋回スクロールラップ18aと、駆動軸4
の偏心軸受14に支持された旋回軸18bとを直立させたラ
ップ支持円板18cとから成るアルミニウム合金製の旋回
スクロール18は、固定スクロール15と本体フレーム5と
駆動軸4とに囲まれて配置されており、旋回軸18bの外
周部に、高張力鋼材料から成るスリーブ19が焼ばめ固定
され、ラップ支持円板18aの表面は硬化処理されてい
る。
A spiral orbiting scroll wrap 18a that meshes with the fixed scroll wrap 15a to form a compression chamber, and the drive shaft 4
The orbiting scroll 18 made of an aluminum alloy, which is composed of an orbiting shaft 18b supported by an eccentric bearing 14 and a lap support disk 18c which is upright, is arranged surrounded by a fixed scroll 15, a main body frame 5 and a drive shaft 4. A sleeve 19 made of a high-strength steel material is shrink-fitted and fixed to the outer peripheral portion of the swivel shaft 18b, and the surface of the lap support disk 18a is hardened.

本体フレーム5に固定された割りピン形の平行ピン19
に拘束されて軸方向にのみ移動が可能なスラスト軸受20
と、固定スクロール15の鏡板15bとの間には、スペーサ2
1が設けられ、スペーサ21の軸方向寸法は、油膜による
摺動面のシール性向上のために、ラップ支持円板18cの
厚さよりも約0.015〜0.020mm大きく設定されている。
Split pin type parallel pin fixed to the body frame 5
Thrust bearing 20 that is constrained by and can move only in the axial direction
And the end plate 15b of the fixed scroll 15 between the spacer 2
1 is provided, and the axial dimension of the spacer 21 is set to be about 0.015 to 0.020 mm larger than the thickness of the lap supporting disk 18c in order to improve the sealing property of the sliding surface by the oil film.

駆動軸4の偏心軸受14の底部と旋回スクロール18の旋
回軸18bの軸部との間の偏心軸受空間36と、ラップ支持
円板18cの外周部空間37とは、旋回軸18bとラップ支持円
板18cに設けられた油穴A38aにより連通されている。
The eccentric bearing space 36 between the bottom portion of the eccentric bearing 14 of the drive shaft 4 and the shaft portion of the orbiting shaft 18b of the orbiting scroll 18, and the outer peripheral space 37 of the lap supporting disk 18c are the orbiting shaft 18b and the wrap supporting circle. The plate 18c is communicated with by an oil hole A38a provided in the plate 18c.

スラスト軸受20は焼結合金製で、第2図のように、そ
の中央部が2つの平行な直線部分と、それに連なる2つ
の円弧状曲線部分23から成る形状に貫通成形されてい
る。
The thrust bearing 20 is made of a sintered alloy, and as shown in FIG. 2, the center portion thereof is formed by penetrating into a shape including two parallel straight line portions and two arcuate curved line portions 23 continuous with the straight line portions.

旋回スクロール18の自転阻止部材(以下、オルダムリ
ングという)24は、焼結成形や射出成形工法などに適し
た軽合金や強化繊維複合樹脂材料から成り、含油特性も
有し、第2図のように両面が平行な薄い環状板24aと、
その一面に設けられた一対の平行キー部分24bとから成
り、環状板24aの外輪郭は、2つの平行な直線部分25
と、それに連なる2つの円弧状曲線部分26からに成り、
直線部分25が第2図のように、スラスト軸受20の直線部
分22に微少隙間で係合し、摺動可能であり、平行キー部
分24bの側面24cは、直線部分25の中央部で直交し、第1
図、第2図のように旋回スクロール18のラップ支持円板
18cに設けられた一対のキー溝71に微少隙間で係合し、
摺動可能な形状に設定されている。
The rotation preventing member (hereinafter referred to as Oldham ring) 24 of the orbiting scroll 18 is made of a light alloy or a reinforced fiber composite resin material suitable for sintering molding, injection molding, etc., and also has oil impregnation characteristics, as shown in FIG. A thin annular plate 24a whose both surfaces are parallel to
The outer contour of the annular plate 24a is composed of a pair of parallel key portions 24b provided on one surface of the parallel plate portion 24b.
And two arcuate curved portions 26 connected to it,
As shown in FIG. 2, the linear portion 25 is slidable by engaging the linear portion 22 of the thrust bearing 20 with a small clearance, and the side surface 24c of the parallel key portion 24b is orthogonal to the central portion of the linear portion 25. , First
The lap support disk of the orbiting scroll 18 as shown in FIGS.
Engage with a pair of key grooves 71 provided in 18c with a minute gap,
It has a slidable shape.

第1図のように、本体フレーム5とスラスト軸受20と
の間は、約0.1mmのレリース隙間27が設けられ、そのレ
リース隙間27に対向して本体フレーム5にも環状溝28が
設けられ、環状溝28を囲んだゴム製のシールリング70
が、本体フレーム5とスラスト軸受20との間に装着され
ている。
As shown in FIG. 1, a release gap 27 of about 0.1 mm is provided between the body frame 5 and the thrust bearing 20, and an annular groove 28 is also provided in the body frame 5 so as to face the release gap 27. Rubber seal ring 70 surrounding the annular groove 28
Is mounted between the body frame 5 and the thrust bearing 20.

モータ室6の上部と吐出室2とは、密閉ケース1の側
壁を貫通して接続されたバイパス吐出管29を介して連通
し、バイパス吐出管29のモータ室6への開口位置は、固
定子3bのコイルエンド30の側面に対向し、バイパス吐出
管29の上部開口端と密閉ケース1の上端に接続された吐
出管31とは、軸受フレーム9に設けられた抜き穴32、密
閉ケース1の上面と軸受フレーム9との間に配置され、
多数の小穴を有するパンチングメタル33を介して連通し
ている。
The upper portion of the motor chamber 6 and the discharge chamber 2 are communicated with each other through a bypass discharge pipe 29 connected to penetrate the side wall of the sealed case 1, and the opening position of the bypass discharge pipe 29 to the motor chamber 6 is the stator. The upper opening end of the bypass discharge pipe 29 and the discharge pipe 31 connected to the upper end of the hermetic case 1 facing the side surface of the coil end 30 of 3b are the hole 32 provided in the bearing frame 9 and the hermetic case 1. Disposed between the upper surface and the bearing frame 9,
It communicates via a punching metal 33 having a large number of small holes.

上部軸受10に係合する駆動軸4の上端軸4bの表面に螺
旋形のの油溝90が設けられ、油溝90の端は上端軸4bの端
面に開口し、油溝90の捻れ方向は駆動軸4が正回転する
際に潤滑油をモータ3の方へ移送する向きに設けられて
いる。
A spiral oil groove 90 is provided on the surface of the upper end shaft 4b of the drive shaft 4 that engages with the upper bearing 10, and the end of the oil groove 90 opens to the end surface of the upper end shaft 4b. The drive shaft 4 is provided so as to transfer the lubricating oil toward the motor 3 when the drive shaft 4 rotates forward.

軸受フレーム9に傾斜して抜き穴32の近傍に設けられ
た油穴91は、コイルエンド30の側と上部軸4bの端部側と
を連通している。
An oil hole 91 that is provided in the bearing frame 9 in a tilted manner and provided near the drain hole 32 connects the coil end 30 side and the end side of the upper shaft 4b.

外部電源接続用のガラスターミナル92とモータ側接続
用のコネクター93とは、パンチングメタル33を貫通する
位置で接続されている。
The glass terminal 92 for connecting the external power source and the connector 93 for connecting to the motor side are connected at a position penetrating the punching metal 33.

モータ室6の下部に設けられた油溜34は、モータ室6
の上部とモータ3の固定子3bの外周の一部にカットして
設けた冷却通路35により連通されている。また、油溜34
は、本体フレーム5に設けられた油穴B38bを経由して環
状溝28に通じると共に、オルダムリング24が配置された
旋回スクロール18の背圧室39にも主軸受12の摺動部微少
隙間を介して通じ、更に偏心軸受14に設けられた油溝A4
0aを介して偏心軸受空間36へも連通している。
The oil sump 34 provided at the bottom of the motor chamber 6 is
And a cooling passage 35 formed by cutting a part of the outer periphery of the stator 3b of the motor 3 to communicate with each other. Also, the oil sump 34
Communicates with the annular groove 28 through the oil hole B38b provided in the main body frame 5, and at the same time, the back pressure chamber 39 of the orbiting scroll 18 in which the Oldham ring 24 is arranged has a small gap in the sliding portion of the main bearing 12. Through the oil groove A4 provided in the eccentric bearing 14
It also communicates with the eccentric bearing space 36 via 0a.

また、本体フレーム5に設けられた油穴B38bは、駆動
軸4の下部軸受11に対応する下部軸部4aの表面に設けら
れた螺旋状油溝41にも通じており、螺旋状油溝41の巻き
方向は、駆動軸4が正回転する時に潤滑油の粘性を利用
したネジポンプ作用の生じるように設けられ、その終端
は下部軸受4aの途中まで形成されている。
Further, the oil hole B38b provided in the main body frame 5 also communicates with a spiral oil groove 41 provided on the surface of the lower shaft portion 4a corresponding to the lower bearing 11 of the drive shaft 4, and the spiral oil groove 41 The winding direction is provided so that a screw pump action utilizing the viscosity of the lubricating oil is generated when the drive shaft 4 rotates in the forward direction, and the end thereof is formed partway along the lower bearing 4a.

固定スクロール15は、吸入室17の両端を連通する円弧
状の吸入通路42が設けられ、それに直交する円形の吸入
穴43が、固定スクロールラップ15aの側面に対しても直
角方向に設けられ、吸入穴43の底部は平面で、吸入通路
42の側面にまで到達している。
The fixed scroll 15 is provided with an arc-shaped suction passage 42 that communicates both ends of the suction chamber 17, and a circular suction hole 43 that is orthogonal to the circular suction passage 42 is also provided in a direction perpendicular to the side surface of the fixed scroll wrap 15a. The bottom of the hole 43 is flat and the suction passage is
It has reached the side of 42.

また、吸入穴43には、アキュウムレータ46の吸入管47
が接続されており、吸入穴43の底面44と吸入管端面48と
の間には、吸入管47の内径寸法および吸入管端面48と底
面44との間の吸入穴深さ寸法よりも大きく、且つ開口寸
法よりも大きい円形薄鋼板の逆止弁50が配置されてい
る。
In addition, the suction hole 43 has a suction pipe 47 of the accumulator 46.
Is connected between the bottom surface 44 of the suction hole 43 and the suction pipe end surface 48, and is larger than the inner diameter dimension of the suction tube 47 and the suction hole depth dimension between the suction tube end surface 48 and the bottom surface 44. A check valve 50 made of a circular thin steel plate having a size larger than the opening size is arranged.

逆止弁50の表面は油濡れ特性が悪く、弾力性に富んだ
テフロンまたはゴムなどがコーティングされている。
The surface of the check valve 50 has poor oil wetting characteristics and is coated with Teflon or rubber having a high elasticity.

吸入室17にも吐出室2にも連通しない圧縮室51と外周
部空間37とは、圧縮室51に開口して鏡板15bに設けられ
た細径のインジェクション穴52、鏡板15bと樹脂製の断
熱カバー53とで形成されたインジェクション溝54、外周
部空間37に開口した段付き形状の油穴C38cとから成るイ
ンジェクション通路55で連通され、油穴C38cの大径部56
には、外周の一部に切欠きを有する薄鋼板製の逆止弁58
と、コイルスプリング59とが配置されている。
The compression chamber 51, which does not communicate with the suction chamber 17 and the discharge chamber 2, and the outer peripheral space 37, have a small diameter injection hole 52 that is opened in the compression chamber 51 and is provided in the end plate 15b, the end plate 15b and resin heat insulation. A large-diameter portion 56 of the oil hole C38c communicates with an injection passage 55 formed of an injection groove 54 formed with the cover 53 and a stepped oil hole C38c opening in the outer peripheral space 37.
Has a check valve 58 made of thin steel plate with a cutout on a part of the outer circumference.
And a coil spring 59 are arranged.

コイルスプリング59は、断熱カバー53に押さえられて
逆止弁58を常時付勢する。外周部空間37への油穴C38cの
開口位置は、旋回スクロール18のラップ支持円盤18が旋
回運動する毎に間欠的に開閉される位置に設けられてい
る。
The coil spring 59 is pressed by the heat insulating cover 53 and constantly urges the check valve 58. The opening position of the oil hole C38c to the outer peripheral space 37 is provided at a position that is intermittently opened and closed every time the lap support disk 18 of the orbiting scroll 18 orbits.

以上のように構成されたスクロール冷媒圧縮機につい
て、その動作を説明する。
The operation of the scroll refrigerant compressor configured as described above will be described.

モータ(電動機)3によって駆動軸4が回転駆動する
と、旋回スクロール18が旋回運動をし、圧縮機に接続し
た冷凍サイクルから潤滑油を含んだ吸入冷媒ガスが、ア
キュームレータ46に接続した吸入管47、吸入穴43、吸入
通路42を順次経て吸入室17に流入し、旋回スクロール18
と固定スクロール15との間に形成され、且つ、吸入室17
に間欠的に連通するた第1圧縮室(図示せず)を経て圧
縮室内に閉じ込められ、常時密閉空間となる第2圧縮室
51a,51b、吐出室2と間欠的に連通する第3圧縮室(図
示せず)へと順次移送圧縮され、中央部の吐出ポート16
を経て吐出室2へと排出される。
When the drive shaft 4 is rotationally driven by the motor (electric motor) 3, the orbiting scroll 18 orbits, and the suction refrigerant gas containing lubricating oil from the refrigeration cycle connected to the compressor is sucked into the suction pipe 47 connected to the accumulator 46. The orbiting scroll 18 flows through the suction hole 43 and the suction passage 42 in order to flow into the suction chamber 17.
And the fixed scroll 15 and the suction chamber 17
A second compression chamber that is constantly enclosed in a compression chamber through a first compression chamber (not shown) that communicates intermittently with the
51a and 51b are sequentially transferred and compressed to a third compression chamber (not shown) which is intermittently in communication with the discharge chamber 2, and the discharge port 16 at the center is provided.
And then discharged into the discharge chamber 2.

潤滑油を含んだ吐出冷媒ガスは、圧縮機外部へ配管さ
れたバイパス吐出管29を経て再び圧縮機内のモータ室6
に帰還した後、外部の冷凍サイクルへ吐出管31から排出
されるが、モータ室6に流入する際に、モータ3のコイ
ルエンド30の側面に衝突してモータ巻き線の表面に付着
する。これにより、潤滑油の一部が分離されてコイルエ
ンド30に細かな油滴として捕捉される。その油滴は、吐
出冷媒ガスと共に軸受フレーム9に設けられた抜き穴32
を通過する際に、流れ方向を変えることによって、潤滑
油の慣性力や軸受フレーム9への表面付着により大きな
油滴に成長して潤滑油が効果的に吐出冷媒ガスから分離
される。この潤滑油の一部は軸受フレーム9の油穴91を
経て上部軸受10に供給される一方、中央部のへこみ部に
も収集する。更に、吐出冷媒ガス中の潤滑油は、パンチ
ングメタル33の小穴を通過する際にも表面付着により捕
捉され、軸受フレーム9の中央部のへこみ部に回収され
る。この潤滑油の一部は、油溝90のネジポンプ作用と自
重とにより上部軸受10の摺動面に供給された後、残りの
潤滑油と共に冷却通路35やモータ巻線の表面を流下し
て、モータ3を冷却しながら油溜34に収集される。
The discharge refrigerant gas containing the lubricating oil passes through the bypass discharge pipe 29 that is piped to the outside of the compressor, and again passes through the motor chamber 6 in the compressor.
After returning to, the discharge pipe 31 is discharged to the external refrigeration cycle, but when flowing into the motor chamber 6, it collides with the side surface of the coil end 30 of the motor 3 and adheres to the surface of the motor winding. As a result, a part of the lubricating oil is separated and captured by the coil end 30 as fine oil droplets. The oil droplets are discharged through the vent hole 32 provided in the bearing frame 9 together with the discharged refrigerant gas.
When passing through, by changing the flow direction, a large oil droplet grows due to the inertial force of the lubricating oil and the surface adhesion to the bearing frame 9, and the lubricating oil is effectively separated from the discharged refrigerant gas. A part of this lubricating oil is supplied to the upper bearing 10 through the oil hole 91 of the bearing frame 9 and is also collected in the dent portion in the central portion. Further, the lubricating oil in the discharged refrigerant gas is captured by the surface adhesion even when passing through the small holes of the punching metal 33, and is collected in the recessed portion at the center of the bearing frame 9. Part of this lubricating oil is supplied to the sliding surface of the upper bearing 10 by the screw pump action of the oil groove 90 and its own weight, and then flows down along with the remaining lubricating oil on the surface of the cooling passage 35 and the motor winding, The oil is collected in the oil sump 34 while cooling the motor 3.

圧縮荷重が作用する旋回スクロール18の旋回軸18bか
ら曲げモーメントを受けて上部軸受10と主軸受12の摺動
面内で傾斜しょうとする駆動軸4は、摺動面で発生する
油膜に支持される。
The drive shaft 4 that receives a bending moment from the orbiting shaft 18b of the orbiting scroll 18 on which a compressive load acts and tilts in the sliding surface of the upper bearing 10 and the main bearing 12 is supported by an oil film generated on the sliding surface. It

一方、油溜34の潤滑油は、駆動軸4の下部軸部4aの表
面に設けられた螺旋状油溝41のネジポンプ作用により、
スラスト玉軸受13へ給油され、下部軸受4aの端部の微小
軸受隙間を潤滑油が通過する際に、その油膜シール作用
により、モータ室6の吐出冷媒ガス雰囲気と主軸受12の
上流側空間とが遮断される。
On the other hand, the lubricating oil in the oil sump 34 is generated by the screw pump action of the spiral oil groove 41 provided on the surface of the lower shaft portion 4a of the drive shaft 4.
When the lubricating oil is supplied to the thrust ball bearing 13 and the lubricating oil passes through the minute bearing gap at the end of the lower bearing 4a, the oil film sealing action creates a discharge refrigerant gas atmosphere in the motor chamber 6 and an upstream space of the main bearing 12. Is cut off.

油溜34の溶解冷媒ガスを含んだ潤滑油は、主軸受12の
微小隙間を通過する際に、吐出圧力と吸入圧力との中間
圧力に減圧され、背圧室39に流入する。その後、偏心軸
受14の油溝A40a、偏心軸受空間36、旋回スクロール18を
通る油穴A38を経て漸次減圧されながら外周部空間37に
流入し、更に間欠的に開口する油穴C38c、インジェクシ
ョン溝54、インジェクション穴52a、52bを経て第2圧縮
室51a,51bに流入し、その通路途中の各摺動面を潤滑す
る。
The lubricating oil containing the dissolved refrigerant gas in the oil sump 34 is reduced to an intermediate pressure between the discharge pressure and the suction pressure when passing through the minute gap of the main bearing 12, and flows into the back pressure chamber 39. After that, the oil groove A40a of the eccentric bearing 14, the eccentric bearing space 36, and the oil hole A38 passing through the orbiting scroll 18 flow into the outer peripheral portion space 37 while being gradually decompressed, and the oil hole C38c and the injection groove 54 which are intermittently opened. , Through the injection holes 52a, 52b into the second compression chambers 51a, 51b and lubricate the sliding surfaces in the middle of the passages.

第2圧縮室51a,51bにインジェクションされた潤滑油
は、圧縮機外部の冷凍サイクルから吸入冷媒ガスと共に
圧縮室に流入した潤滑油と合流し、隣接する圧縮室間の
微小隙間を油膜により密封して圧縮冷媒ガス漏れを防
ぎ、圧縮室間の摺動面を潤滑しながら圧縮冷媒ガスと共
に吐出室2に再び排出される。
The lubricating oil injected into the second compression chambers 51a and 51b merges with the lubricating oil that has flowed into the compression chamber together with the suction refrigerant gas from the refrigeration cycle outside the compressor, and seals the minute gap between the adjacent compression chambers with an oil film. The compressed refrigerant gas is prevented from leaking, and the sliding surface between the compression chambers is lubricated, and the compressed refrigerant gas is discharged again to the discharge chamber 2.

また、油溜34は、環状溝28やレリース隙間27とも通じ
ているので、スラスト軸受20はその背圧力により、付勢
されてスペーサ21の端面に当接する。そして、旋回スク
ロール18のラップ支持円板18cは、スラスト軸受20と固
定スクロール15の鏡板15bとの間で微小隙間を保持され
て円滑に摺動すると共に、固定スクロールラップ15aの
端面とラップ支持円板18cとの間、並びに、旋回スクロ
ールラップ18aの端面と鏡板15bとの間の隙間も微小に保
持され、隣接する圧縮室間の冷媒漏れを少なくする。
Further, since the oil sump 34 also communicates with the annular groove 28 and the release gap 27, the thrust bearing 20 is biased by the back pressure thereof and comes into contact with the end surface of the spacer 21. Then, the lap support disk 18c of the orbiting scroll 18 smoothly slides while maintaining a small gap between the thrust bearing 20 and the end plate 15b of the fixed scroll 15, and at the same time, the end surface of the fixed scroll wrap 15a and the lap support circle. The gaps between the plate 18c and between the end face of the orbiting scroll wrap 18a and the end plate 15b are also kept small, and the refrigerant leakage between the adjacent compression chambers is reduced.

なお、旋回スクロール18に追従して旋回運動をする弾
性体の環状リング82が、ラップ支持円板18cと接するス
ラスト軸受20の摺動面の潤滑油を油掻きして環状溝81の
周辺に収集し、環状溝81と環状リング82との間の隙間お
よび環状リング82とスラスト軸受20との間の隙間を油密
封する。その結果、背圧室39に潤滑油が常に充満してお
り、主軸受12,旋回軸受14の摺動面も潤滑油で充満し、
軸受隙間内での駆動軸4の傾斜が阻止され、上部軸受10
内での駆動軸4の円滑な摺動を補助する。
An annular ring 82, which is an elastic body that makes an orbiting motion following the orbiting scroll 18, scrapes the lubricating oil on the sliding surface of the thrust bearing 20 in contact with the lap support disk 18c and collects it around the annular groove 81. Then, the gap between the annular groove 81 and the annular ring 82 and the gap between the annular ring 82 and the thrust bearing 20 are oil-sealed. As a result, the back pressure chamber 39 is always filled with lubricating oil, and the sliding surfaces of the main bearing 12 and the slewing bearing 14 are also filled with lubricating oil,
The inclination of the drive shaft 4 in the bearing gap is prevented, and the upper bearing 10
It assists the smooth sliding of the drive shaft 4 inside.

第2圧縮室51a,51bのインジェクション穴52a,52bの開
口部は、旋回スクロール18の旋回進角度に応じて圧力変
化し、吐出室2の圧力に追従して変化する背圧室圧力よ
りも瞬時的に高いが、平均圧力は低い。そのため、背圧
室39からの潤滑油は、油穴C38cの鏡板開口端でラップ支
持円板18cの摺動面により、間欠的に開閉され給油され
ながらインジェクション通路55を経て、間欠的に第2圧
縮室51a,581bに流入する。そして正常運転時の背圧室圧
力よりも瞬時的に高い第2圧縮室51a,51b内の圧縮冷媒
ガスは、細径のインジェクション穴52a,52bで減衰され
ているため、インジェクション溝54への瞬時的な逆流が
なく、インジェクション溝54内の圧力が背圧室圧力より
も高くならない。
The openings of the injection holes 52a, 52b of the second compression chambers 51a, 51b change in pressure according to the orbiting angle of the orbiting scroll 18, and are more instantaneous than the back pressure chamber pressure that changes following the pressure in the discharge chamber 2. But the average pressure is low. Therefore, the lubricating oil from the back pressure chamber 39 is intermittently opened and closed by the sliding surface of the lap support disc 18c at the end plate opening end of the oil hole C38c, and is injected through the injection passage 55 while being refueled. It flows into the compression chambers 51a and 581b. Then, the compressed refrigerant gas in the second compression chambers 51a, 51b, which is instantaneously higher than the pressure in the back pressure chamber during normal operation, is attenuated by the injection holes 52a, 52b having a small diameter. There is no general backflow, and the pressure in the injection groove 54 does not become higher than the back pressure chamber pressure.

なお、駆動軸4の一回転当りの外周部空間37から油穴
C38cへの潤滑油流入量は、駆動軸4の回転速度が遅い場
合には多く、早い場合には少なくなるように流量調整さ
れ、第2圧縮室51a,51bへの油インジェクション量も相
応して増減する。
In addition, the oil hole from the outer peripheral space 37 per one rotation of the drive shaft 4
The flow rate of lubricating oil flowing into C38c is adjusted to be large when the rotation speed of the drive shaft 4 is slow and small when the rotation speed of the drive shaft 4 is fast, and the amount of oil injection into the second compression chambers 51a, 51b is correspondingly. Increase or decrease.

第2圧縮室51a,51bにインジェクションされた潤滑油
は、吸入冷媒ガスと共に圧縮室に流入した潤滑油と合流
し、隣接する圧縮室間の隙間を油膜により密封して圧縮
気体漏れを防ぎ、圧縮室間の摺動面を潤滑しながら圧縮
気体と共に吐出室2に吐出される。その後、潤滑油を含
む吐出冷媒ガスは、モータ室6と吐出室2との間が本体
フレーム5によって遮断されているので、バイパス吐出
管29を通り、自然冷却されながらモータ室6のコイルエ
ンド30の上部側面に向かって流入する。モータ室6に流
入した吐出冷媒ガスは、コイルエンド30の巻線に衝突
し、吐出冷媒ガス中の潤滑油が巻線の表面や巻線間に捕
捉されたり、あるいは吐出冷媒ガスの流れ方向が変わる
際の潤滑油の慣性力などにより、吐出冷媒ガスから分離
し小さな油滴に成長する。この油適は吐出冷媒ガスに運
ばれて、その一部は軸受フレーム9への表面付着で吐出
冷媒ガスから分離し、油穴91を経て上部軸受10の摺動面
に供給される。残りの油滴は軸受フレーム9の抜き穴32
を通過した後、軸受フレーム9への表面付着により大き
な油適に成長し、中央部の上部軸受油溜94に収集する。
また、吐出冷媒ガスから分離しなかった潤滑油は、軸受
フレーム9の抜き穴32を通過することによる流れ方向変
化によって小さな油滴に成長した後、パンチングメタル
33の小穴を通過する際に、周辺の構成部品との衝突や流
れ方向を変えたりして、潤滑油の表面付着や潤滑油の慣
性力によって分離し、その一部は最終的に油溜34に収集
される。上部軸受油溜94の潤滑油は駆動軸4に設けた螺
旋状油溝のネジポンプ作用によって上部軸受10の摺動面
に給油される。
The lubricating oil injected into the second compression chambers 51a and 51b merges with the lubricating oil that has flowed into the compression chambers together with the suction refrigerant gas, and seals the gap between the adjacent compression chambers with an oil film to prevent compressed gas leakage and compression. It is discharged into the discharge chamber 2 together with the compressed gas while lubricating the sliding surface between the chambers. After that, the discharge refrigerant gas containing the lubricating oil is cut off by the main body frame 5 between the motor chamber 6 and the discharge chamber 2, and therefore passes through the bypass discharge pipe 29 and is naturally cooled while the coil end 30 of the motor chamber 6 is being cooled. Flows toward the upper side of the. The discharge refrigerant gas that has flowed into the motor chamber 6 collides with the winding of the coil end 30, and the lubricating oil in the discharge refrigerant gas is captured on the surface of the winding or between the windings, or the direction of the discharge refrigerant gas flow is Due to the inertial force of the lubricating oil when changing, it separates from the discharged refrigerant gas and grows into small oil droplets. This oil content is carried to the discharged refrigerant gas, and a part of it is separated from the discharged refrigerant gas by surface attachment to the bearing frame 9, and is supplied to the sliding surface of the upper bearing 10 through the oil hole 91. The remaining oil drops are the holes 32 in the bearing frame 9.
After passing through, a large amount of oil grows due to surface adhesion to the bearing frame 9, and is collected in the upper bearing oil sump 94 in the central portion.
The lubricating oil that has not been separated from the discharged refrigerant gas grows into small oil droplets due to the change in the flow direction caused by passing through the vent hole 32 of the bearing frame 9, and then the punching metal.
When passing through the small hole 33, it collides with surrounding components and changes the flow direction, and is separated by the surface adhesion of the lubricating oil and the inertial force of the lubricating oil, and part of it eventually becomes the oil sump 34 To be collected. The lubricating oil in the upper bearing oil sump 94 is supplied to the sliding surface of the upper bearing 10 by the screw pump action of the spiral oil groove provided in the drive shaft 4.

これによって、上部軸受10と主軸受12に供給された潤
滑油の油膜によって支持された駆動軸4は、軸受の片当
りを生じることなく円滑に回転する。
As a result, the drive shaft 4 supported by the oil film of the lubricating oil supplied to the upper bearing 10 and the main bearing 12 rotates smoothly without causing partial bearing contact.

コイルエンド30で捕捉された潤滑油の一部は、多重巻
線の表面、巻線間、冷却通路35を経て、コイルエンド30
の下部へ流下しながらモータ3を冷却し、最後は油溜34
に収集される。
A part of the lubricating oil captured by the coil end 30 passes through the surface of the multiple windings, between the windings, and the cooling passage 35, and then passes through the coil end 30.
While cooling down the motor 3 while flowing down to the bottom of the
To be collected.

吐出冷媒ガス中の潤滑油は、圧縮機低速度運転時には
吐出冷媒ガスの流速も遅く、混入量も少ないため、モー
タ室6でほぼ分離されるが、高速度運転時には潤滑油の
分離効率が悪くなるために、潤滑油の一部が吐出冷媒ガ
スと共に外部の冷凍サイクルへ吐出され、再びアキュー
ムレータ46を経て圧縮機内に帰還する。
The lubricating oil in the discharged refrigerant gas is almost separated in the motor chamber 6 because the flow velocity of the discharged refrigerant gas is low and the mixing amount is small during the low speed operation of the compressor, but the separation efficiency of the lubricating oil is poor during the high speed operation. Therefore, a part of the lubricating oil is discharged to the external refrigeration cycle together with the discharged refrigerant gas, and returns to the compressor via the accumulator 46 again.

また、背圧室39に差圧給油された潤滑油は、シールリ
ング70の弾性力と共に中間圧力の付勢力を旋回スクロー
ル18に作用させ、ラップ支持円板18cを鏡板15bとの摺動
面に押圧油膜シールして外周部空間37と吸入室17との間
の連通を遮断すると共に、スラスト軸受20とラップ支持
円板18cとの摺動面の隙間もシールする。
Further, the lubricating oil differentially supplied to the back pressure chamber 39 causes the elastic force of the seal ring 70 and the urging force of the intermediate pressure to act on the orbiting scroll 18, so that the lap support disk 18c slides on the end plate 15b. A pressure oil film seal is provided to block the communication between the outer peripheral space 37 and the suction chamber 17, and also the gap between the sliding surfaces of the thrust bearing 20 and the lap support disk 18c is sealed.

また、圧縮機の冷時始動後しばらくの間は、吐出室2
の圧力が第2圧縮室51a,51bの圧力よりも低いので、圧
縮途中の冷媒ガスが第2圧縮室51a,51bからインジェク
ション通路55を経て背圧室39に逆流しょうとするが、逆
止弁58の逆止作用にて外周部空間37への逆流が阻止さ
れ、油溜34の潤滑油は吐出室2の圧力上昇と共に背圧室
39、外周部空間37にまで差圧給油される。
In addition, for a while after the cold start of the compressor, the discharge chamber 2
Is lower than the pressure of the second compression chambers 51a, 51b, the refrigerant gas in the middle of compression tries to flow back from the second compression chambers 51a, 51b to the back pressure chamber 39 via the injection passage 55, but the check valve The reverse action of 58 prevents reverse flow to the outer peripheral space 37, and the lubricating oil in the oil sump 34 increases in pressure in the discharge chamber 2 and the back pressure chamber.
39, the differential pressure oil is supplied to the outer peripheral space 37.

したがって、冷時始動初期のスラスト軸受20への背圧
付勢力が圧縮室圧力により生じ、旋回スクロール18を固
定スクロール15から離反させようとするスラスト荷重に
抗しながらスラスト軸受20が微小に後退して旋回スクロ
ール18と固定スクロール15との間の軸方向隙間を拡大す
ることにより、圧縮空間に漏れを生じて圧縮室圧力を下
げ、始動初期の圧縮負荷を軽減する。
Therefore, the back pressure biasing force to the thrust bearing 20 at the initial stage of cold start is generated by the compression chamber pressure, and the thrust bearing 20 slightly moves backward while resisting the thrust load trying to separate the orbiting scroll 18 from the fixed scroll 15. By expanding the axial gap between the orbiting scroll 18 and the fixed scroll 15 to cause a leak in the compression space and reduce the pressure in the compression chamber, the compression load at the initial stage of starting is reduced.

その後、吐出室2の圧力上昇に伴い、外周部空間37の
潤滑油はコイルスプリング59の付勢力に抗してインジェ
クション穴52a,52bを介して駆動軸4の回転速度に逆比
例するように計量制御され、第2圧縮室51a,51bへイン
ジェクションされる。
Then, as the pressure in the discharge chamber 2 rises, the lubricating oil in the outer peripheral space 37 is measured against the biasing force of the coil spring 59 via the injection holes 52a, 52b so as to be inversely proportional to the rotational speed of the drive shaft 4. It is controlled and injected into the second compression chambers 51a, 51b.

また、冷房始動初期や安定運転時に油インジェクショ
ンやその他の原因で瞬時的な液圧縮が生じた場合の圧縮
室圧力は、異常な圧力上昇と過圧縮が生じるが、吐出室
2とそれに連通する高圧空間容積が大きいので、吐出室
圧力の上昇は極めて小さい。
Further, the pressure in the compression chamber when an instantaneous liquid compression occurs due to oil injection or other causes at the initial stage of cooling start or during stable operation, the abnormal pressure rise and over-compression occur, but the discharge chamber 2 and the high pressure communicating with it. Since the space volume is large, the rise in discharge chamber pressure is extremely small.

また、液圧縮により第2圧縮室51a,51bに連通するイ
ンジェクション溝54なども異常圧力上昇するが、細径の
油穴C38cの絞り効果と逆止弁58の逆止作用により、外周
部空間37とインジェクション溝54との間が遮断される。
そのため、背圧室39の圧力は変わらず、スラスト軸受20
の背面に作用する背圧付勢力にも変動がなく、その結
果、液圧縮時には旋回スクロール18に作用する過大なス
ラスト力により、上述のようにスラスト軸受20が後退し
て圧縮室圧力が降下し、その後、正常運転を継続する。
Further, due to the liquid compression, the injection groove 54 and the like communicating with the second compression chambers 51a and 51b also have an abnormal pressure rise, but due to the throttling effect of the small-diameter oil hole C38c and the check function of the check valve 58, the outer peripheral space 37 And the injection groove 54 are blocked.
Therefore, the pressure in the back pressure chamber 39 does not change, and the thrust bearing 20
There is no fluctuation in the back pressure urging force that acts on the back surface of the thrust bearing 20, and as a result, the excessive thrust force that acts on the orbiting scroll 18 during liquid compression causes the thrust bearing 20 to retract and the compression chamber pressure to drop as described above. , And then continue normal operation.

なお、液圧縮途中でスラスト軸受20が後退することに
より、圧縮室圧力は圧縮途中で降圧する。
Incidentally, the thrust bearing 20 retracts during liquid compression, so that the pressure in the compression chamber is reduced during compression.

圧縮機停止後は、圧縮室内圧力により旋回スクロール
18に逆旋回トルクが生じ、旋回スクロール18が逆旋回し
て吐出冷媒ガスが吸入側に逆流する。この吐出冷媒ガス
の逆流に追従して、逆止弁50が移動し、逆止弁50の表面
に施されたテフロン被膜により、吸入管端面48を密封し
て吐出冷媒ガスの逆流を制止し、旋回スクロール18の逆
旋回が停止し、吸入通路42と吐出ポート16との間の空間
は吐出圧力を保持する。
After the compressor is stopped, the orbiting scroll is performed by the pressure in the compression chamber.
Reverse orbiting torque is generated in 18, and the orbiting scroll 18 is orbited in the reverse direction, and the discharged refrigerant gas flows back to the suction side. Following the reverse flow of the discharge refrigerant gas, the check valve 50 moves, and the Teflon coating provided on the surface of the check valve 50 seals the suction pipe end surface 48 to prevent the reverse flow of the discharge refrigerant gas. The reverse orbit of the orbiting scroll 18 is stopped, and the space between the suction passage 42 and the discharge port 16 holds the discharge pressure.

また、インジェクション通路55の逆止弁58を境にし
て、圧縮室に連通する通路は、吐出圧力になるが、外周
部空間37と背圧室39との間の空間は暫くの間、中間の圧
力を保持し、油溜34からの潤滑油微少流入により次第に
吐出圧力に近づく。圧縮機停止時、旋回スクロール18は
逆転し第3圧縮室(図示なし)が拡大して逆旋回トルク
を生じない位置に停止し、油穴C38cの外周部空間37への
開口部は、ラップ支持円板18cにより遮断される。
In addition, the check valve 58 of the injection passage 55 is used as a boundary, and a passage communicating with the compression chamber is at a discharge pressure, but the space between the outer peripheral portion space 37 and the back pressure chamber 39 is at an intermediate position for a while. The pressure is maintained and gradually approaches the discharge pressure due to a slight inflow of lubricating oil from the oil sump 34. When the compressor is stopped, the orbiting scroll 18 rotates in the reverse direction and the third compression chamber (not shown) expands and stops at a position where reverse orbiting torque is not generated, and the opening of the oil hole C38c to the outer peripheral space 37 is lap supported. It is blocked by the disc 18c.

圧縮機停止後は、コイルスプリング59の付勢力によっ
ても逆止弁58がインジェクション通路55を遮断するの
で、外周部空間37から圧縮室への潤滑油流入がない。
After the compressor is stopped, the check valve 58 shuts off the injection passage 55 by the urging force of the coil spring 59, so that no lubricating oil flows from the outer peripheral space 37 into the compression chamber.

以上のように上記実施例によれば、モータ(電動機)
3の両側に配置された本体フレーム5と軸受フレーム9
に支持された駆動軸4を介してモータ3を連接した本体
フレーム5、本体フレーム5に固定された固定スクロー
ル15、固定スクロール15に噛み合って圧縮室を形成し駆
動軸4に摺動係合して駆動される旋回スクロール18、旋
回スクロール18の自転を阻止するオルダムリング24など
から成るスクロール圧縮機構を、その内部が高圧雰囲気
の密閉ケース1内に収納し、圧縮冷媒ガスを最終的に圧
縮機外に送出する吐出管31を、モータ3に対して前述の
圧縮部と反対側の密閉ケース1の上端壁に接続し、前述
のスクロール圧縮機構部から排出した圧縮冷媒ガスが密
閉ケース1の外部を迂回して配管されたバイパス吐出管
29を経て再び密閉ケース1に流入し、モータ3の反スク
ロール圧縮機構部側のコイルエンド30に衝突してモータ
3を冷却した後に吐出管31から密閉ケース1の外部に排
出する吐出冷媒ガス通路を設けた構成において、吐出冷
媒ガスに含まれる潤滑油の一部が、吐出冷媒ガス通路途
中のコイルエンド30と吐出管31との間に配置されて駆動
軸4の反スクロール圧縮機構部側を支承する軸受フレー
ム9の周辺で、コイルエンド30と衝突した後、吐出冷媒
ガスから分離し、軸受フレーム9の中央部の上部軸受10
の摺動部に導かれる通路(上部軸受油溜94と油穴91)を
軸受フレーム9に設けたことにより、特別な油分離空間
と給油ポンプ装置とを要することなく、吐出冷媒ガス中
の潤滑油をモータ3のコイルエンド30と軸受フレーム9
とに効率良く付着収集することができ、その潤滑油を駆
動軸4を支持する反圧縮部側の軸受部に供給することが
でき、圧縮機の小型化が図れる。また、モータ3の両側
の軸受部(主軸受12と上部軸受10)で支持された駆動軸
4は、中央部での曲がりも少なく、旋回スクロールから
曲げモーメントを受けて上部軸受10と本体フレーム5の
主軸受12の摺動面内で傾斜しょうとするが、摺動面で発
生する油膜に支持されて軸受片当りを生じることなく円
滑に回転し、本来のスクロール圧縮機の低振動・低騒音
特性を発揮させることができる。また、軸受摺動部の入
力低減と耐久性向上も図ることができる。
As described above, according to the above embodiment, the motor (electric motor)
Body frame 5 and bearing frame 9 arranged on both sides of 3
The main body frame 5 connected to the motor 3 via the drive shaft 4 supported by the fixed scroll 15, the fixed scroll 15 fixed to the main body frame 5, the fixed scroll 15 to form a compression chamber, and the slide shaft is slidably engaged with the drive shaft 4. The scroll compression mechanism composed of the orbiting scroll 18 driven by the rotary orbiting scroll 18 and the Oldham ring 24 that prevents rotation of the orbiting scroll 18 is housed in the closed case 1 having a high pressure atmosphere inside, and the compressed refrigerant gas is finally compressed. The discharge pipe 31 which is sent to the outside is connected to the upper end wall of the hermetically sealed case 1 on the side opposite to the above-mentioned compression section with respect to the motor 3, and the compressed refrigerant gas discharged from the above-mentioned scroll compression mechanism section is outside the hermetically sealed case 1. Bypass discharge pipe routed around
A discharge refrigerant gas passage that flows into the sealed case 1 again via 29, collides with the coil end 30 on the side of the anti-scroll compression mechanism of the motor 3 to cool the motor 3, and then discharges it from the discharge pipe 31 to the outside of the sealed case 1. In the configuration provided with, a part of the lubricating oil contained in the discharge refrigerant gas is disposed between the coil end 30 and the discharge pipe 31 in the discharge refrigerant gas passage to prevent the drive shaft 4 from moving on the side opposite to the scroll compression mechanism portion. After colliding with the coil end 30 around the bearing frame 9 to be supported, it is separated from the discharged refrigerant gas, and the upper bearing 10 at the center of the bearing frame 9 is separated.
By providing the bearing frame 9 with a passage (upper bearing oil sump 94 and oil hole 91) that is guided to the sliding portion of, the lubrication in the discharge refrigerant gas is not required without a special oil separation space and oil supply pump device. Coil end 30 of motor 3 and bearing frame 9
In addition, the lubricant can be efficiently attached and collected, and the lubricating oil can be supplied to the bearing portion on the side opposite to the compression portion that supports the drive shaft 4, so that the compressor can be downsized. Further, the drive shaft 4 supported by the bearing portions (main bearing 12 and upper bearing 10) on both sides of the motor 3 has little bending in the central portion, and receives a bending moment from the orbiting scroll to receive the upper bearing 10 and the main body frame 5. Although it tries to incline within the sliding surface of the main bearing 12, it smoothly rotates without being hit by the bearing film supported by the oil film generated on the sliding surface, and the original scroll compressor has low vibration and low noise. The characteristics can be exhibited. Further, it is possible to reduce the input of the bearing sliding portion and improve the durability.

更に、モータ3の回転子3aと固定子3bとの間のエアギ
ャップが均一に保持できるので、回転子3aと固定子3bと
の間で発生する電磁吸引力もバランスが保たれ、圧縮機
高速運転時でも低振動・低騒音特性を発揮させることが
できる。
Furthermore, since the air gap between the rotor 3a and the stator 3b of the motor 3 can be kept uniform, the electromagnetic attraction force generated between the rotor 3a and the stator 3b is also balanced, and the compressor operates at high speed. It is possible to exhibit low vibration and low noise characteristics even at times.

また、上記実施例によれば、軸受フレーム9に設けた
抜き穴32をコイルエンド30よりも軸中心側に配置したこ
とにより、モータ3の冷却と吐出冷媒ガスから潤滑油を
捕捉するためにコイルエンド30に衝突させた吐出冷媒ガ
スの流れ方向を変えることができる。それによって、吐
出冷媒ガス中の潤滑油の慣性力を利用して油分離でき、
軸受部への給油量増加によって、軸受部の信頼性を向上
できる。
Further, according to the above-described embodiment, since the vent hole 32 provided in the bearing frame 9 is arranged closer to the shaft center side than the coil end 30, the coil is provided for cooling the motor 3 and capturing the lubricating oil from the discharged refrigerant gas. The flow direction of the discharged refrigerant gas that collides with the end 30 can be changed. Thereby, the oil can be separated by utilizing the inertial force of the lubricating oil in the discharged refrigerant gas,
The reliability of the bearing can be improved by increasing the amount of oil supplied to the bearing.

発明の効果 以上のように本発明は、電動機の両側で支持された駆
動軸を介してその電動機を連接した圧縮部を、その内部
が高圧雰囲気の密閉容器内に収納し、吐出気体を最終的
に機外に送出する吐出管を密閉容器の電動機に対する反
圧縮部側の端部に設け、圧縮部から排出した吐出気体
が、密閉容器の外部を迂回して配管されたバイパス吐出
管を経て再び密閉容器に流入し、電動機の反圧縮部側の
コイルエンド部に衝突して電動機を冷却した後に吐出管
から密閉容器の外部に排出する吐出気体通路を設けた構
成において、吐出気体通路途中のコイルエンド部と吐出
管との間に駆動軸の反圧縮部側を支承する軸受フレーム
を設け、吐出気体に含まれる潤滑油の一部がコイルエン
ド部と衝突した後、軸受フレームの周辺で吐出気体から
分離し、軸受フレームの中央部の軸受摺動部に導かれる
通路を軸受フレームに設けたことにより、特別な油分離
空間と給油ポンプ装置とを要することなく、吐出気体中
の潤滑油を電動機のコイルエンドと軸受フレームとに効
率良く付着収集することができ、その潤滑油を駆動軸を
支持する反圧縮部側の軸受部に供給することができ、圧
縮機の小型化が図れる。また、電動機の両側の軸受部で
支持された駆動軸は、中央部での曲がりも少なく、圧縮
部から曲げモーメントを受けて軸受摺動面内で傾斜しょ
うとするが、摺動面で発生する油膜に支持されて軸受片
当りを生じることなく円滑に回転し、低振動・低騒音の
圧縮機を実現させることができる。また、軸受摺動部の
入力低減と耐久性向上も図ることができる。
As described above, according to the present invention, the compression section in which the electric motors are connected to each other via the drive shafts supported on both sides of the electric motor is housed in a hermetically sealed container having a high-pressure atmosphere, and the discharged gas is finally discharged. A discharge pipe to be sent to the outside of the machine is provided at the end of the airtight container on the side opposite to the compression unit with respect to the electric motor, and the discharge gas discharged from the compression unit again passes through the bypass discharge pipe that bypasses the outside of the airtight container. A coil in the middle of the discharge gas passage in a structure in which a discharge gas passage that flows into the closed container, collides with the coil end portion on the anti-compression part side of the electric motor, cools the electric motor, and then discharges from the discharge pipe to the outside of the closed container A bearing frame that supports the anti-compression part side of the drive shaft is provided between the end part and the discharge pipe, and after a part of the lubricating oil contained in the discharge gas collides with the coil end part, the discharge gas around the bearing frame Separated from the axis By providing the bearing frame with a passage that is guided to the bearing sliding portion at the center of the receiving frame, the lubricating oil in the discharge gas can be used as the coil end of the electric motor without requiring a special oil separation space and oil supply pump device. It can be efficiently attached to and collected on the bearing frame, and its lubricating oil can be supplied to the bearing portion on the side opposite to the compression portion that supports the drive shaft, and the compressor can be downsized. In addition, the drive shaft supported by the bearings on both sides of the motor has less bending at the center and receives a bending moment from the compression part to incline within the bearing sliding surface, but this occurs on the sliding surface. It is possible to realize a compressor that is supported by an oil film, smoothly rotates without causing bearing piece contact, and has low vibration and low noise. Further, it is possible to reduce the input of the bearing sliding portion and improve the durability.

更に、電動機の回転子と固定子との間のエアギャップ
が均一に保持できるので、回転子と固定子との間で発生
する電磁吸引力のバランスも保持でき、圧縮機高速運転
時でも低振動・低騒音特性を発揮させることができる。
Furthermore, since the air gap between the rotor and the stator of the electric motor can be maintained evenly, the balance of the electromagnetic attraction force generated between the rotor and the stator can also be maintained, resulting in low vibration even during high-speed operation of the compressor.・ Low noise characteristics can be exhibited.

また本発明は、軸受フレームの一部が油分離機能を兼
ねるべく、コイルエンド部よりも軸中心側に軸受フレー
ムに抜き穴を設け、吐出気体が抜き穴を通過すべくした
ことにより、電動機の冷却と吐出気体から潤滑油を捕捉
するためにコイルエンド部に衝突させた吐出気体の流れ
方向を変えることができる。それによって、吐出気体中
の潤滑油の慣性力を利用して油分離でき、上部軸受部へ
の給油量増加によって、軸受部信頼性を向上できる。
Further, in the present invention, in order that a part of the bearing frame also serves as an oil separation function, a vent hole is provided in the bearing frame closer to the shaft center than the coil end portion, and the discharged gas is allowed to pass through the vent hole. It is possible to change the flow direction of the discharge gas that has collided with the coil end portion in order to capture the lubricating oil from the cooling and discharge gas. Thereby, oil can be separated by utilizing the inertial force of the lubricating oil in the discharged gas, and the reliability of the bearing portion can be improved by increasing the amount of oil supplied to the upper bearing portion.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例におけるスクロール冷媒圧縮
機の縦断面図、第2図は同圧縮機における主要部品の分
解図、第3図、第4図、第5図はそれぞれ従来の異なる
スクロール圧縮機の縦断面図である。 1……密閉ケース(密閉容器)、2……吐出室、3……
モータ(電動機)、4……駆動軸、5……本体フレー
ム、9……軸受フレーム、15……固定スクロール、16…
…吐出ポート、18……旋回スクロール、29……バイパス
吐出管、30……コイルエンド、31……吐出管、34……油
溜、90……油溝、91……油穴。
FIG. 1 is a vertical cross-sectional view of a scroll refrigerant compressor according to an embodiment of the present invention, FIG. 2 is an exploded view of main parts of the compressor, and FIGS. 3, 4, and 5 are different from conventional ones. It is a longitudinal section of a scroll compressor. 1 ... Closed case (closed container), 2 ... Discharge chamber, 3 ...
Motor (electric motor), 4 ... Drive shaft, 5 ... Body frame, 9 ... Bearing frame, 15 ... Fixed scroll, 16 ...
… Discharge port, 18 …… Swirl scroll, 29 …… Bypass discharge pipe, 30 …… Coil end, 31 …… Discharge pipe, 34 …… Oil sump, 90 …… Oil groove, 91 …… Oil hole.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電動機3の両側で支持された駆動軸4を介
してその電動機3を連接した圧縮部をその内部が高圧雰
囲気の密閉容器1内に収納し、吐出気体を最終的に機外
に送出する吐出管31を前記密閉容器1の前記電動機3に
対する反圧縮部側の端部に設け、前記圧縮部から排出し
た吐出気体が、前記密閉容器1の外部を迂回して配管さ
れたバイパス吐出管29を経て再び前記密閉容器1に流入
し、前記電動機3の前記反圧縮部側のコイルエンド部30
に衝突して前記電動機3を冷却した後に前記吐出管31か
ら前記密閉容器1の外部に排出する構成において、前記
コイルエンド部30と前記吐出管31との間には前記駆動軸
4の反圧縮部側を支承する軸受フレーム9を設け、前記
吐出気体に含まれる潤滑油の一部が前記コイルエンド部
30と衝突した後、前記軸受フレーム9の周辺で前記吐出
気体から分離し、前記軸受フレーム9の中央部の軸受摺
動部10に導かれる油穴91を前記軸受フレーム9に設けた
密閉形電動気体圧縮機。
1. A compressor which connects the electric motor 3 via drive shafts 4 supported on both sides of the electric motor 3 is housed in a closed container 1 having a high-pressure atmosphere inside, and the discharged gas is finally discharged outside the machine. A discharge pipe 31 for delivering to the air is provided at the end of the closed container 1 on the side opposite to the compression unit with respect to the electric motor 3, and the discharge gas discharged from the compression unit bypasses the outside of the closed container 1 and is bypassed. It flows into the closed container 1 again through the discharge pipe 29, and the coil end portion 30 of the electric motor 3 on the side opposite to the compression portion 30.
In a configuration in which the electric motor 3 is cooled by collision with the discharge pipe 31 and then discharged from the discharge pipe 31 to the outside of the closed container 1, the anti-compression of the drive shaft 4 is provided between the coil end portion 30 and the discharge pipe 31. A bearing frame 9 that supports the side of the coil end is provided so that a part of the lubricating oil contained in the discharge gas is the coil end part.
After colliding with the bearing frame 30, the bearing frame 9 is separated from the discharged gas, and an oil hole 91 is provided in the bearing frame 9 to be guided to the bearing sliding portion 10 at the center of the bearing frame 9. Gas compressor.
【請求項2】軸受フレーム9の一部が油分離機能を兼ね
るべく、コイルエンド部30よりも軸中心側に前記軸受フ
レーム9に抜き穴32を設け、吐出気体が前記抜き穴32を
通過すべくした特許請求の範囲第1項記載の密閉形電動
気体圧縮機。
2. A vent hole 32 is provided in the bearing frame 9 closer to the shaft center than the coil end portion 30 so that a part of the bearing frame 9 also has an oil separating function, and the discharged gas passes through the vent hole 32. The sealed electric gas compressor according to claim 1, which is intended.
JP63159991A 1988-06-28 1988-06-28 Hermetic electric gas compressor Expired - Fee Related JP2529355B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63159991A JP2529355B2 (en) 1988-06-28 1988-06-28 Hermetic electric gas compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63159991A JP2529355B2 (en) 1988-06-28 1988-06-28 Hermetic electric gas compressor

Publications (2)

Publication Number Publication Date
JPH029987A JPH029987A (en) 1990-01-12
JP2529355B2 true JP2529355B2 (en) 1996-08-28

Family

ID=15705615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63159991A Expired - Fee Related JP2529355B2 (en) 1988-06-28 1988-06-28 Hermetic electric gas compressor

Country Status (1)

Country Link
JP (1) JP2529355B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2539575Y2 (en) * 1991-04-30 1997-06-25 豊興工業株式会社 Hydraulic pressure source device
JP2539576Y2 (en) * 1991-06-27 1997-06-25 豊興工業株式会社 Hydraulic pressure source device
JPH0681779A (en) * 1992-09-04 1994-03-22 Matsushita Electric Ind Co Ltd Scroll compressor
JP2024014491A (en) * 2022-07-22 2024-02-01 サンデン株式会社 Scroll type compressor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63235683A (en) * 1987-03-20 1988-09-30 Sanden Corp Scroll type fluid device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63235683A (en) * 1987-03-20 1988-09-30 Sanden Corp Scroll type fluid device

Also Published As

Publication number Publication date
JPH029987A (en) 1990-01-12

Similar Documents

Publication Publication Date Title
JP2778585B2 (en) Scroll gas compressor
JPH03202682A (en) Gas compressor
JP2639136B2 (en) Scroll compressor
JPH07117049B2 (en) Scroll compressor
JP2529355B2 (en) Hermetic electric gas compressor
JPH08303364A (en) Scroll gas compressor
JP3019770B2 (en) Scroll gas compressor
JP2790126B2 (en) Scroll gas compressor
KR102381161B1 (en) Compressor
JPH0733827B2 (en) Gas scroll compressor
JP3545826B2 (en) Scroll compressor
JP2004316592A (en) Scroll compressor
JP2870488B2 (en) Scroll gas compressor
JP2870489B2 (en) Scroll gas compressor
JPH0739832B2 (en) Scroll compressor
JP2785805B2 (en) Scroll gas compressor
JPH08303369A (en) Scroll gas compressor
JP2615527B2 (en) Scroll gas compressor
JP2820137B2 (en) Scroll gas compressor
JPH0826862B2 (en) Scroll gas compressor
JPH08303368A (en) Scroll gas compressor
JPH0739836B2 (en) Scroll gas compressor
JP2502690B2 (en) Hermetic electric compressor
JPH06100184B2 (en) Scroll gas compressor
JPH0733830B2 (en) Scroll gas compressor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees