JPH03202682A - Gas compressor - Google Patents

Gas compressor

Info

Publication number
JPH03202682A
JPH03202682A JP34064489A JP34064489A JPH03202682A JP H03202682 A JPH03202682 A JP H03202682A JP 34064489 A JP34064489 A JP 34064489A JP 34064489 A JP34064489 A JP 34064489A JP H03202682 A JPH03202682 A JP H03202682A
Authority
JP
Japan
Prior art keywords
oil
bearing
chamber
motor
electric motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34064489A
Other languages
Japanese (ja)
Other versions
JPH0778388B2 (en
Inventor
Katsuharu Fujio
藤尾 勝晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1340644A priority Critical patent/JPH0778388B2/en
Publication of JPH03202682A publication Critical patent/JPH03202682A/en
Publication of JPH0778388B2 publication Critical patent/JPH0778388B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To downsize an compressor by storing and fixing a compressor mechanism part and a motor in sealed containers respectively, by supporting them with an auxiliary bearing member and the compressor mechanism part, and by fixing the auxiliary bearing member at an end part of a stator made of laminated plates of the motor in the thin state through high density energy welding. CONSTITUTION:A space on the side where a motor 3 is arranged is constituted by an oil separating chamber 128 on the upper side and a motor chamber 6 on the lower side, divided by an upper bearing 126 fixed in the state of a thin bead 7 through high density energy welding, represented by electron beam welding or laser welding, without giving heat distortion to junction members on the upper end surface of a stator 3b of the motor 3 in which laminated thin sheet steels are fixed by rivet. The stator 3b fixed on the upper bearing 126 is shrinkage fixed to a sealed container 1, and a clearance 136 is provided between the outer circumference on the end part of the stator and the sealed container 1 so that shrinkage distortion would not occur at the end part of the stator 3b.

Description

【発明の詳細な説明】 産業上の利用分野 本発明1よ 主に 気体圧縮機の電動機を挟んで駆動軸
を支持する軸受の取り付は構成とその軸受への給油に関
するものであも 従来の技術 スクロール圧縮機(よ 吸入室が外周部にあり、吐出ボ
ートが渦巻の中心部に設けられ 吐出ボートを中心とす
る対称な渦巻形の圧縮空間で吸入・圧縮され 圧縮流体
の流れが一方向で圧縮トルクの変動が往復動式圧縮機や
回転式圧縮機に比べて小さく、振動や騒音も極めて小さ
いことが一般に知られており、特に空調機用圧縮機の分
野の一部で実用化されていも そして、吐出ボートが圧
縮室の中76部に配置される関係か板 その一般的な構
造は第16図に示す通り良く知られていも 同図は 固
定スクロール1051および密閉容器1050と静止結
合するフレーム1060に設けられた転がり軸受106
1とすべり軸受1062とに支持された駆動軸1o58
の上端部のクランク部1059が固定スクロール1o5
1と噛み合って圧縮室を形成する旋回スクロール105
2のすべり軸受1057に係合して旋回スクロール1゜
52を旋回運動させる軸受連結機構を備丸 電動機部1
063の片側にのみ軸受を配置した いわゆる片持ち支
持軸受構造型 密閉容器1050底部の潤滑油を上部の
すべり軸受1057.転がり軸受1081.すべり軸受
1062へ駆動軸1058内に設けた偏心給油穴106
8、1069を介して遠心ポンプ作用と差圧を利用して
供給すると共に 転がり軸受1061と駆動軸1058
との隙間を小さくして、軸受隙間内での駆動軸1058
の傾斜角度を少なくし すべり軸受1057.1082
の片当りを少なくして軸受摺動部の耐久性を向上するよ
うに工夫した構成である(特開昭59−115488号
公報)。しかしながら上記構成では 圧縮機高速運転時
に1よ 駆動I 1058の電動機部側先端部が軸受隙
間内での駆動軸1058の傾斜(振れ)と、駆動軸10
58の先端に取り付けられた電動機部1063の回転子
の遠心力と、駆動軸1058に固定された回転子と密閉
容器1050に固定された固定子との間のエアギャップ
不均一に起因する電磁力との影響を受けて、大きな振れ
を生ム その結凰 転がり軸受1061.すべり軸受1
062.1057に片当りが生じて軸受耐久性を著しく
低下させると共に スクロール圧縮機の特徴である低振
動・低騒音特性を損なうと言う問題があっtも  上記
問題解決の手段として、特開昭55−125386号公
報、特開昭62−113881号公報、特開昭62−1
26282号公報、特開昭62−126285号公報、
特開昭62−135676号公報などで駆動軸を電動機
の両側て支持する提案がなされていも しかしなが板こ
れらの提案は圧縮機の外形が大きくなる問題や両軸受間
の芯ずれが生じて軸受部の人力損失が過大となる問題1
人力過大回避のために軸受隙間を大きくすることによる
振動・騒音発生など種々の問題があった また 上記問
題解決の手段として、第17図に示す構成も知られてい
も 同図は 密閉容器2001の上部にスクロール圧縮
機2004を、その下部に電動機部2002を、底部に
油溜2006を配置し固定スクロール2014および密
閉容器2001とに静止結合するフレーム2008に設
けられた転がり軸受の主軸受部2010と、電動機部2
002の固定子2011と密閉容器2001の円筒ケー
ス2003との間に挟持された補助軸受部2030に設
けられた転がり軸受(玉軸受・・・・・・多少の軸傾斜
を許容できる) 2035とで駆動軸2009を支持す
水 いわゆる両端支持転がり軸受構成で、両軸受間の芯
ずれに基づくこじれ防止を図ると共に 図示されていな
い力t 遠心ポンプ作用を利用して密閉容器2001底
部の油溜2006の潤滑油を軸受摺動部へ給油する構成
であム 発明が解決しようとする課題 しかしながら上記構成で(戴 両軸受が回転荷重を受け
る関係か転 補助軸受部2030に生じる軸受振動が密
閉容器2001に直接伝播して、圧縮機に接続する配管
系振動およびそれに起因する騒音が大きくなり、片持ち
支持軸受構成における振動・騒音との差が少なく、著し
い効果が生じないと言う問題があっ九 まな 補助軸受
部2030の軸受に転がり軸受(玉軸受) 2035を
用いているのΔ 玉が軸受転走面を転走する際に転走面
の真円不良に起因して生じる玉のジャンピング現象時の
衝突音や振動か密閉容器2001に伝播してスクロール
圧縮機の静粛な運転特性を損なうと言う問題があっ1゜
まな このような両端支持軸受構成の圧縮機を圧縮機低
背化のために横置形にして使用する場合負圧線部と電動
機部との配置を上下転倒配置する場合に1よ 圧縮室か
ら遠い側の軸受摺動部への給油が困難となる問題があっ
た −x 実開昭52−157510号公報、実開昭5
5−137279号公報にも記載されている通り、電動
機部の片側にのみ配置した軸受で電動機に連結する駆動
軸を支持する横置形回転式気体圧縮機において、潤滑油
を含む吐出気体を駆動軸の内部に設は且つ貫通したガス
通路や給油通路に向けて放出し 吐出ガス中の潤滑油の
慣性力により分離した潤滑油をその遠心力によって圧縮
部に近い軸受に給油する手段が知られていもこのような
給油手段を第17図に示す両端支持軸受構成の気体圧縮
機を横置形にする場合東 上下転倒配置にする場合に応
用して、圧縮室から遠い側の軸受部に給油する方法が考
えられる力丈 吐出気体から分離した潤滑油が通路を通
過したり、分散したりして潤滑油の回収率が低く、充分
な給油ができないと共に 分離した潤滑油が再び吐出ガ
スと混合して圧縮機の外部に流出し 潤滑油不足を生じ
ると言う問題があっf、  な叙 回転式気体圧縮機に
おいて、吐出ガスから分離した潤滑油を再び吐出ガスに
混入させない手段として、電動機の回転子の端部中心近
傍に圧縮機の外部配管系に通じる吐出管の端部を配置し
て、回転子が回転する際の気流を遠心拡散させる作用に
よって潤滑油を電動機の外周部に分散させ、それによっ
て潤滑油を吐出管に流入させない構成が特開昭55−1
9920号公報に記載されており、この手段を両端支持
軸受構成の圧縮機に応用することは軸受給油が困難℃実
現不可能であるという問題があっf、  本発明ζよ上
記課題に鑑へ 圧縮部から離れた側の駆動軸を支持する
軸受の振動を密閉容器にそのまま伝播させない軸受取り
付は構成を提供し 圧縮機の静粛運転化と小型化を図る
ことを目的とするものである。また本発明1よ 圧縮機
底部の油溜から潤滑油を導入することなく、油溜から離
れた軸受部に潤滑油を供給することのできる独立した給
油形態を提供し 圧縮機の小型化、構成部品の簡素化を
図ることを目的とするものであも また本発明(よ 油
溜から離れた軸受部に潤滑油を供給するための潤滑油の
捕捉と収集した潤滑油の飛散を防止することを目的とす
るものであも また本発明(よ 吐出気体の流路と軸受
に供給した潤滑油の排出先とを隔離して、圧縮機外部へ
の潤滑油の流出を防止することを目的とすも また本発
明(よ 吐出気体かる分離した潤滑油を再び吐出気体に
混入させない吐出気体通路を提供し 圧縮機の潤滑油確
保による摺動部耐久性を向上することを目的とすも ま
た本発明ζよ 吐出気体から分離した潤滑油をモータ(
電動機)の回転子の回転による拡散作用とそれに伴う吐
出気体へ、の再混入の防止と、回転子が潤滑油を拡散さ
せる際の入力増加を防止することを目的とするものであ
も また 本発明は 圧縮機内部に潤滑油を貯溜するた
めの大きな空間を必要としない給油通路を提供し 圧縮
機の小型化を図ることを目的とすも また 本発明(よ
 油溜の省スペース化による圧縮機の小型化と圧縮効率
の向上を目的とするものであも また 本発明ζよ複数
の給油経路を形成して圧縮機構部の軸受部への給油量増
加により、軸受部の耐久性向上、入力損失の低減を図る
ことを目的とするものであん課題を解決するための手段 上記課題を解決(目的を遠戚)するために本発明は 駆
動軸を電動機の反圧機構部の側に設けた副軸受部材と圧
縮機構部とで支持し 副軸受部材を密閉容器に接触させ
ることなく電動機の積層板から戊る固定子の端部に高密
度エネルギー溶接による薄肉ビード状に固定したもので
あも また本発明(よ 駆動軸を電動機の反圧機構部の
側に設けた副軸受部材と圧縮機構部とで支持し 電動機
を収納する電動機室を経由しない吐出気体を副軸受部材
と密閉容器の端部壁とで形成する油分離空間に導入する
と共に 副軸受部材の軸受の近くに設けられ且つ軸受に
開通する油受けに向けて吐出気体を放出させる手段を設
けたものであも また本発明(よ 油分離空間への吐出
気体導入開口部と油受けの油溜との間に油分離要素を配
置させたものである。また 本発明(よ 圧縮機構部と
電動機とを密閉容器内に収納固定Lt電動機連結する駆
動軸を電動機の反圧機構部の側に設けた副軸受部材と圧
縮機構部とで支持し 電動機を収納する電動機室を経由
しない吐出気体を副軸受部材と密閉容器の端部壁とで形
成する油分離室に導入すると共に 副軸受部材の軸受の
近くに設けられ且つその軸受に開通する油受けに向けて
吐出気体を放出させると共に 副軸受部材の軸受に支持
される駆動軸の軸部外周に油受けの油溜に通じる油溝を
設け、その油溝のポンプ作用を利用して油溜の潤滑油を
電動機室の圧縮機構部側に排出させ、圧縮機外部に通じ
る吐出側開口部を電動機室の反圧縮機構部側に設けたも
のであも また 本発明は電動機の反圧縮機構部側と密
閉容器の端部との間に仕切り部材を配置して電動機を収
納する電動機室の底部の油溜に通じる油分離室を設け、
電動機室を経由しない吐出ガスを油分離室の上部に導入
すると共に 電動機の回転子の端部と仕切り部材との間
の空間に圧縮機の外部に通じる吐出管の開口部を配置し
 開口部を回転子の端部に近づけたものである。また 
本発明は 圧縮機構部と電動機とを密閉容器内に、収納
固定し 電動機の反圧縮機構部側と密閉容器の端部との
間に仕切り部材を配置して電動機を収納する電動機室の
底部の油溜に通じる油分離室を設ζす、電動機室を経由
しない吐出気体を油分離室の上部に導入すると共に 電
動機の回転子の端部と仕切り部材との間の空間に圧縮機
の外部に通じる吐出管の開口部を配置しその開口部を回
転子の端部に近づけると共に 電動機に連結する駆動軸
を電動機の反圧機構部の側に設けた副軸受部材と圧縮機
構部とで支持a 副軸受部材が仕切り部材を兼ねたもの
であム また本発明(よ 駆動軸を電動機の反圧機構部
の側に設けた副軸受部材と圧縮機構部とで支持し 電動
機を収納する電動機室を経由しない吐出気体を副軸受部
材と密閉容器の端部壁とで形成する油分離室に導入する
と共に 副軸受部材の軸受に開通する油受けに向けて吐
出気体を放出させ、油受けの潤滑油を副軸受部材の軸受
と圧縮機構部の軸受部とに導く油路を駆動軸に設け、圧
縮機構部の軸受部に供給したものであa また 本発明
G&  圧縮機構部と電動機とを密閉容器内に収納固定
し 電動機に連結する駆動軸を電動機の反圧機構部の側
に設けた副軸受部材と圧縮機構部とで支持し 電動機を
収納する電動機室を経由しない吐出気体を副軸受部材と
密閉容器の端部壁とで形成する油分離室に導入すると共
に 副軸受部材の軸受の近くに設けられ且つその軸受に
開通する油受けに向けて吐出気体を放出させると共に 
油受けの潤滑油を駆動軸を支持する副軸受部材の軸受と
圧縮機構部の軸受部とに供給し 圧縮機構部の軸受部に
供給した潤滑油を圧縮室に注入させたものであも まt
、−本発明ζよ 圧縮機構部と電動機とを密閉容器内に
収納固定し 電動機に連結する駆動軸を電動機の反圧機
構部の側に設けた副軸受部材と圧縮機構部とで支持し 
電動機を収納する電動機室を経由しない吐出気体を副軸
受部材と密閉容器の端部壁とで形成する油分離室に導入
すると共に 副軸受部材の軸受の近くに設けられ且つそ
の軸受に開通ずる油受けに向けて吐出気体を放出させる
と共に 油受けの潤滑油を駆動軸を支持する副軸受部材
の軸受と圧縮機構部の軸受部とに供給し 吐出圧力の作
用する電動機室底部の油溜の潤滑油を圧縮機構部の軸受
部に合流給油したものであん作用 上記手段による作用ζよ 以下の通りであん 本発明は
 駆動軸を支持する副軸受部材に生じる振動力\ 副軸
受部材と電動機の固定子との薄肉接合部で減衰され さ
らに 積層板間の微少な滑り発生によっても減衰されて
密閉容器に伝播せず、密閉容器の壁面の振動 密閉容器
に接続する外部配管系の振動が少なくなる。まt二  
高密度エネルギーを利用する溶接台により固定子の巻線
への損傷および積層板への熱歪を与えることがなく、小
型電動機と副軸受部材との溶接が可能となも また本発
明(よ 電動機室を経由せず潤滑油を分離しない吐出気
体が油分離室でその流れ方向を変える際に 吐出気体中
の潤滑油がその慣性力によって吐出気体から分離し そ
の進行方向前方の軸受の近くに設けられた油受けに直接
収集の柩 副軸受部材の軸受に供給され その油膜によ
る摺動面の潤滑および駆動軸と摺動面との間の衝突を緩
和して振動 騒音発生を少なくすも また 本発明(よ
油分離室に流入してきた吐出気体が油分離要素に衝突す
ム その際 潤滑油が捕捉され その下部に配置した油
溜に収集すも 油溜の潤滑油は油分離要素の保護をうけ
て吐出気体による飛散を防止される。また本発明ζよ 
油分離室に流入した吐出気体が潤滑油を分離眞 電動機
室の反圧縮機構部側に設けた吐出側開口部から圧縮機の
外部に排出される。一方、吐出気体から分離された潤滑
油は油受けの油溜に収集後、駆動軸の軸部外周の油溝の
ポンプ作用により副軸受部材の軸受に給油された後、吐
出気体の流出部とは反対側の電動機室の圧縮機構部側に
排出され 吐出気体と潤滑油との再混合が防止されも 
また 本発明(よ 油分離空間で吐出気体から分離した
潤滑油が電動機室の油溜に収集する一方 潤滑油を分離
した吐出気体力上電動機の回転子の端部の近くに配置さ
れた吐出管に流入しようとする際 吐出気体が回転子に
よって遠心拡散され 吐出気体中に残存する潤滑油が分
離すると共に 吐出管に流入しようとする油分離室で分
離した潤滑油も遠心分離され 圧縮機外部配管系への潤
滑油流出が防止されも また 本発明(よ 副軸受部材
が圧縮機の外部に通じる電動機の側と油分離室とに仕切
り、油分離室で吐出気体から分離した潤滑油と吐出気体
との再混合が防止されると共に 電動機の回転子による
潤滑油の拡散作用も防止される。また 本発明(よ 電
動機室を経由せず潤滑油を分離しない吐出気体が油分離
室でその流れ方向を変える際に 吐出気体中の潤滑油か
その慣性力によって吐出気体から分離し分離した潤滑油
がその進行方向前方の軸受の近くに設けられた油受けに
直接収集の後、駆動軸を電動機の両側で支持する副軸受
部材の軸受と圧縮機構部の軸受部とに供給され その油
膜による摺動面の潤滑および駆動軸と摺動面との間の衝
突を緩和して振動 騒音発生を少なくすも また 本発
明(よ 電動機室を経由せず潤滑油を分離しない吐出気
体が油分離室でその流れ方向を変える際に吐出気体中の
潤滑油がその慣性力によって吐出気体から分離し 分離
した潤滑油がその進行方向前方の軸受の近くに設けられ
た油受けに直接収集の後、駆動軸を電動機の両側で支持
する副軸受部材の軸受と圧縮機構部の軸受部とに供給さ
れ その油膜による摺動面の潤滑および駆動軸と摺動面
との間の衝突を緩和して振動 騒音発生を少なくすると
共に 圧縮室に流入して圧縮室隙間を油膜密封して圧縮
気体漏れを防ぎ、再び圧縮気体と共に油分離室に排出さ
れると言う一連の給油通路が形成される。また 本発明
(友 圧縮荷重の大部分を支持する圧縮機構部の軸受部
への給油力文 電動機室底部の油溜からの給油と、副軸
受部材の油受けの油溜からの給油との2系統給油によっ
て行われその給油量を充分に確保し 軸受の耐久性と摩
擦損失を少なくすも 実施例 以下、本発明による第1の実施例のスクロール冷媒圧縮
機について、第1図〜第13図を参照しながら説明する
。第1図において、 lは鉄製の密閉容器で、その内部
が旋回スクロール18と噛み合って圧縮室を形成する固
定スクロール部材15をボルト固定し且つモータ(電動
機)3に連接する駆動軸4の一端を支持する本体フレー
ム5および他端を支持する上部フレーム126とを収納
する上側の高圧空間と、下側のアキュームレータ室46
を兼ねた冷媒サイクルの蒸発器の下流側に通じる低圧空
間とに中仕切り蓋134により仕切られていも 中仕切
り蓋134ハ  密閉容器1との溶接性に優れた軟鋼製
で、その外周面部に設けられた突起条部79aが上部密
閉ケースlaと下部密閉ケース1bの内壁面と端面とに
当接しており、突起条部79aと上部密閉ケースlaと
下部密閉ケースlbとが単一の溶接ビード79bによっ
て密封溶接されていも 上側の高圧空間は 第10は 
 第11図に示すごとく、固定スクロール15の外周溝
に静合装着されたテフロン製の切口を有する環状のシー
ルリング135により、モータ(電動機)を配置する側
と吐出室2の側とに区画されていム モータ(電動機)
3を配置する側の空間は 第12図にも示すごとく、積
層薄鋼板をリベット固定したモータ3の固定子3bの上
端面に電子ビーム溶接やレーザー溶接などで代表される
高密度エネルギー溶接によって接合部材への熱歪を与え
ることなく薄肉ビード137の状態で固定された上部軸
受126を境界として、上側の油分離室128と下側の
モータ室(電動機室)6とに構成されている。上部軸受
126を固定した固定子3bは密閉容器lに焼きばめ固
定されており、固定子3bの端部に焼きはめ歪を生じさ
せない目的型 その端部外周と密閉容器lとの間に空隙
136が設けられている。固定スクロール15をボルト
固定した共晶黒鉛鋳鉄製の本体フレーム5&よ その外
周部が密閉容器1に数箇所で溶接固定されていも 上部
フレーム126と本体フレーム5とで支持された駆動軸
4の主軸受12の直径は クランク軸14の直径とクラ
ンク偏心量の2倍との和より大きく設定されており、駆
動軸4を上部方向に抜くことが可能なように構成されて
いも モータ3の回転子3aの上端にはその外径が回転
子3a外径よりも大きく設定され且つ円盤形状を威す上
部バランスウェイト75、下端には下部バランスウェイ
ト76が取り付けられ 回転子3aの軸方向移動が上部
フレーム126の端部と本体フレーム5の端部との間で
規制されている。駆動軸4に取り付けられた下部バラン
スウェイト76の下面は本体フレーム5の上端面に設け
られ且つ放射状の複数の浅溝7を有するスラスト軸受部
13に当接して駆動軸4と回転子3aとを支持している
。駆動軸4の主軸から偏心した下端部のクランク軸14
が旋回スクロール18に設けられた旋回ボス部18eの
旋回軸受18b部に係合していも固定スクロール15は
  その熱膨張係数が純アルミニウムと共晶黒鉛鋳鉄と
の中間の値に相当する高珪素アルミニウム合金製で、渦
巻状の固定スクロールラップ15aと鏡板15bから戒
り、鏡板15bの中央部に(よ 固定スクロールラップ
15aの巻始め部で開口する吐出ポート16が設けられ
 固定スクロールラップ15aの外周部には吸入室17
が設けられている。吐出ポート16ζよ 吐出室2.密
閉容器1の側壁と上端側壁との間を連通ずるバイパス吐
出管127を介して油分離室128に通じていも 反旋
回スクロール側の鏡板15b上にCよ 吐出ポート16
を覆うように逆止弁装置50が取り付けられていも逆止
弁装置50(よ 第3図〜第6図で詳描するように そ
の外周部を数箇所切り欠いた形状の薄鋼板から収る弁体
50b(または不連続な環状穴50eaを有する弁体5
0e)と、逆止弁穴50aと中央穴50gとその周りの
複数の吐出小穴50hを有した弁ケース99と、弁体5
0bと弁ケース99との間に介在するバネ装置50cと
から戒も バネ装置50ci;L  それ自身の温度か
50℃を超えると収縮ヒ それ自身の温度が50℃以下
で伸長する形状記憶特性を有するもので、圧縮機運転中
は吐出ガス圧を受けて逆止弁穴50aの底面まで収縮し
 圧縮機停止中は吐出ポー)16を塞ぐべく弁体50を
鏡板15bに押圧するように設定されていも 第1図お
よび第13図に示すように 固定スクロールラップ15
aに噛み合って圧縮室を形成する渦巻状の旋回スクロー
ルラップ18aと、駆動軸4のクランク軸14に係合し
た旋回ボス部18eを直立させたアルミニウム合金製の
旋回スクロール18?&  固定スクロール15と本体
フレーム5とに囲まれて配置されており、ラップ支持円
盤18cおよび旋回スクロールラップ18aの表面は多
孔質ニッケルメッキなどの硬化処理が威されていも 旋
回スクロールラップ18aの先端には渦巻状のチップシ
ール溝が設けられて、そのチップシール溝には樹脂製の
チップシール98aが微少隙間を有して装着されていも
 旋回スクロール18が固定スクロール15の軸方向側
に押圧されたとき、ラップ支持円盤18cの平面部は固
定スクロールラップ15aの先端に接する力交 旋回ス
クロールラップ18aの先端は固定スクロール15に接
することなく数ミクロン程度の微少距離を保っていも 
冷凍サイクルの蒸発器側に通じるアキュームレータ室4
6(ヨ  下部密閉容器1bと中仕切り蓋134とで形
成され 中仕切り蓋134に取り付けられ且つ油吸い込
み穴139を通路途中に有するU字形状の吸い込み管1
41により吸入室17に通じていも 吸い込み管141
の浦吸い込み穴139は低圧油溜46aに滞留している
冷媒液や潤滑油が吸い込み管137を冷媒ガスが通過す
る際の負圧発生によって吸い上げられるように設定され
ている。冷凍サイクルの蒸発器側に通じる吸入配管13
81;L  分岐して吸入室17に通じる吸入穴43と
アキュームレータ室46とに通じている。本体フレーム
5に固定された割りビン形の平行ピン19によって回転
方向の移動を拘束されて軸方向にのみ移動が可能な平板
形状のスラスト軸受20C;Lラップ支持円盤18cと
本体フレーム5との間に配置されており、スラスト軸受
20と本体フレーム5との間に介在する環状のシールリ
ング(ゴム製)70の弾性力によってスペーサ140を
介して固定スクロール15の鏡板15bの摺動面に当接
していも な抵 スペーサ140の軸方向寸法は旋回ス
クロール18のラップ支持円盤18cの高さより30ミ
クロン程度大きく設定されており、ラップ支持円盤18
cの両側平面の隙間に潤滑油の油膜形成を可能にすも第
8図および第9図に示すように 旋回スクロール18の
旋回ボス部18eの本体フレーム5側端面には旋回軸受
18bの中心と同君の環状シール溝95が設けられ そ
の環状シール溝95には その一部を切断した樹脂製の
環状リング94が装着され その外周面が環状シール溝
95の側面に密接していも環状リング94(ヨ  旋回
スクロール181本体フレーム5、スラスト軸受20に
よって形成される旋回スクロール18の背圧室39と駆
動軸4を支持する主軸受12の側との間をシールしてい
も 環状のスラスト軸受20は大成形が容易な焼結合金
製型 第2FIA  第10図で示すように 割りピン
19が可動挿入される2つのガイド穴と環状油溝92.
油溝91とを有しており、本体フレーム5に装着されて
いも 本体フレーム5とスラスト軸受20との間には約
0.05mm程度のレリース隙間27が設けられ レリ
ース隙間27の内側と外側にはシールリング70を装着
する環状溝28が設けられていも シールリング70は
レリース隙間27と背圧室39との間をシールしていも
 レリース隙間27ハ  本体フレーム5に設けられ且
つモータ3の底部の吐出室油溜34に通じる油入A38
aに通じている。スラスト軸受20の内側に配置された
旋回スクロール18の自転阻止部材(以下、オルダムリ
ングと称する)24は  焼結成形や射出成形工法など
に適した軽合金や強化繊維複合材から戒り、発明者が特
願昭63−159990号で提案している形状を威して
、旋回スクロール18とスラスト軸受20に係合し 摺
動すん オルダムリング24のリングの厚さはオルダム
リング24が往復運動する際に本体フレーム5とラップ
支持円盤18cとの間で円滑に摺動し且つジャンピング
現象が生じないように設定されていも 上部密閉容器1
aの上端には上部フレーム126を貫通して回転子3a
の端部の近くまで伸びた吐出管31とモータ電源接続用
のガラスターミナル88とが取り付けられ その中央部
には吐出バイパス管127のU字管127aが上部フレ
ーム126に設けられた副軸受8に対向開口して設けら
れている。上部フレーム126の中央突出部の油受け1
4gに(よ 油分離要素143が配置され その下部に
は油溜144が設けられていも U字管127aの上流
側端は上部密閉容器1aの上端までしか延長しておらず
二 上部密閉容器1aの上蓋1alと同シェル1a2と
の間の溶接部1a3の作業性を良好にしている。モータ
室(電動機室)6の下部に設けられた吐出室油溜34(
ヨ  モータ3の固定子3bの外周の一部を切り欠いて
設けた冷却通路35によりモータ室6の上部に配置され
た油分離室128の下部外周部と連通されていも 上部
フレーム126に支持される駆動軸4の上端軸4dの表
面1よ 駆動軸4が正回転する時、油分離室128で吐
出ガスから分離された潤滑油がモータ室6に導かれる方
向に螺旋状油溝41が設けられていも また 油溜14
4の潤滑油(よ 駆動軸4に設けられた軸方向油入11
2a、半径方向泊穴113a、113bを介してスラス
ト軸受部13と主軸受12に通じている。本体フレーム
5に設けられた油穴A38aを介して吐出室油溜34に
通じる油室A7Sai&  旋回スクロール18の旋回
ボス部18eの端部に装着された環状リング94によっ
て旋回スクロール18の背圧室39と遮断されている(
第8図参照)。油室A7gal&  クランク軸14の
外周面に設けられた螺旋状油溝41bを介してクランク
軸14の端部に設けられた油室B78bと、駆動軸4に
設けられた螺旋状油溝41aを介して主軸受12とにも
通じている。油室B78bは旋回ボス部18eに設けら
れた細穴40によって背圧室39に通じていも 駆動軸
4の摺動軸部4aおよびクランク軸14の表面に1よ 
駆動軸4が正回転する豚 油室A78aの潤滑油が旋回
軸受18bとクランク軸14とで形成される油室B78
bおよびモータ3側にネジポンプ給油される方向に螺旋
状油溝41a、41bが設けられて、その上端はスラス
ト軸受部13にまで達していな(〜吸入室17に間欠的
に通じる第2圧縮室51と背圧室39と(よ 旋回スク
ロール18のキー溝71とスラスト軸受20に設けられ
た油溝91.ラップ支持円盤18cの外側の外周部空間
37.固定スクロール15の鏡板15bに設けられた油
入C38c、  鏡板15bと弁ケース99との間に設
けられた油ダンパー室145.細径のインジェクション
穴52によって構成されるインジェクション通路74に
よって連通していも 背圧室39と外周部空間37との
間は 第2圧縮室51a、51b (第13図参照)が
吸入室17に通じる間にのみ連通するように 2箇所に
設けられた油溝91とキー溝71とがそれぞれ反対側位
置に配置さh  180度の位相角度を威して間欠的に
連通されも また スラスト軸受20に設けられた油溝
91の下流側はラップ支持円盤18cによって間欠的に
開閉されも なお第1図では 駆動軸4に設げた軸方向
油入112aを主軸受12の上部摺動面に開口させたパ
 油分離室128の形状、油受け142の形状、配置位
置、油分離要素143、圧縮機運転速度などの条件によ
って(戴 充分な潤滑油の確保が可能となり、軸方向油
入112aを更に延長して油室A78aにも開口させて
もよ(ち また 吐出室油溜34を廃止して、吐出室油
溜34から油室A78aへの給油通路を廃止すると共に
 スラスト軸受20の背面の環状溝28にモータ室6の
吐出冷媒ガスを導入してもよし1 第14図(友 本発
明の第2の実施例の横置形スクロール冷媒圧縮機の縦断
面図で、密閉容器201の内部が中仕切り蓋134aに
よって駆動部と圧縮機構部とを収納する左側の高圧空間
の側と右側のアキュームレータ室246を兼ねた冷凍サ
イクルの蒸発器の下流側に通じる低圧空間とに仕切られ
ていも 固定スクロール215をボルト固定する本体フ
レーム205が密閉容器201に溶接固定され 補助フ
レーム126 aを高密度エネルギー溶接したモータ(
電動機)3の固定子3bが密閉容器201に焼きばめ固
定されていも 吐出室202と吐出室油溜234とは上
部および底部で通じてい瓜補助フレーム126 aの中
央突出部の油受け242の中央穴242aJ、t、  
駆動軸204の小端軸204dを支持する副軸受208
の内径よりも小さく、油分離要素243と小端軸204
dとの間の油溜244の潤滑油が流出しないように設定
されていも 本体フレーム205と補助フレーム126
aとで支持された駆動軸204の小端軸204dに設け
た螺旋状油溝241i&  油溜244に開通すると共
に 駆動軸204とモータ3の回転子3aとの焼きはめ
結合部に設けた縦溝146を介して回転子3aの圧縮機
構側端に通じてい瓜 中仕切り蓋134 aに取り付け
られた吸い込み管141aの一端が吸入室17に連通し
 他端がアキュームレータ室246の上部に向かって開
口していも 吸い込み管141aの上部開口端の上部に
(よ 吸入配管138aを経由して流入してくる冷媒を
吸い込み管141aに直接流入させないように 中仕切
り蓋134aに固定された仕切り板147から突出させ
たバッフル148が配置されている。その他の構成(よ
 第1図の場合と類似であるので説明を省略すも 第1
5図(友 本発明の第3の実施例の横置形のスクロール
冷媒圧縮機の縦断面図で、補助フレーム126bと密閉
容器301の端部とで形成される油分離室128bの上
部と吐出室302の上部と(よ 密閉容器301の外部
に足回した吐出バイパス管138bにより連通されてい
も 補助フレーム126bの中央突出部に設けた油受け
342 +1  吐出バィパス管138 bの開口端に
対向して設けられている。油受け342の上部近傍に(
よ 油分離要素343が密閉容器301の端部壁に取り
付は配置されていもその他の構成について(よ 第1図
および第14図の場合と類似であるので説明を省略する
。以上のように構成されたスクロール冷媒圧縮機につい
て、その動作を説明する。第1図〜第13図において、
モータ(電動機)3によって駆動軸4が回転駆動。
[Detailed Description of the Invention] Industrial Application Field of the Invention 1 Mainly The installation of the bearing that supports the drive shaft across the electric motor of the gas compressor is related to the structure and oil supply to the bearing, but it is different from the conventional one. Technical scroll compressor (Yo) The suction chamber is located on the outer periphery, and the discharge boat is provided at the center of the volute.The compressed fluid is sucked and compressed in a symmetrical volute-shaped compression space with the discharge boat at the center, and the compressed fluid flows in one direction. It is generally known that fluctuations in compression torque are smaller than reciprocating compressors and rotary compressors, and vibration and noise are also extremely low. The general structure of the discharge boat is also well known as shown in FIG. Rolling bearing 106 provided in frame 1060
1 and a sliding bearing 1062
The crank part 1059 at the upper end is a fixed scroll 1o5
an orbiting scroll 105 that meshes with 1 to form a compression chamber;
A bearing coupling mechanism that engages with the sliding bearing 1057 of No. 2 to rotate the orbiting scroll 1° 52 is provided.
A so-called cantilever bearing structure type in which a bearing is placed only on one side of the sealed container 1050.The lubricating oil at the bottom of the sealed container 1050 is transferred to the sliding bearing 1057 at the top. Rolling bearing 1081. Eccentric oil supply hole 106 provided in drive shaft 1058 to sliding bearing 1062
8, 1069 using the centrifugal pump action and differential pressure, as well as rolling bearing 1061 and drive shaft 1058
Drive shaft 1058 within the bearing gap by reducing the gap between the
Reduce the inclination angle of sliding bearings 1057.1082
This structure is devised to improve the durability of the bearing sliding part by reducing uneven contact (Japanese Patent Application Laid-Open No. 115488/1988). However, in the above configuration, during high-speed operation of the compressor, the tip of the drive I 1058 on the motor side may tilt (run out) of the drive shaft 1058 within the bearing clearance, and the drive shaft 10
centrifugal force of the rotor of the electric motor section 1063 attached to the tip of the drive shaft 1058, and electromagnetic force caused by the uneven air gap between the rotor fixed to the drive shaft 1058 and the stator fixed to the sealed container 1050. As a result, rolling bearings 1061. Slide bearing 1
062.1057 causes uneven contact, which significantly reduces bearing durability and impairs the low vibration and low noise characteristics that characterize scroll compressors. -125386, JP-A-62-113881, JP-A-62-1
No. 26282, JP-A-62-126285,
Although there have been proposals to support the drive shaft on both sides of the motor, such as in Japanese Unexamined Patent Publication No. 62-135676, these proposals have the problem of increasing the external size of the compressor and causing misalignment between the two bearings. Problem 1: Excessive human power loss in bearings
In order to avoid excessive manual labor, there were various problems such as vibration and noise caused by increasing the bearing gap.Also, as a means to solve the above problems, the configuration shown in FIG. 17 is also known. A main bearing part 2010 of a rolling bearing is provided in a frame 2008 which has a scroll compressor 2004 in the upper part, an electric motor part 2002 in the lower part, and an oil reservoir 2006 in the bottom part, and is statically connected to the fixed scroll 2014 and the closed container 2001. , electric motor section 2
002 stator 2011 and the cylindrical case 2003 of the sealed container 2001, the rolling bearing (ball bearing... can tolerate some axial inclination) 2035 is installed in the auxiliary bearing part 2030. The water that supports the drive shaft 2009 is a so-called double-end supported rolling bearing configuration, which prevents twisting due to misalignment between the two bearings. Problems to be solved by the present invention with a configuration in which lubricating oil is supplied to the sliding portion of the bearing. There is a problem that the vibration of the piping system connected to the compressor and the noise caused by it increase due to direct propagation, and the difference between the vibration and noise in the cantilever bearing configuration is small and no significant effect is produced. A rolling bearing (ball bearing) 2035 is used as the bearing of the bearing part 2030. Δ Collision caused by the ball jumping phenomenon that occurs when the balls roll on the bearing raceway due to imperfect roundness of the raceway. There is a problem in that noise and vibration propagate to the closed container 2001, impairing the quiet operating characteristics of the scroll compressor. When used with the negative pressure line section and the motor section upside down, there was a problem in which it was difficult to supply oil to the bearing sliding section on the side far from the compression chamber. Publication No. 52-157510, Utility Model No. 5
As described in Publication No. 5-137279, in a horizontal rotary gas compressor in which the drive shaft connected to the electric motor is supported by a bearing placed only on one side of the electric motor section, discharged gas containing lubricating oil is transferred to the drive shaft. There is a known method in which the lubricating oil is separated by the inertial force of the lubricating oil in the discharged gas, and the lubricating oil is separated by the inertial force of the lubricating oil in the discharged gas, and the centrifugal force is used to replenish the bearing near the compression part. A method of supplying oil to the bearing part on the side far from the compression chamber by applying this type of oil supply means when a gas compressor with a bearing configuration supported at both ends as shown in Fig. 17 is installed horizontally, and when the gas compressor is placed upside down. The lubricating oil separated from the discharged gas may pass through the passage or be dispersed, resulting in a low lubricating oil recovery rate, making it impossible to supply sufficient lubricant, and the separated lubricating oil may mix with the discharged gas again. There is a problem that the lubricating oil may leak outside the compressor and cause a shortage of lubricating oil. The end of the discharge pipe leading to the external piping system of the compressor is placed near the center of the end, and the lubricating oil is dispersed around the outer circumference of the motor by centrifugal diffusion of the airflow when the rotor rotates. JP-A-55-1 has a structure that prevents lubricating oil from flowing into the discharge pipe.
9920, and applying this means to a compressor with a bearing structure supported at both ends has the problem that bearing oil supply is difficult and impossible to realize.The present invention ζ has been developed to solve the above problem. The purpose of the bearing installation is to provide a structure that prevents the vibration of the bearing that supports the drive shaft on the side away from the compressor from propagating directly to the closed container, and to achieve quiet operation and miniaturization of the compressor. In addition, according to the present invention, an independent oil supply system is provided that can supply lubricating oil to a bearing part located away from an oil sump without introducing lubricating oil from the oil sump at the bottom of the compressor. Although the present invention is intended to simplify parts, the present invention also provides a method for capturing lubricating oil for supplying lubricating oil to a bearing section located away from an oil sump and preventing the collected lubricating oil from scattering. However, the present invention also has the object of isolating the flow path of the discharged gas from the destination of the lubricating oil supplied to the bearing to prevent the lubricating oil from leaking to the outside of the compressor. Another object of the present invention is to provide a discharge gas passage that prevents the lubricating oil separated from the discharged gas from being mixed into the discharged gas again, and to improve the durability of sliding parts by securing the lubricating oil of the compressor. Invention ζ The lubricating oil separated from the discharged gas is used in the motor (
The purpose is to prevent the diffusion effect caused by the rotation of the rotor of an electric motor and the resulting re-mixing of lubricating oil into the discharged gas, and to prevent an increase in input when the rotor diffuses lubricating oil. The purpose of the invention is to provide an oil supply passage that does not require a large space for storing lubricating oil inside a compressor, thereby reducing the size of the compressor. Although the purpose is to downsize the machine and improve compression efficiency, the present invention ζ forms multiple oil supply paths to increase the amount of oil supplied to the bearing of the compression mechanism, thereby improving the durability of the bearing. The present invention aims at reducing input loss and is a means for solving the problem.In order to solve the above problem (the purpose is a distant relative), the present invention provides the following: A drive shaft is provided on the side of the reaction pressure mechanism of the electric motor. The motor is supported by a sub-bearing member and a compression mechanism part, and the sub-bearing member is fixed in a thin bead shape by high-density energy welding to the end of the stator cut out from the laminated plate of the motor without contacting the sealed container. The present invention also includes a drive shaft supported by a sub-bearing member provided on the side of the reaction pressure mechanism section of the electric motor and a compression mechanism section, and a discharged gas that does not pass through the motor chamber housing the electric motor is transferred between the sub-bearing member and the airtight container. The present invention also includes means for introducing the discharged gas into the oil separation space formed by the end wall and releasing the discharged gas toward an oil receiver provided near the bearing of the auxiliary bearing member and open to the bearing. (1) An oil separation element is arranged between the discharge gas introduction opening into the oil separation space and the oil reservoir of the oil pan. The drive shaft connected to the fixed Lt electric motor is supported by the sub-bearing member provided on the side of the counter-pressure mechanism part of the motor and the compression mechanism part. The discharged gas is introduced into the oil separation chamber formed by the sub-bearing member's bearing, and the discharged gas is discharged toward an oil receiver that is provided near the bearing of the sub-bearing member and opens to the bearing. An oil groove is provided on the outer periphery of the shaft that leads to the oil sump in the oil pan, and the pumping action of the oil groove is used to drain the lubricating oil from the oil sump to the compression mechanism side of the motor room, leading to the outside of the compressor. The discharge side opening may be provided on the side opposite to the compression mechanism part of the motor room. An oil separation chamber is provided that leads to the oil sump at the bottom of the motor room.
The discharge gas that does not pass through the motor room is introduced into the upper part of the oil separation chamber, and the opening of the discharge pipe leading to the outside of the compressor is arranged in the space between the end of the motor rotor and the partition member. It is placed close to the end of the rotor. Also
The present invention stores and fixes a compression mechanism part and an electric motor in a sealed container, and a partition member is disposed between the side of the motor opposite to the compression mechanism part and the end of the sealed container, and the bottom part of the motor room in which the electric motor is housed is provided. An oil separation chamber leading to the oil sump is installed, and the discharge gas that does not pass through the motor room is introduced into the upper part of the oil separation chamber. The opening of the communicating discharge pipe is arranged and the opening is brought close to the end of the rotor, and the drive shaft connected to the electric motor is supported by a sub-bearing member provided on the side of the counter-pressure mechanism of the electric motor and the compression mechanism. The auxiliary bearing member also serves as a partition member. The discharged gas that does not pass through is introduced into the oil separation chamber formed by the sub-bearing member and the end wall of the sealed container, and the discharged gas is discharged toward the oil receiver that communicates with the bearing of the sub-bearing member, thereby removing the lubricating oil in the oil receiver. The drive shaft is provided with an oil passage that leads the oil to the bearing of the auxiliary bearing member and the bearing of the compression mechanism, and the oil is supplied to the bearing of the compression mechanism. The drive shaft, which is housed and fixed inside and connected to the electric motor, is supported by the sub-bearing member provided on the side of the counter-pressure mechanism part of the motor and the compression mechanism part. The discharged gas is introduced into the oil separation chamber formed by the end wall of the sealed container, and the discharged gas is released toward the oil receiver provided near the bearing of the sub-bearing member and open to the bearing.
The lubricating oil in the oil pan is supplied to the bearing of the sub-bearing member that supports the drive shaft and the bearing of the compression mechanism, and the lubricating oil supplied to the bearing of the compression mechanism is injected into the compression chamber. t
, - According to the present invention ζ, a compression mechanism section and an electric motor are housed and fixed in a closed container, and a drive shaft connected to the electric motor is supported by an auxiliary bearing member provided on the side of the counterpressure mechanism section of the electric motor and the compression mechanism section.
The discharged gas that does not pass through the motor chamber that houses the electric motor is introduced into the oil separation chamber formed by the sub-bearing member and the end wall of the sealed container, and the oil that is provided near the bearing of the sub-bearing member and is open to the bearing. The discharged gas is released toward the receiver, and the lubricating oil in the oil receiver is supplied to the bearing of the sub-bearing member that supports the drive shaft and the bearing of the compression mechanism, thereby lubricating the oil sump at the bottom of the motor chamber where the discharge pressure acts. The oil is mixed and supplied to the bearing part of the compression mechanism part, and the effect is as follows. The vibration is attenuated by the thin joints between the laminate and the laminate, and is also attenuated by slight slippage between the laminated plates, so it does not propagate to the sealed container, reducing vibrations on the walls of the sealed container and in the external piping system connected to the sealed container. Mat 2
A welding table that uses high-density energy can weld a small electric motor and a sub-bearing member without causing damage to the stator windings or thermal distortion to the laminated plates. When the discharged gas that does not pass through a chamber and does not separate the lubricating oil changes its flow direction in the oil separation chamber, the lubricating oil in the discharged gas is separated from the discharged gas by its inertial force. The oil film collected directly into the bearing of the secondary bearing member lubricates the sliding surface and alleviates collisions between the drive shaft and the sliding surface, reducing vibration and noise generation. According to the invention, the discharged gas flowing into the oil separation chamber collides with the oil separation element. At that time, the lubricating oil is captured and collected in the oil sump placed below the oil sump. The lubricating oil in the oil sump protects the oil separation element. As a result, scattering due to discharged gas is prevented.Also, according to the present invention ζ
The lubricating oil is separated from the discharge gas that has flowed into the oil separation chamber and is discharged to the outside of the compressor through a discharge side opening provided on the opposite side of the compression mechanism section of the motor chamber. On the other hand, the lubricating oil separated from the discharged gas is collected in the oil reservoir of the oil pan, and then supplied to the bearing of the sub-bearing member by the pumping action of the oil groove on the outer circumference of the shaft portion of the drive shaft. is discharged to the compression mechanism side of the motor room on the opposite side, preventing remixing of the discharged gas and lubricating oil.
In addition, according to the present invention, the lubricating oil separated from the discharge gas in the oil separation space is collected in an oil sump in the motor room, while the discharge pipe from which the lubricant is separated is placed near the end of the rotor of the electric motor. When the discharged gas is about to flow into the discharge pipe, it is centrifugally diffused by the rotor, and the lubricating oil remaining in the discharged gas is separated.The lubricating oil separated in the oil separation chamber, which is about to flow into the discharge pipe, is also centrifugally separated, and the lubricating oil is centrifugally separated from the compressor external piping. The leakage of lubricating oil into the system can also be prevented by the present invention.A sub-bearing member partitions the side of the electric motor leading to the outside of the compressor and an oil separation chamber, and the lubricating oil and discharged gas separated from the discharged gas in the oil separation chamber are separated from each other. This also prevents the lubricating oil from being remixed with the lubricating oil by the rotor of the motor.Also, according to the present invention, the discharged gas that does not pass through the motor chamber and does not separate the lubricating oil is separated from the lubricating oil in the oil separation chamber in its flow direction. When changing the lubricating oil in the discharged gas, the lubricating oil is separated from the discharged gas by its inertia force, and the separated lubricating oil is directly collected in an oil pan installed near the bearing at the front in the direction of movement. The oil film is supplied to the bearings of the auxiliary bearing members supported on both sides and the bearings of the compression mechanism, and the oil film lubricates the sliding surfaces and alleviates collisions between the drive shaft and the sliding surfaces, thereby reducing vibration and noise generation. Also, the present invention (Yo) When the discharged gas that does not pass through the motor room and does not separate the lubricating oil changes its flow direction in the oil separation chamber, the lubricating oil in the discharged gas is separated from the discharged gas by its inertial force, and the separated lubrication After the oil is directly collected in an oil receiver installed near the bearing at the front in the direction of movement, the oil is supplied to the bearing of the auxiliary bearing member that supports the drive shaft on both sides of the motor and the bearing of the compression mechanism, and the oil film It lubricates the sliding surfaces and alleviates collisions between the drive shaft and the sliding surfaces to reduce vibration and noise generation.It also flows into the compression chamber and seals the compression chamber gap with an oil film to prevent compressed gas from leaking and compress it again. A series of oil supply passages are formed which are discharged together with gas into the oil separation chamber. The present invention is carried out by two systems: lubrication from the auxiliary bearing member and lubrication from the oil reservoir of the oil receiver of the sub-bearing member. The scroll refrigerant compressor of the first embodiment will be explained with reference to Figs. An upper high-pressure space housing a main body frame 5 supporting one end of a drive shaft 4 connected to a motor (electric motor) 3 and an upper frame 126 supporting the other end to which a fixed scroll member 15 forming a chamber is fixed with bolts; , lower accumulator chamber 46
The middle partition cover 134 is made of mild steel and has excellent weldability with the airtight container 1, and is provided on its outer peripheral surface. The protruding strip 79a is in contact with the inner wall surface and end surface of the upper sealed case la and the lower sealed case 1b, and the protruded strip 79a, the upper sealed case la, and the lower sealed case lb form a single weld bead 79b. Even though it is hermetically welded by
As shown in FIG. 11, an annular seal ring 135 with a cut made of Teflon is fitted to the outer circumferential groove of the fixed scroll 15, and the seal ring 135 is divided into a side where the motor (electric motor) is arranged and a side where the discharge chamber 2 is disposed. Temperature motor (electric motor)
As shown in Figure 12, the space on the side where 3 is placed is connected to the upper end surface of the stator 3b of the motor 3, which has laminated thin steel plates fixed with rivets, by high-density energy welding, typically by electron beam welding or laser welding. The upper bearing 126 is fixed as a thin bead 137 without causing thermal strain to the member, and the upper bearing 126 is the boundary between the upper oil separation chamber 128 and the lower motor chamber 6. The stator 3b to which the upper bearing 126 is fixed is fixed to the sealed container l by shrink fitting, and there is a gap between the outer periphery of the end and the sealed container l. 136 are provided. The main body frame 5 made of eutectic graphite cast iron to which the fixed scroll 15 is fixed with bolts and its outer periphery are welded and fixed to the closed container 1 at several points, the main part of the drive shaft 4 supported by the upper frame 126 and the main body frame 5. The diameter of the bearing 12 is set to be larger than the sum of the diameter of the crankshaft 14 and twice the eccentricity of the crank, and even if the drive shaft 4 is configured to be able to be pulled out upward, the rotor of the motor 3 An upper balance weight 75 whose outer diameter is set larger than the outer diameter of the rotor 3a and has a disk shape is attached to the upper end of the rotor 3a, and a lower balance weight 76 is attached to the lower end of the rotor 3a, so that the axial movement of the rotor 3a is controlled by the upper frame. 126 and the end of the main body frame 5. The lower surface of the lower balance weight 76 attached to the drive shaft 4 comes into contact with the thrust bearing section 13 provided on the upper end surface of the main body frame 5 and having a plurality of radial shallow grooves 7, thereby connecting the drive shaft 4 and the rotor 3a. I support it. Crankshaft 14 at the lower end eccentric from the main shaft of the drive shaft 4
Even if the fixed scroll 15 is engaged with the orbiting bearing 18b of the orbiting boss 18e provided on the orbiting scroll 18, the fixed scroll 15 is made of high-silicon aluminum whose coefficient of thermal expansion corresponds to an intermediate value between pure aluminum and eutectic graphite cast iron. It is made of alloy and is separated from the spiral fixed scroll wrap 15a and end plate 15b, and is provided with a discharge port 16 that opens at the beginning of the fixed scroll wrap 15a in the center of the end plate 15b. Inhalation chamber 17
is provided. Discharge port 16ζ Discharge chamber 2. A discharge port 16 is connected to the oil separation chamber 128 via a bypass discharge pipe 127 that communicates between the side wall of the closed container 1 and the upper end side wall.
Even if the check valve device 50 is installed so as to cover the Valve body 50b (or valve body 5 having a discontinuous annular hole 50ea)
0e), a valve case 99 having a check valve hole 50a, a central hole 50g, and a plurality of small discharge holes 50h around it, and a valve body 5.
The spring device 50c interposed between the valve case 99 and the spring device 50c contracts when its own temperature exceeds 50°C, but has a shape memory property that expands when its own temperature exceeds 50°C. When the compressor is in operation, the check valve hole 50a contracts to the bottom of the check valve hole 50a in response to the discharge gas pressure, and when the compressor is stopped, the valve body 50 is set to be pressed against the end plate 15b to close the discharge port 16. Fixed scroll wrap 15 as shown in Figures 1 and 13
An orbiting scroll 18 made of an aluminum alloy in which a spiral orbiting scroll wrap 18a that engages with a compression chamber and an orbiting boss portion 18e that engages with a crankshaft 14 of a drive shaft 4 are made upright. & It is arranged surrounded by the fixed scroll 15 and the main body frame 5, and even though the surfaces of the wrap support disk 18c and the orbiting scroll wrap 18a are subjected to hardening treatment such as porous nickel plating, the tip of the orbiting scroll wrap 18a is Even though a spiral tip seal groove is provided and a resin tip seal 98a is installed in the tip seal groove with a slight gap, the orbiting scroll 18 is pressed toward the axial side of the fixed scroll 15. When the flat part of the wrap support disk 18c contacts the tip of the fixed scroll wrap 15a, the tip of the orbiting scroll wrap 18a does not touch the fixed scroll 15 and maintains a very small distance of several microns.
Accumulator chamber 4 leading to the evaporator side of the refrigeration cycle
6 (Y) A U-shaped suction pipe 1 formed of a lower sealed container 1b and a partition lid 134, attached to the partition lid 134, and having an oil suction hole 139 in the middle of the passage.
41 to the suction chamber 17. Suction pipe 141
The Noura suction hole 139 is set so that the refrigerant liquid and lubricating oil stagnant in the low-pressure oil reservoir 46a are sucked up by the negative pressure generated when the refrigerant gas passes through the suction pipe 137. Suction pipe 13 leading to the evaporator side of the refrigeration cycle
81; L Branches and communicates with the suction hole 43 which communicates with the suction chamber 17 and the accumulator chamber 46. A flat plate-shaped thrust bearing 20C whose movement in the rotational direction is restrained by a split bottle-shaped parallel pin 19 fixed to the main body frame 5 and can only move in the axial direction; between the L-wrap support disk 18c and the main body frame 5 The elastic force of the annular seal ring (made of rubber) interposed between the thrust bearing 20 and the main body frame 5 makes it come into contact with the sliding surface of the end plate 15b of the fixed scroll 15 via the spacer 140. The axial dimension of the spacer 140 is set to be approximately 30 microns larger than the height of the lap support disk 18c of the orbiting scroll 18.
As shown in FIGS. 8 and 9, the center of the orbiting bearing 18b and the end surface of the orbiting boss portion 18e of the orbiting scroll 18 on the side of the main body frame 5 are provided to enable the formation of an oil film of lubricating oil in the gap between the planes on both sides of the orbiting scroll 18. A similar annular seal groove 95 is provided, and a partially cut resin annular ring 94 is attached to the annular seal groove 95. (Y) Even if the back pressure chamber 39 of the orbiting scroll 18 formed by the main body frame 5 of the orbiting scroll 181 and the thrust bearing 20 is sealed and the side of the main bearing 12 that supports the drive shaft 4 is sealed, the annular thrust bearing 20 2nd FIA mold for making sintered alloy that can be easily formed into large shapes.As shown in FIG.
Even when the main body frame 5 is installed, a release gap 27 of about 0.05 mm is provided between the main body frame 5 and the thrust bearing 20, and there is a release gap 27 between the inside and outside of the release gap 27. Even if an annular groove 28 is provided for mounting the seal ring 70, the seal ring 70 seals between the release gap 27 and the back pressure chamber 39. Oil filler A38 leading to the discharge chamber oil sump 34
It leads to a. The rotation prevention member (hereinafter referred to as Oldham ring) 24 of the orbiting scroll 18 disposed inside the thrust bearing 20 is made of light alloy or reinforced fiber composite material suitable for sinter molding or injection molding methods, and the inventor The ring thickness of the Oldham ring 24 is such that when the Oldham ring 24 reciprocates, Even if the upper closed container 1 is set so that it slides smoothly between the main body frame 5 and the lap support disk 18c and does not cause a jumping phenomenon.
The rotor 3a passes through the upper frame 126 at the upper end of the rotor 3a.
A discharge pipe 31 extending close to the end of the pipe 31 and a glass terminal 88 for connecting the motor power supply are attached, and in the center thereof, a U-shaped pipe 127a of the discharge bypass pipe 127 is connected to the secondary bearing 8 provided on the upper frame 126. They are provided with opposing openings. Oil pan 1 on the central protrusion of the upper frame 126
Even though the oil separation element 143 is arranged at 4g and the oil sump 144 is provided below it, the upstream end of the U-shaped pipe 127a extends only to the upper end of the upper sealed container 1a. The workability of the welded part 1a3 between the upper cover 1al and the shell 1a2 is improved.The discharge chamber oil sump 34 (
The stator 3b of the motor 3 is connected to the lower outer periphery of the oil separation chamber 128 disposed in the upper part of the motor chamber 6 through a cooling passage 35 provided by cutting out a part of the outer periphery of the stator 3b of the motor 3. A spiral oil groove 41 is provided in the direction in which the lubricating oil separated from the discharged gas in the oil separation chamber 128 is guided to the motor chamber 6 when the drive shaft 4 rotates forward. Even if it is, oil sump 14
4 lubricating oil (axial oil reservoir 11 provided on drive shaft 4)
2a, and communicates with the thrust bearing portion 13 and the main bearing 12 via radial blind holes 113a and 113b. The back pressure chamber 39 of the orbiting scroll 18 is controlled by an annular ring 94 attached to the end of the orbiting boss portion 18e of the orbiting scroll 18. (
(See Figure 8). Oil chamber A7gal& Via a spiral oil groove 41b provided on the outer peripheral surface of the crankshaft 14, an oil chamber B78b provided at the end of the crankshaft 14, and a spiral oil groove 41a provided on the drive shaft 4. It also communicates with the main bearing 12. Although the oil chamber B78b communicates with the back pressure chamber 39 through a thin hole 40 provided in the turning boss portion 18e, there are holes in the sliding shaft portion 4a of the drive shaft 4 and the surface of the crankshaft 14.
The drive shaft 4 rotates in the forward direction.The lubricating oil in the oil chamber A78a is transferred to the oil chamber B78, which is formed by the swing bearing 18b and the crankshaft 14.
Spiral oil grooves 41a and 41b are provided in the direction in which oil is supplied from the screw pump to the motor 3 side, and the upper ends thereof do not reach the thrust bearing portion 13 (~a second compression chamber that intermittently communicates with the suction chamber 17). 51 and the back pressure chamber 39 (as well as the keyway 71 of the orbiting scroll 18 and the oil groove 91 provided in the thrust bearing 20; the outer peripheral space 37 on the outside of the wrap support disk 18c; The oil damper chamber 145 is provided between the oil filler C38c and the end plate 15b and the valve case 99. Even though the back pressure chamber 39 and the outer circumferential space 37 communicate with each other through the injection passage 74 formed by the small diameter injection hole 52, The oil grooves 91 and the keyway 71, which are provided in two places, are arranged at opposite positions so that the second compression chambers 51a and 51b (see FIG. 13) communicate only with the suction chamber 17. In addition, the downstream side of the oil groove 91 provided in the thrust bearing 20 is intermittently opened and closed by the lap support disk 18c. The shape of the oil separation chamber 128, the shape of the oil receiver 142, the arrangement position, the oil separation element 143, the compressor operating speed, etc. Depending on the conditions (it becomes possible to secure sufficient lubricating oil), the axial oil filler 112a may be further extended to open the oil chamber A78a (also, the discharge chamber oil sump 34 may be abolished and the discharge chamber oil The refrigerant gas discharged from the motor chamber 6 may be introduced into the annular groove 28 on the back surface of the thrust bearing 20 while eliminating the oil supply passage from the reservoir 34 to the oil chamber A78a. In the vertical cross-sectional view of the example horizontal scroll refrigerant compressor, the inside of the closed container 201 serves as the high-pressure space side on the left side, which accommodates the drive section and the compression mechanism section, and the accumulator chamber 246 on the right side, by means of a partition lid 134a. Although it is partitioned into a low-pressure space leading to the downstream side of the evaporator of the refrigeration cycle, the main body frame 205 to which the fixed scroll 215 is bolted is fixed to the closed container 201 by welding, and the auxiliary frame 126a is attached to a motor (with high-density energy welding).
Even if the stator 3b of the electric motor) 3 is fixed to the airtight container 201 by shrink-fitting, the discharge chamber 202 and the discharge chamber oil reservoir 234 communicate with each other at the top and bottom. Center hole 242aJ, t,
A secondary bearing 208 that supports the small end shaft 204d of the drive shaft 204
smaller than the inner diameter of the oil separation element 243 and the small end shaft 204
Even if the setting is made so that the lubricating oil in the oil reservoir 244 between the main frame 205 and the auxiliary frame 126 does not leak out,
A helical oil groove 241i provided on the small end shaft 204d of the drive shaft 204 supported by a and a vertical groove opened to the oil sump 244 and provided at the shrink-fit joint between the drive shaft 204 and the rotor 3a of the motor 3. One end of the suction pipe 141a attached to the inner partition lid 134a communicates with the suction chamber 17, and the other end opens toward the top of the accumulator chamber 246. In order to prevent the refrigerant flowing in via the suction pipe 138a from directly flowing into the suction pipe 141a, there is a pipe protruding from the partition plate 147 fixed to the partition lid 134a. A baffle 148 is arranged.Other configurations (such as those shown in FIG. 1 are omitted as they are similar to those shown in FIG.
Figure 5 is a vertical sectional view of a horizontal scroll refrigerant compressor according to a third embodiment of the present invention, showing the upper part of the oil separation chamber 128b formed by the auxiliary frame 126b and the end of the closed container 301, and the discharge chamber. An oil pan 342 provided in the central protrusion of the auxiliary frame 126b is connected to the upper part of the oil container 302 (by a discharge bypass pipe 138b extending outside the sealed container 301). Near the top of the oil pan 342 (
Even though the oil separation element 343 is mounted on the end wall of the closed container 301, the other configurations are similar to those shown in FIGS. 1 and 14, so the explanation will be omitted. The operation of the configured scroll refrigerant compressor will be explained. In Figs. 1 to 13,
A drive shaft 4 is rotationally driven by a motor (electric motor) 3.

すると、旋回スクロール18は  駆動軸4のクランク
機構によって駆動軸4の主軸周りに回転しようとするバ
 オルダムリング24の旋回スクロール18の側のキ一
部(第2図参照)が旋回スクロール18のキー溝71に
係合し 両側面の平行面部が本体フレーム5に回転方向
移動のみを規制されて固定されたスラスト軸受20の平
行平面部24aを有する貫通穴24bに係合しているの
で自転を阻止され 公転運動をして固定スクロール15
と共に圧縮室の容積を変化させ、冷媒ガスの吸入・圧縮
作用を行う。
Then, the orbiting scroll 18 tries to rotate around the main axis of the drive shaft 4 by the crank mechanism of the drive shaft 4. The key part of the orbiting scroll 18 side of the ball dam ring 24 (see FIG. 2) is the key of the orbiting scroll 18. It engages with the groove 71, and the parallel plane parts on both sides engage with the through hole 24b having the parallel plane part 24a of the thrust bearing 20, which is fixed to the main body frame 5 so that only rotational movement is restricted, thereby preventing rotation. The fixed scroll 15 rotates
At the same time, the volume of the compression chamber is changed to perform suction and compression of refrigerant gas.

そして、圧縮機に接続した冷凍サイクルの蒸発器の下流
側から潤滑油を含んだ気液混合の吸入冷媒力\ 吸入配
管138から分岐して吸入室17とアキュームレータ室
46とに流入すも 吸入冷媒ガスが吸入室17とアキュ
ームレーク室46とに流入する胤 直線状の吸入配管1
38内を流れる吸入冷媒の慣性力差によって、吸入室1
7に流入する冷媒ガスとアキュームレータ室46に流入
する未蒸発冷媒とに分流する。アキュームレータ室46
に流入した未蒸発冷媒(上 気体と液体の重量差や流入
方向転換時の慣性力によって冷媒ガスから分離した液冷
媒や潤滑油はアキュームレータ室46の底部に −且 
収集され 吸入冷媒ガスが吸い込み管141を通過する
際に生じる負正によって油吸い込み穴139を介して霧
化状態で吸入穴43に吸い上げられ 再び吸入冷媒ガス
に混入すa 気液分離された吸入冷媒ガスζ友吸入室1
7.旋回スクロール18と固定スクロール15との間に
形成された第1圧縮室61a、61bを経て圧縮室内に
閉じ込められ 第2圧縮室51a、51b、第3圧縮室
60a、60bへと順次移送圧縮の抵 中央部の吐出ポ
ート16から逆止弁装置50を経て吐出室2に吐出され
 吐出バイパス管127を介して油分離室128に広大
する。油分離室128に流入した吐出冷媒ガス(よ 油
分離要素143に衝突して潤滑油を分離の後、上部フレ
ーム126の外周部を経て、回転子3aと上部フレーム
126との間の空間に流入し 回転子3aの上部バラン
スウェイト75の遠心拡散作用によっても潤滑油を分離
し 吐出管31から圧縮機外部に排出されも 上部バラ
ンスウェイト75の遠心拡散作用によって分離された潤
滑油ば モータ3の巻線束の内部空間に沿って流下し 
吐出室油溜34に収集する。油分離室128で分離した
潤滑油(よ固定子3bの外周部の冷却通路35を介して
下部の吐出室油溜34に収集すa 油分離要素143に
捕捉された潤滑油は下部の油溜144に収集の抵 駆動
軸4の小端軸4dに設けられた螺旋状油溝41を介して
副軸受8の摺動面を潤滑の後、モータ室6の底部の吐出
室油溜34に収集すも な耘 油溜144の潤滑油は油
分離要素143の海綿繊維組織の保護を受けて油分離空
間に128に流入する吐出冷媒ガスによって拡散される
ことがな(1また 油溜144の潤滑油C友駆動軸4に
設けた軸方向油穴112a、半径方向油穴113a、1
13bを経由してスラスト軸受部13.主軸受12の上
部摺動面を潤滑すると共に 主軸受12の軸受隙間を油
膜で密封し モータ室6の冷媒ガスが主軸受12内に侵
入するのを防ぐ。フィルター149゜油入A38aを介
して吐出室油溜34に通じるスラスト軸受20の背面側
のレリース隙間27番ヨ  吐出圧力の作用する潤滑油
で充満されも その背圧付勢とシールリング70の弾性
力によって、スラスト軸受20は固定スクロール15の
鏡板15bの本体フレーム5との結合面にスペーサ14
0を介して押接されもそれによって、旋回スクロール1
8のラップ支持円盤18cは鏡板摺動面15b2とスラ
スト軸受20との間で挟持されも 吐出室油溜34の潤
滑油は 後述する経路を経て背圧室39に流入し 次第
に背圧室圧力を高取 その背圧力により旋回スクロール
18のラップ支持円盤18cを固定スクロール15の鏡
板摺動面15b2に押圧し 固定スクロールラップ15
aの先端と旋回スクロール18のラップ支持円盤18C
との間の隙間をなくし それによって圧縮室が密封され
るので、吸入冷媒ガスが効率よく圧縮され 安定運転が
継続すa な耘 旋回スクロールラップL8aの先端と
固定スクロール15との間の軸方向隙間は 圧縮途中冷
媒ガスが隣室の低圧側圧縮室に漏洩する際に チップシ
ール溝98に流入しそのガス背圧力によってチップシー
ル98aがチップシール溝98aの底圧縮室側面および
固定スクロール15に押圧されて、圧縮隙間をシールす
も 圧縮機停止時、圧縮室内冷媒ガスの圧力差に基づく
逆流によって、旋回スクロール18が瞬時的に逆旋回運
動する力丈 冷媒ガスが圧縮室から吸入室17に逆流す
ることか板 旋回スクロール18は第13図のように 
第1圧縮室61a、61bが吸入室17に通じた状態の
旋回角度で停止すも また圧縮機停止隊圧縮室の冷媒ガ
スが吸入室17へ逆流することによって吐出ポート16
の冷媒ガス圧力が急低下し 吐出ポート16と吐出室2
との冷媒ガス圧力差によって弁体50bが吐出ポート1
6を塞ぎ、吐出室2から圧縮室への吐出冷媒ガスの連続
的な逆流を阻止する。吸入室17と間欠的に連通ずる第
1圧縮室61a、61bと背圧室39とは第1圧縮室6
1a、61bが吸入室17と連通状態の時のみスラスト
軸受20に設けられた油入91を介して連通ずると共に
 スラスト軸受20とラップ支持円盤18cとの間は潤
滑油膜シールされるので、圧縮室から背圧室39に圧縮
途中冷媒ガスが逆流することはな(1圧縮機停止中は圧
縮機内圧力が均衡し アキュームレータ室46は勿論の
こと、圧縮室内にまで液冷媒が流入しており、圧縮機冷
時起動初期には液圧縮が生じ易く、圧縮室内の圧縮冷媒
圧力によって旋回スクロール18に吐出ポート16と反
対の方向のスラスト力が作用する。−太 圧縮機冷時起
動初期の背圧室39の圧力は低く、旋回スクロール18
のラップ支持円盤18cは鏡板摺動面15b2から離反
してスラスト軸受20まで後退し支持され ラップ支持
円盤18cと固定スクロールラップ15aの先端との間
に隙間が生は圧縮室圧力が低下し 起動初期の圧縮負荷
が軽減すも 万ス 連続運転中に 圧縮室内で液圧縮な
どが生じて瞬時的に圧縮室圧力が異常上昇した場合など
に(よ 旋回スクロール18に作用するスラスト力が旋
回スクロール18の背面に作用する背圧付勢力よりも大
きくなり、旋回スクロール18が軸方向に移動に スラ
スト軸受20に支持されも そして、圧縮室の密封が上
述と同様に解除して圧縮室圧力か低下し 圧縮負荷が低
下すも 圧縮機冷時始動初期の吐出室油溜34の潤滑油
は 駆動軸4に設けられた螺旋状油溝41a、41bの
ネジポンプ作用によって、油入A38aを経由して油室
A78aに吸い込まれる。その抵 潤滑油の一部は螺旋
状油溝41bを経て旋回軸受18bの摺動面を潤滑し 
油室B78bから細穴40を通じて減圧の眞 背圧室3
9に流入すも 螺旋状油溝41aによって主軸受12に
供給された潤滑油は スラスト軸受部13の各摺動面を
潤滑の後、吐出室油溜34に再回収されも な転生軸受
12の軸受隙間は スラスト軸受部13へ供給される潤
滑油の油膜によっても密封されも 圧縮機冷時始動後の
時間経過に追従してモータ室6の圧力は上昇し 吐出室
油溜34の潤滑油は背圧室39との間の差圧によっても
油室A78aに吸入され螺旋状油溝41a、41bのネ
ジポンプ作用と併せて背圧室39に給油され 背圧室3
9の圧力を順次高めも圧縮室の中心、旋回軸受18eの
中心、環状リング94の中心が各々はぼ一致した配置構
成において、環状リング94は旋回スクロール18と共
に旋回運動をするので、その時の慣性力によって旋回ボ
ス部]8eに設けられた環状シール溝95から飛び出そ
うとする。それによって、環状リング94は本体フレー
ム5と環状シール溝95の外側面に押接されると共に 
環状リング94の油掻き作用によって環状シール溝95
と環状リング94との間に潤滑油が押し込まれ その時
の動圧発生によっても環状リング94が押圧され 油室
A78aと背圧室39との間をシールする。更に環状リ
ング94は  背圧室39と油室A78aとの間の圧力
差によっても環状シール溝95の外側面に押圧されるの
で、雨空間の間のシールは一層確実になも な耘 環状
溝94の表面に設けられた油溝94aに滞留する潤滑油
の油膜によって環状リング94と本体フレーム5との間
の摺動面をシールすると共に摺動面の摩耗、摺動抵抗を
少なくすム高圧の油室A78aの潤滑油圧力と背圧室3
9の潤滑油圧力によって旋回スクロール18は固定スク
ロール15の側に均等に背圧付勢され ラップ支持円盤
18cと鏡板摺動面15b2との間は円滑に摺動すると
共にラップ支持円盤18cの変形を少なくして圧縮室の
軸方向隙間を最小にしていも 背圧室39に流入した潤
滑油は スラスト軸受20に設けられた曲溝91を介し
て間欠的に外周部空間37に流入し更に鏡板15bに設
けられた油入C38c、  油ダンパ室145.細径の
インジェクション穴52を通して漸次減圧され 第2圧
縮室51a、51bに流入すも 潤滑油(よ その通路
途中で各摺動面を潤滑し 摺動隙間を密封する。第2圧
縮室51a、51bに注入された潤滑油(よ 吸入冷媒
ガスと共に圧縮室に流入した潤滑油と合流シ碑接する圧
縮室間の微少隙間を油膜密封して圧縮冷媒ガス漏れを防
較 圧縮室間の摺動面を潤滑しながら圧縮冷媒ガスと共
に吐出ポート16を経て吐出室2.吐出バイパス管12
7.油分離室128に順次排出されも 背圧室39を経
由する吐出室油瑠34から第2圧縮室51a、51bま
での給油経路において、背圧室39は吐出圧力と吸入圧
力との間の適正な中間圧力を維持すん 第2圧縮室51
a、51bのインジェクション穴52a、52b開口部
ζよモータ室6の圧力に追従して変化する背圧室39の
圧力よりも瞬時的に高い力t その時の背圧室39と外
周部空間37とはラップ支持円盤18cがスラスト軸受
20の油入91の開口端を塞ぐと共にラップ支持円盤I
Bcとスラスト軸受20との間の摺動面を油膜シールし
ているので、圧縮途中の冷媒ガスが背圧室39に逆流す
ることもなく、且1 第2圧縮室51a、51bの平均
圧力は背圧室39圧力よりも低L1また 前述のように
圧縮機起動初期の旋回スクロール18は  固定スクロ
ール15から離反してシールリング70の弾性力を受け
るスラスト軸受20に支持される。圧縮機起動安定後の
背圧室39に差圧給油された潤滑油(上 中間圧力の付
勢力を旋回スクロール18に作用させて、ラップ支持円
盤18cを鏡板15bに押圧し その摺動面を油膜シー
ルし 外周部空間37と吸入室17との間をシールすム
 また背圧室39の潤滑油は スラスト軸受20とラッ
プ支持円盤18cとの摺動面の隙間に介在し その隙間
を密封ずも また スクロール圧縮機の圧縮比が一定で
あることか収 冷時起動直後のように吸入冷媒ガス圧力
が比較的高くて圧縮室圧力が非常に高くなる場合、ある
い(よ 異常な液圧縮が生じた場合など(、t、上述の
ように旋回スクロール18が固定スクロール15から離
反し スラスト軸受20に支持される。しかしなかぺ 
背圧付勢されたスラスト軸受20(ヨ  異常上昇した
圧縮室圧力荷重を支持できず、レリース隙間27を減少
させる方向に後退して、旋回スクロール18のラップ支
持円盤18cと固定スクロール15の固定スクロールラ
ップ15aの先端との間の軸方向隙間が拡大すム これ
により、圧縮室間に多くの漏れが生じ 圧縮室圧力が圧
縮途中で急低下すも 圧縮負荷が瞬時に軽減した抵スラ
スト軸受20が瞬時に元の位置に復帰して、背圧室39
の圧力は著しい低下もせ式 安定運転が再継続する。な
耘 旋回スクロール18がスラスト軸受20の方へ後退
する豚 旋回スクロールラップ18aの先端と固定スク
ロール15との間の軸方向寸法も拡大する力t チップ
シール98aがその背面のガス圧によって固定スクロー
ル15の側に押圧されているので、この部分からの圧縮
冷媒ガス漏れはほとんど生じなしち また 旋回スクロ
ール18と固定スクロール15との間の軸方向隙間部に
異物の噛み込みが生じた場合に転 上述と同様に スラ
スト軸受20が後退して異物を除去すも また 上記実
施例ではスラスト軸受20の背面に設けたレリース隙間
27に吐出室油溜34の潤滑油を導入したバ モータ室
6の冷媒ガスや最終圧縮行程中の圧縮冷媒導入 または
圧縮最終行程の圧縮室と吐出ボート16とが通じる領域
の吐出冷媒ガスをレリース隙間27に導入してもよ鶏 
また 上記実施例では旋回スクロール18のラップ支持
円盤18cとスラスト軸受20との間の摺動隙間を潤滑
油の油膜のみでシールした力文 発明者が特願昭63−
159996号の明細書の第3図 第4図で提案してい
るよう服 環状リング(82)をラップ支持円盤18c
の背面側に装着し 背圧室39と外周部空間37との間
の摺動部隙間のシール性能を向上してもよへ 次に 第
2の実施例の動作について、第14図を参照しながら説
明すも 冷凍サイクルの蒸発器から帰還した冷媒のうち
の未蒸発冷媒(友 第1の実施例の場合と同様に アキ
ュームレータ室246に流入し 冷媒ガスは吸入室17
に流入する。アキュームレータ室246に流入した未蒸
発冷媒(よ バッフル148に衝突して比重の小さい冷
媒ガスと比重の大きい液冷媒および潤滑油とに分離し 
液冷媒と潤滑油とは底部の低圧油溜46bに収集すも 
低圧油溜46bに貯溜する潤滑油と液冷媒は 冷媒ガス
が吸い込み管141aの上部開口端から吸入室エフに流
入する際の負圧発生によって油吸い込み穴139aを通
じて霧化状態で吸入冷媒ガスと共に吸入室17に吸い込
まれも 吸入室I7の両側から吸入された冷媒ガスは 
圧縮機 吐出室202に吐出され 密閉容器201の内
壁と本体フレーム205の外周部との開の通路を通じて
モータ室206に流入すると共に 吐出バイパス管13
8aを介して油分離室128aに流入す瓜 第1の実施
例の場合と同様に 油分離要素243で捕捉された吐出
ガス中の潤滑油(よ 油溜244に収集抵 駆動軸20
4の小端軸204dに設けられた螺旋状油溝241と縦
溝146を通じて圧縮機構部に近い側のモータ室206
に排出さへ その通路途中で副軸受208の摺動面を潤
滑すaその他の動作については 第1の実施例の場合と
類似しているので説明を省略する。次に 第3の実施例
の動作について、第15図を参照しながら説明する。吐
出室302に吐出された吐出冷媒ガス(よ本体フレーム
305の外周部と密閉容器301の内壁との間の通路を
通じてモータ収納空間に流入すると共に 吐出バイパス
管138bを介して油分離室128bに流入し 流れ方
向を変える際に吐出ガスから分離した潤滑油や油分離要
素343に衝突した際に分離した潤滑油力交 その下部
の油受け342の油溜344に収集する。その他の動作
についてζ友 第2の実施例の場合と同様であるので、
説明を省略すも以上のように上記実施例によれば スク
ロール圧縮機構部とモータ(電動機)3とを密閉容器1
内にそれぞれ収納固定し モータ3に連結する駆動軸4
をモータ3の反圧機構部の側に設けた上部フレーム12
6とスクロール圧縮機構部の本体フレーム5とで支持し
 上部フレーム126を密閉容器1の内壁に接触させる
ことなくモータ3の積層板から戊る固定子3bの端部に
電子ビーム溶接またはレーザー溶接などで代表される高
密度エネルギー溶接による薄肉ビード137の状態に固
定したことにより、高密度エネルギーを利用した局部的
な溶接音により固定子3bの巻線への損傷および積層板
に熱歪を与えることがないので、外径の小さい固定子3
bと上部フレーム126との溶接が可能となり、モータ
3の小型(1,圧縮機の小型化を図ることができる。ま
た 駆動軸4の回転荷重を支持することにより生じる上
部フレーム126の半径方向振動を、上部フレーム12
6の外周部とモータ3の固定子3bとの薄肉接合部で微
少変形させて減衰し さらに積層板間の微少な滑り発生
によっても減衰させることができも それにより、駆動
軸4をモータ3の両側で支持することによる振動低減と
併せて、上部フレーム126の振動を密閉容器1の内壁
に直接伝播させず、密閉容器1の壁面の振動 密閉容器
lに接続する外部配管系の振動とそれに伴う騒音発生を
防止し 静粛運転を実現することができもまた 上記実
施例によれば スクロール圧縮機構部とモータ3とを密
閉容器1内に収納固定し モタ3に連結する駆動軸4を
モータ3の反圧機構部の側に設けた上部フレーム126
とスクロール圧縮機構部とで支持し モ〜り3を収納す
るモータ室6を経由しない吐出ガスを上部フレーム12
6と密閉容器1の端部壁とで形成する油分離室128に
導入すると共に 上部フレーム1.26の副軸受8の近
くに設けられ且つ副軸受8に開通する油受け142に向
けて吐出ガスを放出させたことにより、油分離室128
でその流れ方向を変える際に モータ室6を経由せず潤
滑油を分離しない吐出ガスからその中に含まれる潤滑油
をその慣性力を利用して分離し その進行方向前方の副
軸受8の近くに設けられた油受け142に直接収集の樵
 副軸受8に供給することができ瓜 それによって、圧
縮機底部の油溜から潤滑油を導入することなく、油溜か
ら離れた軸受部に給油ポンプを必要とすることなく潤滑
油を供給することのできる独立した給油経路を構成する
ことができるので、モータ室6の底部の吐出室油溜の省
スペース化が可能となり、圧縮機の小型化と構成部品の
簡素化を図ることができる。また 上記実施例によれば
 油分離室!28への吐出ガス導入開口部と上部フレー
ム126に設けた油受け142の油溜144との間に油
分離要素143を配置させたことにより、油分離室12
8に流入してきた吐出冷媒ガスを油分離要素143に衝
突させ、潤滑油を付着させて効率よく捕捉することがで
きる。捕捉した潤滑油を下部の油溜144に滴下させる
と共に 吐出冷媒ガスが油溜144の近傍を通過するの
を阻止して、収集した潤滑油の飛散を防止し 潤滑油確
保による摺動部耐久性の向上を図ることができも また
 上記実施例によれば 補助フレーム126aの副軸受
208に支持される駆動軸204の小端軸204dの外
周面に油受け242の油溜244に通じる螺旋状油溝2
41を設け、螺旋状油溝241のネジポンプ作用を利用
して、油溜244の潤滑油を駆動軸204に設けた縦溝
146を介してモータ室206のスクロール圧縮機構部
側に排出させ、圧縮機外部に通じる吐出管31の開口部
をモータ室6の反圧縮機構部側に設けたことにより、圧
縮機外部の配管系に排出する吐出ガスの流路と潤滑油排
出先とを隔離して、吐出ガスと潤滑油との再混合を阻止
し 圧縮機内潤滑油を確保して摺動部耐久性の向上を図
ることができも また 上記実施例によれば スクロー
ル圧縮機構部とモータ3とを密閉容器l内に収納固定し
 モータ3の反圧縮機構部側と密閉容器lの端部との間
に上部フレーム126を配置してモータ3を収納するモ
ータ室6の底部の吐出室油溜34に通じる油分離室12
8を設け、モータ室6を経由しない吐出ガスを油分離室
128の上部に導入すると共に モータ3の回転子3a
の端部と上部フレーム126との間の空間に圧縮機の外
部に通じる吐出管31の開口部を配置し その開口部を
回転子3aの端部に近づけたことにより、油分離室12
8で吐出ガスから分離した潤滑油がモータ室6の底部の
吐出室油溜34に収集するーX 潤滑油を分離した吐出
ガスカ曳 モータ3の回転子3aの端部の近くに配置さ
れた吐出管31に流入しようとする際 吐出ガスが回転
子3aによって遠心拡散され 吐出ガス中に残存する潤
滑油を遠心分離することができると共に 吐出管31に
流入しようとする油分離室128で分離した潤滑油も遠
心拡散することかできるので、吐出ガスから分離された
潤滑油か再び吐出ガスに混入することがなく、圧縮機外
部配管系への潤滑油流出を阻止して吐出室油溜34の潤
滑油不足を防止し 主軸受12を初めとする他の摺動部
への充分な給油により摺動部耐久性を向上することがで
きも また 上記実施例によれ(L モータ3に連結す
る駆動軸4をモータ3の反圧機構部の側に設けた上部フ
レーム126とスクロール圧縮機構部の主軸受12とで
支持し 上部フレーム126がモータ3を収納する高圧
空間をモータ室6の側と油分離室128の側とに仕切る
仕切り部材を兼ねたことにより、特別な構成部品を必要
とすることなく、吐出ガスから分離した潤滑油をモータ
3の回転子3aの回転による拡散作用とそれに伴う吐出
ガスへの再混入を阻止し モータ3の固定子3bの外周
部に設けた冷却通路35を介してモータ室6の底部の吐
出室油溜34に効果的に収集して潤滑油の確保を図るこ
とができん また 回転子3aが潤滑油を拡散させる際
の入力増加を防止することかできる。また 上記実施例
によれζL 駆動軸4をモータ3の反圧機構部の側に設
けた上部フレーム126とスクロール圧縮機構部とで支
持しモータ3を収納するモータ室6を経由しない吐出ガ
スを上部フレーム126と密閉容器1の端部壁とで形成
する油分離室128に導入すると共に 上部フレーム1
26の軸受に開通する油受け142に向けて吐出ガスを
放出させ、油受け142で捕捉した潤滑油を上部フレー
ム126の副軸受8とスクロール圧縮機構部の主軸受1
2とに導く油路(螺旋状油溝41と軸方向袖穴112a
、  半径方向油入113a 、113b )を駆動軸
4に設け、スクロール圧縮機構部の主軸受12に供給し
たことにより、モータ室6の底部の吐出室油溜34と関
わりのない給油通路を形成することができ、その結電 
モータ室6を省スペースにして圧縮機の小型化を図るこ
とができも また 圧縮機を設置する際の傾斜角度を制
限する必要もなく、縦置き姿勢、横置き姿勢のいずれに
も対応できる圧縮機を実現することができも また 上
記実施例によれは 駆動軸4をモータ3の反圧機構部の
側に設けた上部フレーム126とスクロール圧縮機構部
とで支持し モータ3を収納するモータ室6を経由しな
い吐出ガスを上部フレーム126と密閉容器lの端部壁
とで形成する油分離室128に導入すると共に 上部フ
レーム126の軸受に開通する油受け142に向けて吐
出ガスを放出させ、油受け142で捕捉した潤滑油を上
部フレーム126の副軸受8とスクロール圧縮機構部の
主軸受12とに導く油路(螺旋状油溝41と軸方向油入
112a、  半径方向袖穴113a、113b)を駆
動軸4に設ζす、スクロール圧縮機構部の主軸受12に
供給すると共に 油室A78aにも供給した後、その潤
滑油を圧縮室に注入させたことにより、モータ室6の底
部に吐出室油溜34を省スペースにして圧縮機を小型化
することができも また 軸受摺動部の油膜形成や油膜
による圧縮室隙間の密封を図り、耐久性と高圧縮効率を
確保することができも また 上記実施例によれ1よ 
駆動軸4をモータ3の反圧機構部の側に設けた上部フレ
ーム126とスクロール圧縮機構部とで支持し モータ
3を収納するモータ室6を経由しない吐出ガスを上部フ
レーム126と密閉容器1の端部壁とで形成する油分離
室128に導入すると共に 上部フレーム126の軸受
に開通する油受け142に向けて吐出ガスを放出させ、
油受け142で捕捉した潤滑油を上部フレーム126の
副軸受8とスクロール圧縮機構部の主軸受12とに導く
油路(螺旋状油溝41と軸方向油入112a、  半径
方向袖穴113a 、113b )を駆動11i14に
設け、スクロール圧縮機構部の主軸受12に供給すると
共に 吐出圧力の作用するモータ室6の底部の吐出室油
溜34の潤滑油を圧縮機構部の主軸受12に合流給油し
たことにより、主軸受12への給油量を増加させること
ができも それによって、圧縮荷重の大部分を支持する
主軸受12への充分な給油が可能となり、主軸受12の
耐久性向上、軸受摺動部の摩擦抵抗を少なくして入力損
失を低減することができも なお上記実施例で(よ ス
クロール冷媒圧縮機について説明した力文 他の回転式
気体圧縮機についても同様の作用・効果が期待できも発
明の効果 上記実施例より明らかなように本発明(よ 圧縮機構部
と電動機とを密閉容器内にそれぞれ収納固定数 電動機
に連結する駆動軸を電動機の反圧機構部の側に設けた副
軸受部材と圧縮機構部とで支持し 副軸受部材を密閉容
器に接触させることなく電動機の積層板から成る固定子
の端部に高密度エネルギー溶接による薄肉ビード状に固
定したことにより、高密度エネルギーを利用した局部的
な溶接台により固定子の巻線への損傷および積層板に熱
歪を与えることがないので、外径の小さい固定子と副軸
受部材との溶接が可能となり、電動機の小型4V、  
圧縮機の小型化を図ることができもまた 駆動軸の回転
荷重を支持することにより生じる副軸受部材の半径方向
振動を、副軸受部材の外周部と電動機の固定子との薄肉
接合部で微少変形させて減衰し さらに 積層板間の微
少な滑り発生によっても減衰させることができも それ
により、駆動軸を電動機の両側で支持することによる振
動低減と併せて、副軸受部材の振動を密閉容器の内壁に
直接伝播させず 密閉容器の壁面の振動 密閉容器に接
続する外部配管系の振動とそれに伴う騒音発生を防止し
 静粛運転を実現することができへ また 本発明(よ
 圧縮機構部と電動機とを密閉容器内に収納固定し 電
動機に連結する駆動軸を電動機の反圧機構部の側に設け
た副軸受部材と圧縮機構部とで支持し 電動機を収納す
る電動機室を経由しない吐出気体を副軸受部材と密閉容
器の端部壁とで形成する油分離室に導入すると共に 副
軸受部材の軸受の近くに設けられ且つその軸受に開通す
る油受けに向けて吐出気体を放出させたことにより、油
分離室でその流れ方向を変える際に 電動機室を経由せ
ず潤滑油を分離しない吐出気体からその中に含まれる潤
滑油をその慣性力を利用して分離し その進行方向前方
の軸受の近くに讃けられた油受けに直接収集の比軸受に
供給することができも それによって、圧縮機底部の油
溜から潤滑油を導入することなく、油溜から離れた軸受
部に給油ポンプを必要とすることなく潤滑油を供給する
ことのできる独立した給油経路を構成することができる
の″′C−、電動機室電動部室油溜の省スペース化が可
能となり、圧縮機の小型化と潤滑油供給構成部品の簡素
化を図ることができる。また 本発明ζよ 圧縮機構部
と電動機とを密閉容器内に収納固定し 電動機に連結す
る駆動軸を電動機の反圧機構部の側に設けた副軸受部材
と圧縮機構部とで支持し 電動機を収納する電動機室を
経由しない吐出気体を副軸受部材と密閉容器の端部壁と
で形成する油分離室に導入すると共に 副軸受部材の軸
受の近くに設けられ且つその軸受に開通する油受けに向
けて吐出気体を放出させると共に 油分離室への吐出気
体導入開口部と油受けの油溜との間に油分離要素を配置
させたことにより、油分離室に流入してきた吐出気体を
油分離要素に衝突させ、潤滑油を付着させて効率よく捕
捉することができも 捕捉した潤滑油を下部の油溜に滴
下させると共番ヘ  吐出気体が油溜の近傍を通過する
のを阻止して、収集した潤滑油の飛散を防止L/[1滑
油確保による摺動部耐久性の向上を図ることができも 
また 本発明ζよ圧縮機構部と電動機とを密閉容器内に
収納固定し電動機に連結する駆動軸を電動機の反圧機構
部の側に設けた副軸受部材と圧縮機構部とで支持し電動
機を収納する電動機室を経由しない吐出気体を副軸受部
材と密閉容器の端部壁とで形成する油分離室に導入する
と共に 副軸受部材の軸受の近くに設けられ且つその軸
受に開通する油受けに向けて吐出気体を放出させると共
に 副軸受部材の軸受に支持される駆動軸の細部外周に
油受けの油溜に通じる油溝を設ζす、その油溝のポンプ
作用を利用して油溜の潤滑油を電動機室の圧縮機構部側
に排出させ、圧縮機外部に通じる吐出側開口部を電動機
室の反圧縮機構部側に設けたことにより、圧縮機外部の
配管系に排出する吐出気体の流路と潤滑油排出先とを隔
離して、吐出気体と潤滑油との再混合を阻止し 圧縮機
内潤滑油を確保して摺動部耐久性の向上を図ることがで
きも また 本発明4よ 圧縮機構部と電動機とを密閉
容器内に収納固定し 電動機の反圧縮機構部側と密閉容
器の端部との間に仕切り部材を配置して電動機を収納す
る電動機室の底部の油溜に通じる油分離空間を設け、電
動機室を経由しない吐出気体を油分離室の上部に導入す
ると共に 電動機の回転子の端部と仕切り部材との間の
空間に圧縮機の外部に通じる吐出管の開口部を配置し 
その開口部を回転子の端部に近づけたことにより、油分
離室で吐出気体から分離した潤滑油が電動機室の底部の
油溜に収集する一大 潤滑油を分離した吐出気体力文 
電動機の回転子の端部の近くに配置された吐出管に流入
しようとする服 吐出気体が回転子によって遠心拡散さ
れ 吐出気体中に残存する潤滑油を遠心分離することが
できると共に 吐出管に流入しようとする油分離室で分
離した潤滑油も遠心拡散することができるので、吐出気
体から分離された潤滑油が再び吐出気体に混入すること
がなく、圧縮機外部配管系への潤滑油流出を阻止して油
溜の潤滑油不足を防止し 圧縮機構部の摺動部への充分
な給油により摺動部耐久性を向上することができる。ま
た 本発明(よ 圧縮機構部と電動機とを密閉容器内に
収納固定し 電動機の反圧縮機構部側と密閉容器の端部
との間に仕切り部材を配置して電動機を収納する電動機
室の底部の油溜に通じる油分離室を設け、電動機室を経
由しない吐出気体を油分離室の上部に導入すると共に 
電動機の回転子の端部と仕切り部材との間の空間に圧縮
機の外部に通じる吐出管の開口部を配置し その開口部
を回転子の端部に近づけると共に 電動機に連結する駆
動軸を電動機の反圧機構部の側に設けた副軸受部材と圧
縮機構部とで支持し 副軸受部材が仕切り部材を兼ねた
ことにより、特別な構成部品を必要とすることなく、吐
出気体から分離した潤滑油を電動機の回転子の回転によ
る拡散作用とそれに伴う吐出気体への再混入を阻止し 
電動機室の底部の油溜に効果的に収集して潤滑油の確保
を図ることができも また 回転子が潤滑油を拡散させ
る際の入力増加を防止することができもまた 本発明(
よ 圧縮機構部と電動機とを密閉容器内に収納固定し 
電動機に連結する駆動軸を電動機の反圧機構部の側に設
けた副軸受部材と圧縮機構部とで支持し 電動機を収納
する電動機室を経由しない吐出気体を副軸受部材と密閉
容器の端部壁とで形成する油分離室に導入すると共に 
副軸受部材の軸受の近くに設けられ且つその軸受に開通
する油受けに向けて吐出気体を放出させると共に 油受
けの潤滑油を駆動軸を支持する副軸受部材の軸受と圧縮
機構部の軸受部とに供給したことにより、電動機室の底
部の油溜と関わりのない給油通路を形成することができ
、その粘気 電動機室を省スペースにして圧縮機の小型
化を図ることができも また 圧縮機を設置する際の傾
斜角度を制限する必要もなく、縦置き姿勢 横置き姿勢
のいずれにも対応できる圧縮機を実現することかできる
。また 本発明1よ 圧縮機構部と電動機とを密閉容器
内に収納固定Lt電動機連結する駆動軸を電動機の反圧
機構部の側に設けた副軸受部材と圧縮機構部とで支持し
 電動機を収納する電動機室を経由しない吐出気体を副
軸受部材と密閉容器の端部壁とで形成する油分離室に導
入すると共に 副軸受部材の軸受の近くに設けられ且つ
その軸受に開通する油受けに向けて吐出気体を放出させ
ると共に 油受けの潤滑油を駆動軸を支持する副軸受部
材の軸受と圧縮機構部の軸受部とに供給し 圧縮機構部
の軸受部に供給した潤滑油を圧縮室に注入させたことに
より、電動機室の底部の油溜を省スペースにして圧縮機
を小型化することができも また 軸受摺動部の油膜形
成や油膜による圧縮室隙間の密封を図り、耐久性と高圧
縮効率を確保することができも また 本発明(よ圧縮
機構部と電動機とを密閉容器内に収納固定し電動機に連
結する駆動軸を電動機の反圧機構部の側に設けた副軸受
部材と圧縮機構部とで支持し電動機を収納する電動機室
を経由しない吐出気体を副軸受部材と密閉容器の端部壁
とで形成する油分離室に導入すると共に 副軸受部材の
軸受の近くに設けられ且つその軸受に開通する油受けに
向けて吐出気体を放出させると共に 油受けの潤滑油を
駆動軸を支持する副軸受部材の軸受と圧縮機構部の軸受
部とに供給し 吐出圧力の作用する電動機室底部の油溜
の潤滑油を圧縮機構部の軸受部に合流給油したことによ
り、圧縮機構部の軸受部への給油量を増加させることが
できも それによって、圧縮荷重の大部分を支持する圧
縮機構部の軸受部への充分な給油が可能となり、軸受部
の耐久性向上 軸受摺動部の摩擦抵抗を少なくして入力
損失を低減することができも
Then, from the downstream side of the evaporator of the refrigeration cycle connected to the compressor, the suction refrigerant power of a gas-liquid mixture containing lubricating oil branches from the suction pipe 138 and flows into the suction chamber 17 and the accumulator chamber 46. Straight suction pipe 1 through which gas flows into the suction chamber 17 and the accumulation lake chamber 46
Due to the difference in inertia of the suction refrigerant flowing inside the suction chamber 1
The refrigerant gas flows into the accumulator chamber 7 and the unevaporated refrigerant flows into the accumulator chamber 46. Accumulator chamber 46
The liquid refrigerant and lubricating oil that have been separated from the refrigerant gas due to the weight difference between the gas and liquid and the inertial force when changing the direction of inflow are stored at the bottom of the accumulator chamber 46.
The collected suction refrigerant gas is sucked up into the suction hole 43 in an atomized state through the oil suction hole 139 due to the negative and positive generated when it passes through the suction pipe 141, and is mixed into the suction refrigerant gas again.a Gas-liquid separated suction refrigerant Gas ζ friend inhalation chamber 1
7. It is confined in the compression chamber via the first compression chambers 61a, 61b formed between the orbiting scroll 18 and the fixed scroll 15, and is sequentially transferred to the second compression chambers 51a, 51b, and the third compression chambers 60a, 60b. The oil is discharged from the central discharge port 16 through the check valve device 50 into the discharge chamber 2 and expands into the oil separation chamber 128 via the discharge bypass pipe 127. The discharged refrigerant gas that has flowed into the oil separation chamber 128 collides with the oil separation element 143 to separate the lubricating oil, and then flows into the space between the rotor 3a and the upper frame 126 through the outer periphery of the upper frame 126. The lubricating oil is also separated by the centrifugal diffusion effect of the upper balance weight 75 of the rotor 3a, and is discharged from the discharge pipe 31 to the outside of the compressor. Flowing down along the inner space of the wire bundle
The oil is collected in the discharge chamber oil sump 34. The lubricating oil separated in the oil separation chamber 128 is collected in the lower discharge chamber oil sump 34 via the cooling passage 35 on the outer periphery of the stator 3b.The lubricating oil captured in the oil separation element 143 is collected in the lower oil sump After the sliding surface of the secondary bearing 8 is lubricated through the spiral oil groove 41 provided on the small end shaft 4d of the drive shaft 4, the oil is collected in the discharge chamber oil sump 34 at the bottom of the motor chamber 6. The lubricating oil in the oil sump 144 is protected by the spongy fiber structure of the oil separation element 143 and is prevented from being diffused by the discharged refrigerant gas flowing into the oil separation space 128 (1). Axial oil hole 112a and radial oil hole 113a, 1 provided in oil C drive shaft 4
13b to the thrust bearing section 13. The upper sliding surface of the main bearing 12 is lubricated and the bearing gap of the main bearing 12 is sealed with an oil film to prevent refrigerant gas from the motor chamber 6 from entering the main bearing 12. The release gap No. 27 on the back side of the thrust bearing 20, which communicates with the discharge chamber oil sump 34 via the filter 149゜ oil filler A38a, is filled with lubricating oil on which the discharge pressure acts, but its back pressure bias and the elasticity of the seal ring 70 Due to the force, the thrust bearing 20 attaches the spacer 14 to the coupling surface of the end plate 15b of the fixed scroll 15 with the main body frame 5.
0 and thereby the orbiting scroll 1
Although the lap support disk 18c of No. 8 is held between the end plate sliding surface 15b2 and the thrust bearing 20, the lubricating oil in the discharge chamber oil reservoir 34 flows into the back pressure chamber 39 through a path described later, gradually increasing the back pressure chamber pressure. Takatori The back pressure presses the wrap support disk 18c of the orbiting scroll 18 against the end plate sliding surface 15b2 of the fixed scroll 15, and the fixed scroll wrap 15
The tip of a and the lap support disk 18C of the orbiting scroll 18
As a result, the compression chamber is sealed, and the suction refrigerant gas is efficiently compressed, allowing stable operation to continue. During compression, when refrigerant gas leaks into the adjacent low-pressure compression chamber, it flows into the tip seal groove 98, and the back pressure of the gas presses the tip seal 98a against the side surface of the bottom compression chamber of the tip seal groove 98a and the fixed scroll 15. , to seal the compression gap. When the compressor is stopped, the orbiting scroll 18 momentarily moves in reverse rotation due to the reverse flow based on the pressure difference of the refrigerant gas in the compression chamber. The refrigerant gas flows backward from the compression chamber to the suction chamber 17. The orbiting scroll 18 is as shown in Fig. 13.
Although the first compression chambers 61a and 61b are stopped at the turning angle in which they communicate with the suction chamber 17, the refrigerant gas in the compression chambers flows back into the suction chamber 17, causing the discharge port 16
The refrigerant gas pressure in the discharge port 16 and the discharge chamber 2 suddenly decreased.
The valve body 50b is connected to the discharge port 1 due to the refrigerant gas pressure difference between the
6 to prevent continuous backflow of discharged refrigerant gas from the discharge chamber 2 to the compression chamber. The first compression chambers 61a, 61b and the back pressure chamber 39, which communicate intermittently with the suction chamber 17, are the first compression chamber 6.
1a and 61b are in communication with the suction chamber 17 only when they are in communication with the suction chamber 17. At the same time, the thrust bearing 20 and the lap support disk 18c are sealed with a lubricating oil film, so that the compression chamber During compression, refrigerant gas does not flow back into the back pressure chamber 39 during compression. Liquid compression is likely to occur at the beginning of compressor cold startup, and a thrust force acts on the orbiting scroll 18 in the direction opposite to the discharge port 16 due to the compressed refrigerant pressure in the compression chamber. -Thick Back pressure chamber at the beginning of compressor cold startup 39 pressure is low, orbiting scroll 18
The lap support disk 18c separates from the head plate sliding surface 15b2 and retreats to the thrust bearing 20, where it is supported. If a gap is created between the wrap support disk 18c and the tip of the fixed scroll wrap 15a, the pressure in the compression chamber decreases and the pressure in the compression chamber decreases at the initial stage of startup. If the pressure in the compression chamber suddenly rises abnormally due to liquid compression occurring in the compression chamber during continuous operation, the thrust force acting on the orbiting scroll 18 may This becomes larger than the back pressure force acting on the back surface, and even though the orbiting scroll 18 moves in the axial direction and is supported by the thrust bearing 20, the seal of the compression chamber is released in the same manner as described above, and the pressure in the compression chamber decreases. Although the load decreases, the lubricating oil in the discharge chamber oil sump 34 at the initial stage of cold start of the compressor is transferred to the oil chamber A78a via the oil filler A38a by the screw pump action of the spiral oil grooves 41a and 41b provided on the drive shaft 4. A part of the anti-lubricating oil passes through the spiral oil groove 41b and lubricates the sliding surface of the swing bearing 18b.
The pressure is reduced from the oil chamber B78b through the small hole 40. Back pressure chamber 3
The lubricating oil supplied to the main bearing 12 by the helical oil groove 41a lubricates each sliding surface of the thrust bearing part 13, and then is collected again in the discharge chamber oil sump 34. Although the bearing gap is sealed by the oil film of the lubricating oil supplied to the thrust bearing part 13, the pressure in the motor chamber 6 increases as time passes after the compressor starts cold, and the lubricating oil in the discharge chamber oil sump 34 increases. The differential pressure between the oil and the back pressure chamber 39 causes oil to be sucked into the oil chamber A78a and is supplied to the back pressure chamber 39 along with the screw pump action of the spiral oil grooves 41a and 41b.
Even if the pressure of 9 is increased sequentially, in an arrangement in which the center of the compression chamber, the center of the orbiting bearing 18e, and the center of the annular ring 94 all coincide with each other, the annular ring 94 makes an orbiting motion together with the orbiting scroll 18, so that the inertia at that time is Due to the force, it tends to jump out of the annular seal groove 95 provided in the pivot boss portion] 8e. Thereby, the annular ring 94 is pressed against the outer surface of the main body frame 5 and the annular seal groove 95, and
The annular seal groove 95 is formed by the oil scraping action of the annular ring 94.
Lubricating oil is forced between the annular ring 94 and the annular ring 94, and the annular ring 94 is also pressed by the dynamic pressure generated at that time, sealing the space between the oil chamber A78a and the back pressure chamber 39. Further, the annular ring 94 is pressed against the outer surface of the annular seal groove 95 due to the pressure difference between the back pressure chamber 39 and the oil chamber A78a, so that the seal between the rain spaces is more secure. The sliding surface between the annular ring 94 and the main body frame 5 is sealed by the oil film of lubricating oil retained in the oil groove 94a provided on the surface of the ring 94, and the wear and sliding resistance of the sliding surface is reduced. Lubricating oil pressure in oil chamber A78a and back pressure chamber 3
The orbiting scroll 18 is evenly biased with back pressure toward the fixed scroll 15 by the lubricating oil pressure of 9, and the lap support disk 18c and the end plate sliding surface 15b2 slide smoothly and the deformation of the lap support disk 18c is prevented. Even if the axial clearance of the compression chamber is minimized, the lubricating oil that has flowed into the back pressure chamber 39 will intermittently flow into the outer peripheral space 37 via the curved groove 91 provided in the thrust bearing 20, and further flow into the end plate 15b. Oil filler C38c provided in oil damper chamber 145. The pressure is gradually reduced through the small-diameter injection hole 52 and flows into the second compression chambers 51a, 51b. The lubricating oil injected into the compression chamber together with the suction refrigerant gas joins the lubricating oil and seals the small gap between the compression chambers in contact with an oil film to prevent compressed refrigerant gas leakage. While being lubricated, the compressed refrigerant gas passes through the discharge port 16 to the discharge chamber 2.The discharge bypass pipe 12
7. In the oil supply route from the discharge chamber oil 34 to the second compression chambers 51a and 51b via the back pressure chamber 39, the back pressure chamber 39 maintains an appropriate balance between the discharge pressure and the suction pressure. The second compression chamber 51 maintains an intermediate pressure.
The injection holes 52a and 52b openings ζ of a and 51b generate a force t that is instantaneously higher than the pressure in the back pressure chamber 39, which changes in accordance with the pressure in the motor chamber 6. The lap support disk 18c closes the open end of the oil filler 91 of the thrust bearing 20, and the lap support disk I
Since the sliding surface between Bc and the thrust bearing 20 is sealed with an oil film, the refrigerant gas during compression does not flow back into the back pressure chamber 39, and the average pressure in the second compression chambers 51a and 51b is The pressure L1 is lower than the pressure in the back pressure chamber 39. Also, as described above, the orbiting scroll 18 at the initial stage of starting the compressor is separated from the fixed scroll 15 and supported by the thrust bearing 20 which receives the elastic force of the seal ring 70. Lubricating oil supplied to the back pressure chamber 39 under a differential pressure after the compressor has started and stabilized (upper) A biasing force of an intermediate pressure is applied to the orbiting scroll 18 to press the lap support disk 18c against the end plate 15b, and the sliding surface is coated with an oil film. The lubricating oil in the back pressure chamber 39 is present in the gap between the sliding surfaces of the thrust bearing 20 and the lap support disk 18c, and the gap is sealed between the outer peripheral space 37 and the suction chamber 17. In addition, because the compression ratio of the scroll compressor is constant, when the suction refrigerant gas pressure is relatively high and the compression chamber pressure becomes very high, such as immediately after startup during cooling, or abnormal liquid compression occurs. For example, when the orbiting scroll 18 separates from the fixed scroll 15 and is supported by the thrust bearing 20 as described above,
The thrust bearing 20 (Y), which is biased with back pressure, cannot support the abnormally increased compression chamber pressure load and retreats in the direction of decreasing the release gap 27, causing the wrap support disk 18c of the orbiting scroll 18 and the fixed scroll of the fixed scroll 15 to The axial gap between the end of the wrap 15a and the end of the wrap 15a expands. This causes a lot of leakage between the compression chambers, and the pressure in the compression chamber drops suddenly during compression. It instantly returns to its original position and the back pressure chamber 39
The pressure dropped significantly and stable operation resumed. A force t that also expands the axial dimension between the tip of the orbiting scroll wrap 18a and the fixed scroll 15. The tip seal 98a closes the fixed scroll 15 by the gas pressure on its back surface. Since the compressed refrigerant gas is pressed to the side of In the above embodiment, the lubricating oil in the discharge chamber oil sump 34 is introduced into the release gap 27 provided on the back surface of the thrust bearing 20. Introducing the compressed refrigerant during the final compression stroke, or introducing the discharged refrigerant gas from the area where the compression chamber and the discharge boat 16 communicate during the final compression stroke into the release gap 27.
Furthermore, in the above embodiment, the sliding gap between the lap support disk 18c of the orbiting scroll 18 and the thrust bearing 20 is sealed only with an oil film of lubricating oil.
As proposed in Figure 3 and Figure 4 of the specification of No. 159996, the annular ring (82) is wrapped around the support disk 18c.
The sealing performance of the sliding gap between the back pressure chamber 39 and the outer peripheral space 37 can be improved by attaching it to the back side of the As explained above, the unevaporated refrigerant among the refrigerant returned from the evaporator of the refrigeration cycle flows into the accumulator chamber 246 as in the case of the first embodiment, and the refrigerant gas flows into the suction chamber 17.
flows into. The unevaporated refrigerant that has flowed into the accumulator chamber 246 collides with the baffle 148 and is separated into refrigerant gas with low specific gravity and liquid refrigerant and lubricating oil with high specific gravity.
The liquid refrigerant and lubricating oil are collected in the low pressure oil reservoir 46b at the bottom.
The lubricating oil and liquid refrigerant stored in the low-pressure oil reservoir 46b are inhaled together with the suction refrigerant gas in an atomized state through the oil suction hole 139a due to negative pressure generated when the refrigerant gas flows into the suction chamber F from the upper open end of the suction pipe 141a. Even if the refrigerant gas is sucked into chamber 17, the refrigerant gas sucked in from both sides of suction chamber I7 is
The compressor is discharged into the discharge chamber 202 and flows into the motor chamber 206 through an open passage between the inner wall of the closed container 201 and the outer periphery of the main body frame 205, and the discharge bypass pipe 13.
As in the case of the first embodiment, the lubricating oil in the discharged gas captured by the oil separation element 243 is collected in the oil sump 244 and the drive shaft 20
The motor chamber 206 on the side closer to the compression mechanism section through the spiral oil groove 241 and vertical groove 146 provided in the small end shaft 204d of No. 4
The other operations such as lubricating the sliding surface of the auxiliary bearing 208 during the passage are similar to those in the first embodiment and will not be described here. Next, the operation of the third embodiment will be explained with reference to FIG. 15. The discharged refrigerant gas discharged into the discharge chamber 302 (flows into the motor storage space through the passage between the outer periphery of the main body frame 305 and the inner wall of the sealed container 301, and also flows into the oil separation chamber 128b through the discharge bypass pipe 138b). The lubricating oil separated from the discharge gas when changing the flow direction and the lubricating oil separated when colliding with the oil separation element 343 are collected in the oil sump 344 of the oil receiver 342 at the bottom. Since it is the same as in the second embodiment,
Although the explanation is omitted, as described above, according to the above embodiment, the scroll compression mechanism section and the motor (electric motor) 3 are placed in the closed container 1.
A drive shaft 4 is housed and fixed inside the drive shaft and connected to the motor 3.
The upper frame 12 is provided on the side of the counterpressure mechanism of the motor 3.
6 and the main body frame 5 of the scroll compression mechanism section, and the upper frame 126 is attached to the end of the stator 3b which is cut out from the laminated plate of the motor 3 without contacting the inner wall of the closed container 1 by electron beam welding or laser welding. By fixing the bead 137 in a thin bead 137 by high-density energy welding as represented by , local welding noise using high-density energy can cause damage to the windings of the stator 3b and thermal distortion to the laminate. Since there is no stator 3 with a small outer diameter,
b and the upper frame 126 can be welded, making it possible to downsize the motor 3 (1) and downsize the compressor. In addition, the radial vibration of the upper frame 126 caused by supporting the rotational load of the drive shaft 4 can be reduced. , upper frame 12
Attenuation is caused by slight deformation at the thin joint between the outer periphery of motor 6 and stator 3b of motor 3, and further attenuation can be achieved by slight slippage between the laminated plates. In addition to reducing vibration by supporting on both sides, the vibration of the upper frame 126 is not directly propagated to the inner wall of the closed container 1, and the vibration of the wall surface of the closed container 1, the vibration of the external piping system connected to the closed container l, and the accompanying vibrations are prevented. According to the above embodiment, the scroll compression mechanism and the motor 3 are housed and fixed in the airtight container 1, and the drive shaft 4 connected to the motor 3 is connected to the motor 3. Upper frame 126 provided on the side of the counterpressure mechanism section
The upper frame 12 supports the upper frame 12 and the scroll compression mechanism so that the discharged gas does not pass through the motor chamber 6 that houses the motor 3.
The gas is introduced into the oil separation chamber 128 formed by the end wall of the sealed container 1 and the end wall of the closed container 1, and is discharged toward an oil receiver 142 provided near the sub-bearing 8 of the upper frame 1.26 and open to the sub-bearing 8. By releasing oil, the oil separation chamber 128
When changing the flow direction, the lubricating oil contained in the discharged gas is separated from the discharge gas without passing through the motor chamber 6 and the lubricating oil is not separated, using its inertia force, and the lubricating oil is separated from the discharged gas near the auxiliary bearing 8 at the front in the direction of movement. The lubricating oil can be supplied directly to the oil sump 142 provided at the bottom of the compressor, without introducing lubricating oil from the oil sump at the bottom of the compressor. Since an independent oil supply path can be constructed that can supply lubricating oil without requiring a Component parts can be simplified. Also, according to the above example, there is an oil separation chamber! By arranging the oil separation element 143 between the discharge gas introduction opening to 28 and the oil reservoir 144 of the oil receiver 142 provided in the upper frame 126, the oil separation chamber 12
The discharged refrigerant gas that has flowed into the refrigerant gas 8 collides with the oil separation element 143 so that lubricating oil can be deposited and efficiently captured. The captured lubricating oil is dripped into the oil sump 144 at the bottom, and the discharged refrigerant gas is prevented from passing near the oil sump 144 to prevent the collected lubricating oil from scattering, thereby increasing the durability of the sliding parts by securing the lubricating oil. Further, according to the above embodiment, a spiral oil is formed on the outer peripheral surface of the small end shaft 204d of the drive shaft 204 supported by the sub-bearing 208 of the auxiliary frame 126a, and is connected to the oil sump 244 of the oil pan 242. Groove 2
41 is provided, and by utilizing the screw pump action of the spiral oil groove 241, the lubricating oil in the oil reservoir 244 is discharged to the scroll compression mechanism side of the motor chamber 206 through the vertical groove 146 provided in the drive shaft 204, and compression is performed. By providing the opening of the discharge pipe 31 leading to the outside of the machine on the side opposite to the compression mechanism part of the motor chamber 6, the flow path of the discharge gas discharged to the piping system outside the compressor and the lubricating oil discharge destination are isolated. , it is possible to prevent the remixing of the discharged gas and the lubricating oil, secure the lubricating oil inside the compressor, and improve the durability of the sliding parts. A discharge chamber oil sump 34 is located at the bottom of the motor chamber 6, which is housed and fixed in a sealed container l, and in which the upper frame 126 is disposed between the anti-compression mechanism side of the motor 3 and the end of the sealed container l. Oil separation chamber 12 leading to
8 is provided to introduce the discharged gas that does not pass through the motor chamber 6 into the upper part of the oil separation chamber 128, and also to introduce the discharge gas into the upper part of the oil separation chamber 128.
The opening of the discharge pipe 31 leading to the outside of the compressor is arranged in the space between the end of the oil separation chamber 126 and the upper frame 126, and the opening of the discharge pipe 31 is brought close to the end of the rotor 3a.
The lubricating oil separated from the discharge gas at step 8 is collected in the discharge chamber oil sump 34 at the bottom of the motor chamber 6. When the discharge gas is about to flow into the discharge pipe 31, it is centrifugally diffused by the rotor 3a, and the lubricating oil remaining in the discharge gas can be centrifugally separated, and the lubricant separated in the oil separation chamber 128, which is about to flow into the discharge pipe 31, Since the oil can also be centrifugally diffused, the lubricating oil separated from the discharge gas will not be mixed into the discharge gas again, preventing the lubricating oil from flowing into the compressor external piping system, and lubricating the discharge chamber oil sump 34. It is also possible to prevent oil shortage and improve the durability of the sliding parts by supplying sufficient oil to the main bearing 12 and other sliding parts. 4 is supported by an upper frame 126 provided on the side of the reaction pressure mechanism of the motor 3 and the main bearing 12 of the scroll compression mechanism. By also serving as a partition member that partitions the side of the chamber 128, the lubricating oil separated from the discharged gas can be diffused by the rotation of the rotor 3a of the motor 3 and the resulting discharged gas, without the need for special components. To secure lubricating oil by preventing re-mixing into the motor chamber 6 and effectively collecting it in a discharge chamber oil sump 34 at the bottom of the motor chamber 6 via a cooling passage 35 provided on the outer periphery of the stator 3b of the motor 3. In addition, it is possible to prevent an increase in the input when the rotor 3a diffuses the lubricating oil.Also, according to the above embodiment, the upper frame 126 in which the drive shaft 4 is provided on the side of the counterpressure mechanism part of the motor 3 and the The discharged gas that does not pass through the motor chamber 6 that is supported by the scroll compression mechanism and houses the motor 3 is introduced into the oil separation chamber 128 formed by the upper frame 126 and the end wall of the closed container 1.
The discharged gas is released toward the oil pan 142 opened to the bearing 26, and the lubricating oil captured by the oil pan 142 is transferred to the secondary bearing 8 of the upper frame 126 and the main bearing 1 of the scroll compression mechanism section.
2 (the spiral oil groove 41 and the axial sleeve hole 112a)
, radial oil fillers 113a, 113b) are provided on the drive shaft 4 and supplied to the main bearing 12 of the scroll compression mechanism section, thereby forming an oil supply passage that is not related to the discharge chamber oil sump 34 at the bottom of the motor chamber 6. can, its electrification
It is possible to reduce the size of the compressor by saving space in the motor room 6, and there is no need to limit the angle of inclination when installing the compressor, and the compressor can be placed either vertically or horizontally. In addition, according to the above embodiment, the drive shaft 4 is supported by the upper frame 126 provided on the side of the reaction pressure mechanism of the motor 3 and the scroll compression mechanism, and the motor chamber in which the motor 3 is housed. 6 is introduced into the oil separation chamber 128 formed by the upper frame 126 and the end wall of the closed container l, and the discharged gas is released toward the oil receiver 142 that opens to the bearing of the upper frame 126. Oil passages (spiral oil groove 41, axial oil well 112a, radial sleeve holes 113a, 113b) that guide the lubricating oil captured by the oil receiver 142 to the sub bearing 8 of the upper frame 126 and the main bearing 12 of the scroll compression mechanism. ) is supplied to the main bearing 12 of the scroll compression mechanism installed on the drive shaft 4, and also supplied to the oil chamber A78a, and the lubricating oil is injected into the compression chamber, so that the lubricating oil is injected into the bottom of the motor chamber 6. The compressor can be downsized by saving space in the oil sump 34 in the discharge chamber, and durability and high compression efficiency can be ensured by forming an oil film on the sliding parts of the bearings and sealing gaps in the compression chamber with the oil film. Also, according to the above example,
The drive shaft 4 is supported by an upper frame 126 provided on the side of the counterpressure mechanism of the motor 3 and a scroll compression mechanism, and the discharged gas that does not pass through the motor chamber 6 that houses the motor 3 is transferred to the upper frame 126 and the closed container 1. The discharged gas is introduced into the oil separation chamber 128 formed by the end wall and discharged toward the oil receiver 142 that opens to the bearing of the upper frame 126.
Oil passages (spiral oil groove 41, axial oil well 112a, radial sleeve holes 113a, 113b) that guide the lubricating oil captured by the oil receiver 142 to the sub bearing 8 of the upper frame 126 and the main bearing 12 of the scroll compression mechanism. ) is provided in the drive 11i14 to supply lubricating oil to the main bearing 12 of the scroll compression mechanism, and also to supply lubricating oil from the discharge chamber oil sump 34 at the bottom of the motor chamber 6, where the discharge pressure acts, to the main bearing 12 of the compression mechanism. By doing so, it is possible to increase the amount of oil supplied to the main bearing 12. As a result, it becomes possible to supply sufficient oil to the main bearing 12, which supports most of the compressive load. Although it is possible to reduce input loss by reducing the frictional resistance of the moving parts, it should be noted that similar effects and effects are expected for other rotary gas compressors as well. Effects of the Invention As is clear from the above embodiments, the present invention (1) The compression mechanism section and the electric motor are each housed in a sealed container. It is supported by the sub-bearing member and the compression mechanism, and the sub-bearing member is fixed in a thin bead shape by high-density energy welding to the end of the stator made of laminated plates of the motor without contacting the sealed container. The localized welding table using energy does not cause damage to the stator windings or thermal distortion to the laminated plates, making it possible to weld the stator with a small outer diameter and the sub-bearing member, making it possible to weld the motor. small 4V,
The compressor can be downsized, and the radial vibration of the sub-bearing member caused by supporting the rotational load of the drive shaft can be minimized at the thin joint between the outer periphery of the sub-bearing member and the stator of the electric motor. It can be damped by deformation, and it can also be damped by slight slippage between the laminated plates.As a result, in addition to reducing vibration by supporting the drive shaft on both sides of the motor, the vibration of the sub-bearing member can be suppressed in a sealed container. It is possible to achieve quiet operation by preventing vibrations on the wall surface of the sealed container, vibrations in the external piping system connected to the sealed container, and the accompanying noise generation without directly propagating the vibrations to the inner wall of the sealed container. is housed and fixed in a sealed container, and the drive shaft connected to the electric motor is supported by a sub-bearing member and a compression mechanism provided on the side of the reaction pressure mechanism of the electric motor, so that the discharged gas does not go through the electric motor room where the electric motor is housed. By introducing the discharged gas into the oil separation chamber formed by the sub-bearing member and the end wall of the sealed container, and releasing the discharged gas toward the oil receiver provided near the bearing of the sub-bearing member and open to the bearing. When changing the flow direction in the oil separation chamber, the lubricating oil contained in the discharged gas is separated from the discharge gas without passing through the motor chamber and the lubricating oil is not separated, using its inertia force, and the lubricating oil is separated from the bearing in the forward direction in the direction of movement. A nearby oil sump can be used to supply the bearing directly to the collection bearing, thereby allowing the oil supply pump to be placed in the bearing section away from the oil sump, without introducing lubricating oil from the oil sump at the bottom of the compressor. It is possible to construct an independent oil supply path that can supply lubricating oil without the need for lubricating oil, and it is possible to save space in the motor room and motor compartment oil sump, making the compressor more compact and lubricating it. The oil supply components can be simplified.Also, according to the present invention, the compression mechanism section and the electric motor are housed and fixed in a sealed container, and the drive shaft connected to the electric motor is provided on the side of the counterpressure mechanism section of the electric motor. The discharged gas, which is supported by the sub-bearing member and the compression mechanism section and does not pass through the motor chamber housing the electric motor, is introduced into the oil separation chamber formed by the sub-bearing member and the end wall of the sealed container, and the bearing of the sub-bearing member is By discharging the discharged gas toward an oil pan that is provided nearby and opening into the bearing, and by arranging an oil separation element between the discharge gas introduction opening to the oil separation chamber and the oil sump in the oil pan. However, it is possible to make the discharged gas that has flowed into the oil separation chamber collide with the oil separation element, make the lubricating oil adhere to it, and capture it efficiently. This prevents the collected lubricating oil from scattering by preventing it from passing near the oil sump.
Further, according to the present invention ζ, the compression mechanism section and the electric motor are housed and fixed in a closed container, and the drive shaft connected to the electric motor is supported by the compression mechanism section and an auxiliary bearing member provided on the side of the counterpressure mechanism section of the electric motor. The discharged gas that does not go through the housing motor chamber is introduced into the oil separation chamber formed by the sub-bearing member and the end wall of the sealed container, and the oil receiver is provided near the bearing of the sub-bearing member and opens into the bearing. At the same time, an oil groove leading to the oil sump of the oil sump is installed on the outer periphery of the drive shaft supported by the bearing of the sub-bearing member. By discharging lubricating oil to the compression mechanism side of the motor room and providing a discharge side opening leading to the outside of the compressor on the side opposite to the compression mechanism part of the motor room, the amount of discharged gas discharged to the piping system outside the compressor is reduced. By isolating the flow path and the lubricating oil discharge destination, it is possible to prevent remixing of the discharged gas and the lubricating oil, thereby securing the lubricating oil inside the compressor and improving the durability of the sliding parts. The compression mechanism part and the electric motor are housed and fixed in a sealed container, and a partition member is placed between the side of the motor opposite to the compression mechanism part and the end of the sealed container, and the oil sump at the bottom of the motor room where the motor is housed is placed. An oil separation space that communicates with the outside of the compressor is provided, and the discharge gas that does not pass through the motor room is introduced into the upper part of the oil separation room, and an opening of a discharge pipe that leads to the outside of the compressor is provided in the space between the end of the motor rotor and the partition member. place the parts
By placing the opening close to the end of the rotor, the lubricating oil separated from the discharged gas in the oil separation chamber is collected in the oil sump at the bottom of the motor room.
Clothes that are about to flow into the discharge pipe located near the end of the rotor of the motor.The discharge gas is centrifugally diffused by the rotor, and the lubricating oil remaining in the discharge gas can be centrifugally separated and flowed into the discharge pipe. Since the lubricating oil separated in the oil separation chamber can also be centrifugally diffused, the lubricating oil separated from the discharged gas will not be mixed into the discharged gas again, and this will prevent the lubricating oil from leaking into the piping system outside the compressor. This prevents a lack of lubricating oil in the oil sump, and by supplying sufficient oil to the sliding parts of the compression mechanism, it is possible to improve the durability of the sliding parts. In addition, according to the present invention, the compression mechanism section and the electric motor are housed and fixed in a sealed container, and a partition member is disposed between the side of the motor opposite to the compression mechanism section and the end of the sealed container, and the bottom of the motor room houses the electric motor. An oil separation chamber that communicates with the oil sump is installed, and the discharged gas that does not go through the motor room is introduced into the upper part of the oil separation chamber.
The opening of the discharge pipe leading to the outside of the compressor is arranged in the space between the end of the rotor of the electric motor and the partition member, and the opening of the discharge pipe leading to the outside of the compressor is brought close to the end of the rotor. The auxiliary bearing member provided on the side of the counterpressure mechanism part and the compression mechanism part support the lubrication mechanism, and the auxiliary bearing member also serves as a partition member, allowing the lubrication to be separated from the discharged gas without the need for special components. This prevents oil from being diffused by the rotation of the motor rotor and from being remixed into the discharged gas.
The present invention (
Store and secure the compression mechanism and electric motor in a sealed container.
A drive shaft connected to the electric motor is supported by a sub-bearing member provided on the side of the counter-pressure mechanism part of the motor and a compression mechanism part, and the discharged gas that does not go through the motor chamber that houses the electric motor is transferred to the sub-bearing member and the end of the airtight container. Introduced into the oil separation chamber formed by the wall and
The discharge gas is discharged toward an oil receiver that is provided near the bearing of the sub-bearing member and is open to the bearing, and the lubricating oil in the oil receiver is transferred to the bearing of the sub-bearing member that supports the drive shaft and the bearing of the compression mechanism section. By supplying the oil to the motor compartment, it is possible to form an oil supply passage that is unrelated to the oil sump at the bottom of the motor room. There is no need to limit the angle of inclination when installing the compressor, and it is possible to realize a compressor that can be placed either vertically or horizontally. In addition, according to the present invention, the compression mechanism section and the electric motor are housed and fixed in a closed container.The drive shaft connecting the Lt electric motor is supported by the compression mechanism section and an auxiliary bearing member provided on the side of the counterpressure mechanism section of the electric motor, and the electric motor is housed. The discharged gas that does not go through the motor chamber is introduced into the oil separation chamber formed by the sub-bearing member and the end wall of the sealed container, and is directed to the oil receiver provided near the bearing of the sub-bearing member and open to the bearing. At the same time, the lubricating oil in the oil pan is supplied to the bearing of the auxiliary bearing member supporting the drive shaft and the bearing of the compression mechanism, and the lubricating oil supplied to the bearing of the compression mechanism is injected into the compression chamber. This makes it possible to save space in the oil sump at the bottom of the motor room and downsize the compressor.It also forms an oil film on the sliding parts of the bearings and seals the gap in the compression chamber with the oil film, resulting in improved durability and high performance. Compression efficiency can be ensured, and the present invention also provides an auxiliary bearing member in which the compression mechanism and the electric motor are housed and fixed in an airtight container, and the drive shaft connected to the electric motor is provided on the side of the counterpressure mechanism of the electric motor. Introducing the discharged gas that does not go through the motor chamber supported by the compression mechanism part and housing the electric motor into the oil separation chamber formed by the sub-bearing member and the end wall of the sealed container, and provided near the bearing of the sub-bearing member. Further, the discharge gas is released toward the oil receiver opened to the bearing, and the lubricating oil in the oil receiver is supplied to the bearing of the auxiliary bearing member supporting the drive shaft and the bearing of the compression mechanism part, and the electric motor is subjected to the discharge pressure. By supplying the lubricating oil from the oil sump at the bottom of the chamber to the bearing of the compression mechanism, the amount of oil supplied to the bearing of the compression mechanism can be increased, thereby supporting most of the compression load. Enables sufficient oil supply to the bearing part of the compression mechanism, improving the durability of the bearing part.It also reduces input loss by reducing the frictional resistance of the sliding part of the bearing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例におけるスクロール冷媒
圧縮機の縦断面は 第2図は同圧縮機における主要部品
の分解斜視@ 第3図は同圧縮機における吐出ポート部
に配置した逆止弁装置の要部断面@ 第4図〜第6図は
それぞれ第3図における逆止弁装置の構成部品の斜視は
 第7図(a)。 (b)は同圧縮機におけるバランスウェイトの外観飄第
8図は同圧縮機における主要軸受部の要部断面& 第9
図は同圧縮機におけるシール部品の斜視は 第10図は
同圧縮機におけるスラスト軸受部の要部断面は 第11
図は第1図における電動機側の空間と吐出室側の空間と
をシールするためのシール部品の斜視@ 第12図は電
動機の固定子と補助軸受部材との結合部の断面は 第1
3図は第1図におけるA−A線に沿った横断面& 第1
4図は本発明の第2の実施例におけるスクロール冷媒圧
縮機の縦断面は 第15図は本発明の第3の実施例にお
けるスクロール冷媒圧縮機の縦断面は 第16図、第1
7図はそれぞれ異なる従来のスクロール圧縮機の縦断面
図である。 l・・・・密閉容器 3・・・・モータ(電動機)、3
a・・・・回転−i  3b・・・・固定子、 4・・
・・駆動紘 5・・・・本体フレーA 6・・・・モー
タ室(電動機室)、8・・・・副軸受、−12・・・・
主軸i  31・・・・吐出豫 34・・・・吐出基油
1除35・・・・冷却道1m  41・・・・螺旋状油
鳳 78a・・・・油室A、112a・・・・縦方向油
入 113a、 113b・・・・半径方向油入、12
6・・・・上部フレーム126a・・・・補助フレーへ
128・・・・油分離室137・・・・薄肉ビードミ1
42・・・・油受1す、143・・・・油分離要魚 1
44・・・・油a146・・・・縦置 204・・・・
駆動執204d・・・・小端組206・・・・モータ室
208・・・・副軸受、241・・・・螺旋状油深24
2・・・・油受1す、244・・・・油7糺
Figure 1 is a vertical cross section of a scroll refrigerant compressor according to the first embodiment of the present invention. Figure 2 is an exploded perspective view of the main components of the compressor. Figure 3 is an inverse view of the main parts of the compressor. Cross-sections of main parts of the check valve device @ Fig. 4 to Fig. 6 are respectively shown in Fig. 7 (a), which is a perspective view of the components of the check valve device in Fig. 3. (b) is the external appearance of the balance weight in the same compressor.
The figure shows a perspective view of the seal parts in the same compressor.
The figure is a perspective view of a sealing part for sealing the space on the motor side and the space on the discharge chamber side in Figure 1 @ Figure 12 shows the cross section of the joint between the stator of the electric motor and the auxiliary bearing member
Figure 3 is a cross section along line A-A in Figure 1 & 1st
Figure 4 shows the vertical cross section of the scroll refrigerant compressor in the second embodiment of the present invention. Figure 15 shows the vertical cross section of the scroll refrigerant compressor in the third embodiment of the present invention.
7 are longitudinal sectional views of different conventional scroll compressors. l...Airtight container 3...Motor (electric motor), 3
a...Rotation-i 3b...Stator, 4...
... Drive hole 5 ... Main frame A 6 ... Motor room (motor room), 8 ... Sub-bearing, -12 ...
Main shaft i 31...Discharge 34...Discharge base oil 1 excluding 35...Cooling path 1m 41...Spiral oil holder 78a...Oil chamber A, 112a... Vertical oil filling 113a, 113b... Radial oil filling, 12
6...Upper frame 126a...To auxiliary frame 128...Oil separation chamber 137...Thin bead dome 1
42... Oil pan 1, 143... Oil separation required 1
44... Oil a146... Vertical 204...
Drive shaft 204d...Small end assembly 206...Motor chamber 208...Sub bearing, 241...Spiral oil depth 24
2... Oil pan 1, 244... Oil 7 glue

Claims (9)

【特許請求の範囲】[Claims] (1)圧縮機構部と電動機とを密閉容器内にそれぞれ収
納固定し、前記電動機に連結する駆動軸を前記電動機の
反圧機構部の側に設けた副軸受部材と前記圧縮機構部と
で支持し、前記副軸受部材を前記密閉容器に接触させる
ことなく、前記電動機の積層板から成る固定子の端部に
高密度エネルギー溶接による薄肉ビード状に固定した気
体圧縮機。
(1) A compression mechanism and an electric motor are housed and fixed in a sealed container, and a drive shaft connected to the electric motor is supported by a sub-bearing member provided on the side of the counter-pressure mechanism of the electric motor and the compression mechanism. and a gas compressor in which the auxiliary bearing member is fixed in a thin bead shape by high-density energy welding to an end of a stator made of a laminated plate of the electric motor without contacting the closed container.
(2)圧縮機構部と電動機とを密閉容器内に収納固定し
、前記電動機に連結する駆動軸を前記電動機の反圧機構
部の側に設けた副軸受部材と前記圧縮機構部とで支持し
、前記電動機を収納する電動機室を経由しない吐出気体
を前記副軸受部材と前記密閉容器の端部壁とで形成する
油分離室に導入すると共に、前記副軸受部材の軸受の近
くに設けられ且つ前記軸受に開通する油受けに向けて前
記吐出気体を放出させる手段を設けた気体圧縮機。
(2) A compression mechanism and an electric motor are housed and fixed in a sealed container, and a drive shaft connected to the electric motor is supported by a sub-bearing member provided on a side of the counterpressure mechanism of the electric motor and the compression mechanism. , the discharge gas not passing through the motor chamber housing the electric motor is introduced into an oil separation chamber formed by the sub-bearing member and the end wall of the sealed container, and the sub-bearing member is provided near a bearing of the sub-bearing member; A gas compressor comprising means for discharging the discharged gas toward an oil receiver opened in the bearing.
(3)油分離室への吐出気体導入開口部と油受けの油溜
との間に油分離要素を配置させた請求項2記載の気体圧
縮機。
(3) The gas compressor according to claim 2, wherein an oil separation element is disposed between the discharge gas introduction opening into the oil separation chamber and the oil sump of the oil pan.
(4)副軸受部材の軸受に支持される駆動軸の軸部外周
に油受けの油溜に通じる油溝を設け、前記油溝のポンプ
作用により、前記油溜の潤滑油を電動機室に排出させ、
圧縮機外部に通じる吐出側開口部を前記電動機室の反圧
縮機構部側に設けた請求項2記載の気体圧縮機。
(4) An oil groove communicating with the oil sump of the oil pan is provided on the outer periphery of the shaft of the drive shaft supported by the bearing of the sub-bearing member, and the lubricating oil in the oil sump is discharged into the motor room by the pump action of the oil groove. let me,
3. The gas compressor according to claim 2, wherein a discharge side opening communicating with the outside of the compressor is provided on a side of the motor room opposite to the compression mechanism section.
(5)圧縮機構部と電動機とを密閉容器内に収納固定し
、前記電動機の反圧縮機構部側と前記密閉容器の端部と
の間に仕切り部材を配置して前記電動機を収納する電動
機室の底部の油溜に通じる油分離室を設け、前記電動機
室を経由しない吐出気体を前記油分離室の上部に導入す
ると共に、前記電動機の回転子の端部と前記仕切り部材
との間の空間に圧縮機の外部に通じる吐出管の開口部を
配置し、前記開口部を前記回転子の前記端部に近づけた
気体圧縮機。
(5) A motor room in which the compression mechanism and the electric motor are housed and fixed in a sealed container, and a partition member is disposed between the side of the motor opposite to the compression mechanism and the end of the sealed container to house the electric motor. An oil separation chamber communicating with an oil reservoir at the bottom of the motor chamber is provided, and discharged gas not passing through the motor chamber is introduced into the upper part of the oil separation chamber, and a space between an end of the rotor of the motor and the partition member is provided. A gas compressor, in which an opening of a discharge pipe leading to the outside of the compressor is arranged, and the opening is close to the end of the rotor.
(6)電動機に連結する駆動軸を前記電動機の反圧機構
部の側に設けた副軸受部材と前記圧縮機構部とで支持し
、前記副軸受部材が仕切り部材を兼ねた請求項5記載の
気体圧縮機。
(6) A drive shaft connected to an electric motor is supported by a sub-bearing member provided on a side of a counter-pressure mechanism section of the electric motor and the compression mechanism section, and the sub-bearing member also serves as a partition member. gas compressor.
(7)油受けの潤滑油を駆動軸を支持する副軸受部材の
軸受と圧縮機構部の軸受部とに供給した請求項2記載の
気体圧縮機。
(7) The gas compressor according to claim 2, wherein the lubricating oil from the oil receiver is supplied to the bearing of the sub-bearing member supporting the drive shaft and the bearing of the compression mechanism.
(8)圧縮機構部の軸受部に供給した潤滑油を圧縮室に
注入させた請求項7記載の気体圧縮機。
(8) The gas compressor according to claim 7, wherein the lubricating oil supplied to the bearing of the compression mechanism is injected into the compression chamber.
(9)吐出圧力の作用する電動機室底部の油溜の潤滑油
を圧縮機構部の軸受部に合流給油した請求項8記載の気
体圧縮機。
(9) The gas compressor according to claim 8, wherein the lubricating oil in the oil sump at the bottom of the motor chamber where the discharge pressure acts is fed to the bearing part of the compression mechanism part.
JP1340644A 1989-12-29 1989-12-29 Gas compressor Expired - Fee Related JPH0778388B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1340644A JPH0778388B2 (en) 1989-12-29 1989-12-29 Gas compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1340644A JPH0778388B2 (en) 1989-12-29 1989-12-29 Gas compressor

Publications (2)

Publication Number Publication Date
JPH03202682A true JPH03202682A (en) 1991-09-04
JPH0778388B2 JPH0778388B2 (en) 1995-08-23

Family

ID=18338947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1340644A Expired - Fee Related JPH0778388B2 (en) 1989-12-29 1989-12-29 Gas compressor

Country Status (1)

Country Link
JP (1) JPH0778388B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008025384A (en) * 2006-07-18 2008-02-07 Denso Corp Electric compressor
JP2009250031A (en) * 2008-04-01 2009-10-29 Nsk Ltd Rolling bearing for scroll type compressor
JP2011174407A (en) * 2010-02-24 2011-09-08 Mitsubishi Heavy Ind Ltd Scroll fluid machine
EP3418572A1 (en) * 2017-06-22 2018-12-26 LG Electronics Inc. Compressor having lubrication structure for thrust surface
WO2019142351A1 (en) * 2018-01-22 2019-07-25 三菱電機株式会社 Compressor
WO2019230452A1 (en) * 2018-05-31 2019-12-05 サンデン・オートモーティブコンポーネント株式会社 Electrically driven scroll compressor
US10781817B2 (en) 2017-06-14 2020-09-22 Lg Electronics Inc. Compressor having centrifugation and differential pressure structure for oil supplying
US10808698B2 (en) 2017-06-23 2020-10-20 Lg Electronics Inc. Scroll compressor having communication groove in orbiting end plate
US10816000B2 (en) 2017-07-24 2020-10-27 Lg Electronics Inc. Compressor having centrifugation structure for supplying oil
US10830237B2 (en) 2017-06-21 2020-11-10 Lg Electronics Inc. Compressor having integrated flow path structure
US10851789B2 (en) 2017-07-10 2020-12-01 Lg Electronics Inc. Compressor having improved discharge structure including discharge inlets, communication hole, and discharge outlet
US11927189B2 (en) 2020-09-30 2024-03-12 Fujitsu General Limited Hermetic compressor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220136552A (en) * 2021-03-30 2022-10-11 엘지전자 주식회사 Scroll compressor and air conditioner with this

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61229988A (en) * 1985-04-04 1986-10-14 Matsushita Refrig Co Rotary type compressor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61229988A (en) * 1985-04-04 1986-10-14 Matsushita Refrig Co Rotary type compressor

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4661713B2 (en) * 2006-07-18 2011-03-30 株式会社デンソー Electric compressor
JP2008025384A (en) * 2006-07-18 2008-02-07 Denso Corp Electric compressor
JP2009250031A (en) * 2008-04-01 2009-10-29 Nsk Ltd Rolling bearing for scroll type compressor
JP2011174407A (en) * 2010-02-24 2011-09-08 Mitsubishi Heavy Ind Ltd Scroll fluid machine
US11248608B2 (en) 2017-06-14 2022-02-15 Lg Electronics Inc. Compressor having centrifugation and differential pressure structure for oil supplying
US10781817B2 (en) 2017-06-14 2020-09-22 Lg Electronics Inc. Compressor having centrifugation and differential pressure structure for oil supplying
US10830237B2 (en) 2017-06-21 2020-11-10 Lg Electronics Inc. Compressor having integrated flow path structure
KR20190000171A (en) * 2017-06-22 2019-01-02 엘지전자 주식회사 Compressor having lubrication structure for thrust surface
US11434908B2 (en) 2017-06-22 2022-09-06 Lg Electronics Inc. Compressor having lubrication structure for thrust surface
US10697455B2 (en) 2017-06-22 2020-06-30 Lg Electronics Inc. Compressor having lubrication structure for thrust surface
US20180372098A1 (en) * 2017-06-22 2018-12-27 Lg Electronics Inc. Compressor having lubrication structure for thrust surface
EP3418572A1 (en) * 2017-06-22 2018-12-26 LG Electronics Inc. Compressor having lubrication structure for thrust surface
US10808698B2 (en) 2017-06-23 2020-10-20 Lg Electronics Inc. Scroll compressor having communication groove in orbiting end plate
US10851789B2 (en) 2017-07-10 2020-12-01 Lg Electronics Inc. Compressor having improved discharge structure including discharge inlets, communication hole, and discharge outlet
US10816000B2 (en) 2017-07-24 2020-10-27 Lg Electronics Inc. Compressor having centrifugation structure for supplying oil
WO2019142351A1 (en) * 2018-01-22 2019-07-25 三菱電機株式会社 Compressor
WO2019230452A1 (en) * 2018-05-31 2019-12-05 サンデン・オートモーティブコンポーネント株式会社 Electrically driven scroll compressor
US11927189B2 (en) 2020-09-30 2024-03-12 Fujitsu General Limited Hermetic compressor

Also Published As

Publication number Publication date
JPH0778388B2 (en) 1995-08-23

Similar Documents

Publication Publication Date Title
KR920010733B1 (en) Scroll compressor
US7044717B2 (en) Lubrication of a hermetic carbon dioxide compressor
US6631617B1 (en) Two stage hermetic carbon dioxide compressor
KR950013016B1 (en) Scroll type compressor
KR870001784B1 (en) Scroll compressor
JPH03202682A (en) Gas compressor
JPS6352237B2 (en)
JP2778585B2 (en) Scroll gas compressor
JPH0557438B2 (en)
JP3019770B2 (en) Scroll gas compressor
JPH08303364A (en) Scroll gas compressor
JP3545826B2 (en) Scroll compressor
JP2568711B2 (en) Gas compressor
JP4064325B2 (en) Scroll compressor
JP2790126B2 (en) Scroll gas compressor
JP3593083B2 (en) Scroll compressor
JP2529355B2 (en) Hermetic electric gas compressor
JP2007146864A (en) Scroll compressor
JPH09287579A (en) Closed type scroll compressor
JP2870488B2 (en) Scroll gas compressor
JPH04370384A (en) Scroll compressor
JP2785806B2 (en) Scroll gas compressor
JP3039375B2 (en) Gas compressor
JP3065080B2 (en) Scroll gas compressor
CA2540792C (en) Lubrication of a hermetic carbon dioxide compressor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees