JPH0778388B2 - Gas compressor - Google Patents

Gas compressor

Info

Publication number
JPH0778388B2
JPH0778388B2 JP1340644A JP34064489A JPH0778388B2 JP H0778388 B2 JPH0778388 B2 JP H0778388B2 JP 1340644 A JP1340644 A JP 1340644A JP 34064489 A JP34064489 A JP 34064489A JP H0778388 B2 JPH0778388 B2 JP H0778388B2
Authority
JP
Japan
Prior art keywords
oil
electric motor
bearing
compression mechanism
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1340644A
Other languages
Japanese (ja)
Other versions
JPH03202682A (en
Inventor
勝晴 藤尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1340644A priority Critical patent/JPH0778388B2/en
Publication of JPH03202682A publication Critical patent/JPH03202682A/en
Publication of JPH0778388B2 publication Critical patent/JPH0778388B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compressor (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、主に、気体圧縮機の電動機を挟んで駆動軸を
支持する軸受の取り付け構成とその軸受への給油に関す
るものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention mainly relates to a mounting structure of a bearing that supports a drive shaft with a motor of a gas compressor interposed therebetween, and oil supply to the bearing.

従来の技術 スクロール圧縮機は、吸入室が外周部にあり、吐出ポー
トが渦巻の中心部に設けられ、吐出ポートを中心とする
対称な渦巻形の圧縮空間で吸入・圧縮され、圧縮流体の
流れが一方向で圧縮トルクの変動が往復動式圧縮機や回
転式圧縮機に比べて小さく、振動や騒音も極めて小さい
ことが一般に知られており、特に空調機用圧縮機の分野
の一部で実用化されている。そして、吐出ポートが圧縮
室の中心部に配置される関係から、その一般的な構造は
第16図に示す通り良く知られている。同図は、固定スク
ロール1051および密閉容器1050と静止結合するフレーム
1060に設けられた転がり軸受1061とすべり軸受1062とに
支持された駆動軸1058の上端部のクランク部1059が固定
スクロール1051と噛み合って圧縮室を形成する旋回スク
ロール1052のすべり軸受1057に係合して旋回スクロール
1052を旋回運動させる軸受連結機構を備え、電動機部10
63の片側にのみ軸受を配置した、いわゆる片持ち支持軸
受構造で、密閉容器1050底部の潤滑油を上部のすべり軸
受1057,転がり軸受1061,すべり軸受1062へ駆動軸1058内
に設けた偏心給油穴1068,1069を介して遠心ポンプ作用
と差圧を利用して供給すると共に、転がり軸受1061と駆
動軸1058との隙間を小さくして、軸受隙間内での駆動軸
1058の傾斜角度を少なくし、すべり軸受1057,1062の片
当りを少なくして軸受摺動部の耐久性を向上するように
工夫した構成である(特開昭59−115488号公報)。しか
しながら上記構成では、圧縮機高速運転時には、駆動軸
1058の電動機部側先端部が軸受隙間内での駆動軸1058の
傾斜(振れ)と、駆動軸1058の先端に取り付けられた電
動機部1063の回転子の遠心力と、駆動軸1058に固定され
た回転子と密閉容器1050に固定された固定子との間のエ
アギャップ不均一に起因する電磁力との影響を受けて、
大きな振れを生じ、その結果、転がり軸受1061,すべり
軸受1062,1057に片当りが生じて軸受耐久性を著しく低
下させると共に、スクロール圧縮機の特徴である低振動
・低騒音特性を損なうと言う問題があった。上記問題解
決の手段として、特開昭55−125386号公報,特開昭62−
113881号公報,特開昭62−126282号公報,特開昭62−12
6285号公報,特開昭62−135676号公報などで駆動軸を電
動機の両側で支持する提案がなされている。しかしなが
ら、これらの提案は圧縮機の外形が大きくなる問題や両
軸受間の芯ずれが生じて軸受部の入力損失が過大となる
問題,入力過大回避のために軸受隙間を大きくすること
による振動・騒音発生など種々の問題があった。また、
上記問題解決の手段として、第17図に示す構成も知られ
ている。同図は、密閉容器2001の上部にスクロール圧縮
機2004を、その下部に電動機部2002を、底部に油溜2006
を配置し、固定スクロール2014および密閉容器2001とに
静止結合するフレーム2008に設けられた転がり軸受の主
軸受部2010と、電動機部2002の固定子2011と密閉容器20
01の円筒ケース2003との間に挟持された補助軸受部2030
に設けられた転がり軸受(玉軸受……多少の軸傾斜を許
容できる)2035とで駆動軸2009を支持する、いわゆる両
端支持転がり軸受構成で、両軸受間の芯ずれに基づくこ
じれ防止を図ると共に、図示されていないが、遠心ポン
プ作用を利用して密閉容器2001底部の油溜2006の潤滑油
を軸受摺動部へ給油する構成である。
2. Description of the Related Art A scroll compressor has a suction chamber on the outer periphery and a discharge port provided at the center of the spiral, and is sucked and compressed in a symmetrical spiral compression space centered on the discharge port, causing the flow of compressed fluid. It is generally known that the fluctuation of the compression torque in one direction is smaller than that of the reciprocating compressor and the rotary compressor, and the vibration and noise are also extremely small, especially in a part of the field of air conditioner compressors. It has been put to practical use. The general structure of the discharge port is well known as shown in FIG. 16 because of its location in the center of the compression chamber. The figure shows a frame that statically connects with the fixed scroll 1051 and the closed container 1050.
The crank portion 1059 at the upper end of the drive shaft 1058 supported by the rolling bearing 1061 and the sliding bearing 1062 provided on the 1060 engages with the sliding bearing 1057 of the orbiting scroll 1052 that meshes with the fixed scroll 1051 to form a compression chamber. Turning scroll
Equipped with a bearing coupling mechanism for rotating 1052
A so-called cantilevered support bearing structure, in which bearings are arranged only on one side of 63, the eccentric oil supply hole provided in the drive shaft 1058 to lubricate the bottom of the sealed container 1050 to the upper slide bearing 1057, the rolling bearing 1061, and the slide bearing 1062. 1068 and 1069 are used to supply by utilizing the centrifugal pump action and differential pressure, and the gap between the rolling bearing 1061 and the drive shaft 1058 is made small so that the drive shaft within the bearing gap can be reduced.
The configuration is devised so that the inclination angle of 1058 is reduced and the sliding bearings 1057 and 1062 are reduced in one contact to improve the durability of the bearing sliding portion (Japanese Patent Laid-Open No. 59-115488). However, with the above configuration, when the compressor is operating at high speed, the drive shaft
The tip of the electric motor portion of 1058 is fixed to the drive shaft 1058 due to the inclination (deflection) of the drive shaft 1058 within the bearing gap, the centrifugal force of the rotor of the electric motor portion 1063 attached to the end of the drive shaft 1058. Under the influence of electromagnetic force due to the air gap non-uniformity between the rotor and the stator fixed to the closed container 1050,
The problem is that a large amount of runout is generated, and as a result, rolling bearings 1061, sliding bearings 1062, and 1057 are subject to one-sided contact, which significantly reduces bearing durability and impairs the low vibration and low noise characteristics that are characteristic of scroll compressors. was there. As means for solving the above problems, Japanese Patent Laid-Open Nos. 55-125386 and 62-62
113881, JP 62-126282, JP 62-12
In Japanese Patent No. 6285 and Japanese Patent Laid-Open No. 62-135676, it has been proposed to support the drive shaft on both sides of the electric motor. However, these proposals have problems that the outer shape of the compressor is large, that the core is misaligned between the two bearings, and the input loss of the bearing is too large. There were various problems such as noise generation. Also,
As a means for solving the above problem, the configuration shown in FIG. 17 is also known. The figure shows a scroll compressor 2004 at the top of a closed vessel 2001, an electric motor section 2002 at the bottom, and an oil sump 2006 at the bottom.
, And the main bearing part 2010 of the rolling bearing provided on the frame 2008 that is statically coupled to the fixed scroll 2014 and the closed container 2001, the stator 2011 of the electric motor part 2002, and the closed container 20.
Auxiliary bearing part 2030 sandwiched between 01 and cylindrical case 2003
With a so-called double-end support rolling bearing structure that supports the drive shaft 2009 with a rolling bearing (ball bearing ... allowing a slight amount of shaft inclination) 2035 provided in the so-called double-end support rolling bearing structure, while preventing twisting due to misalignment between the two bearings, Although not shown, a centrifugal pump action is used to supply the lubricating oil in the oil sump 2006 at the bottom of the closed container 2001 to the bearing sliding portion.

発明が解決しようとする課題 しかしながら上記構成では、両軸受が回転荷重を受ける
関係から、補助軸受部2030に生じる軸受振動が密閉容器
2001に直接伝播して、圧縮機に接続する配管系振動およ
びそれに起因する騒音が大きくなり、片持ち支持軸受構
成における振動・騒音との差が少なく、著しい効果が生
じないと言う問題があった。また、補助軸受部2030の軸
受に転がり軸受(玉軸受)2035を用いているので、玉が
軸受転走面を転走する際に転走面の真円不良に起因して
生じる玉のジャンピング現象時の衝突音や振動が密閉容
器2001に伝播してスクロール圧縮機の静粛な運転特性を
損なうと言う問題があった。また、このような両端支持
軸受構成の圧縮機を圧縮機低背化のために横置形にして
使用する場合や、圧縮機構部と電動機部との配置を上下
転倒配置する場合には、圧縮室から遠い側の軸受摺動部
への給油が困難となる問題があった。一方、実開昭52−
157510号公報,実開昭55−137279号公報にも記載されて
いる通り、電動機部の片側にのみ配置した軸受で電動機
に連結する駆動軸を支持する横置形回転式気体圧縮機に
おいて、潤滑油を含む吐出気体を駆動軸の内部に設け且
つ貫通したガス通路や給油通路に向けて放出し、吐出ガ
ス中の潤滑油の慣性力により分離した潤滑油をその遠心
力によって圧縮部に近い軸受に給油する手段が知られて
いる。このような給油手段を第17図に示す両端支持軸受
構成の気体圧縮機を横置形にする場合や、上下転倒置形
にする場合に応用して、圧縮室から遠い側の軸受部に給
油する方法が考えられるが、吐出気体から分離した潤滑
油が通路を通過したり、分散したりして潤滑油の回収率
が低く、充分な給油ができないと共に、分離した潤滑油
が再び吐出ガスと混合して圧縮機の外部に流出し、潤滑
油不足を生じると言う問題があった。なお、回転式気体
圧縮機において、吐出ガスから分離した潤滑油を再び吐
出ガスに混入させない手段として、電動機の回転子の端
部中心近傍に圧縮機の外部配管系に通じる吐出管の端部
を配置して、回転子が回転する際の気流を遠心拡散させ
る作用によって潤滑油を電動機の外周部に分散させ、そ
れによって潤滑油を吐出管に流入させない構成が特開昭
55−19920号公報に記載されており、この手段を両端支
持軸受構成の圧縮機に応用することは軸受給油が困難
で、実現不可能であるという問題があった。本発明は、
上記課題に鑑み、圧縮機底部の油溜から潤滑油を導入す
ることなく、油溜から離れた軸受部に潤滑油を供給する
ことのできる独立した給油形態を提供し、圧縮機の小型
化,構成部品の簡素化を図ることを目的とするものであ
る。また本発明は、油溜から離れた軸受部に潤滑油を供
給するための潤滑油の捕捉と収集した潤滑油の飛散を防
止することを目的とするものである。また本発明は、吐
出気体の流路と軸受に供給した潤滑油の排出先とを隔離
して、圧縮機外部への潤滑油の流出を防止することを目
的とする。また本発明は、吐出気体から分離した潤滑油
を再び吐出気体に混入させない吐出気体通路を提供し、
圧縮機の潤滑油確保による摺動部耐久性を向上すること
を目的とする。また本発明は、吐出気体から分離した潤
滑油をモータ(電動機)の回転式の回転による拡散作用
とそれに伴う吐出気体への再混入の防止と、回転子が潤
滑油を拡散させる際の入力増加を防止することを目的と
するものである。また、本発明は、圧縮機内部に潤滑油
を貯留するための大きな空間を必要としない給油通路を
提供し、圧縮機の小型化を図ることを目的とする。ま
た、本発明は、油溜の省スペース化による圧縮機の小型
化と圧縮効率の向上を目的とするものである。また、本
発明は、複数の給油経路を形成して圧縮機溝部の軸受部
への給油量増加により、軸受部の耐久性向上,入力損失
の低減を図ることを目的とするものである。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention However, in the above-mentioned configuration, since both bearings receive the rotational load, the bearing vibration generated in the auxiliary bearing portion 2030 is hermetically sealed.
There was a problem that the vibration propagated directly to 2001, the vibration of the piping system connected to the compressor and the resulting noise increased, the difference between the vibration and noise in the cantilever support bearing configuration was small, and no significant effect was produced. . In addition, since the rolling bearing (ball bearing) 2035 is used as the bearing of the auxiliary bearing unit 2030, when the ball rolls on the bearing raceway, the ball jumping phenomenon caused by the defective circularity of the raceway is generated. There was a problem that the collision sound and vibration at the time propagated to the closed container 2001 and impaired the quiet operation characteristics of the scroll compressor. Also, when using such a compressor with both-end support bearings in a horizontal position to reduce the compressor height, or when arranging the compression mechanism part and the motor part upside down, the compression chamber There is a problem that it is difficult to supply oil to the bearing sliding portion on the side far away from. On the other hand, the actual development 52-
As described in Japanese Patent No. 157510 and Japanese Utility Model Laid-Open No. 55-137279, in a horizontal rotary gas compressor supporting a drive shaft connected to an electric motor with a bearing arranged only on one side of the electric motor section, a lubricating oil is used. The discharge gas containing the gas is provided inside the drive shaft and is discharged toward the gas passage or oil supply passage that penetrates the drive shaft, and the lubricating oil separated by the inertial force of the lubricating oil in the discharge gas is transferred to the bearing near the compression section by its centrifugal force. Means for refueling are known. A method of supplying oil to the bearing portion on the side far from the compression chamber by applying such an oil supply means to the gas compressor having the both-end support bearing structure shown in FIG. 17 in a horizontal type or in a vertically inverted type. However, the recovery rate of the lubricating oil is low because the lubricating oil separated from the discharge gas passes through or is dispersed in the passage, and sufficient lubrication cannot be performed, and the separated lubricating oil mixes with the discharge gas again. There is a problem that the oil leaks out of the compressor, causing a shortage of lubricating oil. In the rotary gas compressor, as a means for preventing the lubricating oil separated from the discharge gas from being mixed into the discharge gas again, the end of the discharge pipe leading to the external pipe system of the compressor is provided near the center of the end of the rotor of the electric motor. When the rotor is arranged, the lubricating oil is dispersed in the outer peripheral portion of the electric motor by the action of centrifugally diffusing the air flow when the rotor rotates, thereby preventing the lubricating oil from flowing into the discharge pipe.
No. 55-19920, the application of this means to a compressor having both-end supporting bearings has a problem that bearing oil supply is difficult and impossible. The present invention is
In view of the above problems, it is possible to provide an independent oil supply form capable of supplying lubricating oil to a bearing portion separated from the oil reservoir without introducing lubricating oil from the oil reservoir at the bottom of the compressor, and to downsize the compressor, The purpose is to simplify the components. Another object of the present invention is to prevent the capture of the lubricating oil for supplying the lubricating oil to the bearing portion separated from the oil reservoir and the scattering of the collected lubricating oil. Another object of the present invention is to prevent the outflow of the lubricating oil to the outside of the compressor by separating the flow path of the discharged gas from the discharge destination of the lubricating oil supplied to the bearing. Further, the present invention provides a discharge gas passage in which the lubricating oil separated from the discharge gas is not mixed again with the discharge gas,
The purpose is to improve the durability of the sliding part by securing the lubricating oil of the compressor. Further, the present invention is to prevent the lubricating oil separated from the discharge gas from being diffused by the rotary rotation of a motor (electric motor) and preventing re-mixing with the discharge gas, and to increase the input when the rotor diffuses the lubricant oil. The purpose is to prevent. It is another object of the present invention to provide an oil supply passage that does not require a large space for storing lubricating oil inside the compressor, and to reduce the size of the compressor. Another object of the present invention is to reduce the size of the compressor and improve the compression efficiency by saving the space of the oil sump. Another object of the present invention is to improve the durability of the bearing and reduce the input loss by forming a plurality of oil supply paths and increasing the amount of oil supplied to the bearing of the compressor groove.

課題を解決するための手段 上記課題を解決(目的を達成)するために本発明は、駆
動軸を電動機の反圧機構部の側に設けた副軸受部材と圧
縮機構部とで支持し、電動機を収納する電動機室を経由
しない吐出気体を副軸受部材と密閉容器の端部壁とで形
成する油分離空間に導入すると共に、副軸受部材の軸受
の近くに設けられ且つ軸受に開通する油受けに向けて吐
出気体を放出させる手段を設けたものである。また、本
発明は、油分離空間への吐出気体導入開口部と油受けの
油溜との間に油分離要素を配置させたものである。ま
た、本発明は、圧縮機構部と電動機とを密閉容器内に収
納固定し、電動機に連結する駆動軸を電動機の反圧機構
部の側に設けた副軸受部材と圧縮機構部とで支持し、電
動機を収納する電動機室を経由しない吐出気体を副軸受
部材と密閉容器の端部壁とで形成する油分離室に導入す
ると共に、副軸受部材の軸受の近くに設けられ且つその
軸受に開通する油受けに向けて吐出気体を放出させると
共に、副軸受部材の軸受に支持される駆動軸の軸部外周
に油受けの油溜に通じる油溝を設け、その油溝のポンプ
作用を利用して油溜の潤滑油を電動機室の圧縮機構部側
に排出させ、圧縮機外部に通じる吐出側開口部を電動機
室の反圧縮機構部側に設けたものである。また、本発明
は、電動機の反圧縮機構部側と密閉容器の端部との間に
仕切り部材を配置して電動機を収納する電動機室の底部
の油溜に通じる油分離室を設け、電動機室を経由しない
吐出ガスを油分離室の上部に導入すると共に、電動機の
回転子の端部と仕切り部材との間の空間に圧縮機の外部
に通じる吐出管の開口部を配置し、開口部を回転子の端
部に近づけたものである。また、本発明は、圧縮機構部
と電動機とを密閉容器内に収納固定し、電動機の反圧縮
機構部側と密閉容器の端部との間に仕切り部材を配置し
て電動機を収納する電動機室の底部の油溜に通じる油分
離室を設け、電動機室を経由しない吐出気体を油分離室
の上部に導入すると共に、電動機の回転子の端部と仕切
り部材との間の空間に圧縮機の外部に通じる吐出管の開
口部を配置し、その開口部を回転子の端部に近づけると
共に、電動機に連結する駆動軸を電動機の反圧機構部の
側に設けた副軸受部材と圧縮機構部とで支持し、副軸受
部材が仕切り部材を兼ねたものである。また、本発明
は、駆動軸を電動機の反圧機構部の側に設けた副軸受部
材と圧縮機構部とで支持し、電動機を収納する電動機室
を経由しない吐出気体を副軸受部材と密閉容器の端部壁
とで形成する油分離室に導入すると共に、副軸受部材の
軸受に開通する油受けに向けて吐出気体を放出させ、油
受けの潤滑油を副軸受部材の軸受と圧縮機構部の軸受部
とに導く油路を駆動軸に設け、圧縮機構部の軸受部に供
給したものである。また、本発明は、圧縮機構部と電動
機とを密閉容器内に収納固定し、電動機に連結する駆動
軸を電動機の反圧機構部の側に設けた副軸受部材と圧縮
機構部とで支持し、電動機を収納する電動機室を経由し
ない吐出気体を副軸受部材と密閉容器の端部壁とで形成
する油分離室に導入すると共に、副軸受部材の軸受の近
くに設けられ且つその軸受に開通する油受けに向けて吐
出気体を放出させると共に、油受けの潤滑油を駆動軸を
支持する副軸受部材の圧縮機構部の軸受部とに供給し、
圧縮機構部の軸受部に供給した潤滑油を圧縮室に注入さ
せたものである。また、本発明は、圧縮機構部と電動機
とを密閉容器内に収納固定し、電動機に連結する駆動軸
を電動機の反圧機構部の側に設けた副軸受部材と圧縮機
構部とで支持し、電動機を収納する電動機室を経由しな
い吐出気体を副軸受部材と密閉容器の端部壁とで形成す
る油分離室に導入すると共に、副軸受部材の軸受の近く
に設けられ且つその軸受に開通する油受けに向けて吐出
気体を放出させると共に、油受けの潤滑油を駆動軸を支
持する副軸受部材の軸受と圧縮機構部の軸受部とに供給
し、吐出圧力の作用する電動機室底部の油溜の潤滑油を
圧縮機構部の軸受部に合流給油したものである。
Means for Solving the Problems In order to solve the above-mentioned problems (achieve the purpose), the present invention provides a drive shaft supported by a sub-bearing member and a compression mechanism provided on the side of a counter pressure mechanism of an electric motor, Introduces the discharge gas that does not pass through the electric motor chamber that stores the oil into the oil separation space formed by the sub-bearing member and the end wall of the hermetically sealed container, and is provided near the bearing of the sub-bearing member and opens into the bearing. A means for discharging the discharge gas toward is provided. Further, according to the present invention, the oil separation element is arranged between the discharge gas introduction opening to the oil separation space and the oil reservoir of the oil receiver. Further, according to the present invention, the compression mechanism portion and the electric motor are housed and fixed in an airtight container, and the drive shaft connected to the electric motor is supported by the auxiliary bearing member and the compression mechanism portion provided on the side of the counter pressure mechanism portion of the electric motor. Introduce discharge gas that does not pass through the electric motor chamber that houses the electric motor into the oil separation chamber that is formed by the sub-bearing member and the end wall of the closed container, and is provided near the bearing of the sub-bearing member and opens to the bearing. The discharge gas is discharged toward the oil receiver, and an oil groove communicating with the oil reservoir of the oil receiver is provided on the outer circumference of the drive shaft supported by the bearing of the auxiliary bearing member, and the pump action of the oil groove is used. The lubricating oil in the oil sump is discharged to the compression mechanism side of the electric motor chamber, and a discharge side opening communicating with the outside of the compressor is provided on the anti-compression mechanism side of the electric motor chamber. Further, the present invention provides an oil separation chamber that communicates with an oil sump at the bottom of the electric motor chamber that houses the electric motor by disposing a partition member between the anti-compression mechanism side of the electric motor and the end of the closed container. The discharge gas that does not go through is introduced into the upper part of the oil separation chamber, and the opening of the discharge pipe leading to the outside of the compressor is placed in the space between the end of the rotor of the electric motor and the partition member. It is close to the end of the rotor. Further, the present invention is an electric motor room for accommodating and storing a compression mechanism and an electric motor in a closed container, and arranging a partition member between the anti-compression mechanism side of the electric motor and the end of the closed container. An oil separation chamber that communicates with the oil reservoir at the bottom of the motor is installed, and the discharge gas that does not pass through the motor chamber is introduced into the upper part of the oil separation chamber, and the compressor is placed in the space between the end of the rotor of the electric motor and the partition member. An opening portion of the discharge pipe communicating with the outside is arranged, the opening portion is brought close to the end portion of the rotor, and the drive shaft connecting to the electric motor is provided on the side of the counter pressure mechanism portion of the electric motor and the compression mechanism portion. The auxiliary bearing member also functions as a partition member. Further, according to the present invention, the drive shaft is supported by the auxiliary bearing member provided on the side of the counter pressure mechanism of the electric motor and the compression mechanism, and the discharge gas that does not pass through the electric motor chamber for accommodating the electric motor is sealed with the auxiliary bearing member. Is introduced into the oil separation chamber formed by the end wall of the auxiliary bearing member, and discharge gas is discharged toward the oil receiver opened to the bearing of the auxiliary bearing member, and the lubricating oil of the oil receiver and the compression mechanism portion of the auxiliary bearing member are released. Is provided on the drive shaft and is supplied to the bearing portion of the compression mechanism portion. Further, according to the present invention, the compression mechanism portion and the electric motor are housed and fixed in an airtight container, and the drive shaft connected to the electric motor is supported by the auxiliary bearing member and the compression mechanism portion provided on the side of the counter pressure mechanism portion of the electric motor. Introduce discharge gas that does not pass through the electric motor chamber that houses the electric motor into the oil separation chamber that is formed by the sub-bearing member and the end wall of the closed container, and is provided near the bearing of the sub-bearing member and opens to the bearing. The discharge gas is discharged toward the oil receiver, and the lubricating oil of the oil receiver is supplied to the bearing portion of the compression mechanism portion of the auxiliary bearing member that supports the drive shaft,
The lubricating oil supplied to the bearing of the compression mechanism is injected into the compression chamber. Further, according to the present invention, the compression mechanism portion and the electric motor are housed and fixed in an airtight container, and the drive shaft connected to the electric motor is supported by the auxiliary bearing member and the compression mechanism portion provided on the side of the counter pressure mechanism portion of the electric motor. Introduce discharge gas that does not pass through the electric motor chamber that houses the electric motor into the oil separation chamber that is formed by the sub-bearing member and the end wall of the closed container, and is provided near the bearing of the sub-bearing member and opens to the bearing. The discharge gas is discharged toward the oil receiver, and the lubricating oil of the oil receiver is supplied to the bearing of the auxiliary bearing member that supports the drive shaft and the bearing portion of the compression mechanism unit, and the discharge pressure acts on the bottom of the motor chamber. The lubricating oil of the oil sump is merged and supplied to the bearing of the compression mechanism.

作用 上記手段による作用は、以下の通りである。本発明は、
電動機室を経由せず潤滑油を分離しない吐出気体が油分
離室でその流れ方向を変える際に、吐出気体中の潤滑油
がその慣性力によって吐出気体から分離し、その進行方
向前方の軸受の近くに設けられた油受けに直接収集の
後、副軸受部材の軸受に供給され、その油膜による摺動
面の潤滑および駆動軸と摺動面との間の衝突を緩和して
振動、騒音発生を少なくする。また、本発明は、油分離
室に流入してきた吐出気体が油分離要素に衝突する。そ
の際、潤滑油が捕捉され、その下部に配置した油溜に収
集する。油溜の潤滑油は油分離要素の保護をうけて吐出
気体による飛散を防止される。また本発明は、油分離室
に流入した吐出気体が潤滑油を分離後、電動機室の反圧
縮機構部側に設けた吐出側開口部から圧縮機の外部に排
出される。一方、吐出気体から分離された潤滑油は油受
けの油溜に収集後、駆動軸の軸部外周の油溝のポンプ作
用により副軸受部材の軸受に給油された後、排出気体の
流出部とは反対側の電動機室の圧縮機構部側に排出さ
れ、吐出気体と潤滑油との再混合が防止される。また、
本発明は、油分離空間で吐出気体から分離した潤滑油が
電動機室の油溜に収集する一方、潤滑油を分離した吐出
気体が、電動機の回転子の端部の近くに配置された吐出
管に流入しようとする際、吐出気体が回転子によって遠
心拡散され、吐出気体中に残存する潤滑油が分離すると
共に、吐出管に流入しようとする油分離室で分離した潤
滑油も遠心分離され、圧縮機外部配管系への潤滑油流出
が防止される。また、本発明は、副軸受部材が圧縮機の
外部に通じる電動機の側と油分離室とに仕切り、油分離
室で吐出気体から分離した潤滑油と吐出気体との再混合
が防止されると共に、電動機の回転子による潤滑油の拡
散作用も防止される。また、本発明は、電動機室を経由
せず潤滑油を分離しない吐出気体が油分離室でその流れ
方向を変える際に、吐出気体中の潤滑油がその慣性力に
よって吐出気体から分離し、分離した潤滑油がその進行
方向前方の軸受の近くに設けられた油受けに直接収集の
後、駆動軸を電動機の両側で支持する副軸受部材の軸受
と圧縮機構部の軸受部とに供給され、その油膜による摺
動面の潤滑および駆動軸と摺動面との間の衝突を緩和し
て振動、騒音発生を少なくする。また、本発明は、電動
機室を経由せず潤滑油を分離しない吐出気体が油分離室
でその流れ方向を変える際に、吐出気体中の潤滑油がそ
の慣性力によって吐出気体から分離し、分離した潤滑油
がその進行方向前方の軸受の近くに設けられた油受けに
直接収集の後、駆動軸を電動機の両側で支持する副軸受
部材の軸受と圧縮機構部の軸受部とに供給され、その油
膜による摺動面の潤滑および駆動軸と摺動面との間の衝
突を緩和して振動、騒音発生を少なくすると共に、圧縮
室に流入して圧縮室隙間を油膜密封して圧縮気体漏れを
防ぎ、再び圧縮気体と共に油分離室に排出されると言う
一連の給油通路が形成される。また、本発明は、圧縮荷
重の大部分を支持する圧縮機構部の軸受部への給油が、
電動機室底部の油溜からの給油と、軸受部材の油受けの
油溜からの給油との2系統給油によって行われ、その給
油量を充分に確保し、軸受の耐久性と摩擦損失を少なく
する。
Action The action of the above means is as follows. The present invention is
When the discharge gas that does not separate the lubricating oil without passing through the electric motor chamber changes its flow direction in the oil separation chamber, the lubricating oil in the discharge gas is separated from the discharge gas by its inertial force, and Directly collected in a nearby oil receiver, and then supplied to the bearing of the auxiliary bearing member, which lubricates the sliding surface due to the oil film and alleviates the collision between the drive shaft and sliding surface to generate vibration and noise. To reduce. Further, in the present invention, the discharge gas flowing into the oil separation chamber collides with the oil separation element. At that time, the lubricating oil is captured and collected in an oil reservoir arranged below the lubricating oil. The lubricating oil in the oil sump is protected by the oil separation element and is prevented from being scattered by the discharged gas. Further, in the present invention, the discharge gas flowing into the oil separation chamber separates the lubricating oil, and then is discharged to the outside of the compressor from the discharge side opening provided on the side opposite to the compression mechanism of the electric motor chamber. On the other hand, the lubricating oil separated from the discharged gas is collected in the oil sump of the oil receiver, and then is fed to the bearing of the auxiliary bearing member by the pump action of the oil groove on the outer periphery of the drive shaft, and then is discharged to the outflow portion of the exhaust gas. Is discharged to the side of the compression mechanism of the electric motor chamber on the opposite side, and remixing of the discharged gas and the lubricating oil is prevented. Also,
According to the present invention, the lubricating oil separated from the discharge gas in the oil separation space is collected in the oil sump of the electric motor chamber, while the discharge gas separated from the lubricating oil is a discharge pipe arranged near the end of the rotor of the electric motor. At the time of flowing into the discharge gas, the discharge gas is centrifugally diffused by the rotor, the lubricating oil remaining in the discharge gas is separated, and the lubricating oil separated in the oil separation chamber which is about to flow into the discharge pipe is also centrifugally separated, The outflow of lubricating oil to the compressor external piping system is prevented. Further, according to the present invention, the sub-bearing member is partitioned into the electric motor side communicating with the outside of the compressor and the oil separation chamber to prevent re-mixing of the lubricating oil and the discharge gas separated from the discharge gas in the oil separation chamber. Also, the diffusion action of the lubricating oil by the rotor of the electric motor is prevented. Further, according to the present invention, when the discharge gas that does not separate the lubricating oil without passing through the electric motor chamber changes its flow direction in the oil separation chamber, the lubricating oil in the discharge gas is separated from the discharge gas by its inertial force and separated. The collected lubricating oil is directly collected in an oil receiver provided near the bearing in front of the traveling direction, and then supplied to the bearing of the auxiliary bearing member that supports the drive shaft on both sides of the electric motor and the bearing portion of the compression mechanism unit, The oil film lubricates the sliding surface and reduces the collision between the drive shaft and the sliding surface to reduce vibration and noise. Further, according to the present invention, when the discharge gas that does not separate the lubricating oil without passing through the electric motor chamber changes its flow direction in the oil separation chamber, the lubricating oil in the discharge gas is separated from the discharge gas by its inertial force and separated. The collected lubricating oil is directly collected in an oil receiver provided near the bearing in front of the traveling direction, and then supplied to the bearing of the auxiliary bearing member that supports the drive shaft on both sides of the electric motor and the bearing portion of the compression mechanism unit, The oil film lubricates the sliding surface and reduces the collision between the drive shaft and the sliding surface to reduce vibration and noise.At the same time, it enters the compression chamber and seals the compression chamber gap with an oil film to leak compressed gas. And a series of oil supply passages are formed so that the gas is discharged to the oil separation chamber together with the compressed gas. Further, according to the present invention, the oil supply to the bearing portion of the compression mechanism portion that supports most of the compression load is
Oil supply from the oil sump at the bottom of the electric motor chamber and oil supply from the oil sump of the bearing member are used to provide two systems of oil supply to ensure a sufficient amount of oil supply and reduce bearing durability and friction loss. .

実施例 発明の効果 上記実施例より明らかなように本発明は、圧縮機構部と
電動機とを密閉容器内に収納固定し、電動機に連結する
駆動軸を電動機の反圧機構部の側に設けた副軸受部材と
圧縮機構部とで支持し、電動機を収納する電動機室を経
由しない吐出気体を副軸受部材と密閉容器の端部壁とで
形成する油分離室に導入すると共に、副軸受部材の軸受
の近くに設けられ且つその軸受に開通する油受けに向け
て吐出気体を放出させたことにより、油分離室でその流
れ方向を変える際に、電動機室を経由せず潤滑油を分離
しない吐出気体からその中に含まれる潤滑油をその慣性
力を利用して分離し、その進行方向前方の軸受の近くに
設けられた油受けに直接収集の後、軸受に供給すること
ができる。それによって、圧縮機底部の油溜から潤滑油
を導入することなく、油溜から離れた軸受部に給油ポン
プを必要とすることなく潤滑油を供給することのできる
独立した給油経路を構成することができるので、電動機
室の底部の油溜の省スペース化が可能となり、圧縮機の
小型化と潤滑油供給構成部品の簡素化を図ることができ
る。また、本発明は、圧縮機構部と電動機とを密閉容器
内に収納固定し、電動機に連結する駆動軸を電動機の反
圧機構部の側に設けた副軸受部材と圧縮機構部とで支持
し、電動機を収納する電動機室を経由しない吐出気体を
副軸受部材と密閉容器の端部壁とで形成する油分離室に
導入すると共に、副軸受部材の軸受の近くに設けられ且
つその軸受に開通する油受けに向けて吐出気体を放出さ
せると共に、油分離室への吐出気体導入開口部と油受け
の油溜との間に油分離要素を配置させたことにより、油
分離室に流入してきた吐出気体を油分離要素に衝突さ
せ、潤滑油を付着させて効率よく捕捉することができ
る。捕捉した潤滑油を下部の油溜に滴下させると共に、
吐出気体が油溜の近傍を通過するのを阻止して、収集し
た潤滑油の飛散を防止し、潤滑油確保による摺動部耐久
性の向上を図ることができる。また、本発明は、圧縮機
構部と電動機とを密閉容器内に収納固定し、電動機に連
結する駆動軸を電動機の反圧機構部の側に設けた副軸受
部材と圧縮機構部とで支持し、電動機を収納する電動機
室を経由しない吐出気体を副軸受部材と密閉容器の端部
壁とで形成する油分離室に導入すると共に、副軸受部材
の軸受の近くに設けられ且つその軸受に開通する油受け
に向けて吐出気体を放出させると共に、副軸受部材の軸
受に支持される駆動軸の軸部外周に油受けの油溜に通じ
る油溝を設け、その油溝のポンプ作用を利用して油溜の
潤滑油を電動機室の圧縮機構部側に排出させ、圧縮機外
部に通じる吐出側開口部を電動機室の反圧縮機構部側に
設けたことにより、圧縮機外部の配管系に排出する吐出
気体の流路と潤滑油排出先とを隔離して、吐出気体と潤
滑油との再混合を阻止し、圧縮機内潤滑油を確保して摺
動部耐久性の向上を図ることができる。また、本発明
は、圧縮機構部と電動機とを密閉容器内に収納固定し、
電動機の反圧縮機構部側と密閉容器の端部との間に仕切
り部材を配置して電動機を収納する電動機室の底部の油
溜に通じる油分離空間を設け、電動機室を経由しない吐
出気体を油分離室の上部に導入すると共に、電動機の回
転子の端部と仕切り部材との間の空間に圧縮機の外部に
通じる吐出管の開口部を配置し、その開口部を回転子の
端部に近づけたことにより、油分離室で吐出気体から分
離した潤滑油が電動機室の底部の油溜に収集する一方、
潤滑油を分離した吐出気体が、電動機の回転子の端部の
近くに配置された吐出管に流入しようとする際、吐出気
体が回転子によって遠心拡散され、吐出気体中に残存す
る潤滑油を遠心分離することができると共に、吐出管に
流入しようとする油分離室で分離した潤滑油も遠心拡散
することができるので、吐出気体から分離された潤滑油
が再び吐出気体に混入することがなく、圧縮機外部配管
系への潤滑油流出を阻止して油溜の潤滑油不足を防止
し、圧縮機構部の摺動部への充分な給油により摺動部耐
久性を向上することができる。また、本発明は、圧縮機
構部と電動機とを密閉容器内に収納固定し、電動機の反
圧縮機構部側と密閉容器の端部との間に仕切り部材を配
置して電動機を収納する電動機室の底部の油溜に通じる
油分離室を設け、電動機室を経由しない吐出気体を油分
離室の上部に導入すると共に、電動機の回転子の端部と
仕切り部材との間の空間に圧縮機の外部に通じる吐出管
の開口部を配置し、その開口部を回転子の端部に近づけ
ると共に、電動機に連結する駆動軸を電動機の反圧機構
部の側に設けた副軸受部材と圧縮機構部とで支持し、副
軸受部材が仕切り部材を兼ねたことにより、特別な構成
部品を必要とすることなく、吐出気体から分離した潤滑
油を電動機の回転子の回転による拡散作用とそれに伴う
吐出気体への再混入を阻止し、電動機室の底部の油溜に
効果的に収集して潤滑油の確保を図ることができる。ま
た、回転子が潤滑油を拡散させる再の入力増加を防止す
ることができる。また、本発明は、圧縮機構部と電動機
とを密閉容器内に収納固定し、電動機に連結する駆動軸
を電動機の反圧機構部の側に設けた副軸受部材と圧縮機
構部とで支持し、電動機を収納する電動機室を経由しな
い吐出気体を副軸受部材と密閉容器の端部壁とで形成す
る油分離室に導入すると共に、副軸受部材の軸受の近く
に設けられ且つその軸受に開通する油受けに向けて吐出
気体を放出させると共に、油受けの潤滑油を駆動軸を支
持する副軸受部材の軸受と圧縮機構部の軸受部とに供給
したことにより、電動機室の底部の油溜と関わりのない
給油通路を形成することができ、その結果、電動機室を
省スペースにして圧縮機の小型化を図ることができる。
また、圧縮機を設置する際の傾斜角度を制限する必要も
なく、縦置き姿勢、横置き姿勢のいずれにも対応できる
圧縮機を実現することができる。また、本発明は、圧縮
機構部と電動機とを密閉容器内に収納固定し、電動機に
連結する駆動軸を電動機の反圧機構部の側に設けた副軸
受部材と圧縮機構部とで支持し、電動機を収納する電動
機室を経由しない吐出気体を副軸受部材と密閉容器の端
部壁とで形成する油分離室に導入すると共に、副軸受部
材の軸受の近くに設けられ且つその軸受に開通する油受
けに向けて吐出気体を放出させると共に、油受けの潤滑
油を駆動軸を支持する副軸受部材の軸受と圧縮機構部の
軸受部とに供給し、圧縮機構部の軸受部に供給した潤滑
油を圧縮室に注入させたことにより、電動機室の底部の
油溜を省スペースにして圧縮機を小型化することができ
る。また、軸受摺動部の油膜形成や油膜による圧縮室隙
間の密封を図り、耐久性と高圧縮効率を確保することが
できる。また、本発明は、圧縮機構部と電動機とを密閉
容器内に収納固定し、電動機に連結する駆動軸を電動機
の反圧機構部の側に設けた副軸受部材と圧縮機構部とで
支持し、電動機を収納する電動機室を経由しない吐出気
体を副軸受部材と密閉容器の端部壁とで形成する油分離
室に導入すると共に、副軸受部材の軸受の近くに設けら
れ且つその軸受に開通する軸受けに向けて吐出気体を放
出させると共に、油受けの潤滑油を駆動軸を支持する副
軸受部材の軸受と圧縮機構部の軸受部とに供給し、吐出
圧力の作用する電動機室底部の油溜の潤滑油を圧縮機構
部の軸受部に合流給油したことにより、圧縮機構部の軸
受部への給油量を増加させることができる。それによっ
て、圧縮荷重の大部分を支持する圧縮機構部の軸受部へ
の充分な給油が可能となり、軸受部の耐久性向上、軸受
摺動部の摩擦抵抗を少なくして入力損失を低減すること
ができる。
Embodiments of the Invention As is apparent from the above embodiments, the present invention stores and fixes the compression mechanism portion and the electric motor in a closed container, and provides the drive shaft connected to the electric motor on the side of the counter pressure mechanism portion of the electric motor. The discharge gas, which is supported by the sub-bearing member and the compression mechanism portion and does not pass through the electric motor chamber that houses the electric motor, is introduced into the oil separation chamber formed by the sub-bearing member and the end wall of the closed container, and Discharge that does not separate the lubricating oil without passing through the motor chamber when changing the flow direction in the oil separation chamber by discharging the discharge gas toward the oil receiver that is provided near the bearing and opens to the bearing Lubricating oil contained therein can be separated from the gas by utilizing its inertial force, directly collected in an oil receiver provided near the bearing in front of its traveling direction, and then supplied to the bearing. By doing so, an independent oil supply path that can supply the lubricating oil to the bearing portion away from the oil reservoir without introducing the lubricating oil from the oil reservoir at the bottom of the compressor can be configured. As a result, it is possible to save space in the oil sump at the bottom of the electric motor chamber, and to reduce the size of the compressor and simplify the lubricating oil supply components. Further, according to the present invention, the compression mechanism portion and the electric motor are housed and fixed in an airtight container, and the drive shaft connected to the electric motor is supported by the auxiliary bearing member and the compression mechanism portion provided on the side of the counter pressure mechanism portion of the electric motor. Introduce discharge gas that does not pass through the electric motor chamber that houses the electric motor into the oil separation chamber that is formed by the sub-bearing member and the end wall of the closed container, and is provided near the bearing of the sub-bearing member and opens to the bearing. The discharge gas is discharged toward the oil receiver, and the oil separation element is arranged between the discharge gas introduction opening to the oil separation chamber and the oil reservoir of the oil receiver, so that the oil flows into the oil separation chamber. The discharged gas can be made to collide with the oil separation element, and the lubricating oil can be adhered to the oil separation element for efficient trapping. While letting the captured lubricating oil drop into the oil reservoir below,
It is possible to prevent the discharged gas from passing near the oil sump, prevent scattering of the collected lubricating oil, and improve the durability of the sliding portion by securing the lubricating oil. Further, according to the present invention, the compression mechanism portion and the electric motor are housed and fixed in an airtight container, and the drive shaft connected to the electric motor is supported by the auxiliary bearing member and the compression mechanism portion provided on the side of the counter pressure mechanism portion of the electric motor. Introduce discharge gas that does not pass through the electric motor chamber that houses the electric motor into the oil separation chamber that is formed by the sub-bearing member and the end wall of the closed container, and is provided near the bearing of the sub-bearing member and opens to the bearing. The discharge gas is discharged toward the oil receiver, and an oil groove communicating with the oil reservoir of the oil receiver is provided on the outer circumference of the drive shaft supported by the bearing of the auxiliary bearing member, and the pump action of the oil groove is used. The lubricating oil in the oil sump is discharged to the compression mechanism side of the electric motor chamber, and the discharge side opening that communicates with the outside of the compressor is provided on the anti-compression mechanism side of the electric motor chamber, so it is discharged to the piping system outside the compressor. The flow path of the discharge gas to be And to prevent re-mixing with the lubricating oil, it is possible to improve the sliding portion durability to secure the compressor lubricating oil. Further, the present invention stores and fixes the compression mechanism portion and the electric motor in a closed container,
A partition member is placed between the anti-compression mechanism side of the electric motor and the end of the closed container to provide an oil separation space that communicates with the oil sump at the bottom of the electric motor chamber that houses the electric motor. In addition to being introduced into the upper part of the oil separation chamber, an opening of the discharge pipe leading to the outside of the compressor is arranged in the space between the end of the rotor of the electric motor and the partition member, and the opening is attached to the end of the rotor. By bringing the lubricating oil separated from the discharge gas in the oil separation chamber into the oil sump at the bottom of the electric motor chamber,
When the discharge gas from which the lubricating oil has been separated is about to flow into the discharge pipe arranged near the end of the rotor of the electric motor, the discharge gas is centrifugally diffused by the rotor and the lubricating oil remaining in the discharge gas is removed. Since the lubricating oil separated in the oil separation chamber that is about to flow into the discharge pipe can be centrifugally diffused, the lubricating oil separated from the discharge gas does not mix with the discharge gas again. It is possible to prevent the lubricating oil from flowing out to the compressor external piping system, prevent the lack of lubricating oil in the oil reservoir, and sufficiently lubricate the sliding portion of the compression mechanism portion to improve the durability of the sliding portion. Further, the present invention is an electric motor room for accommodating and storing a compression mechanism and an electric motor in a closed container, and arranging a partition member between the anti-compression mechanism side of the electric motor and the end of the closed container. An oil separation chamber that communicates with the oil reservoir at the bottom of the motor is installed, and the discharge gas that does not pass through the motor chamber is introduced into the upper part of the oil separation chamber, and the compressor is placed in the space between the end of the rotor of the electric motor and the partition member. An opening portion of the discharge pipe communicating with the outside is arranged, the opening portion is brought close to the end portion of the rotor, and the drive shaft connecting to the electric motor is provided on the side of the counter pressure mechanism portion of the electric motor and the compression mechanism portion. Since the auxiliary bearing member also functions as a partition member, the lubricating oil separated from the discharge gas is diffused by the rotation of the rotor of the electric motor and the discharge gas accompanying it without the need for special components. To prevent re-mixing in the bottom of the motor room. It is possible to secure the lubricating oil to effectively collected in reservoir. In addition, it is possible to prevent an increase in the input of the rotor that causes the lubricating oil to diffuse. Further, according to the present invention, the compression mechanism portion and the electric motor are housed and fixed in an airtight container, and the drive shaft connected to the electric motor is supported by the auxiliary bearing member and the compression mechanism portion provided on the side of the counter pressure mechanism portion of the electric motor. Introduce discharge gas that does not pass through the electric motor chamber that houses the electric motor into the oil separation chamber that is formed by the sub-bearing member and the end wall of the closed container, and is provided near the bearing of the sub-bearing member and opens to the bearing. The discharge gas is discharged toward the oil receiver, and the lubricating oil of the oil receiver is supplied to the bearing of the auxiliary bearing member that supports the drive shaft and the bearing portion of the compression mechanism portion. It is possible to form an oil supply passage independent of the above, and as a result, it is possible to reduce the space of the electric motor room and to downsize the compressor.
Further, it is not necessary to limit the inclination angle when installing the compressor, and it is possible to realize a compressor that can be used in both a vertical posture and a horizontal posture. Further, according to the present invention, the compression mechanism portion and the electric motor are housed and fixed in an airtight container, and the drive shaft connected to the electric motor is supported by the auxiliary bearing member and the compression mechanism portion provided on the side of the counter pressure mechanism portion of the electric motor. Introduce discharge gas that does not pass through the electric motor chamber that houses the electric motor into the oil separation chamber that is formed by the sub-bearing member and the end wall of the closed container, and is provided near the bearing of the sub-bearing member and opens to the bearing. The discharge gas is discharged toward the oil receiver, and the lubricating oil of the oil receiver is supplied to the bearing of the auxiliary bearing member that supports the drive shaft and the bearing portion of the compression mechanism portion, and is supplied to the bearing portion of the compression mechanism portion. By injecting the lubricating oil into the compression chamber, the oil sump at the bottom of the electric motor chamber can be saved and the compressor can be downsized. Further, it is possible to secure durability and high compression efficiency by forming an oil film on the bearing sliding portion and sealing the compression chamber gap by the oil film. Further, according to the present invention, the compression mechanism portion and the electric motor are housed and fixed in an airtight container, and the drive shaft connected to the electric motor is supported by the auxiliary bearing member and the compression mechanism portion provided on the side of the counter pressure mechanism portion of the electric motor. Introduce discharge gas that does not pass through the electric motor chamber that houses the electric motor into the oil separation chamber that is formed by the sub-bearing member and the end wall of the closed container, and is provided near the bearing of the sub-bearing member and opens to the bearing. The discharge gas is discharged toward the bearing, and the lubricating oil of the oil receiver is supplied to the bearing of the auxiliary bearing member that supports the drive shaft and the bearing portion of the compression mechanism section, and the oil at the bottom of the motor chamber where the discharge pressure acts is supplied. By merging and supplying the reservoir lubricating oil to the bearing of the compression mechanism, the amount of oil supplied to the bearing of the compression mechanism can be increased. As a result, sufficient lubrication of the compression mechanism that supports most of the compression load to the bearing can be achieved, durability of the bearing can be improved, and friction resistance of the bearing sliding part can be reduced to reduce input loss. You can

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の第1の実施例におけるスクロール冷媒
圧縮機の縦断面図、第2図は同圧縮機における主要部品
の分解斜視図、第3図は同圧縮機における吐出ポート部
に配置した逆止弁装置の要部断面図、第4図〜第6図は
それぞれ第3図における逆止弁装置の構成部品の斜視
図、第7図(a),(b)は同圧縮機におけるバランス
ウエイトの外観図、第8図は同圧縮機における主要軸受
部の要部断面図、第9図は同圧縮機におけるシール部品
の斜視図、第10図は同圧縮機におけるスラスト軸受部の
要部断面図、第11図は第1図における電動機側の空間と
吐出室側の空間とをシールするためのシール部品の斜視
図、第12図は電動機の固定子と補助軸受部材との結合部
の断面図、第13図は第1図におけるA−A線に沿った横
断面図、第14図は本発明の第2の実施例におけるスクロ
ール冷媒圧縮機の縦断面図、第15図は本発明の第3の実
施例におけるスクロール冷媒圧縮機の縦断面図、第16
図,第17図はそれぞれ異なる従来のスクロール圧縮機の
縦断面図である。 1……密閉容器、3……モータ(電動機)、3a……回転
子、3b……固定子、4……駆動軸、5……本体フレー
ム、6……モータ室(電動機室)、8……副軸受、12…
…主軸受、31……吐出管、34……吐出室油溜、35……冷
却通路、41……螺旋状油溝、78a……油室A、112a……
縦方向油穴、113a,113b……半径方向油穴、126……上部
フレーム、126a……補助フレーム、128……油分離室、1
37……薄肉ビード、142……油受け、143……油分離要
素、144……油溜、146……縦溝、204……駆動軸、204d
……小端軸、206……モータ室、208……副軸受、241…
…螺旋状油溝、242……油受け、244……油溜。
FIG. 1 is a vertical sectional view of a scroll refrigerant compressor according to a first embodiment of the present invention, FIG. 2 is an exploded perspective view of main parts of the compressor, and FIG. 3 is arranged at a discharge port portion of the compressor. 4 is a perspective view of the components of the check valve device in FIG. 3, and FIGS. 7 (a) and 7 (b) are the same in the compressor. Fig. 8 is an external view of the balance weight, Fig. 8 is a cross-sectional view of the main bearing portion of the compressor, Fig. 9 is a perspective view of the seal parts of the compressor, and Fig. 10 is a thrust bearing portion of the compressor. 11 is a perspective view of a seal part for sealing the space on the electric motor side and the space on the discharge chamber side in FIG. 1, and FIG. 12 is a connecting portion between a stator of the electric motor and an auxiliary bearing member. FIG. 13 is a cross-sectional view taken along the line AA in FIG. 1, and FIG. 14 is the present invention. FIG. 15 is a vertical sectional view of a scroll refrigerant compressor according to a second embodiment of the present invention. FIG. 15 is a vertical sectional view of a scroll refrigerant compressor according to a third embodiment of the present invention.
Figures and 17 are vertical cross-sectional views of different conventional scroll compressors. 1 ... airtight container, 3 ... motor (electric motor), 3a ... rotor, 3b ... stator, 4 ... drive shaft, 5 ... body frame, 6 ... motor room (motor room), 8 ... … Secondary bearing, 12…
… Main bearing, 31 …… Discharge pipe, 34 …… Discharge chamber oil sump, 35 …… Cooling passage, 41 …… Spiral oil groove, 78a …… Oil chamber A, 112a ……
Vertical oil hole, 113a, 113b …… Radial oil hole, 126 …… Upper frame, 126a …… Auxiliary frame, 128 …… Oil separation chamber, 1
37: thin beads, 142: oil receiver, 143: oil separating element, 144: oil sump, 146: vertical groove, 204: drive shaft, 204d
...... Small end shaft, 206 …… Motor chamber, 208 …… Auxiliary bearing, 241…
… Spiral oil groove, 242 …… Oil receiver, 244 …… Oil sump.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F04C 29/02 311 C Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display area F04C 29/02 311 C

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】圧縮機構部と電動機とを密閉容器内に収納
固定し、前記電動機に連結する駆動軸を前記電動機の反
圧縮機構部の側に設けた副軸受部材と前記圧縮機構部と
で支持し、前記電動機を収納する電動機室を経由しない
吐出気体を前記副軸受部材と前記密閉容器の端部壁とで
形成する油分離室に導入すると共に、前記副軸受部材の
軸受の近くに設けられ且つ前記軸受に開通する油受けに
向けて前記吐出気体を放出させた気体圧縮機。
1. A compression mechanism portion and an electric motor are housed and fixed in an airtight container, and a drive shaft connected to the electric motor is provided by a sub-bearing member and the compression mechanism portion provided on the side of the anti-compression mechanism portion of the electric motor. Support gas is introduced into the oil separation chamber formed by the sub-bearing member and the end wall of the hermetically sealed container, and the discharge gas that does not pass through the electric-motor chamber that houses the electric motor is provided near the bearing of the sub-bearing member. A gas compressor that discharges the discharged gas toward an oil receiver that is open to the bearing.
【請求項2】油分離室への吐出気体導入開口部と油受け
の油溜との間に油分離要素を配置させた請求項1記載の
気体圧縮機。
2. The gas compressor according to claim 1, wherein an oil separation element is arranged between the discharge gas introduction opening to the oil separation chamber and the oil reservoir of the oil receiver.
【請求項3】副軸受部材の軸受に支持される駆動軸の軸
部外周に油受けの油溜に通じる油溝を設け、前記油溝の
ポンプ作用により、前記油溜の潤滑油を電動機室に排出
させ、圧縮機外部に通じる吐出側開口部を前記電動機室
の反圧縮機構部側に設けた請求項1または2記載の気体
圧縮機。
3. An oil groove communicating with an oil reservoir of an oil receiver is provided on an outer circumference of a shaft portion of a drive shaft supported by a bearing of an auxiliary bearing member, and the pumping action of the oil groove causes the lubricating oil in the oil reservoir to flow into the motor chamber. The gas compressor according to claim 1 or 2, wherein a discharge side opening that is discharged to the outside of the compressor and is provided on the side opposite to the compression mechanism of the electric motor chamber.
【請求項4】圧縮機構部と電動機とを密閉容器内に収納
固定し、前記電動機の反圧縮機構部側と前記密閉容器の
端部との間に仕切り部材を配置して前記電動機を収納す
る電動機室の底部の油溜に通じる油分離室を設け、前記
電動機室を経由しない吐出気体を前記油分離室の上部に
導入すると共に、前記電動機の回転子の端部と前記仕切
り部材との間の空間に圧縮機の外部に通じる吐出管の開
口部を配置し、前記開口部を前記回転子の前記端部に近
づけた気体圧縮機。
4. A compression mechanism part and an electric motor are housed and fixed in a closed container, and a partition member is disposed between the anti-compression mechanism part side of the electric motor and an end part of the closed container to house the electric motor. An oil separation chamber that communicates with an oil reservoir at the bottom of the electric motor chamber is provided, and a discharge gas that does not pass through the electric motor chamber is introduced into the upper portion of the oil separation chamber and between the end of the rotor of the electric motor and the partition member. A gas compressor in which an opening of a discharge pipe that communicates with the outside of the compressor is disposed in the space, and the opening is brought close to the end of the rotor.
【請求項5】電動機に連結する駆動軸を前記電動機の反
圧縮機構部の側に設けた副軸受部材と前記圧縮機構部と
で支持し、前記副軸受部材が仕切り部材を兼ねた請求項
4記載の気体圧縮機。
5. A drive shaft connected to an electric motor is supported by a sub-bearing member provided on the side of the anti-compression mechanism of the electric motor and the compression mechanism, and the sub-bearing member also serves as a partition member. The gas compressor described.
【請求項6】油受けの潤滑油を駆動軸を支持する副軸受
部材の軸受と圧縮機構部の軸受部とに供給した請求項1
記載の気体圧縮機。
6. The lubricating oil of the oil receiver is supplied to the bearing of the auxiliary bearing member supporting the drive shaft and the bearing portion of the compression mechanism portion.
The gas compressor described.
【請求項7】圧縮機構部の軸受部に供給した潤滑油を圧
縮室に注入させた請求項6記載の気体圧縮機。
7. The gas compressor according to claim 6, wherein the lubricating oil supplied to the bearing portion of the compression mechanism portion is injected into the compression chamber.
【請求項8】吐出圧力の作用する電動機室底部の油溜の
潤滑油を圧縮機構部の軸受部に合流給油した請求項7記
載の気体圧縮機。
8. The gas compressor according to claim 7, wherein the lubricating oil in the oil sump at the bottom of the electric motor chamber, which is acted upon by the discharge pressure, is joined and supplied to the bearing portion of the compression mechanism portion.
JP1340644A 1989-12-29 1989-12-29 Gas compressor Expired - Fee Related JPH0778388B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1340644A JPH0778388B2 (en) 1989-12-29 1989-12-29 Gas compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1340644A JPH0778388B2 (en) 1989-12-29 1989-12-29 Gas compressor

Publications (2)

Publication Number Publication Date
JPH03202682A JPH03202682A (en) 1991-09-04
JPH0778388B2 true JPH0778388B2 (en) 1995-08-23

Family

ID=18338947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1340644A Expired - Fee Related JPH0778388B2 (en) 1989-12-29 1989-12-29 Gas compressor

Country Status (1)

Country Link
JP (1) JPH0778388B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4067657A3 (en) * 2021-03-30 2022-10-12 LG Electronics Inc. Scroll compressor and air conditioner having same

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4661713B2 (en) * 2006-07-18 2011-03-30 株式会社デンソー Electric compressor
JP2009250031A (en) * 2008-04-01 2009-10-29 Nsk Ltd Rolling bearing for scroll type compressor
JP2011174407A (en) * 2010-02-24 2011-09-08 Mitsubishi Heavy Ind Ltd Scroll fluid machine
KR20180136282A (en) 2017-06-14 2018-12-24 엘지전자 주식회사 Compressor having centrifugation and differential pressure structure for oil supplying
KR101974272B1 (en) 2017-06-21 2019-04-30 엘지전자 주식회사 Compressor having merged flow path structure
KR102396559B1 (en) * 2017-06-22 2022-05-10 엘지전자 주식회사 Compressor having lubrication structure for thrust surface
KR102440273B1 (en) 2017-06-23 2022-09-02 엘지전자 주식회사 Compressor having enhanced discharge structure
KR102409675B1 (en) 2017-07-10 2022-06-15 엘지전자 주식회사 Compressor having enhanced discharge structure
KR102383135B1 (en) 2017-07-24 2022-04-04 엘지전자 주식회사 Compressor having centrifugation structure for supplying oil
WO2019142351A1 (en) * 2018-01-22 2019-07-25 三菱電機株式会社 Compressor
JP2019210815A (en) * 2018-05-31 2019-12-12 サンデン・オートモーティブコンポーネント株式会社 Electric scroll compressor
US11927189B2 (en) 2020-09-30 2024-03-12 Fujitsu General Limited Hermetic compressor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61229988A (en) * 1985-04-04 1986-10-14 Matsushita Refrig Co Rotary type compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4067657A3 (en) * 2021-03-30 2022-10-12 LG Electronics Inc. Scroll compressor and air conditioner having same

Also Published As

Publication number Publication date
JPH03202682A (en) 1991-09-04

Similar Documents

Publication Publication Date Title
CA2147644C (en) Scroll apparatus with reduced inlet pressure drop
JPH0665880B2 (en) Fluid compression scroll machine
JP2001522969A (en) Hermetic scroll compressor
JPH0893664A (en) Scroll compressor
JPH0778388B2 (en) Gas compressor
JPS6352237B2 (en)
KR960001625B1 (en) Scroll type compressor
JPH1047268A (en) Hermetic scroll compressor
JP2003042080A (en) Hermetic scroll compressor
JP3545826B2 (en) Scroll compressor
JPH0363677B2 (en)
JPH0565718B2 (en)
JP2674113B2 (en) Horizontal scroll compressor
JPH09287579A (en) Closed type scroll compressor
JPH07158569A (en) Scroll fluid machinery
JPS61212689A (en) Horizontal closed type scroll compressor
JPH09158863A (en) Scroll compressor
JPS62126285A (en) Scroll type fluid machinery
JPH074374A (en) Motor-driven compressor
JPH02181084A (en) Scroll type fluid device
JPH03105093A (en) Scroll type fluid machine
JPH04370384A (en) Scroll compressor
JP2000205157A (en) Scroll compressor
JPH0331599A (en) Compressor
JPH1047283A (en) Scroll compressor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees