JPH1047268A - Hermetic scroll compressor - Google Patents

Hermetic scroll compressor

Info

Publication number
JPH1047268A
JPH1047268A JP20152096A JP20152096A JPH1047268A JP H1047268 A JPH1047268 A JP H1047268A JP 20152096 A JP20152096 A JP 20152096A JP 20152096 A JP20152096 A JP 20152096A JP H1047268 A JPH1047268 A JP H1047268A
Authority
JP
Japan
Prior art keywords
oil
passage
flow
electric motor
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20152096A
Other languages
Japanese (ja)
Inventor
Masao Shiibayashi
正夫 椎林
Mutsunori Matsunaga
睦憲 松永
Takao Mizuno
隆夫 水野
Kenji Tojo
健司 東條
Mitsuhiro Okada
岡田  光弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20152096A priority Critical patent/JPH1047268A/en
Publication of JPH1047268A publication Critical patent/JPH1047268A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce an oil rising quantity of a compressor by arranging plural passage parts to connect upper and lower spaces in a stator part outside edge part of an electric motor, forming a single passage among them as a passage of oil flowing in the downward direction, and forming the other passages as passages of compressed gas being a downward flow or a rising flow. SOLUTION: In a hermetic scroll compressor in which an electric motor chamber upper space is communicated with an electric motor chamber lower space through passages 25 (25a to 25d) between an electric motor stator and a casing inner wall surface 2m of a sealed vessel, a core cut part 3n is arranged in a stator outer peripheral part of an electric motor, and an outer peripheral part of a stator is vertically cut by four places, and a space part is formed. Among the spaces 25a to 25d, the whole area of the space 25a is made to function as a passage to flow oil in the downward direction, and the space 25b is made to function as a passage to flow compressed gas in the downward direction, and the spaces 25c and 25d are made to function as passages to flow compressed gas being a rising flow, respectively. Therefore, an oil separating function of the compressor is improved, and the cooling action on the electric motor is improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は密閉形スクロール圧
縮機に関する。
The present invention relates to a hermetic scroll compressor.

【0002】[0002]

【従来の技術】従来の技術のスクロール圧縮機は、特開
昭63−106386号(特公平6−70434号、以下引用例1と呼
ぶ)及び、特開平5−141201 号(以下引用例2と呼ぶ)
公報で開示されているように、主軸内を通って軸受部な
どを潤滑した油は、バランスウェイトを収容したバラン
サ室の空間等に溜まり、さらに、排油孔を介して、ある
いは、外部油配管で、モータ室もしくは、底部の油溜め
部に排出される油排出経路を示した構造例がある。
2. Description of the Related Art Conventional scroll compressors are disclosed in JP-A-63-106386 (JP-B-6-70434, hereinafter referred to as Reference 1) and JP-A-5-141201 (hereinafter referred to as Reference 2). Call)
As disclosed in the official gazette, the oil that has lubricated the bearings and the like through the inside of the main shaft accumulates in the space of the balancer chamber that accommodates the balance weight, and further, through an oil drain hole or an external oil pipe. Thus, there is a structural example showing an oil discharge path to be discharged to a motor chamber or a bottom oil reservoir.

【0003】[0003]

【発明が解決しようとする課題】従来技術の引用例1の
図4で、軸受部などを潤滑した油が、バランサ室104
に溜まり、さらに、排油孔29を介してモータ室の下部
空間に排出されるという油経路の構成を示している。し
かし、排油孔29から流出した油は、周囲の低圧冷媒ガ
スの流れにさらされるため、再び、低圧冷媒ガスの流れ
に混入しやすく、その混入した油は冷媒ガスと一緒にな
って、上方向に向かい、さらに両スクロール部に導か
れ、ひいては、圧縮機外部に油が流出するという、いわ
ゆる圧縮機の油上がり現象が増大するという問題があ
る。さらに、排油孔29の構造が詳細に開示がなく、排
油穴としての機能が果たされているか疑問となる。
In FIG. 4 of Reference 1 of the prior art, the oil lubricating the bearing and the like is supplied to the balancer chamber 104.
, And is further discharged to the lower space of the motor chamber through the oil discharge hole 29. However, since the oil that has flowed out of the oil drain hole 29 is exposed to the flow of the surrounding low-pressure refrigerant gas, the oil easily mixes again into the flow of the low-pressure refrigerant gas, and the mixed oil is combined with the refrigerant gas and There is a problem that the so-called oil rising phenomenon of the compressor increases, that is, the oil is directed toward the direction and further guided to both scroll portions, and eventually the oil flows out of the compressor. Further, the structure of the oil drain hole 29 is not disclosed in detail, and it is questioned whether the function as the oil drain hole is fulfilled.

【0004】また、引用例2の図1と図2で、軸受部な
どを潤滑した油が、返油孔81,返油管82を介してモ
ータ室の下部空間に排出されるという油経路の構成を示
している。しかし、返油管82から流出した油は、引用
例1と同様に、周囲の低圧冷媒ガスの流れにさらされる
ため、再び、低圧冷媒ガスの流れに混入しやすく、その
混入した油は冷媒ガスと一緒になって、油滴状態から噴
霧状となって、さらに両スクロール部に導かれ、ひいて
は、圧縮機外部に油が流出するという、引用例1と同じ
ように、圧縮機の油上がり現象が増大するという問題が
ある。外部配管による返油管82構造では、複雑な構造
となって組立性の面でも量産性に難があり、製作コスト
が高くなる。
In FIGS. 1 and 2 of the cited reference 2, the oil path lubricating the bearing and the like is discharged to the lower space of the motor chamber through the oil return hole 81 and the oil return pipe 82. Is shown. However, since the oil that has flowed out of the oil return pipe 82 is exposed to the flow of the surrounding low-pressure refrigerant gas, as in the case of the cited example 1, the oil easily flows into the flow of the low-pressure refrigerant gas again. Together, the oil droplets are sprayed from the state of the oil, and are further guided to both scroll portions, and eventually the oil flows out of the compressor. There is a problem of increasing. The structure of the oil return pipe 82 using the external piping has a complicated structure, which is difficult to mass-produce in terms of assemblability, and increases the manufacturing cost.

【0005】本発明の目的は圧縮機の油上がり量を減少
し、かつ効果的な電動機の冷却を図り、ひいては、圧縮
機内に常時潤滑油を溜めることが可能となって、軸受部
など各摺動部の油切れ・焼き付きを防止して圧縮機の信
頼性向上を図ることにある。
SUMMARY OF THE INVENTION It is an object of the present invention to reduce the amount of oil rising in a compressor and to effectively cool an electric motor. An object of the present invention is to improve the reliability of a compressor by preventing running parts from running out of oil and seizure.

【0006】[0006]

【課題を解決するための手段】本発明では、電動機のス
テータ部外縁部に上下空間をつなぐ複数の通路部を設
け、前記通路部の一つと密閉容器底部の油溜め部とをつ
なぐ通路手段を密閉容器内に設けて、前記通路を下方向
に流れる主として油の流れるような通路とし、その他の
通路を、下向流もしくは、上昇流となる主として圧縮ガ
スの流れとなるような通路としたことを特徴とする密閉
形スクロール圧縮機の構造とすることである。
According to the present invention, a plurality of passages are provided at the outer periphery of the stator portion of the motor to connect the upper and lower spaces, and the passage means for connecting one of the passages to the oil reservoir at the bottom of the sealed container is provided. Provided in a closed container, the passage is a passage that mainly flows oil flowing downward, and the other passage is a passage that mainly flows compressed gas that becomes a downward flow or an upward flow. The structure of a hermetic scroll compressor characterized by the following.

【0007】さらに、フレーム中央部にあって主軸を支
える主軸受部あるいは旋回軸受部から排出した油を密閉
容器のケーシング部内壁面に導く排油通路手段をフレー
ムに設けるとともに、電動機の上下空間をつなぐ通路を
ステータ外周部に設け、前記フレーム内の排油通路手段
の油排出口周辺部と前記ステータ外周部の通路とをつな
ぐ第一の排油通路手段を密閉容器のケーシング部内に設
けたことを特徴としている。次に、電動機のステータ部
外縁部に複数の通路部を設け、前記一つの通路を下方向
に流れる主として油の流れるような通路とし、その他の
通路を、下向流もしくは、上昇流となる主として圧縮ガ
スの流れとなるような通路としたことを特徴としてい
る。また、フレーム内の排油通路手段の油排出口周辺部
と前記ステータ外周部の通路とをつなぐ第一の排油通路
手段を密閉容器のケーシング部内に設けた密閉形スクロ
ール圧縮機で、前記ステータ外周部の通路面積よりも第
一の排油通路手段の排出油の取り入れ口の広さを大きく
設定したことを特徴とする。さらに、第一の排油通路手
段の油取り入れ口の高さが、主軸受部の下方部の電動機
室上部空間に設けたバランスウェイト上端面の位置より
上方部に位置してなることを特徴とする。
Further, oil drainage passage means for guiding oil discharged from a main bearing portion or a swivel bearing portion which supports a main shaft at a center portion of the frame to an inner wall surface of a casing portion of a closed vessel is provided in the frame, and connects upper and lower spaces of an electric motor. A passage is provided in the outer peripheral portion of the stator, and a first oil discharge passage means for connecting an oil discharge port peripheral portion of the oil discharge passage means in the frame and a passage in the outer peripheral portion of the stator is provided in the casing portion of the sealed container. Features. Next, a plurality of passage portions are provided on the outer edge portion of the stator portion of the electric motor, and the one passage is a passage through which oil flows mainly downward, and the other passage is mainly a downward flow or an upward flow. It is characterized in that the passage is such that the compressed gas flows. Further, in the hermetic scroll compressor, a first oil discharge passage means for connecting a peripheral portion of an oil discharge port of the oil discharge passage means in the frame and a passage of the outer peripheral portion of the stator is provided in a casing portion of the closed container. It is characterized in that the area of the intake port for the discharged oil of the first oil discharge passage means is set to be larger than the passage area of the outer peripheral portion. Furthermore, the height of the oil intake of the first oil drain passage means is located above the position of the upper end face of the balance weight provided in the upper space of the motor chamber below the main bearing. I do.

【0008】第一及び第二の排油通路手段として、密閉
容器のケーシング部内に設けた方法の一例として図1の
ように、ケーシング2aの内壁面2mに沿った通路を設
定した場合を示している。すなわち、軸受部から排出し
た油をフレームに設けた排油通路手段でケーシングの内
壁面に導き、前記排出油を電動機室上部空間における圧
縮ガスの流れと隔絶した排油通路手段で、電動機ステー
タ外縁部の通路となるコアカット部に直接導く第一の排
油経路を構成している。さらに、電動機ステータ外縁部
の通路となるコアカット部に導かれた排出油を、電動機
室下部空間における圧縮ガスの流れと隔絶した排油通路
手段で、底チャンバの油溜め部に直接導く第二の排油経
路を構成している。具体的には、図1に示すように、軸
受部32,40を潤滑して排出した油は、油圧室41に
至り、さらに、排油孔37で油が、ケーシング2aの内
壁面2mに排出される。次にその排出油を仕切り板31
aとケーシング内壁面2mとで形成される排油通路手段
31で、電動機3のステータ3aの外縁部の通路となる
コアカット部3nの空間25aに直接に導く第一の排油
経路を構成する。前記排油経路は、電動機室上部空間で
ある1bにおける圧縮ガスの流れと隔絶した構成として
おり、軸受部などから排出された油が圧縮ガス中に直接
混入することを防止する作用が確実に得られる。外縁部
の通路となるコアカット部3nの空間25aに導かれた
油は、そのままケーシング内壁面2mに沿って落下す
る。また、従来の引用例1,2で課題となっていた、電
動機室下部空間1cにおける圧縮ガスと前記排出油との
混合を避けるため、仕切り板32aとケーシング内壁面2
mとで形成される第二の排油通路手段32を、電動機3
のステータ3aの外縁部における通路となるコアカット
部3nの下端部から下フレーム47外縁部47eを形成
する。前記第二の排油通路手段で、コアカット部3nの
下端部から流れ落ちる油を直接底チャンバの油溜め部2
2に導く。図4に示すように、4箇所のコアカット部3
nとケーシング内壁面2mとで形成される空間25a,
25b,25c,25dで、空間25aが第一の排油通
路手段とつながっており、前記空間25aの全領域が下
方向に流れる主として油の流れる通路としての機能を備
えている。一方、空間25bは、微量の油分を含むもの
の主に下方向の圧縮ガスの流れであり、25c,25d
の二つの空間は、上昇流となる圧縮ガスの流れとなるよ
うな主として圧縮ガスの流れる通路とし、電動機の冷却
効果、特に冷却のしにくい電動機下部への冷却効果が得
られる。このように、本発明では、ステータ外周部のコ
アカット部3nの空間を主として圧縮ガスの流れる通路
と、主として排出油が流れる通路としての機能分けを図
っていることが特長である。そして、ケーシング内壁面
に沿った第一と第二の排油通路手段31,32の設定に
よる油戻し経路と電動機室上部空間1bと電動機室下部
空間1cでの主として圧縮ガスの流れ経路とを隔絶した
構成とすることで、引用例に見られたような圧縮ガス中
に軸受部などから排出された油が直接混入し、さらに冷
媒ガス流による吹き上げ作用による油上がり現象を確実
に防止できる。このことが密閉容器自体の油分離機能を
効果的に得られるようになる。この構成により、圧縮機
の油上がり量を大幅に低減でき、電動機全体の冷却効果
を大きく向上させることができる。また、図9で、旋回
運動に伴う遠心力を相殺する第一バランスウェイト9a
をフレーム11下側の電動機室1b側の主軸14に固定
して配置している場合、排油通路31の油取り入れ口3
1mの高さは、主軸受部41の下方部に設けたバランス
ウェイト9aの上端面9cの位置より上方部に位置させ
上下の位置関係とすることにより、排出管39からの排
出油がバランスウェイト9aで撹拌する恐れがなくな
り、その空間が冷媒ガス域であることと相俟って、その
空間内が油で充満した雰囲気でないことによるバランス
ウェイト9aの回転による撹拌損失が大幅に減少でき、
電動機入力が大幅に減少し、性能向上の作用が得られ
る。排油通路手段31,32が仕切り板と密閉容器内壁
面とによって、流動抵抗が小さくてすむ広い排油通路を
簡単に構成できるので、組立性の面でも量産性が改善さ
れ、製作コストも廉価となる。
As an example of a method in which the first and second oil discharge passage means are provided in a casing portion of a closed container, a case is shown in which a passage is set along an inner wall surface 2m of a casing 2a as shown in FIG. I have. That is, the oil discharged from the bearing portion is guided to the inner wall surface of the casing by oil discharge passage means provided on the frame, and the discharged oil is separated from the flow of the compressed gas in the upper space of the electric motor chamber by the oil discharge passage means, and the outer periphery of the motor stator is removed. It constitutes a first oil drainage path directly leading to a core cut portion serving as a passage of the portion. In addition, the oil drain guided to the core cut portion, which is a passage of the outer periphery of the motor stator, is directly guided to the oil reservoir of the bottom chamber by oil drain passage means isolated from the flow of the compressed gas in the lower space of the motor chamber. Of the oil drain path. Specifically, as shown in FIG. 1, the oil discharged after lubricating the bearing portions 32 and 40 reaches the hydraulic chamber 41, and is further discharged to the inner wall surface 2 m of the casing 2 a through the oil discharge hole 37. Is done. Next, the discharged oil is used as the partition plate 31.
a and a first oil drain passage 31 formed by the casing inner wall surface 2m and directly leading to the space 25a of the core cut portion 3n which is a passage of the outer edge of the stator 3a of the electric motor 3. . The oil discharge path is configured to be isolated from the flow of the compressed gas in the upper space 1b, which is the upper space of the motor room, so that the oil discharged from the bearing portion and the like can be reliably prevented from directly mixing into the compressed gas. Can be The oil guided to the space 25a of the core cut portion 3n serving as a passage of the outer edge portion falls along the casing inner wall surface 2m as it is. Further, in order to avoid mixing of the compressed gas and the discharged oil in the lower space 1c of the motor room, which has been a problem in the cited examples 1 and 2 of the related art, the partition plate 32a and the casing inner wall surface 2
m and the second oil drain passage means 32 formed by the electric motor 3
An outer edge 47e of the lower frame 47 is formed from the lower end of the core cut portion 3n which becomes a passage in the outer edge of the stator 3a. The oil flowing down from the lower end of the core cut portion 3n is directly transferred to the oil reservoir 2 of the bottom chamber by the second oil discharge passage means.
Lead to 2. As shown in FIG. 4, four core cut portions 3
n and a space 25a formed by the casing inner wall surface 2m,
At 25b, 25c, 25d, the space 25a is connected to the first oil discharge passage means, and the entire region of the space 25a has a function as a passage mainly through which oil flows downward. On the other hand, the space 25b is a flow of compressed gas mainly in the downward direction, though containing a small amount of oil, and 25c, 25d.
The two spaces are mainly passages through which the compressed gas flows so as to flow the compressed gas which becomes the upward flow, and a cooling effect of the motor, particularly a cooling effect to the lower portion of the motor, which is difficult to cool, can be obtained. As described above, the present invention is characterized in that the space of the core cut portion 3n in the outer peripheral portion of the stator is divided into a function mainly as a passage through which the compressed gas flows and a function mainly through the passage through which the discharged oil flows. Then, the oil return path by setting the first and second oil discharge passage means 31 and 32 along the inner wall surface of the casing and the flow path of mainly the compressed gas in the upper space 1b and the lower space 1c of the motor chamber are isolated. With this configuration, the oil discharged from the bearing portion or the like directly mixed into the compressed gas as seen in the cited example, and the oil rising phenomenon due to the blowing action by the refrigerant gas flow can be reliably prevented. This makes it possible to effectively obtain the oil separating function of the sealed container itself. With this configuration, the amount of oil rise in the compressor can be significantly reduced, and the cooling effect of the entire electric motor can be greatly improved. Further, in FIG. 9, a first balance weight 9a for canceling the centrifugal force caused by the turning motion.
Is fixed to the main shaft 14 on the side of the electric motor chamber 1b below the frame 11, the oil intake port 3 of the oil drain passage 31
The height of 1 m is set above the position of the upper end surface 9c of the balance weight 9a provided below the main bearing portion 41 so that the oil discharged from the discharge pipe 39 is balanced by the balance weight. 9A, the agitation loss due to the rotation of the balance weight 9a due to the fact that the space is not an atmosphere filled with oil can be significantly reduced, in combination with the fact that the space is a refrigerant gas region,
The motor input is greatly reduced, and an effect of improving performance is obtained. Since the oil discharge passage means 31 and 32 can be easily constituted by the partition plate and the inner wall surface of the closed container, a wide oil discharge passage having a small flow resistance and a small flow resistance can be easily produced, mass productivity can be improved in terms of assemblability, and the production cost can be reduced. Becomes

【0009】[0009]

【発明の実施の形態】本発明の実施例を図1から図13
にわたって示す。なお、図中実線矢印は冷媒ガスの流れ
方向を、破線矢印は油の流れ方向を示す。
1 to 13 show an embodiment of the present invention.
Shown over. In the drawings, solid arrows indicate the flow direction of the refrigerant gas, and broken arrows indicate the flow direction of the oil.

【0010】図1と図2は、密閉形スクロール圧縮機の
全体構成を示す縦断面図で、図1は軸受部などから排出
された排油経路を示し、一方、図2は、容器内部での主
に油の混在した圧縮ガス流れを示した。なお、図1は、
図4のD−D断面図であり、一方、図2は、図4のE−
E断面図である。図1と図2に示すように、密閉容器2
内の上方に圧縮機部100が、下方に電動機部3が収納
されている。そして、密閉容器2内は上部室1a(吐出
室)と電動機室1b,1cとに区画され、さらに下軸受
部44を支持する下フレーム47の下部には、空間1d
がある。圧縮機部100は固定スクロール5と旋回スク
ロール6を互いに噛み合わせて圧縮室8を形成してい
る。固定スクロール5は、円板状の鏡板5aと、これに
直立しインボリュート曲線あるいはこれに近似の曲線に
形成されたラップ5bとからなり、その中心部に吐出口
10,外周部に吸入口16,16Cを備えている。フレ
ーム11は図10と図11に示すように、中央部に主軸
受部40を形成し、軸受部40に回転軸14が支承さ
れ、回転軸先端の偏心軸14aは、旋回スクロール6の
ボス部6cに相対的な回転運動が可能なように挿入され
ている。またフレーム11には固定スクロール5が複数
本のボルトによって固定され、旋回スクロール6は、オ
ルダムリング38によってフレーム11に支承され、旋
回スクロール6は固定スクロール5に対して、自転しな
いで旋回運動をするように形成されている。図2で、回
転軸14には下部に、ロータ3bに固定された電動機軸
14bが一体に連設され、電動機部3が直結されてい
る。固定スクロール5の吸入口16には密閉容器2を貫
通して垂直方向の吸入管17が接続され、吐出口10が
開口している上部室1aは通路18(18a,18b)
を介して上部電動機室1bと連通している。通路18か
ら、圧縮ガスは、開口部24であるガス案内通路手段2
3に至る。ガス案内通路手段23の全体構造の一実施例
を図3と図4に示す。図3に示すように、ガス案内通路
手段23は、ケーシング内壁面2mを利用してコ字形の
枠体23aと衝突板部23bで構成している。吐出室1
aでの油の混合した圧縮ガスは、コ字形の枠体23aの
開口部29aに導かれ、電動機3の巻線部3cに向かう
水平方向の流れと、衝突板部23bの開口部29bで鉛
直方向の電動機3のステータ外周部のコアカット部3n
に向かう流れとに分流される。
FIGS. 1 and 2 are longitudinal sectional views showing the overall structure of a hermetic scroll compressor. FIG. 1 shows an oil drainage path discharged from a bearing portion, etc., while FIG. The compressed gas flow mainly containing oil was shown. In addition, FIG.
FIG. 2 is a sectional view taken along line DD of FIG. 4, while FIG.
It is E sectional drawing. As shown in FIG. 1 and FIG.
The compressor unit 100 is accommodated in the upper part, and the electric motor part 3 is accommodated in the lower part. The inside of the closed container 2 is partitioned into an upper chamber 1a (discharge chamber) and electric motor chambers 1b and 1c, and a space 1d is provided below a lower frame 47 supporting the lower bearing portion 44.
There is. The compressor section 100 forms the compression chamber 8 by meshing the fixed scroll 5 and the orbiting scroll 6 with each other. The fixed scroll 5 is composed of a disk-shaped end plate 5a and a wrap 5b standing upright on the end plate 5a and having an involute curve or a curve approximating to the end plate 5a. 16C. As shown in FIGS. 10 and 11, the frame 11 has a main bearing portion 40 formed at the center thereof, the rotating shaft 14 is supported by the bearing portion 40, and the eccentric shaft 14 a at the tip of the rotating shaft is connected to the boss portion of the orbiting scroll 6. 6c is inserted so that a relative rotational movement is possible. The fixed scroll 5 is fixed to the frame 11 by a plurality of bolts, and the orbiting scroll 6 is supported on the frame 11 by an Oldham ring 38. The orbiting scroll 6 orbits with respect to the fixed scroll 5 without rotating. It is formed as follows. In FIG. 2, a motor shaft 14 b fixed to the rotor 3 b is integrally provided below the rotary shaft 14, and the motor unit 3 is directly connected. A vertical suction pipe 17 is connected to the suction port 16 of the fixed scroll 5 through the closed container 2, and the upper chamber 1 a in which the discharge port 10 is open is a passage 18 (18 a, 18 b).
Through the upper motor room 1b. From the passage 18, the compressed gas is passed through the gas guide passage means 2
Reaches 3. One embodiment of the entire structure of the gas guide passage means 23 is shown in FIGS. As shown in FIG. 3, the gas guide passage means 23 includes a U-shaped frame 23a and a collision plate 23b using the inner wall surface 2m of the casing. Discharge chamber 1
The compressed gas in which the oil is mixed is guided to the opening 29a of the U-shaped frame 23a, flows in the horizontal direction toward the winding portion 3c of the electric motor 3, and flows vertically through the opening 29b of the collision plate 23b. Core cut part 3n on the outer periphery of the stator of the motor 3 in the direction
And diverted into

【0011】なお、電動機室上部空間1bは電動機ステ
ータ3aと密閉容器2のケーシング内壁面2mとの間の
通路25(25a,25b,25c,25d)を介して
電動機室下部空間1cに連通している。また上部電動機
室1bは密閉容器2を貫通する吐出管20に連通してい
る。なお、22は密閉容器底部の油溜り部を示す。潤滑
油22aは、密閉容器2の下部に油溜り22として溜め
られる。なお、15は、逆止弁部である。回転軸14の
上端は偏心軸部(クランクピン)14aを備え、偏心軸
部14aが旋回スクロール6の鏡板6aのボス部6c内
の旋回軸受32を介して、スクロール圧縮要素部である
旋回スクロール6と係合している。回転軸14には、各
軸受部への給油を行うための偏心縦孔13bが回転軸1
4の下端から上端面まで形成される。偏心縦孔13bは
揚油管27の中心孔部13aとつながっている。27
は、回転軸14の下端と底部油溜り22を連絡する揚油
管である。偏心軸部14aの下部には、主軸受(すべり
軸受タイプ)40があり、その外周部には、旋回スクロ
ールの鏡板背面にある背圧室36と主軸側周辺部の高圧
油圧室41とをシールするシール手段34をフレーム端
面11cに備えている。なお、旋回スクロール6の旋回
運動に伴う遠心力を相殺する第一バランスウェイト9a
をフレーム11下側の電動機室1b側の主軸14に固定
して配置している。旋回スクロール6の旋回運動に伴う
遠心力を相殺する第一バランスウェイト9aをフレーム
11下側の電動機室1b側の主軸14に配置している。
排油通路31の油取り入れ口31mの高さは、主軸受部
41の下方部に設けたバランスウェイト9aの上端面9
cの位置より上方部に位置している。このような上下関
係とすることにより、排出油がバランスウェイト9aで
撹拌する恐れがなくなり、その空間が冷媒ガス域である
ことと相俟って、その空間内が油の雰囲気でないことに
よるバランスウェイト9aの回転による撹拌損失が大幅
に減少できる。
The upper space 1b of the motor room communicates with the lower space 1c of the motor room via a passage 25 (25a, 25b, 25c, 25d) between the motor stator 3a and the inner wall surface 2m of the casing of the closed casing 2. I have. The upper motor chamber 1b communicates with a discharge pipe 20 penetrating through the closed casing 2. Reference numeral 22 denotes an oil reservoir at the bottom of the closed container. The lubricating oil 22 a is stored as an oil sump 22 in the lower part of the closed container 2. In addition, 15 is a check valve part. The upper end of the rotary shaft 14 has an eccentric shaft portion (crank pin) 14a, and the eccentric shaft portion 14a is a scroll compression element portion orbiting scroll 6 via a turning bearing 32 in a boss portion 6c of the end plate 6a of the orbiting scroll 6. Is engaged. The rotary shaft 14 has an eccentric vertical hole 13b for refueling each bearing.
4 is formed from the lower end to the upper end surface. The eccentric vertical hole 13b is connected to the center hole 13a of the oil pumping tube 27. 27
Is an oil-lifting pipe that connects the lower end of the rotating shaft 14 and the bottom oil sump 22. A main bearing (slide bearing type) 40 is provided below the eccentric shaft portion 14a, and the outer peripheral portion thereof seals a back pressure chamber 36 on the back surface of the end plate of the orbiting scroll and a high-pressure hydraulic chamber 41 around the main shaft side. A sealing means 34 is provided on the frame end face 11c. The first balance weight 9a for canceling the centrifugal force accompanying the orbiting movement of the orbiting scroll 6
Is fixedly arranged on the main shaft 14 on the side of the electric motor room 1 b below the frame 11. A first balance weight 9a for offsetting a centrifugal force caused by the orbiting movement of the orbiting scroll 6 is disposed on the main shaft 14 on the side of the motor room 1b below the frame 11.
The height of the oil intake 31 m of the oil drain passage 31 is determined by the upper end surface 9 of the balance weight 9 a provided below the main bearing portion 41.
It is located above the position of c. With such a vertical relationship, there is no danger that the discharged oil is agitated by the balance weight 9a. Stirring loss due to rotation of 9a can be greatly reduced.

【0012】図2で、電動機3のステータ外周部のコア
カット部3nの空間25bへの鉛直方向の流れは、下フ
レーム47で水平方向に方向変換され、電動機下部を冷
却する。さらに、圧縮ガスは、ステータ外周部のコアカ
ット部3nの空間25cと25dを通って上昇流とな
り、再び上部電動機室1bに至り、次に、吐出管で機外
に流出する。なお、図1以下、第一及び第二の排油通路
手段31,32として、密閉容器のケーシング部内に設
けた方法の一例として図1のように、ケーシング2aの
内壁面2mに沿った通路を設定した場合を示している。
In FIG. 2, the flow in the vertical direction into the space 25b of the core cut portion 3n on the outer periphery of the stator of the electric motor 3 is changed in the horizontal direction by the lower frame 47 to cool the lower part of the electric motor. Further, the compressed gas flows upward through the spaces 25c and 25d of the core cut portion 3n on the outer peripheral portion of the stator, reaches the upper motor chamber 1b again, and then flows out of the machine through the discharge pipe. In addition, as shown in FIG. 1 and below, as an example of a method provided in the casing portion of the closed container as the first and second oil discharge passage means 31 and 32, a passage along the inner wall surface 2m of the casing 2a as shown in FIG. This shows the case where it is set.

【0013】図4は、図1のA−A断面図である。図4
に示すように、分流板23bで垂直方向に変換された油
分を含んだ圧縮ガスは電動機3の巻線部3cに直接衝突
して、圧縮ガス中から油分の分離がなされる。さらに、
油分の少ない圧縮ガスは、電動機の上部巻線部3cと密
閉容器のケーシング内壁面2mとの空間を周回しなが
ら、圧縮ガスは巻線部への冷却作用を働かせながら、遠
心分離機能による圧縮ガスに混在した油をガスからの分
離作用を促進し、次にガス案内通路手段23と反対方向
にある吐出管20へと至る。図5は、排油孔37の油出
口部周辺の油の流れを示す部分斜視図である。図5で、
油出口部となるフレーム外縁部には、ケーシング2aと
向かう間口の広い溝部11zを設けている。この間口の
広い溝部11zの形状とすることで、排出油の流出速度
を低減し、そのケーシング内壁面2mに付着した油の飛
散を防止する。
FIG. 4 is a sectional view taken along the line AA of FIG. FIG.
As shown in (2), the compressed gas containing the oil converted in the vertical direction by the flow dividing plate 23b directly collides with the winding part 3c of the electric motor 3, and the oil is separated from the compressed gas. further,
The compressed gas having a low oil content goes around the space between the upper winding portion 3c of the motor and the inner wall surface 2m of the casing of the closed container. The compressed gas exerts a cooling action on the winding portion, and the compressed gas by the centrifugal separation function. This promotes the action of separating the oil mixed with the gas from the gas, and then reaches the discharge pipe 20 in the opposite direction to the gas guide passage means 23. FIG. 5 is a partial perspective view showing the flow of oil around the oil outlet of the oil drain hole 37. In FIG.
A groove 11z having a wide opening facing the casing 2a is provided at an outer edge of the frame serving as an oil outlet. By forming the groove 11z having a wide frontage, the outflow speed of the discharged oil is reduced, and scattering of the oil adhering to the inner wall surface 2m of the casing is prevented.

【0014】図6は、仕切り板31a,32aとケーシ
ング内壁面2mとで油専用通路となる排油通路手段3
1,32を構成した斜視図である。図7は、図1のB−
B断面における横断面図である。47cは、空間1cと
1dをつなぐ孔であり、また、電動機3のステータ部3
aとロータ部3bとの空隙部を調節し芯出し用ギャップ
ゲージを挿入可能な半径方向位置に4箇所設定してい
る。80(80a〜80d)は、シタフレーム47をケー
シング2aに固定するためのタック溶接部である。図8
は、図1のC−C断面における横断面図で、吸入口16
と連通路18及びステータ外周部のコアカット部3nの
空間25a,25b,25c,25dさらに吐出管20
との位置関係を示す。
FIG. 6 shows an oil discharge passage means 3 which is a dedicated oil passage between the partition plates 31a, 32a and the inner wall surface 2m of the casing.
It is the perspective view which comprised 1 and 32. FIG. 7 is a sectional view of FIG.
It is a cross-sectional view in B section. 47c is a hole connecting the spaces 1c and 1d.
The gap between the a and the rotor portion 3b is adjusted, and four positions are set at radial positions where the centering gap gauge can be inserted. Numerals 80 (80a to 80d) are tack welds for fixing the sita frame 47 to the casing 2a. FIG.
Is a cross-sectional view taken along the line CC of FIG.
25a, 25b, 25c, 25d of the communication passage 18 and the core cut portion 3n of the outer peripheral portion of the stator, and the discharge pipe 20
This shows the positional relationship with.

【0015】図4に示したステータ外周部のコアカット
部3nとは、円柱のステータの外周部を縦に直線状に4
箇所カットして、扇形状の空間部を形成したことを差し
示す。3mがコアカット部3nのカット面である。コア
カット部3nとケーシング内壁面2mとで形成される空
間25a,25b,25c,25dで、空間25aの全
領域が下方向に流れる主として油の流れる通路としての
機能を備え、25bは、下方向の圧縮ガスの流れであ
り、25c,25dの二つの空間は、上昇流となる圧縮
ガスの流れとなっている。このように、本発明では、ス
テータ外周部のコアカット部3nの空間を主として圧縮
ガスの流れる通路もしくは、圧縮ガス専用通路として、
一方排出油の流れる通路、もしくは油用専用通路として
の機能分けを図っていることが特長である。このことが
圧縮機の油分離機能の向上と電動機への冷却作用の向上
という両面の作用を効果的に得られる。
The core cut portion 3n of the outer peripheral portion of the stator shown in FIG.
This shows that a fan-shaped space is formed by cutting a portion. 3m is a cut surface of the core cut portion 3n. The spaces 25a, 25b, 25c, and 25d formed by the core cut portion 3n and the inner wall surface 2m of the casing have a function as a passage mainly through which the entire region of the space 25a flows downward and mainly serves as an oil passage. , And the two spaces 25c and 25d are the flows of the compressed gas that become the upward flow. As described above, in the present invention, the space of the core cut portion 3n in the outer peripheral portion of the stator is mainly used as a passage through which the compressed gas flows or a passage dedicated to the compressed gas.
On the other hand, the feature is that the function is divided as a passage through which the discharged oil flows or a passage dedicated to oil. This effectively achieves both effects of improving the oil separating function of the compressor and improving the cooling effect on the electric motor.

【0016】ここで、圧縮機内部における潤滑油22a
の流れの概要を説明する。図1で、潤滑油22aの油溜
り22内に浸漬された揚油管27の下端は高圧の吐出圧
力Pdを受けている。容器底部の油溜り22中の潤滑油
22aは、偏心縦孔13内の遠心ポンプ作用により、偏
心縦孔13(13b)内を上昇する。13dは、油中に
混ざったガスを抜くためのガス抜き孔で、1cの空間に
そのガスを排出する。なお、旋回軸受32及び主軸受
(すべり軸受40)のまわりは、シール手段34で、旋
回鏡板6aに設けた細孔6dにより圧縮途中の圧力であ
る中間圧力Pmの状態にある背圧室36と隔絶されてい
るため、概略吐出圧力の雰囲気にある。偏心縦孔13内
を上昇した潤滑油22aは、横給油孔13cを介して主
軸受40に、一方主軸上端部室77を介して旋回軸受3
2へ給油される。それら軸受部32,40に給油された
油は、一端、油圧室41に排出され、その大部分の油
は、前述のように、排油孔37を通って、ケーシング2
aの内壁面2mに排出される。また、油圧室41内の一
部の微量の油は、シール手段34を通って、背圧室36
に流入する。なお、背圧室36に流入した油は、図11
にも示すように、連通路用溝11mを介してオルダム室
51に流入し、オルダムリング部38周辺部を潤滑す
る。また、その微量の油の一部は、旋回鏡板外周部から
鏡板摺動面5kを通って吸入室5fへ漏れ、吸入冷媒ガ
スと混合する。一方、背圧室36内部の油は、背圧孔6
dを介して圧縮室8にも流出する。圧縮室8に至った油
は、スクロールラップ間の隙間をシールしながら圧縮室
間の漏れを防止しながら、冷媒ガスとともに加圧され,
吐出口10を介して固定スクロール5上方の吐出室1a
をさらに電動機室1bへと移動する。圧縮室に入った油
を混合した圧縮ガスは、この吐出室1aと電動機室1
b,1cでのガス流れの過程で、主に冷媒ガスと油は分
離され、その分離油は密閉容器2の下部の下フレーム4
7の孔部47cを介して油溜り22に落下し、再び各摺
動部に供給される。このような油の流れとすることによ
り、圧縮機各部での潤滑が確実に行われる。なお、下軸
受部44に深溝玉軸受を適用し、油膜切れに強い軸受構
造としている。深溝玉軸受の内輪部44aの上端面には
主軸14とバランスウェイト部9a,9bとロータ部3
bなどの自重分の荷重が受け持つことができるスラスト
力支持構造としている。本構成により、主軸受41のす
べり軸受部には、特別なスラスト軸受構造をとらなくて
よく、かつ主軸受41に余分な荷重負担がなくなるの
で、主軸受41にすべり軸受タイプの軸受構造としても
軸受まわりの信頼性が改善される。
Here, the lubricating oil 22a inside the compressor is
An outline of the flow will be described. In FIG. 1, the lower end of the oil pump 27 immersed in the oil reservoir 22 of the lubricating oil 22a receives a high discharge pressure Pd. The lubricating oil 22 a in the oil reservoir 22 at the bottom of the container rises in the eccentric vertical hole 13 (13 b) by the action of the centrifugal pump in the eccentric vertical hole 13. 13d is a vent hole for venting the gas mixed in the oil, and discharges the gas into the space 1c. Around the slewing bearing 32 and the main bearing (slide bearing 40), the back pressure chamber 36 in the state of the intermediate pressure Pm, which is the pressure during compression, is sealed by the sealing means 34 by the small holes 6d provided in the slewing head plate 6a. Because it is isolated, it is in an atmosphere of approximately discharge pressure. The lubricating oil 22a that has risen in the eccentric vertical hole 13 is supplied to the main bearing 40 through the horizontal oil supply hole 13c, and to the swing bearing 3 through the main shaft upper end chamber 77.
2 is refueled. The oil supplied to the bearing portions 32 and 40 is discharged at one end to the hydraulic chamber 41, and most of the oil passes through the oil drain hole 37 and passes through the casing 2 as described above.
It is discharged to the inner wall surface 2m of a. Further, a small amount of oil in the hydraulic chamber 41 passes through the sealing means 34 and passes through the back pressure chamber 36.
Flows into. The oil flowing into the back pressure chamber 36 is as shown in FIG.
As shown in FIG. 11, the fluid flows into the Oldham chamber 51 through the communication passage groove 11m, and lubricates the periphery of the Oldham ring portion. Further, a part of the trace amount of oil leaks from the outer peripheral portion of the revolving head plate to the suction chamber 5f through the head plate sliding surface 5k and mixes with the suction refrigerant gas. On the other hand, the oil inside the back pressure chamber 36 is
Through d, it also flows out to the compression chamber 8. The oil reaching the compression chamber 8 is pressurized together with the refrigerant gas while sealing the gap between the scroll wraps and preventing leakage between the compression chambers,
Discharge chamber 1a above fixed scroll 5 via discharge port 10
Is further moved to the motor room 1b. The compressed gas mixed with the oil entering the compression chamber is supplied to the discharge chamber 1a and the motor chamber 1
In the course of the gas flow in b and 1c, the refrigerant gas and the oil are mainly separated, and the separated oil is transferred to the lower frame 4 of the lower portion of the closed vessel 2.
7, falls into the oil reservoir 22 through the hole 47c, and is again supplied to each sliding portion. With such an oil flow, lubrication in each part of the compressor is reliably performed. In addition, a deep groove ball bearing is applied to the lower bearing portion 44 to provide a bearing structure that is resistant to oil film breakage. On the upper end surface of the inner ring portion 44a of the deep groove ball bearing, the main shaft 14, the balance weight portions 9a and 9b, and the rotor portion 3
It has a thrust force support structure that can bear the load of its own weight such as b. With this configuration, the sliding bearing portion of the main bearing 41 does not require a special thrust bearing structure, and the main bearing 41 does not bear an extra load. Therefore, the main bearing 41 can be configured as a sliding bearing type bearing structure. Reliability around the bearing is improved.

【0017】図9は、その他の本発明の全体構成を示す
密閉形スクロール圧縮機の縦断面図である。図12は、
排出油の取り入れ口を広く設けた仕切り板部33aとケ
ーシング2bの内壁面とで排油通路手段33を構成した
斜視図である。すなわち、軸受部から排出した油をフレ
ームに設けた排油通路手段でケーシングの内壁面に導
き、排出油を電動機のステータ外縁部のコアカット部の
空間に導くため、コアカット部の通路面積よりも広い油
の取り入れ口を設けた排油通路手段を仕切り板部とケー
シングの内壁面とで形成した実施例である。図9から図
12に示すように、排油孔37は排油管39とつなが
り、油圧室41の油は、排油孔37と排油管39でケー
シング2aの内壁面2m近傍まで導かれる。その排出油
は、間口の広くした排油通路手段33に捕獲され溜めら
れる。図9に示すように、間口の広くした排油通路口3
3aとすることで、飛散しても油の電動機室上部空間1
bへの流出を防止できるとともに、排油通路30内に溜
まる油の量が増えることになる。このため、排油通路内
30における油柱高さ(ヘッド)L1をより高く保持で
きるので、排油通路手段33,25aおよび、これらに
つながる排油通路手段26における油のケーシング2a
の内壁面2mに沿った落下速度が増加して、排出油の落
下作用をスムースに、かつ確実に行えるものとなる。そ
のことが、さらに容器自体の油分離効率が向上できる作
用効果につながる。なお、下フレーム47と仕切り板部
32aとは一体化構造をしている。このことにより、下
フレーム47周りのケーシング2bの内壁面との組立て
性の向上と製作コストの低減が図られる。
FIG. 9 is a longitudinal sectional view of the hermetic scroll compressor showing the entire structure of the present invention. FIG.
FIG. 9 is a perspective view in which an oil discharge passage means 33 is configured by a partition plate portion 33a provided with a wide intake port for the discharged oil and an inner wall surface of a casing 2b. That is, the oil discharged from the bearing portion is guided to the inner wall surface of the casing by the oil discharge passage means provided in the frame, and the discharged oil is guided to the space of the core cut portion of the outer peripheral portion of the stator of the electric motor. This is an embodiment in which an oil discharge passage means provided with a wide oil intake is formed by a partition plate portion and an inner wall surface of a casing. As shown in FIGS. 9 to 12, the oil drain hole 37 is connected to the oil drain pipe 39, and the oil in the hydraulic chamber 41 is guided to the vicinity of the inner wall surface 2m of the casing 2a by the oil drain hole 37 and the oil drain pipe 39. The discharged oil is captured and stored in the drain passage means 33 having a wide frontage. As shown in FIG. 9, the drainage passage opening 3 having a wide frontage
By setting it to 3a, even if it scatters, the oil motor room upper space 1
b, and the amount of oil accumulated in the oil drain passage 30 increases. For this reason, the height (head) L1 of the oil column in the oil discharge passage 30 can be held higher, so that the oil casing 2a in the oil discharge passage means 33 and 25a and the oil discharge passage means 26 connected thereto.
The falling speed along the inner wall surface 2m of the oil tank increases, and the dropping action of the discharged oil can be performed smoothly and reliably. This leads to the effect of further improving the oil separation efficiency of the container itself. The lower frame 47 and the partition plate 32a have an integrated structure. Thereby, the assemblability of the lower frame 47 and the inner wall surface of the casing 2b around the lower frame 47 is improved, and the manufacturing cost is reduced.

【0018】ここで、図1と図9の作用と効果の差を具
体的に説明する。図9は、図1の排油通路手段31とそ
れとつながる電動機3のステータ3aの外縁部の通路の
コアカット部3nの空間25aに液体状となった排出油
が直接に導かれる第一の排油経路を構成した構造に対し
て、仕切り板32aとケーシング内壁面2mとで形成さ
れる第二の排油通路手段32を、電動機3のステータ3
aの外縁部における通路となるコアカット部3nの下端
部から下フレーム47外縁部47eまで排油を導く第二
の排油経路を付加した構造である。第二の排油通路手段
32を構成することにより、前述のように、電動機室下
部空間1cにおける主として上方向に流れる圧縮ガスと
第一の排油経路からの排出油との混合を完全に避け、そ
のことが、図1で予想される、圧縮ガスの吹き上げ作用
によってもたらされる排出油の飛沫化現象すなわち液体
状となった油の微粒化現象を防止できる。そのことが、
密閉容器自体の油分離性能を大幅に改善できることを実
験的に確認している。例えば、図1の実施例に対して図
9の実施例によれば、圧縮機の油上がり量を重量比率で
約2%改善できる作用効果が得られている。なお、例え
ば細い排油管を上部の軸受部付近から、電動機3のステ
ータ3aの外縁部の通路のコアカット部3nを通して、
電動機室下部空間に排出する油経路が考えられるが、そ
の場合には、油通路面積が本発明に対して十数分の一程
度と充分確保できないため、排油管としての機能を果た
すことができないという欠点がある。
Here, the difference between the operation and the effect of FIGS. 1 and 9 will be specifically described. FIG. 9 shows a first drainage in which liquid-state drainage oil is directly guided to a space 25a of a core cut portion 3n of a passage at an outer edge portion of the stator 3a of the motor 3 connected to the oil drainage passage means 31 of FIG. The second oil discharge passage means 32 formed by the partition plate 32a and the inner wall surface 2m of the casing is connected to the stator 3 of the electric motor 3 with respect to the structure constituting the oil path.
This is a structure in which a second oil drainage path for guiding oil drainage from the lower end of the core cut portion 3n, which is a passage at the outer edge portion a, to the outer edge portion 47e of the lower frame 47 is added. By configuring the second oil drain passage means 32, as described above, the mixing of the compressed gas mainly flowing in the upward direction in the lower space 1c with the oil discharged from the first oil drain path is completely avoided. This can prevent the splashing phenomenon of the discharged oil caused by the blowing action of the compressed gas, that is, the atomization phenomenon of the liquid oil, which is expected in FIG. That is
It has been experimentally confirmed that the oil separation performance of the sealed container itself can be significantly improved. For example, according to the embodiment of FIG. 9 as compared with the embodiment of FIG. 1, the effect of improving the amount of oil rise of the compressor by about 2% by weight is obtained. In addition, for example, a thin oil drain pipe is passed from the vicinity of the upper bearing portion through the core cut portion 3n of the passage on the outer edge portion of the stator 3a of the electric motor 3,
An oil passage for discharging into the lower space of the motor room is conceivable, but in such a case, the oil passage area cannot be sufficiently secured to about one tenth of that of the present invention, so that it cannot function as an oil drain pipe. There is a disadvantage that.

【0019】また、これまでの引用例では、図4に示す
ように、4箇所のコアカット部3nとケーシング内壁面
2mとで形成される空間25a,25b,25c,25
dで、第一の排油通路手段とつながっている空間25a
の全領域が下方向に流れる主として油の流れる通路とし
ての機能を備え、一方、空間25bは、微量の油分を含
むものの主に下方向の圧縮ガスの流れであり、25c,
25dの二つの空間は、上昇流となる圧縮ガスの流れと
なるような主として圧縮ガスの流れる通路とせしめる電
動機外周部の油とガスの流れの適正な機能分けを図った
構成によって、特に冷却のしにくい電動機下部への効果
的な冷却効果が得られるという電動機の冷却効果を開示
した例はない。
Further, in the above cited examples, as shown in FIG. 4, spaces 25a, 25b, 25c, 25 formed by four core cut portions 3n and a casing inner wall surface 2m.
d, a space 25a connected to the first oil drain passage means
Has a function as a passage mainly through which oil flows mainly in the downward direction, while the space 25b contains a small amount of oil but is mainly a flow of compressed gas in the downward direction.
The two spaces of 25d are mainly used for cooling because of a structure for appropriately dividing the flow of oil and gas at the outer peripheral portion of the electric motor, which serves as a passage for mainly flowing the compressed gas so that the flow of the compressed gas as the upward flow flows. There is no example that discloses the cooling effect of the motor, which provides an effective cooling effect to the lower part of the motor, which is difficult to perform.

【0020】図10は、静止部材のフレーム11の平面
図である。図10と図11に示すように、排油経路にお
ける通路抵抗を小さく設定するため、排油孔37と排油
管39の内径は、偏心縦孔13の内径よりも同等以上の
寸法に設定している。また、図8にも示す様に、排油通
路手段30(33),25aおよび、これらにつながる
排油通路手段26を、通路18側とこれと反対位置にあ
る吐出管20側のほぼ中央部の方向となる容器内壁面部
に設定して、排油作用が電動機室1bにおける圧縮ガス
の流れの影響を受けないようにしている。
FIG. 10 is a plan view of the frame 11 of the stationary member. As shown in FIGS. 10 and 11, in order to reduce the passage resistance in the oil drain passage, the inner diameter of the oil drain hole 37 and the oil drain pipe 39 is set to be equal to or larger than the inner diameter of the eccentric vertical hole 13. I have. Also, as shown in FIG. 8, the oil discharge passage means 30 (33), 25a and the oil discharge passage means 26 connected to the oil discharge passage means 30 are located substantially at the center of the passage 18 side and the discharge pipe 20 side opposite thereto. The oil draining action is not affected by the flow of the compressed gas in the electric motor chamber 1b.

【0021】図11は、図10のM−O−N断面におけ
る縦断面図で、フレーム11とシール手段34の周辺部
の構造を示す部分縦断面図である。中央部の主軸14を
支持するフレームの中間上方部に旋回スクロールの鏡板
部の背面部を支える鏡板支持座11fを形成し、旋回ス
クロールの自転防止部材としてオルダムリング38を旋
回スクロール6とフレーム11との間に配置する。オル
ダムリング本体部38aが軸方向に対向するフレーム台座
面11pがある。図11で、旋回スクロールの鏡板背面
にある背圧室36と主軸側周辺部の高圧油圧室41とを
シールするシール手段34をフレーム中央部端面11c
に備えている。軸受隙間から流出した油が、シール手段
34で背圧室36内部への流入を極力阻止される。背圧
室36に混入した微量油は、オルダム室51へ移動し、
オルダム摺動部での油潤滑に供される。また、旋回スク
ロール6の数十ミクロンという軸方向移動及び傾動に拘
りなくシール手段のシール部を除いて、旋回ボス部6c
の先端面6nとフレーム内周面11cとに軸方向隙間δ
cを確保している。すなわち、フレーム台座部11fの高
さLf寸法に対して旋回ボス部高さLm寸法を数百ミク
ロン小さく設定している。実用的には、軸方向隙間δc
=0.3mmから0.5mm前後の隙間となる。このことで、
先端面6nを傷つけることがなくなり、シール部34の
シール面をも損傷を回避でき、シール部機構の長寿命化
と信頼性向上が図れる。すなわち、Lf>Lmの寸法関
係とすることで、旋回スクロールの鏡板背面部の軸方向
の動きをフレーム台座部の上端面部で規制している構成
としている。
FIG. 11 is a vertical cross-sectional view taken along the line M-O-N in FIG. 10, and is a partial vertical cross-sectional view showing the structure around the frame 11 and the sealing means 34. An end plate support seat 11f for supporting a rear portion of the end plate portion of the orbiting scroll is formed at an intermediate upper portion of a frame supporting the main shaft 14 at the center, and an Oldham ring 38 as a rotation preventing member of the orbiting scroll is provided with the orbiting scroll 6 and the frame 11. Place between There is a frame base surface 11p to which the Oldham ring main body 38a is axially opposed. In FIG. 11, the sealing means 34 for sealing the back pressure chamber 36 on the back surface of the end plate of the orbiting scroll and the high-pressure hydraulic chamber 41 on the periphery of the main shaft side is provided with an end surface 11c at the center of the frame.
In preparation. The oil flowing out of the bearing gap is prevented from flowing into the back pressure chamber 36 by the sealing means 34 as much as possible. The trace oil mixed in the back pressure chamber 36 moves to the Oldham chamber 51,
Used for oil lubrication at Oldham sliding parts. Also, regardless of the axial movement and tilting of the orbiting scroll 6 of several tens of microns, the orbiting boss 6c is removed except for the sealing portion of the sealing means.
Gap δ between the tip end surface 6n of the frame and the inner peripheral surface 11c of the frame.
c is secured. That is, the height Lm of the turning boss is set to be several hundred microns smaller than the height Lf of the frame base 11f. Practically, the axial clearance δc
= A gap of about 0.3 mm to about 0.5 mm. With this,
The distal end surface 6n is not damaged, and the sealing surface of the sealing portion 34 can be prevented from being damaged, so that the service life of the sealing portion mechanism can be extended and the reliability can be improved. That is, by setting the dimensional relationship of Lf> Lm, the axial movement of the rear surface of the end plate of the orbiting scroll is restricted by the upper end surface of the frame base.

【0022】図10と図11で、旋回スクロールの鏡板
6aの背面とフレーム11とで形成される空間を、旋回
スクロールの鏡板背面のフレーム側軸方向移動を規制す
る環状のフレーム台座部11fによって旋回ボス部6c
の周辺の背圧室36とフレーム台座部より外側にあって
オルダム機構部を備えたオルダム室51とに区画し、背
圧室とオルダム室を連通する溝11mをフレーム台座部
の上端面に形成するも、連通溝11mの底面をフレーム
台座部11fの外側のオルダム室51の底面11pの位
置より上方位置に設定している。また、必然的にオルダ
ムキー溝部57aにも油が溜まることになる。また、オ
ルダム室51に溜った油22aがオルダムリング本体部
38aの往復移動に伴い周辺部に飛散し、油滴22cと
なって背圧室及びオルダム室51の摺動部の潤滑に供さ
れる。このため、圧縮機が停止されてもその部分には油
が残っており、特に自転荷重の作用するオルダムキー溝
部57aには常に油がある。そして、圧縮機の再起動時
には、従来機のような油量不足が生じることがなくな
る。また、油量不足によるオルダム機構部の摺動部の潤
滑性能が損なわれることも解消され、そのオルダム機構
部の信頼性が向上できる。
In FIGS. 10 and 11, the space formed by the back surface of the orbiting scroll end plate 6a and the frame 11 is turned by an annular frame pedestal 11f which regulates the axial movement of the back surface of the orbiting scroll end plate on the frame side. Boss 6c
And an Oldham chamber 51 provided outside the frame pedestal portion and provided with an Oldham mechanism, and a groove 11m communicating the backpressure chamber and the Oldham chamber is formed in the upper end surface of the frame pedestal portion. However, the bottom surface of the communication groove 11m is set at a position higher than the position of the bottom surface 11p of the Oldham chamber 51 outside the frame base 11f. In addition, oil will inevitably accumulate in the Oldham keyway 57a. The oil 22a accumulated in the Oldham chamber 51 scatters around the Oldham ring main body 38a as the Oldham ring main body 38a reciprocates, forming oil droplets 22c for lubricating the sliding portions of the back pressure chamber and the Oldham chamber 51. . For this reason, even if the compressor is stopped, oil remains in that part, and especially oil is always present in the Oldham keyway 57a where the rotation load acts. When the compressor is restarted, the shortage of the oil amount unlike the conventional machine does not occur. In addition, the lubrication performance of the sliding portion of the Oldham mechanism due to an insufficient amount of oil is also prevented from being impaired, and the reliability of the Oldham mechanism can be improved.

【0023】ここで、排油孔37を通って、ケーシング
2aの内壁面2mに排出される油の量は全体の油量(揚
油管27から上昇し給油される量)に対して、概ね85
%〜90%前後の比率となる。一方、油圧室41内から
シール手段34を通って、背圧室36に流入し、圧縮室
8ひいては吐出室1aへと循環する油の量は、全体の油
量に対して、概ね10%〜15%前後の比率となる。こ
のように本発明の実施例によれば、シール手段34を設
定して漏れ油量の調節がなされる。また、一方では、排
油通路経路の流路抵抗が小さくてすむ通路面積(大き
さ)の適正化が図れる。この他、本発明の実施例によれ
ば、従来機でみられた側部空間から吸入室5fへの高温
の油漏れ作用を極力微小量に抑制できるので、吸入室に
おける吸入ガスの内部加熱量を大幅に軽減できる。この
ため、吸入ガスの内部加熱量低下による体積効率の向上
と撹拌損失低減によって、全断熱効率の向上が大幅に図
れる。本発明の実施例では、密閉容器内が高圧の吐出圧
力の雰囲気にあるいわゆる高圧チャンバ方式による密閉
形スクロール圧縮機の場合を説明したが、密閉容器内が
低圧の吸入圧力の雰囲気にあるいわゆる低圧チャンバ方
式の密閉形スクロール圧縮機の場合にも適用可能であ
る。その実施例を図13に示す。17は、吸入管であ
り、電動機室の上下空間1b,1c,1dは、吸入圧力
の雰囲気となり、その中の冷媒ガスは、吸入通路86、
さらに吸入溝部87を経てスクロール部に吸入される。
次に圧縮室8を経て吐出口10から吐出室1aに至り、
さらに上チャンバに設けた吐出管20で冷媒ガスは外部
に導かれる。ここで、圧縮機内部における潤滑油22a
の流れの概要を説明する。図13で、潤滑油22aの油
溜り22内に浸漬された揚油管27の下端は低圧の吸入
圧力Psを受けている。容器底部の油溜り22中の潤滑
油22aは、偏心縦孔13内の遠心ポンプ作用により、
偏心縦孔13(13b)内を上昇する。なお、旋回軸受
32及び主軸受(すべり軸受40)のまわりは低圧の吸
入圧力Psの雰囲気であり、シール手段34は付属して
ない。偏心縦孔13内を上昇した潤滑油22aは、横給
油孔13cを介して主軸受40に、一方、主軸上端部室
77を介して旋回軸受32へ給油される。それら軸受部
32,40に給油された油は、一端油圧室93に排出さ
れ、さらに、オルダム室51に移動して、オルダムリン
グの摺動部の潤滑を確実に行なうことができる。そし
て、それらオルダム室51内部の油は、オルダム室51
の外縁部に設けた排油孔88aなどの排油手段88を通
って、ケーシング2aの内壁面2mに排出される。その
排出油は、間口の広くした排油通路手段33に捕獲され
溜められ、通路25aさらに、第二の排油通路手段32
で、コアカット部3nの下端部から流れ落ちる油を直接
底チャンバの油溜め部22に導くことができる。このよ
うに、低圧室であるオルダム室51からの油を排油穴な
どの排油手段で容器内壁面部に移動せしめ、排油経路手
段33,25a,32で、直接底チャンバの油溜め部2
2に導くことができることを特長としている。
Here, the amount of oil discharged to the inner wall surface 2m of the casing 2a through the oil drain hole 37 is approximately 85% of the total oil amount (the amount that is raised and supplied from the oil pumping pipe 27).
% To around 90%. On the other hand, the amount of oil flowing from the inside of the hydraulic chamber 41 into the back pressure chamber 36 through the sealing means 34 and circulating to the compression chamber 8 and further to the discharge chamber 1a is approximately 10% to the entire oil amount. The ratio is around 15%. Thus, according to the embodiment of the present invention, the amount of leaking oil is adjusted by setting the sealing means 34. On the other hand, it is possible to optimize the passage area (size) which requires a small flow passage resistance of the oil discharge passage. In addition, according to the embodiment of the present invention, the effect of high-temperature oil leakage from the side space to the suction chamber 5f seen in the conventional machine can be suppressed to a very small amount, so that the internal heating amount of the suction gas in the suction chamber is reduced. Can be greatly reduced. For this reason, the improvement of the volumetric efficiency by reducing the amount of internal heating of the suction gas and the reduction of the stirring loss can greatly improve the overall adiabatic efficiency. In the embodiment of the present invention, the case of the closed scroll compressor by the so-called high-pressure chamber system in which the inside of the closed vessel is in an atmosphere of a high discharge pressure has been described. It is also applicable to the case of a closed scroll compressor of a chamber type. An example is shown in FIG. Reference numeral 17 denotes a suction pipe, and the upper and lower spaces 1b, 1c, 1d of the electric motor room become an atmosphere of a suction pressure, and the refrigerant gas in the atmosphere passes through the suction passage 86,
Further, it is sucked into the scroll portion through the suction groove 87.
Next, from the discharge port 10 to the discharge chamber 1a via the compression chamber 8,
Further, the refrigerant gas is guided to the outside by a discharge pipe 20 provided in the upper chamber. Here, the lubricating oil 22a inside the compressor is
An outline of the flow will be described. In FIG. 13, the lower end of the oil pump pipe 27 immersed in the oil reservoir 22 of the lubricating oil 22a receives a low suction pressure Ps. The lubricating oil 22a in the oil sump 22 at the bottom of the container is
It rises in the eccentric vertical hole 13 (13b). The surroundings of the slewing bearing 32 and the main bearing (slide bearing 40) are in an atmosphere of a low suction pressure Ps, and the sealing means 34 is not attached. The lubricating oil 22a that has risen in the eccentric vertical hole 13 is supplied to the main bearing 40 through the horizontal oil supply hole 13c and to the swing bearing 32 through the main shaft upper end chamber 77. The oil supplied to the bearings 32 and 40 is once discharged to the hydraulic chamber 93, and further moves to the Oldham chamber 51, whereby the sliding portion of the Oldham ring can be reliably lubricated. The oil inside the Oldham chamber 51
The oil is discharged to the inner wall surface 2m of the casing 2a through oil draining means 88 such as an oil drain hole 88a provided at the outer edge of the casing 2a. The discharged oil is captured and stored in a drain passage means 33 having a wide frontage, and the passage 25a is further provided with a second oil discharge passage means 32.
Thus, the oil flowing down from the lower end of the core cut portion 3n can be directly guided to the oil reservoir 22 of the bottom chamber. As described above, the oil from the Oldham chamber 51, which is a low-pressure chamber, is moved to the inner wall surface of the container by means of a drainage means such as a drainage hole, and the drainage path means 33, 25a, and 32 directly transfer the oil to the oil reservoir 2 in the bottom chamber.
2 is characterized.

【0024】図13の実施例でも、ステータ外周部のコ
アカット部3nの空間を主として圧縮ガス用通路機能
と、一方主として排油用通路としての機能分けを図って
いる。そして、ケーシング内壁面に沿った第一と第二の
排油通路手段33,32の設定による油戻し経路と電動
機室上部空間1bと電動機室下部空間1cでの主として
低圧冷媒ガスの流れ経路とを隔絶した構成とすること
で、冷媒ガス中に軸受部などから排出された油が直接混
入することが確実に防止できる。
Also in the embodiment shown in FIG. 13, the space of the core cut portion 3n in the outer peripheral portion of the stator is divided mainly into a compressed gas passage function and a function mainly as an oil discharge passage. The oil return path and the flow path of mainly low-pressure refrigerant gas in the motor chamber upper space 1b and the motor chamber lower space 1c along the casing inner wall surface by setting the first and second oil drain passage means 33 and 32. With the isolated configuration, it is possible to reliably prevent the oil discharged from the bearing portion or the like from directly mixing into the refrigerant gas.

【0025】[0025]

【発明の効果】本発明によれば次の効果がある。According to the present invention, the following effects can be obtained.

【0026】(1)圧縮機の油上がり量の低減が大幅に
図れ、圧縮機の品質向上を図ることができる。
(1) The amount of oil rise in the compressor can be greatly reduced, and the quality of the compressor can be improved.

【0027】(2)軸受部からの排出油が直接バランス
ウェイトによって撹拌することがなくなり、バランスウ
ェイトの回転による撹拌損失が大幅に減少でき、圧縮機
の入力が減少する。また、圧縮機の体積効率の向上とと
もに、年間を通しても空調機のエネルギ消費効率が大き
く改善できる。
(2) The oil discharged from the bearing portion is not directly agitated by the balance weight, so that the agitation loss due to the rotation of the balance weight can be greatly reduced, and the input to the compressor is reduced. In addition to improving the volumetric efficiency of the compressor, the energy consumption efficiency of the air conditioner can be greatly improved throughout the year.

【0028】(3)電動機全体の冷却効果の向上を図る
ことができる。
(3) The cooling effect of the entire motor can be improved.

【0029】(4)その結果、冷凍サイクル全体として
の性能向上(配管の圧力損失の低減による冷房能力と暖
房能力の向上、ひいては、成績係数の向上)が図れる。
(4) As a result, the performance of the entire refrigeration cycle can be improved (the cooling capacity and the heating capacity can be improved by reducing the pressure loss of the piping, and the coefficient of performance can be improved).

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の全体構成を示す密閉形スクロール圧縮
機の縦断面図。
FIG. 1 is a longitudinal sectional view of a hermetic scroll compressor showing an overall configuration of the present invention.

【図2】本発明の全体構成を示す密閉形スクロール圧縮
機の縦断面図。
FIG. 2 is a longitudinal sectional view of the hermetic scroll compressor showing the overall configuration of the present invention.

【図3】ガス案内通路手段23周囲の冷媒ガスと油の流
れ様相を示す部分斜視図。
FIG. 3 is a partial perspective view showing a flow state of refrigerant gas and oil around a gas guide passage means 23.

【図4】図1のA−A断面における横断面図。FIG. 4 is a cross-sectional view taken along the line AA of FIG. 1;

【図5】排油通路37の油出口部周辺の油の流れを示す
部分斜視図。
FIG. 5 is a partial perspective view showing a flow of oil around an oil outlet of an oil discharge passage 37;

【図6】仕切り板とケーシング内壁面とで排油通路手段
を構成した斜視図。
FIG. 6 is a perspective view in which a partition plate and an inner wall surface of a casing constitute oil discharge passage means.

【図7】図1のB−B断面における横断面図。FIG. 7 is a transverse sectional view taken along the line BB of FIG. 1;

【図8】図1のC−C横断面図。FIG. 8 is a cross-sectional view taken along the line CC of FIG. 1;

【図9】その他の本発明の全体構成を示す密閉形スクロ
ール圧縮機の縦断面図。
FIG. 9 is a vertical cross-sectional view of the hermetic scroll compressor showing another overall configuration of the present invention.

【図10】静止部材のフレーム11の平面図。FIG. 10 is a plan view of a frame 11 of a stationary member.

【図11】図10のM−O−N断面における縦断面図。FIG. 11 is a vertical cross-sectional view of the MON cross section in FIG. 10;

【図12】仕切り板33aとケーシング2aの内壁面と
で排油通路手段を構成した斜視図。
FIG. 12 is a perspective view of a partition plate 33a and an inner wall surface of a casing 2a constituting an oil drain passage means.

【図13】その他の本発明の全体構成を示す密閉形スク
ロール圧縮機の縦断面図。
FIG. 13 is a longitudinal sectional view of a hermetic scroll compressor showing another overall configuration of the present invention.

【符号の説明】[Explanation of symbols]

2…密閉容器、2a…ケーシング部、5…固定スクロー
ル、6…旋回スクロール、11…フレーム、14…主軸
(クランク軸)、18…連通路、31,32…第一と第
二の排油通路手段、31a,32a,33a…仕切り板
部、34…シール手段、40…主軸受、51…オルダム
室。
Reference numeral 2 denotes an airtight container, 2a denotes a casing portion, 5 denotes a fixed scroll, 6 denotes a revolving scroll, 11 denotes a frame, 14 denotes a main shaft (crankshaft), 18 denotes a communication passage, 31, 32 denotes first and second oil drain passages. Means, 31a, 32a, 33a: Partition plate part, 34: Sealing means, 40: Main bearing, 51: Oldham chamber.

フロントページの続き (72)発明者 東條 健司 静岡県清水市村松390番地 株式会社日立 製作所空調システム事業部内 (72)発明者 岡田 光弘 静岡県清水市村松390番地 株式会社日立 製作所空調システム事業部内Continued on the front page (72) Inventor Kenji Tojo 390 Muramatsu, Shimizu-shi, Shizuoka Prefecture Inside Hitachi, Ltd. Air Conditioning System Division (72) Inventor Mitsuhiro Okada 390, Muramatsu, Shimizu-shi, Shizuoka Prefecture Inside Air Conditioning System Division, Hitachi, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】鏡板に渦巻状のラップを直立する固定スク
ロール及び旋回スクロールを、前記ラップを内側にして
噛み合わせ、前記旋回スクロールを主軸に連設する偏心
軸部に旋回軸受部を介して係合し、前記旋回スクロール
を自転することなく前記固定スクロールに対し旋回運動
させ、前記固定スクロールには中心部に開口する吐出口
を設け、前記両スクロールの外周部よりガスを吸入し、
前記両スクロールで形成される圧縮空間を中心に移動さ
せ容積を減少してガスを圧縮し、吐出口より圧縮ガスを
吐出するスクロール圧縮要素部と電動機部を密閉容器内
に収納した密閉形スクロール圧縮機において、 前記電動機のステータ部外縁部に上下空間をつなぐ複数
の通路を設け、前記通路の一つと前記密閉容器の底部の
油溜め部とをつなぐ通路手段を前記密閉容器内に設け
て、前記通路を下方向に流れる主として油の流れるよう
な通路とし、その他の前記通路を、下向流もしくは、上
昇流となる主として圧縮ガスの流れとなるような通路と
したことを特徴とする密閉形スクロール圧縮機。
A fixed scroll and an orbiting scroll which erect a spiral wrap on a head plate are meshed with the wrap inside, and the orbiting scroll is engaged with an eccentric shaft portion connected to a main shaft via an orbit bearing portion. In combination, the orbiting scroll is rotated with respect to the fixed scroll without rotating, the fixed scroll is provided with a discharge port opened at the center, and gas is sucked from the outer peripheral portions of both scrolls,
A hermetic scroll compressor in which a scroll compression element portion and a motor portion, which move around a compression space formed by the two scrolls to reduce the volume and compress the gas and discharge the compressed gas from a discharge port, are housed in a closed container. In the machine, a plurality of passages that connect the vertical space to the outer peripheral portion of the stator portion of the electric motor is provided, and a passage means that connects one of the passages and an oil reservoir at the bottom of the closed container is provided in the closed container, A hermetic scroll, wherein the passage is a passage mainly through which oil flows downward, and the other passage is a passage mainly through which a compressed gas flows as a downward flow or an upward flow. Compressor.
JP20152096A 1996-07-31 1996-07-31 Hermetic scroll compressor Pending JPH1047268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20152096A JPH1047268A (en) 1996-07-31 1996-07-31 Hermetic scroll compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20152096A JPH1047268A (en) 1996-07-31 1996-07-31 Hermetic scroll compressor

Publications (1)

Publication Number Publication Date
JPH1047268A true JPH1047268A (en) 1998-02-17

Family

ID=16442416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20152096A Pending JPH1047268A (en) 1996-07-31 1996-07-31 Hermetic scroll compressor

Country Status (1)

Country Link
JP (1) JPH1047268A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003193986A (en) * 2001-12-25 2003-07-09 Hitachi Ltd Hermetic scroll compressor
WO2003083302A1 (en) * 2002-03-28 2003-10-09 Daikin Industries, Ltd. High-low pressure dome type compressor
WO2004081384A1 (en) * 2003-03-12 2004-09-23 Matsushita Electric Industrial Co., Ltd. Hermetic compressor
JP2006090317A (en) * 2004-09-20 2006-04-06 Lg Electronics Inc Scroll compressor having refrigerant gas guiding structure
JP2008082272A (en) * 2006-09-28 2008-04-10 Hitachi Appliances Inc Fluid compressor
KR100869929B1 (en) 2007-02-23 2008-11-24 엘지전자 주식회사 Scroll compressor
EP2063122A1 (en) * 2006-09-11 2009-05-27 Sanden Corporation Compressor
KR101254169B1 (en) 2004-10-20 2013-04-18 엘지전자 주식회사 Apparatus for reducing oil discharge of high pressure scroll compressor
US11629713B1 (en) 2022-09-13 2023-04-18 Mahle International Gmbh Electric compressor with oil separator and oil separator for use in an electrical compressor
US11879464B1 (en) 2022-09-13 2024-01-23 Mahle International Gmbh Electric compressor having a swing link and integrated limit pin and swing link and integrated limit pin for use in an electric compressor
US11879457B1 (en) 2022-09-13 2024-01-23 Mahle International Gmbh Electric compressor with isolation constraint system
US11994130B2 (en) 2022-09-13 2024-05-28 Mahle International Gmbh Electric compressor bearing oil communication aperture

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003193986A (en) * 2001-12-25 2003-07-09 Hitachi Ltd Hermetic scroll compressor
WO2003083302A1 (en) * 2002-03-28 2003-10-09 Daikin Industries, Ltd. High-low pressure dome type compressor
US6925832B2 (en) 2002-03-28 2005-08-09 Daikin Industries, Ltd. High-low pressure dome type compressor
WO2004081384A1 (en) * 2003-03-12 2004-09-23 Matsushita Electric Industrial Co., Ltd. Hermetic compressor
JP2006090317A (en) * 2004-09-20 2006-04-06 Lg Electronics Inc Scroll compressor having refrigerant gas guiding structure
KR101254169B1 (en) 2004-10-20 2013-04-18 엘지전자 주식회사 Apparatus for reducing oil discharge of high pressure scroll compressor
EP2063122A4 (en) * 2006-09-11 2015-01-21 Sanden Corp Compressor
EP2063122A1 (en) * 2006-09-11 2009-05-27 Sanden Corporation Compressor
JP2008082272A (en) * 2006-09-28 2008-04-10 Hitachi Appliances Inc Fluid compressor
KR100869929B1 (en) 2007-02-23 2008-11-24 엘지전자 주식회사 Scroll compressor
US11629713B1 (en) 2022-09-13 2023-04-18 Mahle International Gmbh Electric compressor with oil separator and oil separator for use in an electrical compressor
US11879464B1 (en) 2022-09-13 2024-01-23 Mahle International Gmbh Electric compressor having a swing link and integrated limit pin and swing link and integrated limit pin for use in an electric compressor
US11879457B1 (en) 2022-09-13 2024-01-23 Mahle International Gmbh Electric compressor with isolation constraint system
US11994130B2 (en) 2022-09-13 2024-05-28 Mahle International Gmbh Electric compressor bearing oil communication aperture

Similar Documents

Publication Publication Date Title
JP3147676B2 (en) Scroll compressor
KR100654122B1 (en) Scroll compressor
JPH109160A (en) Scroll compressor
JPH0472998B2 (en)
JPH1047268A (en) Hermetic scroll compressor
US6527085B1 (en) Lubricating system for compressor
JP2003293955A (en) Compressor
JP3696683B2 (en) Scroll compressor
JP2639136B2 (en) Scroll compressor
JPH0778388B2 (en) Gas compressor
JP7057532B2 (en) Scroll compressor
JP2004316537A (en) Fluid compressor
JP2003176794A (en) Scroll compressor
JPH09287579A (en) Closed type scroll compressor
JP3584533B2 (en) Scroll compressor
KR20180101901A (en) Scroll compressor
JPH09112458A (en) Scroll compressor
JPH08121366A (en) Scroll compressor
JP3593083B2 (en) Scroll compressor
JP3519663B2 (en) Hermetic compressor
JP2006348928A (en) Compressor
JP3545826B2 (en) Scroll compressor
JP4064325B2 (en) Scroll compressor
JP3198576B2 (en) Scroll compressor
JPS60243390A (en) Closed type scroll compressor