JP2015209925A - Unidirectional valve and fluid system with unidirectional valve - Google Patents

Unidirectional valve and fluid system with unidirectional valve Download PDF

Info

Publication number
JP2015209925A
JP2015209925A JP2014092209A JP2014092209A JP2015209925A JP 2015209925 A JP2015209925 A JP 2015209925A JP 2014092209 A JP2014092209 A JP 2014092209A JP 2014092209 A JP2014092209 A JP 2014092209A JP 2015209925 A JP2015209925 A JP 2015209925A
Authority
JP
Japan
Prior art keywords
valve
radius
region
way valve
valve seat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014092209A
Other languages
Japanese (ja)
Other versions
JP6298702B2 (en
Inventor
坪野 勇
Isamu Tsubono
勇 坪野
向井 有吾
Yugo Mukai
有吾 向井
北村 哲也
Tetsuya Kitamura
哲也 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2014092209A priority Critical patent/JP6298702B2/en
Publication of JP2015209925A publication Critical patent/JP2015209925A/en
Application granted granted Critical
Publication of JP6298702B2 publication Critical patent/JP6298702B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a unidirectional valve of high structural reliability in which a flow passage resistance under forward flow is low and a sealing characteristic under reverse flow is high, and provide a fluid system realizing a high performance under arrangement of the unidirectional valve.SOLUTION: An outer shape line of a valve plate 3NO is set in such a shape as one in which a large diameter part 3NOe having a larger curvature radius than that of a radius of a valve area sectional circle 204c having a valve seat at its bottom part into which the valve plate is fed a small diameter part 3NOd having a smaller curvature radius than a radius of the valve area, a normal line drawn from an optional point on a small diameter part crosses at a right angle with the large diameter part to form a crossing point, a distance between the optional point and the crossing point is always kept constant, the distance is increased higher than a sum of the valve area radius and an inner edge radius of the valve seat surface only by a specified amount of expansion.

Description

本発明は、一方向弁に関し、特に、横断面が円状となる穴の底に弁座を備えた掘込み状の弁領域へ弁板が投入され、弁領域の中心軸(以後、「弁軸」と呼称する)方向における弁板移動量を規定するリテーナ面を備えた形式(以後、「フラッパ式」と呼称する)である一方向弁の弁板形状およびそれを備える流体機械を含む流体システムに関する。   The present invention relates to a one-way valve, and in particular, a valve plate is inserted into an engraved valve region having a valve seat at the bottom of a hole having a circular cross section, and a central axis of the valve region (hereinafter referred to as “valve”). A valve plate shape of a one-way valve of a type (hereinafter referred to as “flapper type”) having a retainer surface that defines a valve plate movement amount in a direction called “shaft” and a fluid including a fluid machine including the same About the system.

流体機械を含む流体システムの流路内には、作動流体の流路途中に設けて、順方向の流れ(順流)に対しては流路抵抗が低い状態で流れを許容するが逆方向の流れ(逆流)は阻止する動作(以後、「整流動作」とする)を担う一方向弁が各部に設けられている。フラッパ式一方向弁は、弁体の弁軸に垂直な面(以後、「弁水平面」と呼称する)内方向の移動規定を円筒状の弁領域側面のみで行う単純な構成であるため、安価な一方向弁である。この実施例としては、例えば、特許文献1の実施例10で開示される流体機械(スクロール圧縮機)へ搭載したフラッパ式一方向弁があげられる。これは、円形の弁板を弁領域(円筒状掘込み)に投入したフラッパ式一方向弁で、圧縮室と吐出室である固定背面室を繋ぐバイパス弁として用いられている。圧縮室の圧力が固定背面室の圧力(吐出圧)以上に上昇(過圧縮)したとき、フラッパ式一方向弁が開口して作動流体を圧縮室から固定背面室へ流し出すため、圧縮室内の圧力が下がる。そして、その開弁状態は圧縮室圧力が吐出圧に下がるまで継続する。この結果、過圧縮が抑制され、不要な仕事が抑制されて圧縮機効率が向上する。   In the flow path of the fluid system including the fluid machine, it is provided in the middle of the flow path of the working fluid, and the flow is allowed in the state where the flow resistance is low with respect to the forward flow (forward flow), but the reverse flow Each part is provided with a one-way valve that performs an operation of preventing (reverse flow) (hereinafter referred to as “rectifying operation”). The flapper type one-way valve has a simple configuration in which the inward movement regulation of the surface perpendicular to the valve axis of the valve body (hereinafter referred to as “valve horizontal plane”) is performed only on the side surface of the cylindrical valve region. One way valve. Examples of this embodiment include a flapper type one-way valve mounted on a fluid machine (scroll compressor) disclosed in Embodiment 10 of Patent Document 1. This is a flapper type one-way valve in which a circular valve plate is introduced into a valve region (cylindrical dug), and is used as a bypass valve that connects a compression chamber and a fixed back chamber that is a discharge chamber. When the pressure in the compression chamber rises above the fixed back chamber pressure (discharge pressure) (overcompression), the flapper type one-way valve opens and the working fluid flows out from the compression chamber to the fixed back chamber. The pressure drops. And the valve opening state continues until the compression chamber pressure falls to the discharge pressure. As a result, overcompression is suppressed, unnecessary work is suppressed, and compressor efficiency is improved.

特開平11−132164号公報JP-A-11-132164

しかしながら、上記した従来のフラッパ式一方向弁は、順流の作動流体が弁板と弁座の隙間(以後、弁座隙間と称する)を通った後に通過する弁板外縁と弁領域側面の隙間(以後、外縁隙間と称する)の断面積が小さいという問題があった。この結果、外縁隙間の流路抵抗が大きくなって、外縁隙間前後の圧力差が増大し、最終的には、順流が発生しても、圧縮室の圧力が下流側の吐出圧よりも上昇する。つまり、過圧縮が抑制できず、このフラッパ式一方向弁を搭載した流体機械の性能が低下するという問題があった。   However, the conventional flapper type one-way valve described above has a gap between the outer edge of the valve plate and the side of the valve region through which the forward working fluid passes after passing through the gap between the valve plate and the valve seat (hereinafter referred to as the valve seat gap) ( Hereinafter, there was a problem that the cross-sectional area of the outer edge gap) was small. As a result, the flow path resistance of the outer edge gap increases, the pressure difference before and after the outer edge gap increases, and eventually the pressure in the compression chamber rises above the discharge pressure on the downstream side even if forward flow occurs. . That is, there is a problem that over-compression cannot be suppressed and the performance of the fluid machine equipped with this flapper type one-way valve is deteriorated.

そこで、上記問題を解決する第1の対策手段として、外縁隙間の断面積を増大させるべく、弁板の直径を縮小させることが上げられる。ここで、弁領域の弁水平面断面図形である円(今後、「弁領域断面円」と呼称する)の直径を増大させても、外縁隙間の断面積増大を実現できるが、本質的な違いが無いため、説明を省く。この手段によって、外縁隙間の流路抵抗は低減するが、最大に弁板が偏心しても、弁板が弁座から外れない(詳しく述べると、弁座が幅を有する環状形状であれば、弁座面の内縁線から外れない)ように直径の縮小には制約が生じる。なぜならば、この制約が無いと、閉弁するべき時にシールが行われなくなって、逆流を阻止する機能が失われるためである。この結果、外縁隙間の断面積を大幅に増大することができず、順流時の流路抵抗を大幅に低減できないという問題があった。この傾向は、弁座面の内縁線が軸線から離れるにつれて強くなる。   Therefore, as a first countermeasure for solving the above problem, it is possible to reduce the diameter of the valve plate in order to increase the cross-sectional area of the outer edge gap. Here, even if the diameter of the circle which is the valve plane sectional diagram of the valve region (hereinafter referred to as “valve region sectional circle”) is increased, the cross-sectional area of the outer edge gap can be increased, but the essential difference is Because there is not, explanation is omitted. By this means, the flow resistance of the outer edge clearance is reduced, but even if the valve plate is eccentric to the maximum, the valve plate does not come off the valve seat (more specifically, if the valve seat has an annular shape having a width, There is a restriction in reducing the diameter so that it does not deviate from the inner edge line of the bearing surface. This is because without this restriction, sealing is not performed when the valve should be closed, and the function of preventing backflow is lost. As a result, there has been a problem that the cross-sectional area of the outer edge gap cannot be significantly increased and the flow path resistance during forward flow cannot be significantly reduced. This tendency becomes stronger as the inner edge line of the valve seat surface moves away from the axis.

以上説明した通り、第1の対策手段による流路抵抗の低減は、限定的な効果に留まる。さらに、その対策手段によって、弁板の弁水平面内における可動範囲の拡大が生じ、後述するように、それは整流動作を阻害する。通常の場合、弁板は弁水平面面上のいずれかの方向に偏心して弁領域側面に接触しているから、上記可動範囲の拡大によって、弁板の偏心量(弁水平面内で弁板が弁領域内を動いたときの弁軸と弁板の図心との最大距離)が増大することになる。   As described above, the reduction of the channel resistance by the first countermeasure means has a limited effect. Furthermore, the countermeasure means causes an expansion of the movable range in the valve horizontal plane of the valve plate, which inhibits the rectifying operation, as will be described later. Normally, the valve plate is eccentric in any direction on the valve horizontal plane and is in contact with the side surface of the valve area. The maximum distance between the valve shaft and the centroid of the valve plate when moving in the region increases.

開弁動作により、リテーナ面付近へ移動した弁体は、外縁隙間を流れる作動流体内の微小なゆらぎによって弁水平面内の偏心方向が絶えず変化する。上記したとおり、偏心量は増大しているため、弁体の偏心方向の変化に伴う弁体の弁水平面内の移動速度が増大する。このため、外縁隙間の形成状態(隙間分布)が絶えず激しく変化し、作動流体の流れの時間変動が増大する。これにより、流れ内部の渦度が増大して流れ内部のエネルギー散逸が増大し、大きな圧力低下が発生する。すなわち、外縁隙間の流路抵抗を増大させるという問題が生じる。   The valve body that has moved to the vicinity of the retainer surface by the valve opening operation constantly changes the eccentric direction in the valve horizontal plane due to minute fluctuations in the working fluid flowing through the outer edge gap. As described above, since the amount of eccentricity increases, the moving speed of the valve body in the valve horizontal plane accompanying the change in the eccentric direction of the valve body increases. For this reason, the formation state (gap distribution) of the outer edge gap constantly changes violently, and the time variation of the flow of the working fluid increases. As a result, the vorticity inside the flow increases, the energy dissipation inside the flow increases, and a large pressure drop occurs. That is, there arises a problem that the flow path resistance of the outer edge gap is increased.

また、この作動流体の流れの時間変動の増大により、弁板の弁水平面方向からの姿勢ずれが拡大する。このため、閉弁動作によって弁板が弁軸に沿って弁座へ移動した後も、弁板が弁座に平行となる姿勢変更を要することになり、閉弁すべき時刻から閉弁状態へ至るまでの時間が長くなり、逆流が増大することになる。すなわち、逆流時のシール性低下という問題が生じる。   Further, due to the increase in the time fluctuation of the flow of the working fluid, the posture deviation of the valve plate from the valve horizontal plane direction is expanded. For this reason, even after the valve plate moves to the valve seat along the valve shaft by the valve closing operation, it is necessary to change the posture so that the valve plate is parallel to the valve seat, and the valve is closed from the time when the valve should be closed. It takes a long time to reach, and the backflow increases. That is, there arises a problem that the sealing performance is deteriorated during reverse flow.

以上のように、弁板の直径を縮小させる第1の対策手段では、順流時の流路抵抗の低減と逆流時のシール性向上の両者を同時に実現できないという問題があった。   As described above, the first countermeasure means for reducing the diameter of the valve plate has a problem in that it is impossible to simultaneously reduce the flow resistance during forward flow and improve the sealing performance during reverse flow.

そこで、上記第1の対策手段における問題を解決する第2の対策手段として、例えば、特許文献1の実施例13で開示されるフラッパ式一方向弁があげられる。これは、外縁隙間の断面積を増大させるべく、弁板の外縁に食い込んだ切欠を設けるものである。このような形状を、弁板形状の内部の2点を結ぶ直線で弁板外縁と交差するものが存在する形状と定義し、以後、「凹形状」と呼称する。切欠が無い元の円板の直径を弁領域断面円の直径に近いものとすると、この手段によって、外縁隙間の流路抵抗の低減と、弁板の偏心量の低減をともに実現できる。ところで、順流から逆流に変化したとき、通常、弁体は弁座に衝突して、閉弁状態に移行する。その際、弁体に大きな衝撃力が加わる。このため、凹形状の弁板では、切欠の底部に大きな応力集中が生じる。この結果、切欠底部を基点とするき裂発生の危険性が高まり、構造強度上の信頼性低下という問題があった。   Then, as a 2nd countermeasure means which solves the problem in the said 1st countermeasure means, the flapper type one-way valve disclosed by Example 13 of patent document 1 is mention | raise | lifted, for example. This is to provide a notch cut into the outer edge of the valve plate in order to increase the cross-sectional area of the outer edge gap. Such a shape is defined as a shape in which there is a straight line connecting two points inside the valve plate shape that intersects the outer edge of the valve plate, and is hereinafter referred to as a “concave shape”. If the diameter of the original disc without a notch is close to the diameter of the valve region cross-sectional circle, both the reduction of the flow resistance of the outer edge gap and the reduction of the eccentric amount of the valve plate can be realized by this means. By the way, when the flow changes from the forward flow to the reverse flow, the valve body usually collides with the valve seat and shifts to the valve closed state. At that time, a large impact force is applied to the valve body. For this reason, in the concave valve plate, a large stress concentration occurs at the bottom of the notch. As a result, there is a problem that the risk of crack generation starting from the notch bottom is increased and the reliability of the structural strength is lowered.

本発明は、上記3つの問題を同時に解決するフラッパ式一方向弁を提供するとともに、その一方向弁を備える流体機械を含む流体システムの性能向上を実現することを目的とする。   An object of the present invention is to provide a flapper type one-way valve that solves the above three problems at the same time, and to improve the performance of a fluid system including a fluid machine including the one-way valve.

このような課題を解決するために、本発明に係る一方向弁は、作動流体が存在する上流領域と下流領域の2つの流体領域を繋ぐ接続流路のうちで、前記上流領域側区間である弁流入路と前記弁流入路よりも前記下流領域寄りの区間を円柱状に拡大した弁領域と、前記弁領域の前記弁流入路側端部である弁領域底面と、前記弁流入路の前記弁領域側端部である弁流入口の周囲に前記弁領域の中心軸である弁軸に垂直な環状の弁座面と、前記弁領域内で前記弁座面よりも前記下流領域側に配されるリテーナ面と、前記弁領域の前記弁軸に垂直な断面である弁領域断面円に内在可能な形状寸法を有する弁板と、前記弁領域内で前記弁座面と前記リテーナ面の間の前記弁領域である弁内領域に投入配置される弁板と、からなる一方向弁において、前記弁板の外縁線である弁外形線を、前記弁外形線が囲む二次元形状を凸形状で図心に対して回転対称とし、かつ、前記弁外形線において前記弁領域断面円の半径である弁領域半径Aよりも大きい曲率半径の線部である大径部と角部を含む前記弁領域半径よりも小さい曲率半径の線部である小径部とを有し、かつ、前記小径部上の任意点と該任意点から引いた法線が前記大径部と直交して交点を形成し、かつ、前記任意点と前記交点の距離である一般直径が常に同一となる、一般円とし、前記一般直径は、前記弁領域の断面円半径である弁領域半径と前記弁座面の内縁線と前記弁軸との最大距離である弁座内半径の和よりも一定の拡張量だけ大きくすることを特徴とする。   In order to solve such a problem, the one-way valve according to the present invention is the upstream region side section among the connection flow paths connecting the two fluid regions of the upstream region and the downstream region where the working fluid exists. A valve area in which a section closer to the downstream area than the valve inflow path and the valve inflow path is enlarged in a columnar shape, a valve area bottom surface which is an end portion of the valve area on the valve inflow path side, and the valve in the valve inflow path An annular valve seat surface perpendicular to the valve shaft, which is the central axis of the valve region, around the valve inlet that is the region side end, and disposed in the valve region closer to the downstream region than the valve seat surface A retainer surface, a valve plate having a shape and dimension that can be inherent in a valve region cross-sectional circle that is a cross section perpendicular to the valve axis of the valve region, and between the valve seat surface and the retainer surface in the valve region A one-way valve comprising: a valve plate that is placed in a valve inner region that is the valve region; A valve contour line that is an outer edge line of the plate, a two-dimensional shape surrounded by the valve contour line is a convex shape and rotationally symmetric with respect to the centroid, and the valve contour line is a radius of the valve region cross-sectional circle A large-diameter portion that is a linear portion having a radius of curvature larger than the region radius A, and a small-diameter portion that is a linear portion having a radius of curvature smaller than the valve region radius including a corner portion, and any on the small-diameter portion A normal circle drawn from a point and the normal point is perpendicular to the large-diameter portion to form an intersection point, and the general diameter that is the distance between the arbitrary point and the intersection point is always the same, and the general circle The diameter should be larger by a certain amount of expansion than the sum of the valve region radius, which is the cross-sectional circle radius of the valve region, and the valve seat inner radius, which is the maximum distance between the inner edge line of the valve seat surface and the valve shaft. Features.

また、本発明に係る流体機械を含む流体システムは、前記一方向弁を備えることを特徴とする。   Moreover, the fluid system including the fluid machine according to the present invention includes the one-way valve.

本発明によれば、応力集中部が無いために構造強度の信頼性が高く、順流時の流路抵抗の低減と逆流時のシール性を向上させる整流動作性を高めた一方向弁を提供し、それを備える流体機械を含む流体システムの高性能化を実現できる。   According to the present invention, there is provided a one-way valve having high rectification operability that has high reliability of structural strength because there is no stress concentration portion, and that reduces flow resistance during forward flow and improves sealing performance during reverse flow. , High performance of a fluid system including a fluid machine including the same can be realized.

実施例1の一方向弁の縦断面図。1 is a longitudinal sectional view of a one-way valve in Embodiment 1. FIG. 実施例1の一方向弁の横断面図(図1のA−A断面)。The cross-sectional view of the one-way valve of Example 1 (AA cross section of FIG. 1). 実施例1の一方向弁の弁板外縁線である弁外形線の幾何学的説明図。The geometric explanatory drawing of the valve outline which is a valve-plate outer edge line of the one-way valve of Example 1. FIG. 実施例1の一方向弁の弁板の平面図。The top view of the valve plate of the one-way valve of Example 1. FIG. 実施例1の一方向弁の弁板の回転対称の回数と面積の関係。The relationship between the rotational frequency of the valve plate of the one-way valve of Example 1 and the area. 実施例1の一方向弁の弁板の回転対称の回数と偏心量の関係。The relationship between the number of rotational symmetry of the valve plate of the one-way valve of Example 1 and the amount of eccentricity. 実施例2の一方向弁の弁板の平面図。The top view of the valve plate of the one-way valve of Example 2. FIG. 実施例3の一方向弁の弁板の小円弧部半径rと面積の関係。The relationship between the radius r of the small circular arc part of the valve plate of the one-way valve of Example 3, and an area. 実施例3の一方向弁の弁板の小円弧部半径rと偏心量の関係。The relationship between the small circular arc part radius r of the valve plate of the one-way valve of Example 3, and the amount of eccentricity. 実施例3の一方向弁の弁板の平面図。The top view of the valve plate of the one-way valve of Example 3. FIG. 実施例4の一方向弁の弁板の平面図。The top view of the valve plate of the one-way valve of Example 4. FIG. 実施例5の一方向弁の弁板の平面図。The top view of the valve plate of the one-way valve of Example 5. FIG. 実施例6の一方向弁の弁板の平面図。The top view of the valve plate of the one way valve of Example 6. FIG. 実施例7の一方向弁の横断面図(図1のA−A断面)。The cross-sectional view of the one-way valve of Example 7 (AA cross section of FIG. 1). 実施例8の一方向弁の縦断面図。FIG. 10 is a longitudinal sectional view of a one-way valve according to an eighth embodiment. 実施例9の第1乃至8の一方向弁を備えるスクロール圧縮機の縦断面図。10 is a longitudinal sectional view of a scroll compressor including first to eighth one-way valves according to Embodiment 9. FIG. 実施例9のスクロール圧縮機のバイパス弁及び背圧弁付近(図16のT部付近)の部分拡大断面図。FIG. 17 is a partial enlarged cross-sectional view of the vicinity of a bypass valve and a back pressure valve (near T portion in FIG. 16) of the scroll compressor of Example 9.

以下、本発明の実施例について、適宜図面を参照しながら詳細に説明する。なお、各図において、共通する部分には同一の符号を付し重複した説明を省略する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate. In each figure, common portions are denoted by the same reference numerals, and redundant description is omitted.

実施例1の一方向弁の一種であるフラッパ式一方向弁Vについて、図1から図6を用いて説明する。図1は、実施例1の一方向弁の縦断面図である。図2は、一方向弁の横断面図(図1のA−A断面)である。図3は、一方向弁の弁板外縁線である弁外形線の幾何学的説明図である。図4は、一方向弁の弁板の平面図である。図5は、一方向弁の弁板の回転対称の回数と面積の関係である。図6は、一方向弁の弁板の回転対称の回数と偏心量の関係である。   A flapper type one-way valve V, which is a kind of one-way valve according to the first embodiment, will be described with reference to FIGS. 1 is a longitudinal sectional view of a one-way valve according to a first embodiment. FIG. 2 is a cross-sectional view of the one-way valve (cross section AA in FIG. 1). FIG. 3 is a geometric explanatory diagram of a valve outline that is a valve plate outer edge line of the one-way valve. FIG. 4 is a plan view of the valve plate of the one-way valve. FIG. 5 shows the relationship between the number of rotational symmetry and the area of the valve plate of the one-way valve. FIG. 6 shows the relationship between the number of rotational symmetry of the valve plate of the one-way valve and the amount of eccentricity.

まず、図1と図2を用いてフラッパ式一方向弁Vの構成を説明する。上流領域201と下流領域202を仕切る遮断領域200に、前記2領域を繋ぐ、弁流入路203と弁領域204で形成する接続流路を設ける。ここで、弁領域204は、弁流入路203よりも下流領域202寄りに設置され、弁流入路203の径を円柱状に拡大した形状とする。そして、弁領域204の弁流入路側端部である弁領域底面で、弁流入路203の弁領域側端部である弁流入口203aの周囲に環状の弁座面205を設ける。この弁座面205は、弁領域204の中心軸である弁軸204aに垂直となる。そして、この弁座面205に搭載可能な形状寸法の弁板であるN角円弁板3N0を投入する。弁座面205に搭載可能な形状寸法とは、具体的に述べると、弁内領域204bの弁軸204aに垂直な断面における円である弁領域断面円204cの内部に含まれるということである。このN角円弁板3N0に関しては、後で詳細に説明を行う。N角円弁板3N0を投入後、N角円弁板3N0の下流領域202側に、N角円弁板3N0の弁軸204a方向の弁座面205からの最大距離を規定するべくリテーナ206を配する。これにより、N角円弁板3N0が弁軸204a方向に有限距離だけ可動となる弁内領域204bが形成される。通常、リテーナ206は、遮断領域200に固定配置されることで、弁座面205に対して固定配置されるが、場合によっては、弁軸の方向に対してのみ実質的に可動だが、その可動範囲が限定されるような設置方法であっても良い。ここで、リテーナ206のうちで、N角円弁板3N0の弁座面205からの最大距離を規定する面をリテーナ面206aと呼称する。本実施例の場合、リテーナ206の下面中央部の突出部先端がリテーナ面206aに相当する。また、リテーナ206には、貫通するリテーナ穴206bが複数個設置されている。これらは、リテーナ面206aがある中央吐出部の周囲に設置されているため、N角円弁板3N0が弁座面205から最も浮上した開弁状態となった場合でも、弁内領域204bと下流領域202は連通を持続できるため、作動流体の流れを阻害しない。   First, the configuration of the flapper type one-way valve V will be described with reference to FIGS. 1 and 2. A connection flow path formed by a valve inflow path 203 and a valve area 204 that connects the two areas is provided in the blocking area 200 that partitions the upstream area 201 and the downstream area 202. Here, the valve region 204 is installed closer to the downstream region 202 than the valve inflow passage 203 and has a shape in which the diameter of the valve inflow passage 203 is expanded in a columnar shape. An annular valve seat surface 205 is provided around the valve inlet 203a which is the valve region side end of the valve inflow passage 203 at the valve region bottom surface which is the valve inflow passage side end of the valve region 204. The valve seat surface 205 is perpendicular to the valve shaft 204 a that is the central axis of the valve region 204. Then, an N-shaped circular valve plate 3N0, which is a valve plate having a shape and dimension that can be mounted on the valve seat surface 205, is inserted. More specifically, the shape dimension that can be mounted on the valve seat surface 205 means that it is included in a valve region sectional circle 204c that is a circle in a section perpendicular to the valve shaft 204a of the valve inner region 204b. The N-shaped circular valve plate 3N0 will be described in detail later. After inserting the N-shaped circular valve plate 3N0, a retainer 206 is provided on the downstream region 202 side of the N-shaped circular valve plate 3N0 so as to define the maximum distance from the valve seat surface 205 in the direction of the valve shaft 204a of the N-shaped circular valve plate 3N0. Arrange. Thereby, an in-valve region 204b in which the N-shaped circular valve plate 3N0 is movable by a finite distance in the direction of the valve shaft 204a is formed. Normally, the retainer 206 is fixedly arranged with respect to the valve seat surface 205 by being fixedly arranged in the blocking region 200. However, in some cases, the retainer 206 is substantially movable only in the direction of the valve shaft. The installation method may be such that the range is limited. Here, in the retainer 206, a surface defining the maximum distance from the valve seat surface 205 of the N-shaped circular valve plate 3N0 is referred to as a retainer surface 206a. In the case of the present embodiment, the tip of the protrusion at the center of the lower surface of the retainer 206 corresponds to the retainer surface 206a. The retainer 206 is provided with a plurality of retainer holes 206b penetrating therethrough. Since these are installed around the central discharge part with the retainer surface 206a, even when the N-shaped circular valve plate 3N0 is in the open state where it floats most from the valve seat surface 205, it is downstream of the valve inner region 204b. Since the region 202 can maintain the communication, the flow of the working fluid is not hindered.

次に、図3により、フラッパ式一方向弁Vに投入するN角円弁板3N0を説明する。N角円弁板3N0の弁外形線を外形とする二次元形状であるN角円3N0aの幾何学的説明を中心に行う。N角円3N0aの外形線は、2通りの半径の円弧を交互にN(但し、3以上の奇数)回接続して形成される閉曲線である。ここで、2通りの半径の円弧のうち、小さい半径r(特殊な場合としてr=0の場合も含む)の円弧を小径部である小円弧部3N0d、大きい半径Rの円弧を大径部である大円弧部3N0eと呼称する。そして、N角円3N0は、N角円図心3N0bを中心とするN回対称の図形である。さらに、小円弧部3N0dと大円弧部3N0eの全ての接続点は、滑らかに接続される(但し、前記したr=0の場合、小円弧部3N0dが無いため、滑らかな接続という条件は省く)。ここで、滑らかな接続とは、導関数が連続であるということである。今回の場合、接続する2曲線がともに円弧であることから、両円弧の中心が接続点の法線上にある。   Next, referring to FIG. 3, the N-shaped circular valve plate 3N0 to be introduced into the flapper type one-way valve V will be described. The geometrical description of the N-square circle 3N0a, which is a two-dimensional shape having the valve outline of the N-square circle valve plate 3N0 as an outline, will be mainly described. The outline of the N-square circle 3N0a is a closed curve formed by alternately connecting arcs of two radii N times (however, odd numbers of 3 or more). Here, out of two arcs of radius, an arc with a small radius r (including a case of r = 0 as a special case) is a small arc part 3N0d which is a small diameter part, and an arc with a large radius R is a large diameter part. It is called a certain large arc portion 3N0e. The N-cornered circle 3N0 is a figure that is N-fold symmetric about the N-corner centroid 3N0b. Furthermore, all the connection points of the small arc portion 3N0d and the large arc portion 3N0e are smoothly connected (however, when r = 0, there is no small arc portion 3N0d, so the condition of smooth connection is omitted). . Here, the smooth connection means that the derivative is continuous. In this case, since the two curves to be connected are both arcs, the center of both arcs is on the normal of the connection point.

以上の条件を満たす二次元図形であるN角円3N0aの描画方法を、図3に従って説明する。N角円3N0aに内在する正N角形で、一辺の長さLが   A drawing method of the N-square circle 3N0a, which is a two-dimensional figure that satisfies the above conditions, will be described with reference to FIG. It is a regular N-gon in the N-square circle 3N0a, and the length L of one side is

となるN角円内在多角形3N0cを考える。N角円内在多角形3N0cは正多角形であるから、一頂点とそれに隣接する頂点とN角円内在多角形3N0cの図心で形成される二等辺三角形の底角φは、 Consider an N-square inner polygon 3N0c. Since the N-cornered polygon 3N0c is a regular polygon, the base angle φ of the isosceles triangle formed by one vertex, a vertex adjacent to the vertex, and the centroid of the N-cornered polygon 3N0c is

となる。これらの関係を用いて、一頂点から次々に隣接する頂点を求めることができ、最終的にN角円内在多角形3N0cを作図する。次に、N角円内在多角形3N0cの各頂点と図心を通る直線を対称線とするような頂点を円弧中心とする小円弧部3N0dと大円弧部3N0eを描く。そして、それらの角度範囲は、それらの円弧で形成される扇形の頂角θが、ともに、 It becomes. Using these relationships, adjacent vertices can be obtained one after another from one vertex, and an N-square circle-containing polygon 3N0c is finally drawn. Next, a small circular arc portion 3N0d and a large circular arc portion 3N0e are drawn with the vertex being such that a straight line passing through each vertex of the N-square circle 3N0c and the centroid is a symmetric line. And the range of those angles is that the vertical angle θ of the sector formed by these arcs is

となるように描く。ここで、小円弧部3N0dは頂点から見て反図心側に描き、大円弧部3N0eは頂点から見て図心側に描く。この描画をN個の各頂点で同様に行うことにより、全ての小円弧部3N0dと大円弧部3N0eが滑らかに接続し、閉曲線であるN角円3N0aの外形線が描画される。このようにして描画されたN角円3N0aのN角円図心3N0bは、明らかにN角円内在多角形3N0cの図心と一致する。また、N角円3N0aは、明らかにN角円図心3N0bを中心としてN回対称となる。さらに、明らかに、凸形状となる。ここで、凸形状とは、前記凹形状ではない形状であり、元から定義すると、内部の2点を結ぶ全ての直線が弁外形線と交差しない形状である。 Draw as follows. Here, the small arc portion 3N0d is drawn on the countercentric side when viewed from the apex, and the large arc portion 3N0e is drawn on the centroid side when viewed from the apex. By similarly performing this drawing at each of the N vertices, all the small arc portions 3N0d and the large arc portion 3N0e are smoothly connected, and the outline of the N-cornered circle 3N0a, which is a closed curve, is drawn. The N-corner centroid 3N0b of the N-corner circle 3N0a drawn in this way clearly coincides with the centroid of the polygon N3c in the N-corner circle. Further, the N-angle circle 3N0a is clearly N-fold symmetric about the N-angle circle centroid 3N0b. Furthermore, it becomes clearly a convex shape. Here, the convex shape is a shape that is not the concave shape, and when originally defined, is a shape in which all straight lines connecting the two internal points do not intersect the valve outline.

以上のような閉曲線を外形とするN角円は、ある小円弧部3N0d上の任意点からN角円の内部側へ引いた法線は、その小円弧部3N0dの中心であるN角円内在多角形3N0cの一頂点を通って対面にある大円弧部3N0eと直交することは、上記描画方法から明らかである。そして、前記小円弧部3N0d上の任意点と大円弧部3N0eとの交点との距離は、r+Rとなることも明らかである。この関係は、小円弧部3N0d上の任意の点で成立する。つまり、ノギスでN角円を挟むと、常にr+Rの測定値を示す。これより、以後、r+Rの値を「一般直径」と呼称する。そして、N角円の「一般直径」はどこを測定しても一定値であることから、N角円の属する図形集合を「一般円」と呼称する。そして今回は、この一般直径を、弁領域断面半径Aと弁座面の内縁線205aと内縁線205aのうちで弁軸204aとの最大距離である弁座内半径ZI(ZIを半径とする円を「弁座内円」205a‘と呼称する)の和よりも一定の拡張量OVだけ大きくした、A+ZI+OV とする。すなわち、   The N-angle circle having the closed curve as the outer shape as described above is the normal line drawn from an arbitrary point on a small arc portion 3N0d to the inner side of the N-circle circle, and the N-square circle is the center of the small arc portion 3N0d. It is clear from the above drawing method that the polygon 3N0c passes through one vertex of the polygon 3N0c and is orthogonal to the large arc portion 3N0e on the opposite side. It is also clear that the distance between the arbitrary point on the small arc portion 3N0d and the intersection of the large arc portion 3N0e is r + R. This relationship is established at an arbitrary point on the small arc portion 3N0d. That is, when an N-angle circle is sandwiched between calipers, the measured value of r + R is always shown. Henceforth, the value of r + R is called "general diameter". Since the “general diameter” of the N-angle circle is a constant value no matter where it is measured, the figure set to which the N-angle circle belongs is called “general circle”. And this time, this general diameter is set to the valve seat inner radius ZI which is the maximum distance from the valve shaft 204a among the valve region sectional radius A, the inner edge line 205a of the valve seat surface and the inner edge line 205a (a circle having a radius of ZI). A + ZI + OV, which is larger than the sum of the “valve seat circle” 205a ′) by a certain expansion amount OV. That is,

という関係が成り立つように、rとRを決める。図4は、単位をmmとして、r=0.5、R=6、N=5、A=3.75、ZI=1.9、OV=0.85 とした場合の拡大図である。このフラッパ式一方向弁Vは5角円弁板350を用いている。5角円弁板350は、弁水平面内を自由に動くため、通常の場合、図4で示すような、2個所で弁領域側面に接した状態となる(∵ R>A)。また、R>Aより、大円弧部350eは円領域断面円204cと接することはなく、接点は全て小円弧部350dとなる。接点の法線は円領域断面円204cの中心である弁軸204aを必ず通るため、(4)式より、5角円弁板350は、弁軸204aからZI+OVの半径を有する円(以後、「基準円」208と呼称する)を必ず覆うことが分かる。すなわち、最もシール幅の少ない場合でも、拡張量OVの余裕をもって、逆流時にシールが可能であることがわかる。これは、直径をr+Rとした円弁板を用いる従来のフラッパ式一方向弁V‘と同じである。 R and R are determined so that the following relationship holds. FIG. 4 is an enlarged view when the unit is mm and r = 0.5, R = 6, N = 5, A = 3.75, ZI = 1.9, and OV = 0.85. This flapper type one-way valve V uses a pentagonal valve plate 350. Since the pentagonal valve plate 350 moves freely in the valve horizontal plane, the pentagonal valve plate 350 is normally in contact with the side surface of the valve region at two locations as shown in FIG. 4 (∵ R> A). Further, since R> A, the large arc portion 350e does not contact the circular region cross-sectional circle 204c, and all the contacts are the small arc portions 350d. Since the normal of the contact always passes through the valve shaft 204a, which is the center of the circular region cross-sectional circle 204c, the pentagonal valve plate 350 is a circle having a radius of ZI + OV from the valve shaft 204a (hereinafter, “ It can be seen that the reference circle “208” is necessarily covered. That is, it can be seen that even when the seal width is the smallest, sealing is possible during backflow with a margin of the expansion amount OV. This is the same as the conventional flapper type one-way valve V ′ using a circular valve plate having a diameter of r + R.

次に、N角円弁板を用いたフラッパ式一方向弁Vを、その一般直径に等しい直径を有する円を弁外形線とする円弁板を用いた従来のフラッパ式一方向弁V‘と、次の2点で比較する。一点目は順流の流路抵抗低減の程度を表す前記の外縁隙間面積である。そして、二点目は、順流時の流路抵抗低減の程度と逆流時のシール性の程度を表す前記偏心量である。一点目の外縁隙間面積は、N角円の面積を円領域断面円の面積から引けば求められるため、N角円の面積Sを導出した。また、偏心量Gの式も導出した。ここで、偏心量Gは、R>Aの場合とR≦Aの場合で、最大の偏心量になる接触状態が異なるため、式も異なった。   Next, a flapper type one-way valve V using an N-shaped circular valve plate is replaced with a conventional flapper type one-way valve V ′ using a circular valve plate having a circle having a diameter equal to the general diameter as a valve outline. The following two points are compared. The first point is the outer edge clearance area representing the degree of forward flow path resistance reduction. The second point is the amount of eccentricity representing the degree of flow resistance reduction during forward flow and the degree of sealability during reverse flow. Since the outer edge clearance area at the first point can be obtained by subtracting the area of the N-cornered circle from the area of the circular region cross-sectional circle, the area S of the N-square circle was derived. An equation for the eccentricity G was also derived. Here, the amount of eccentricity G differs between R> A and R ≦ A because the contact state with the maximum amount of eccentricity differs.

図4に示す5角円のパラメータのうちで、N(今後、「角数」と呼称する)を変化させた時の面積S((5)式)及び外縁隙間面積を図5に示す。また、Nを変化させた時の偏心量G(R>Aであるため、(6)式)を図6に示す。これより、Nが大きくなると、Sが増大し、Gも増大することがわかる。そして、急激に、円弁板を用いた従来のフラッパ式一方向弁V‘に近づくことがわかる。これより、従来のフラッパ式一方向弁V’よりも、一般円の弁体を用いたフラッパ式一方向弁Vの方が、外縁隙間面積が大きく、また、偏心量が小さい。よって、前記した通り、順流時の流路抵抗低減と逆流時のシール性向上による整流動作の性能向上とともに、凸形状であることから構造強度信頼性も向上できることが分かる。   FIG. 5 shows an area S (formula (5)) and an outer edge clearance area when N (hereinafter referred to as “number of corners”) among the parameters of the pentagonal circle shown in FIG. 4 is changed. FIG. 6 shows the amount of eccentricity G when R is changed (since R> A, equation (6)). From this, it can be seen that as N increases, S increases and G also increases. And it turns out that it approaches the conventional flapper type one-way valve V 'using a circular valve plate suddenly. Thus, the flapper type one-way valve V using a generally circular valve element has a larger outer edge clearance area and a smaller amount of eccentricity than the conventional flapper type one-way valve V ′. Therefore, as described above, it can be seen that the structure strength reliability can be improved due to the convex shape as well as the performance of the rectifying operation by reducing the flow resistance at the forward flow and the sealing performance at the back flow.

それと同時に、図5,6から、本実施例であるN=5の場合に比べて、N=3の場合、最も外縁隙間面積が大きく、さらに、偏心量が小さくなることがわかる。   At the same time, FIGS. 5 and 6 show that the outer edge clearance area is the largest and the amount of eccentricity is smaller when N = 3 than when N = 5 in the present embodiment.

実施例2の一方向弁の一種であるフラッパ式一方向弁Vについて、一方向弁の弁板の平面図である図7を用いて説明する。   A flapper type one-way valve V, which is a kind of one-way valve according to the second embodiment, will be described with reference to FIG. 7 which is a plan view of a valve plate of the one-way valve.

前記した実施例1の最後で示した、N=3として3角円弁板330を用いる以外は、実施例1と同様であるので、N=3とする以外の説明は省略する。Nを5から3へ変えると、Sは急激に減少するとともに、Gも急激に減少することが図5,6からわかる。よって、円弁板を用いた従来のフラッパ式一方向弁V‘’よりも、3角円弁板330を用いたフラッパ式一方向弁Vの方が、外縁隙間面積が一層大きく、また、偏心量が一層小さい。よって、前記した通り、順流時の流路抵抗を一層低減できるともに逆流時のシール性を一層向上でき、整流動作の性能向上を一層実現できるという効果がある。   Since it is the same as that of Example 1 except using the triangular valve plate 330 as N = 3 shown at the end of above-mentioned Example 1, description other than N = 3 is abbreviate | omitted. It can be seen from FIGS. 5 and 6 that when N is changed from 5 to 3, S decreases rapidly and G also decreases abruptly. Therefore, the flapper type one-way valve V using the three-way circular valve plate 330 has a larger outer edge clearance area and is more eccentric than the conventional flapper type one-way valve V ″ using the circular valve plate. The amount is even smaller. Therefore, as described above, there is an effect that the flow path resistance at the time of forward flow can be further reduced, the sealing performance at the time of reverse flow can be further improved, and the performance of the rectifying operation can be further improved.

実施例3の一方向弁の一種であるフラッパ式一方向弁Vについて、図8乃至図10を用いて説明する。図8は実施例3の一方向弁の弁板の小円弧部半径rと面積の関係であり、図9((実線部は(6)式、破線部は(7)式で描画した))は一方向弁の弁板の小円弧部半径rと偏心量の関係、また、図10は一方向弁の弁板の平面図である。rを極限の0まで小さくした一方、Rを最大まで増大させた尖り3角円弁板331を用いる以外は前記した実施例2と同様であるので、r=0による作用効果以外の説明は省略する。   A flapper type one-way valve V, which is a kind of one-way valve according to the third embodiment, will be described with reference to FIGS. FIG. 8 shows the relationship between the radius r of the small arc portion of the valve plate of the one-way valve of Example 3 and the area, and FIG. 9 (the solid line portion is drawn by equation (6) and the broken line portion is drawn by equation (7)). Is the relationship between the radius r of the small arc portion of the valve plate of the one-way valve and the amount of eccentricity, and FIG. 10 is a plan view of the valve plate of the one-way valve. Since it is the same as that of the second embodiment except that a sharp triangular valve plate 331 in which r is reduced to the limit 0 and R is increased to the maximum is used, description other than the operational effect by r = 0 is omitted. To do.

図8と図9より、rを小さくすると、Sは急激に減少するとともに、Gも急激に減少することがわかる。よって、円弁板を用いた従来のフラッパ式一方向弁V’よりも、尖り3角円弁板331を用いたフラッパ式一方向弁Vの方が、外縁隙間面積がより一層大きく、また、偏心量がより一層小さくなって、本実施例の場合はほぼ0となる。よって、前記した通り、順流時の流路抵抗をより一層低減できるともに逆流時のシール性をより一層向上でき、整流動作の性能をより一層向上できるという効果がある。さらに、尖り3角円弁板331は正三角形に近い形状であるため、シートから弁板を取る際に、端材を少なくすることが可能となり、コスト低減という効果もある。   From FIG. 8 and FIG. 9, it can be seen that as r is decreased, S decreases rapidly and G also decreases abruptly. Therefore, the flapper type one-way valve V using the sharp triangular valve plate 331 has a larger outer edge clearance area than the conventional flapper type one-way valve V ′ using the circular valve plate. The amount of eccentricity becomes even smaller, and in the case of the present embodiment, it becomes almost zero. Therefore, as described above, there is an effect that the flow path resistance at the time of forward flow can be further reduced, the sealing performance at the time of reverse flow can be further improved, and the performance of the rectifying operation can be further improved. Furthermore, since the sharp triangular valve plate 331 has a shape close to an equilateral triangle, it is possible to reduce the end material when removing the valve plate from the seat, and there is also an effect of cost reduction.

実施例4の一方向弁の一種であるフラッパ式一方向弁Vについて、図11を用いて説明する。図11は実施例4の一方向弁の弁板の平面図であり、rを大きくした一方、RをAよりも小さくしない範囲で小さくした丸3角円弁板332を用いる以外は実施例2と同様であるので、rを大きくしたことによる作用効果以外の説明は省略する。   A flapper type one-way valve V, which is a kind of one-way valve of Embodiment 4, will be described with reference to FIG. FIG. 11 is a plan view of the valve plate of the one-way valve of the fourth embodiment, except that a round triangular valve plate 332 in which R is increased while R is smaller than A is used. Therefore, the description other than the effect of increasing r is omitted.

小円弧部は、弁領域側面と接触する部分であるため、rが小さいと、弁領域側面との摩擦力が大きくなるという危険性が生じる。本実施例はrを大きくしたため、その危険性が低減し、弁体の上下動作がスムースになり、弁の開閉動作の動作遅れが小さくなる。よって、整流動作の性能を向上できるという効果がある。   Since the small arc portion is a portion in contact with the valve region side surface, if r is small, there is a risk that the frictional force with the valve region side surface becomes large. In this embodiment, since r is increased, the risk is reduced, the vertical movement of the valve body is smoothed, and the operation delay of the valve opening / closing operation is reduced. Therefore, there is an effect that the performance of the rectifying operation can be improved.

実施例5の一方向弁の一種であるフラッパ式一方向弁Vについて、図12を用いて説明する。図12は実施例5の一方向弁の弁板の平面図であり、rをわずかに大きくした一方、Rをわずかに小さくするとともに、基準円208にかからない位置(斜線部)に弁穴333fを開けた穴付3角円弁板333を用いる以外は実施例2と同様であるので、rをわずかに大きくしたことと穴を設けたことによる作用効果以外の説明は省略する。   A flapper type one-way valve V, which is a kind of one-way valve of Embodiment 5, will be described with reference to FIG. FIG. 12 is a plan view of the valve plate of the one-way valve of the fifth embodiment. While r is slightly increased, R is slightly decreased and a valve hole 333f is provided at a position (shaded portion) that does not cover the reference circle 208. Since the third embodiment is the same as the second embodiment except that the holed triangular valve plate 333 is used, the description other than the effect obtained by slightly increasing r and providing the hole is omitted.

実施例2では、rが小さめであるために、弁領域側面との摩擦力が増大していた。この摩擦力増大の危険性回避のためにrをわずかに大きくし、また、rの増大にともなって生じる弊害である外縁隙間面積の低減(図8参照)を弁穴333fで抑制させたものである。これにより、弁体の上下動作がスムースになり、弁の開閉動作の動作遅れが小さくなる。さらに、外縁流路面積の拡大によって、整流動作の性能を向上できるという効果がある。   In Example 2, since r was smaller, the frictional force with the side surface of the valve region was increased. In order to avoid the risk of this frictional force increase, r is slightly increased, and reduction of the outer edge clearance area (see FIG. 8), which is a harmful effect caused by the increase of r, is suppressed by the valve hole 333f. is there. As a result, the vertical movement of the valve body is smooth, and the operation delay of the valve opening / closing operation is reduced. Furthermore, there is an effect that the performance of the rectifying operation can be improved by expanding the outer edge flow path area.

実施例6一方向弁の一種であるフラッパ式一方向弁Vについて、図13を用いて説明する。図13は実施例6の一方向弁の弁板の平面図であり、弁領域側面との接触が生じない部分を最大で拡張量OVだけオフセットしたクロスハッチングで示すカット部334gを設定したカット3角円弁板334を用いる以外は、穴を塞いだ実施例5と同様であるので、カット部を設けたこと以外の作用効果の説明は省略する。これにより、シールを確保しつつ、偏心量は変えずに、外縁隙間面積を大幅に増大できる。これより、順流時の流路抵抗が大幅に低減できるため、整流動作の性能を向上できるという効果がある。ここで、カット部334gを、内側凸形状(オフセット線334aで規定)した場合には、外縁隙間面積を最大限に増大でき、順流時の流路抵抗を最大限に低減できる効果がある。一方、カット部334gを粗いクロス
ハッチング部のみとすべく、直線オフセット334a‘とした場合には、カット3角円板334は凸形状になるため、応力集中部が無く、構造強度上の信頼性が確保できるという効果がある。
Example 6 A flapper type one-way valve V which is a kind of one-way valve will be described with reference to FIG. FIG. 13 is a plan view of the valve plate of the one-way valve of the sixth embodiment. The cut 3 is set with a cut portion 334g indicated by cross-hatching in which a portion that does not contact the side surface of the valve region is offset by the maximum amount OV. Since it is the same as that of Example 5 which closed the hole except using the square valve plate 334, description of the effect other than having provided the cut part is abbreviate | omitted. As a result, the outer edge clearance area can be greatly increased without changing the eccentricity while securing the seal. As a result, the flow path resistance during forward flow can be greatly reduced, and the performance of the rectifying operation can be improved. Here, when the cut portion 334g has an inner convex shape (defined by the offset line 334a), the outer edge clearance area can be increased to the maximum, and the flow path resistance during forward flow can be reduced to the maximum. On the other hand, when the linear offset 334a ′ is used so that the cut portion 334g is only a rough cross-hatched portion, the cut triangular disc 334 has a convex shape, and therefore there is no stress concentration portion, and reliability in structural strength. There is an effect that can be secured.

実施例7の一方向弁の一種であるフラッパ式一方向弁Vについて、図14を用いて説明する。図14は実施例7の一方向弁の横断面図であり、弁座の内縁線が非円形の非円弁座内縁線215aとなり、弁座内円の形状が弁座内縁線と異なる非内縁弁座内円215‘の場合である。このような、非一様環状形状の非一様環状弁座215とする以外は実施例1乃至実施例6と同様であるため、弁座形状の非一様化による作用動作の変更以外は説明を省略する。   A flapper type one-way valve V, which is a kind of one-way valve in Embodiment 7, will be described with reference to FIG. FIG. 14 is a cross-sectional view of the one-way valve of the seventh embodiment. The inner edge line of the valve seat is a non-circular non-circular valve seat inner edge line 215a, and the shape of the valve seat inner circle is different from the inner edge line of the valve seat. This is the case of the valve seat inner circle 215 ′. Since it is the same as that of Example 1 thru | or Example 6 except setting it as such a non-uniform | annular annular shape non-uniform | annular annular valve seat 215, it demonstrates except the change of the action operation by non-uniform | heterogenous valve seat shape. Is omitted.

弁座の面積を増大できるので、逆流時のシール性が向上できるという効果がある。   Since the area of the valve seat can be increased, there is an effect that the sealing performance at the time of backflow can be improved.

実施例8の一方向弁の一種であるフラッパ式一方向弁Vについて、図15を用いて説明する。図15は実施例8の一方向弁の縦断面図であり、リテーナ206とN角円弁板3N0の間につるまき状の弁体ばね207を設けた場合である。このような弁体ばねがある場合は、開弁動作する条件設定も担う一方向弁であり、ばねが圧縮されて挿入されると、上流領域201と下流領域202の圧力差が設定される。このような場合、これまでの実施例に加えて、弁体ばね207がN角円弁板3N0からはずれないようにすることが必要になる。このため、弁体ばねの外側半径であるばね外半径Bが弁座内半径ZIよりも大きい場合には、弁座内半径ZIをばね外半径Bに置き換え、かつ、ばね外半径Bが弁座外半径ZOよりも大きい場合には、弁座外半径ZOもばね外半径Bに置き換えればよい。これにより、弁体ばね207がN角円弁板3N0からはずれないようにできるため、弁体ばね207が担う、圧力設定を確実にできるという効果がある。   A flapper type one-way valve V, which is a kind of one-way valve in Embodiment 8, will be described with reference to FIG. FIG. 15 is a longitudinal sectional view of a one-way valve according to an eighth embodiment, in which a helical valve body spring 207 is provided between the retainer 206 and the N-shaped circular valve plate 3N0. When there is such a valve body spring, it is a one-way valve that also sets the conditions for opening the valve. When the spring is compressed and inserted, the pressure difference between the upstream region 201 and the downstream region 202 is set. In such a case, it is necessary to prevent the valve spring 207 from coming off the N-shaped circular valve plate 3N0 in addition to the previous embodiments. For this reason, when the spring outer radius B which is the outer radius of the valve spring is larger than the valve seat inner radius ZI, the valve seat inner radius ZI is replaced with the spring outer radius B, and the spring outer radius B is If it is larger than the outer radius ZO, the valve seat outer radius ZO may be replaced with the spring outer radius B. Thereby, since the valve body spring 207 can be prevented from being detached from the N-shaped circular valve plate 3N0, there is an effect that the pressure setting which the valve body spring 207 bears can be ensured.

<流体システムの一例であるスクロール圧縮機>
次に、実施例1乃至実施例8の一方向弁を流体システムのスクロール圧縮機に搭載した実施例9について、図16と図17を用いて説明する。図16は、実施例9のスクロール圧縮機1の縦断面図である。図17は、スクロール圧縮機1のバイパス弁及び背圧弁付近(図16のS部付近)の部分拡大断面図である。これらのバイパス弁及び背圧弁に、前記実施例のうちで弁ばねを備えたタイプのフラッパ式一方向弁が搭載されている。ここでバイパス弁に用いられている弁ばねはほとんど圧縮されていないため、実質的にはばね無しに近い。ちなみに、実施例9のスクロール圧縮機1の直径は、例えば、10mmから1000mm程度である。
<Scroll compressor as an example of fluid system>
Next, a ninth embodiment in which the one-way valve of the first to eighth embodiments is mounted on a scroll compressor of a fluid system will be described with reference to FIGS. 16 and 17. FIG. 16 is a longitudinal sectional view of the scroll compressor 1 according to the ninth embodiment. FIG. 17 is a partial enlarged cross-sectional view of the vicinity of the bypass valve and the back pressure valve (near S part in FIG. 16) of the scroll compressor 1. A flapper type one-way valve of the type having a valve spring in the above-described embodiment is mounted on these bypass valve and back pressure valve. Here, since the valve spring used for the bypass valve is hardly compressed, it is substantially close to no spring. Incidentally, the diameter of the scroll compressor 1 of Example 9 is, for example, about 10 mm to 1000 mm.

図16と図17に示すように、実施例9のスクロール圧縮機1は、固定スクロール2と旋回スクロール3とフレーム4とオルダムリング5(図17参照)とクランク軸6とモータ10の主たる構成要素を、ケーシング8で密閉した形態となっている。   As shown in FIGS. 16 and 17, the scroll compressor 1 according to the ninth embodiment includes main components of a fixed scroll 2, an orbiting scroll 3, a frame 4, an Oldham ring 5 (see FIG. 17), a crankshaft 6, and a motor 10. Is sealed with a casing 8.

このうち旋回スクロール3は、旋回鏡板3aの上面に旋回ラップ3bが立設され、背面の旋回軸受23にクランク軸6の偏心部であるピン部6aが挿入される。旋回スクロール3は、主軸受24で回転支持されるクランク軸6が回転することにより、旋回運動するようになっている。   Of these, the orbiting scroll 3 has an orbiting lap 3b standing on the upper surface of the orbiting end plate 3a, and a pin portion 6a that is an eccentric portion of the crankshaft 6 is inserted into the orbiting bearing 23 on the rear surface. The orbiting scroll 3 is adapted to orbit as the crankshaft 6 that is rotatably supported by the main bearing 24 rotates.

一方、固定スクロール2は、固定鏡板2aの下面側に固定ラップ2bが立設され、固定ラップ2bの周囲に、固定台板2qが配置されている。これら固定ラップ2bと前述の旋回ラップ3bを噛合わせ、両者間に圧縮室100が形成される。   On the other hand, the fixed scroll 2 has a fixed wrap 2b erected on the lower surface side of the fixed end plate 2a, and a fixed base plate 2q is disposed around the fixed wrap 2b. The fixed wrap 2b and the swirl wrap 3b are engaged with each other, and a compression chamber 100 is formed between them.

また、固定スクロール2には、吸込口2sが設けられ、そこにはスクロール圧縮機1の外部から作動流体を固定スクロール2へ導入する吸込パイプ50が圧入され、逆止弁21が吸込パイプ50の下部に設けられている。それは、スクロール圧縮機1の停止直後の作動流体の逆流を防止するためである。そして、固定スクロール2の中央付近には、吐出穴2dが形成されている。   Further, the fixed scroll 2 is provided with a suction port 2s, into which a suction pipe 50 for introducing working fluid from the outside of the scroll compressor 1 into the fixed scroll 2 is press-fitted, and the check valve 21 is connected to the suction pipe 50. It is provided at the bottom. This is to prevent the backflow of the working fluid immediately after the scroll compressor 1 is stopped. A discharge hole 2 d is formed near the center of the fixed scroll 2.

さらに、固定スクロール2には、吐出穴2dの周囲に、圧縮室100と固定背面室120を繋ぐべく固定鏡板2aを貫通するバイパス穴2eが形成されている(図17参照)。そして、バイパス穴2eには、後で詳細に記載する一方向弁のバイパス弁が設けられる。また、固定台板2qの下面に設ける周囲溝2pと圧縮室100を繋ぐコの字型の背圧穴2gが形成されている。これは固定台板2q下面側に形成される背圧室110(後に説明する)と圧縮室100を繋ぐ通路である(図17参照)。そして、背圧穴2gには、後で詳細に記載する一方向弁の背圧弁が設けられる。   Further, a bypass hole 2e that penetrates the fixed end plate 2a is formed around the discharge hole 2d in the fixed scroll 2 so as to connect the compression chamber 100 and the fixed back chamber 120 (see FIG. 17). The bypass hole 2e is provided with a one-way valve bypass valve which will be described in detail later. Further, a U-shaped back pressure hole 2g that connects the peripheral groove 2p provided on the lower surface of the fixed base plate 2q and the compression chamber 100 is formed. This is a passage connecting the back pressure chamber 110 (described later) and the compression chamber 100 formed on the lower surface side of the fixed base plate 2q (see FIG. 17). The back pressure hole 2g is provided with a back pressure valve of a one-way valve which will be described in detail later.

以上のような構成を有する固定スクロール2は、オルダムリング5(図17参照)とクランク軸6をフレーム4に装着したうえで、固定台板2qの外辺部をフレーム4にねじ固定する。これによって、旋回スクロール3の背面(旋回スクロール3とフレーム4との間)とには、背圧室110が形成される。そして、オルダムリング5は、旋回スクロール3の自転運動を防止するため、フレーム4と旋回スクロール3の間に配置される。   In the fixed scroll 2 having the above-described configuration, the Oldham ring 5 (see FIG. 17) and the crankshaft 6 are attached to the frame 4, and the outer side portion of the fixed base plate 2q is fixed to the frame 4 with screws. Thus, a back pressure chamber 110 is formed on the back surface of the orbiting scroll 3 (between the orbiting scroll 3 and the frame 4). The Oldham ring 5 is disposed between the frame 4 and the orbiting scroll 3 in order to prevent the orbiting scroll 3 from rotating.

クランク軸6には、縦に貫通する給油穴6bが形成され、下端には、給油パイプ6xが圧入されている。また、クランク軸6のフレーム4よりも下部には、回転バランスを取るためのシャフトバランス80およびカウンタバランス82が固定配置されている。   The crankshaft 6 is formed with an oil supply hole 6b penetrating vertically, and an oil supply pipe 6x is press-fitted into the lower end. In addition, a shaft balance 80 and a counterbalance 82 are fixedly arranged below the frame 4 of the crankshaft 6 for rotational balance.

副軸受25は、ボール25aと下フレーム35へ固定配置されたボールホルダ25bからなり、クランク軸6がたわんでも片当りが生じない構成となっている。   The auxiliary bearing 25 is composed of a ball 25a and a ball holder 25b fixedly disposed on the lower frame 35, and is configured such that no contact occurs even if the crankshaft 6 is bent.

モータ10は、クランク軸6に固定されたロータ10aと、筒ケーシング8aに焼き嵌めまたは圧入または溶接したステータ10bと、を備えて構成され、モータ10に電力を供給するモータ線でハーメチック端子220と接続されている。   The motor 10 includes a rotor 10 a fixed to the crankshaft 6 and a stator 10 b that is shrink-fitted, press-fitted, or welded to the cylindrical casing 8 a, and a hermetic terminal 220 that is a motor wire that supplies power to the motor 10. It is connected.

ケーシング8は、筒ケーシング8aと、筒ケーシング8aの上部に溶接される上ケーシング8bと、筒ケーシング8aの下部に溶接される底ケーシング8cと、を備えて構成され、固定スクロール2、旋回スクロール3、フレーム4、クランク軸6、モータ10等を取り囲むようになっている。   The casing 8 includes a cylindrical casing 8a, an upper casing 8b welded to the upper part of the cylindrical casing 8a, and a bottom casing 8c welded to the lower part of the cylindrical casing 8a. The frame 4, the crankshaft 6, the motor 10 and the like are surrounded.

筒ケーシング8aには、内部にフレーム4が溶接されて固定配置され、側面に吐出パイプ55が固定配置され、下部に副軸受25を支持する下フレーム35が固定配置されている。なお、固定スクロール2がフレーム4にねじ固定されたときの外周部には、上下方向に延びる溝が形成されており、この溝によって、固定背面室120とケーシング8の他の内部空間が連通する。また、上ケーシング8bには、ハーメチック端子220と固定スクロール2に圧入してある吸込パイプ50が固定配置されている。さらに、ケーシング8の内部には、組立ての適当な段階で油を封入する。これにより、ケーシング8の底部に、貯油部125が形成される。   In the cylindrical casing 8a, the frame 4 is welded and fixedly arranged inside, the discharge pipe 55 is fixedly arranged on the side surface, and the lower frame 35 that supports the auxiliary bearing 25 is fixedly arranged on the lower part. A groove extending in the vertical direction is formed in the outer peripheral portion when the fixed scroll 2 is screwed to the frame 4, and the fixed back chamber 120 and the other internal space of the casing 8 communicate with each other through this groove. . Further, a suction pipe 50 press-fitted into the hermetic terminal 220 and the fixed scroll 2 is fixedly arranged in the upper casing 8b. Further, oil is sealed in the casing 8 at an appropriate stage of assembly. Thereby, the oil storage part 125 is formed at the bottom of the casing 8.

次に、スクロール圧縮機1における作動流体の圧縮動作を説明する。モータ10で回転させたクランク軸6により旋回スクロール3が旋回運動し、旋回スクロール3と固定スクロール2との間に圧縮室100が形成される。これにつれて、作動流体は、吸込パイプ50から圧縮室100へ流入し、容積が縮小して圧縮し高圧になる。その後、作動流体は吐出穴2dやバイパス穴2eから固定背面室120へ流出する。前記したとおり、固定背面室120は他のケーシング8内部空間と繋がっているため、ケーシング8の内部全域が吐出圧となる。最後に、作動流体は、モータ10の上部空間に繋がる吐出パイプ55から外部へ吐出される。   Next, the operation of compressing the working fluid in the scroll compressor 1 will be described. The orbiting scroll 3 orbits by the crankshaft 6 rotated by the motor 10, and a compression chamber 100 is formed between the orbiting scroll 3 and the fixed scroll 2. Along with this, the working fluid flows from the suction pipe 50 into the compression chamber 100, and the volume is reduced to be compressed and become high pressure. Thereafter, the working fluid flows out from the discharge hole 2d and the bypass hole 2e to the fixed back chamber 120. As described above, the fixed back chamber 120 is connected to the other internal space of the casing 8, so that the entire internal area of the casing 8 serves as the discharge pressure. Finally, the working fluid is discharged to the outside from the discharge pipe 55 connected to the upper space of the motor 10.

次に、油の流れを説明する。貯油部125の油は、吐出圧(ケーシング8の内部の圧力)と背圧(背圧室110の内部の圧力)の差圧により、貯油部125から、給油パイプ6x、クランク軸6内の給油穴6bを通って旋回軸受23と主軸受24を潤滑した後、背圧室110へと流入する。ここで、ピン部6aの上部の旋回軸受室115の圧力は吐出圧となるため、旋回スクロール3を固定スクロール2へ押付ける役目を担う。また、副軸受25へは給油穴6bから遠心力によって給油するようになっている。背圧室110へ流入する前の油の圧力は、吐出圧であるため、その油の流入によって背圧室110の圧力が昇圧する。また、油には作動流体が必ず溶け込んでいる(大概の場合、質量濃度は10%以上)ため、背圧室110へ流入したことによる減圧によって、作動流体が油中から急激にガス化(発泡)する。作動流体は、ガス化することで、体積が1ケタ以上増大する。このため、大概の場合、背圧室110内の油は、細かい油滴がガス化した作動流体内に浮遊するミスト状態となって、背圧室110全域に分散する。以上のような背圧室110への給油経路がある。これは、背圧室流体導入路となっている。これによって、図2に示すオルダムリング5の潤滑を行なう。この後、油は、途中に背圧弁7を設けた背圧穴2gを通り、圧縮室100へ流入する。この結果、圧縮室100のシール性が向上し、圧縮途中の漏れが抑制され、圧縮機効率が向上するという効果がある。その後、圧縮室100内の作動流体中にミスト状態で混ざりながら、作動流体とともに固定背面室120へ吐出する。そして、油は、ケーシング8の内壁やケーシング内の要素に付着して作動流体と分離された後、付着したケーシング内壁や要素を伝って、スクロール圧縮機1の底部にある貯油部125へ戻る。   Next, the flow of oil will be described. The oil in the oil storage part 125 is supplied from the oil storage part 125 to the oil supply pipe 6x and the crankshaft 6 by the differential pressure between the discharge pressure (pressure inside the casing 8) and the back pressure (pressure inside the back pressure chamber 110). After the slewing bearing 23 and the main bearing 24 are lubricated through the hole 6b, they flow into the back pressure chamber 110. Here, since the pressure in the orbiting bearing chamber 115 above the pin portion 6a becomes the discharge pressure, it plays a role of pressing the orbiting scroll 3 against the fixed scroll 2. Further, the auxiliary bearing 25 is supplied with oil from the oil supply hole 6b by centrifugal force. Since the pressure of the oil before flowing into the back pressure chamber 110 is the discharge pressure, the pressure of the back pressure chamber 110 is increased by the inflow of the oil. In addition, since the working fluid is always dissolved in the oil (in most cases, the mass concentration is 10% or more), the working fluid is rapidly gasified (foamed) from the oil by the pressure reduction caused by the flow into the back pressure chamber 110. ) When the working fluid is gasified, the volume increases by one digit or more. For this reason, in most cases, the oil in the back pressure chamber 110 becomes a mist state in which fine oil droplets float in the gasified working fluid and is dispersed throughout the back pressure chamber 110. There is an oil supply path to the back pressure chamber 110 as described above. This is a back pressure chamber fluid introduction path. Thereby, the Oldham ring 5 shown in FIG. 2 is lubricated. Thereafter, the oil flows into the compression chamber 100 through the back pressure hole 2g provided with the back pressure valve 7 on the way. As a result, the sealing performance of the compression chamber 100 is improved, leakage during compression is suppressed, and the compressor efficiency is improved. Then, it discharges to the fixed back chamber 120 with a working fluid, mixing with the working fluid in the compression chamber 100 in a mist state. The oil adheres to the inner wall of the casing 8 and the elements in the casing and is separated from the working fluid, and then returns to the oil storage part 125 at the bottom of the scroll compressor 1 through the attached inner wall and elements of the casing.

次に、弁領域であるバイパス掘込み2fに設けられたバイパス弁9について、図17を用いて詳細に説明する。バイパス掘込み2fには、N角円(特に3角円)のN角円弁板であるバイパス弁板9aが配置されている。また、バイパス掘込み2fの底部には、バイパス弁板9aと当接するバイパス弁座9bが設けられている。バイパス弁板9aは、バイパス弁ばね9cによって、バイパス弁座9bへ極めて小さな荷重で押し付けられている。バイパス弁ばね9cは、その上端をばね押さえ9dの突起へ挿入する。そして、そのばね押え9dの上面を押え板9fで押える。これにより、ばね押え9dを位置決めする。なお、ばね押え9d、押え板9fには、上下を貫通する穴が設けられている。以上のようにして、N角円弁板を弁板とするフラッパ式一方向弁のバイパス弁9が構成される。以上説明した構成から明らかな通り、バイパス弁9は、上流領域である圧縮室100の圧力が吐出圧(下流領域である固定背面室120の圧力)以上になると開口する。   Next, the bypass valve 9 provided in the bypass excavation 2f that is the valve region will be described in detail with reference to FIG. In the bypass excavation 2f, a bypass valve plate 9a, which is an N-square circle plate (in particular, a triangle circle), is disposed. A bypass valve seat 9b that abuts the bypass valve plate 9a is provided at the bottom of the bypass digging 2f. The bypass valve plate 9a is pressed against the bypass valve seat 9b with a very small load by the bypass valve spring 9c. The upper end of the bypass valve spring 9c is inserted into the protrusion of the spring retainer 9d. Then, the upper surface of the spring retainer 9d is pressed by the presser plate 9f. Thereby, the spring retainer 9d is positioned. The spring retainer 9d and the retainer plate 9f are provided with holes that penetrate vertically. As described above, the bypass valve 9 of the flapper type one-way valve using the N-shaped circular valve plate as the valve plate is configured. As is clear from the configuration described above, the bypass valve 9 opens when the pressure in the compression chamber 100 that is the upstream region becomes equal to or higher than the discharge pressure (pressure in the fixed back chamber 120 that is the downstream region).

これより、バイパス弁9は、バイパス穴2eが臨む圧縮室100の圧力が吐出圧を超えないように開閉動作を行う。これにより、過圧縮条件下での過圧縮抑制を行い、スクロール圧縮機1の効率が向上するという効果を奏する。また、運転状況によって発生する液圧縮を回避し、固定ラップ2bおよび旋回ラップ3bの損傷を防いで、スクロール圧縮機1の信頼性の向上を図るという効果もある。今回は、バイパス弁板9aをN角円(特に3角円)としたため、整流動作の性能が向上し、より一層過圧縮を抑制できるという効果とともに、液圧縮をより一層回避できるため、より一層の信頼性向上を図ることができる。   Accordingly, the bypass valve 9 performs an opening / closing operation so that the pressure in the compression chamber 100 facing the bypass hole 2e does not exceed the discharge pressure. Thus, over-compression is suppressed under over-compression conditions, and the effect of improving the efficiency of the scroll compressor 1 is achieved. In addition, there is an effect that liquid compression that occurs depending on the operating condition is avoided, damage to the fixed wrap 2b and the turning wrap 3b is prevented, and reliability of the scroll compressor 1 is improved. This time, since the bypass valve plate 9a is an N-shaped circle (especially a triangular circle), the performance of the rectification operation is improved, and over-compression can be further suppressed, and liquid compression can be further avoided, so that The reliability can be improved.

さらに、図17の右側に示す通り、固定スクロール2には、背圧弁流路を設ける。この背圧弁流路は、背圧室110へ流入させた油を、圧縮室100へ流し出す働きをする。また同時に、途中にある背圧弁7によって、背圧室110の圧力(背圧)を制御する。この背圧弁流路は、周囲溝2pを介して背圧室110に臨む背圧室穴2gと、固定スクロール2の上面側から開ける背圧掘込み2hと、背圧連通路2iを経由して、最終的に前記最外バイパス穴2e1へ合流し、圧縮室100へ繋がる。すなわち、背圧弁流路は、背圧室110と圧縮室100を連通させる。   Further, as shown on the right side of FIG. 17, the fixed scroll 2 is provided with a back pressure valve flow path. The back pressure valve channel serves to discharge the oil that has flowed into the back pressure chamber 110 to the compression chamber 100. At the same time, the pressure (back pressure) in the back pressure chamber 110 is controlled by the back pressure valve 7 in the middle. This back pressure valve flow path passes through the back pressure chamber hole 2g facing the back pressure chamber 110 through the peripheral groove 2p, the back pressure digging 2h opened from the upper surface side of the fixed scroll 2, and the back pressure communication passage 2i. Finally, it merges into the outermost bypass hole 2e1 and is connected to the compression chamber 100. That is, the back pressure valve flow path allows the back pressure chamber 110 and the compression chamber 100 to communicate with each other.

次に、背圧弁7の構成を説明する。この背圧弁7は、フラッパ式一方向弁である。まず、弁領域である背圧掘込み2hの底にN角円(特に3角円)弁板である背圧弁座7bを設ける。その背圧弁座7bへ背圧弁板7aを載せる。その背圧弁板7aを背圧弁ばね7cによって背圧弁座7bへ押し付ける。この押付荷重は、所定の値に設定する。この値を前記背圧弁座7bシール部の内部領域面積で割った値が、背圧弁で設定する差圧となる。この差圧の最適値は、過圧縮を抑制するバイパス弁流路を設置すれば、広範囲な運転時でもある一定値となることが力のつり合い計算から導き出されため、その値に設定する。その設定差圧は、背圧弁ばね7cの圧縮量で決まることになる。本実施例では、その値は、背圧弁ばねの上端を挿入するリテーナとなる背圧弁キャップ7dの背圧掘込み2hへの挿入量で決める。以上のようにして、背圧弁7が構成される。   Next, the configuration of the back pressure valve 7 will be described. The back pressure valve 7 is a flapper type one-way valve. First, a back pressure valve seat 7b which is an N-square (particularly triangular) valve plate is provided at the bottom of the back pressure dig 2h which is a valve region. The back pressure valve plate 7a is placed on the back pressure valve seat 7b. The back pressure valve plate 7a is pressed against the back pressure valve seat 7b by a back pressure valve spring 7c. This pressing load is set to a predetermined value. A value obtained by dividing this value by the inner area of the seal portion of the back pressure valve seat 7b is a differential pressure set by the back pressure valve. The optimum value of the differential pressure is set to a value, because if a bypass valve flow path that suppresses overcompression is installed, it is derived from force balance calculation that it becomes a constant value even during a wide range of operation. The set differential pressure is determined by the compression amount of the back pressure valve spring 7c. In this embodiment, the value is determined by the amount of insertion of the back pressure valve cap 7d serving as a retainer for inserting the upper end of the back pressure valve spring into the back pressure digging 2h. The back pressure valve 7 is configured as described above.

この結果、背圧弁流路は、背圧弁流路が臨む下流領域である圧縮室100の平均圧力よりも、背圧弁7で設定する差圧だけ高くなるように背圧(上流領域である背圧室110の圧力)を制御する。このような背圧弁7の動作により、背圧は、吸込口2sや吸込領域95における圧力である吸込圧よりも高く、吐出穴2dの圧力である吐出圧よりも低い、中間圧を保持するようになっている。これにより、背圧室110は、後述する吐出圧となっている旋回軸受室115とともに、旋回スクロール3を固定スクロール2へ押付ける押付け力発生手段の一つとなっている。   As a result, the back pressure valve flow path has a back pressure (back pressure in the upstream area) that is higher than the average pressure in the compression chamber 100, which is the downstream area where the back pressure valve flow path, by the differential pressure set by the back pressure valve 7. The pressure in the chamber 110). By such an operation of the back pressure valve 7, the back pressure is higher than the suction pressure that is the pressure in the suction port 2 s and the suction region 95, and maintains an intermediate pressure that is lower than the discharge pressure that is the pressure of the discharge hole 2 d. It has become. As a result, the back pressure chamber 110 is one of the pressing force generating means for pressing the orbiting scroll 3 against the fixed scroll 2 together with the orbiting bearing chamber 115 having a discharge pressure described later.

さらに、背圧弁7は、前記した動作によって、背圧を中間圧に制御し、旋回スクロール3を固定スクロール2へ適度な力で押付ける。これにより、鏡板部のスラスト損失が低減し、圧縮機効率が向上するという効果がある。今回は、背圧弁体にN角円(特に3角円)を用いているため、整流動作の性能が向上し、より一層背圧設定を下流領域である圧縮室100の圧力+一定値といった理想に近い形にできる。これにより、スラスト損失を全運転条件で低減でき、スクロール圧縮機の性能を全域で向上できるという効果がある。   Further, the back pressure valve 7 controls the back pressure to an intermediate pressure by the above-described operation, and presses the orbiting scroll 3 against the fixed scroll 2 with an appropriate force. Thereby, there is an effect that the thrust loss of the end plate portion is reduced and the compressor efficiency is improved. This time, because the back pressure valve body uses an N-shaped circle (especially a triangular circle), the performance of the rectifying operation is improved, and the back pressure is set to an ideal value such as the pressure in the compression chamber 100 in the downstream region + a constant value. The shape can be close to. Thereby, there is an effect that the thrust loss can be reduced under all operating conditions, and the performance of the scroll compressor can be improved over the entire area.

本実施例に係るスクロール圧縮機1は、圧縮機、凝縮器、膨張弁、蒸発器を備える冷凍サイクル(ヒートポンプサイクル)を備える流体システムである冷凍サイクル装置の圧縮機として用いることができる。なお、冷凍サイクル装置としては、ヒートポンプ給湯機、冷凍機、空気調和機などがある。本実施例に係るスクロール圧縮機1を用いることにより、冷凍サイクル装置の効率が向上する。   The scroll compressor 1 which concerns on a present Example can be used as a compressor of the refrigerating-cycle apparatus which is a fluid system provided with the refrigerating cycle (heat pump cycle) provided with a compressor, a condenser, an expansion valve, and an evaporator. Note that examples of the refrigeration cycle apparatus include a heat pump water heater, a refrigerator, and an air conditioner. By using the scroll compressor 1 according to the present embodiment, the efficiency of the refrigeration cycle apparatus is improved.

V フラッパ式一方向弁
1 スクロール圧縮機
2 固定スクロール
2a 固定鏡板
2b 固定ラップ
2e バイパス穴
2f バイパス掘込み
2g 背圧穴
2h 背圧掘込み
3 旋回スクロール
3a 旋回鏡板
3b 旋回ラップ
4 フレーム
6 クランク軸
7 背圧弁
7a 背圧弁板
7b 背圧弁座
7c 背圧弁ばね
7d 背圧弁キャップ
9 バイパス弁
9a バイパス弁板
9b バイパス弁座
9c バイパス弁ばね
9d ばね押え
100 圧縮室
110 背圧室
125 貯油部
200 遮蔽領域
201 上流領域
202 下流領域
203 弁流入路
204 弁領域
204a 弁軸
204b 弁内領域
204c 円領域断面円
205 弁座面
205a 弁座内縁線
205a‘ 弁座内円
205b 弁座外縁線
205b‘ 弁座外円
206 リテーナ
206a リテーナ面
207 弁ばね
208 基準円
3N0 N角円弁板
3N0a N角円
3N0b N角円図心
3N0c N角円内在多角形
3N0d N角円小径部
3N0e N角円大径部
350 5角円弁板
330 3角円弁板
331 尖り3角円弁板
332 丸3角円弁板
333 穴付3角円弁板
334 カット3角円弁板
V Flapper type one-way valve 1 Scroll compressor 2 Fixed scroll 2a Fixed end plate 2b Fixed lap 2e Bypass hole 2f Bypass digging 2g Back pressure hole 2h Back pressure digging 3 Rotating scroll 3a Rotating end plate 3b Rotating wrap 4 Frame 6 Crankshaft 7 Back Pressure valve 7a Back pressure valve plate 7b Back pressure valve seat 7c Back pressure valve spring 7d Back pressure valve cap 9 Bypass valve 9a Bypass valve plate 9b Bypass valve seat 9c Bypass valve spring 9d Spring presser 100 Compression chamber 110 Back pressure chamber 125 Oil storage portion 200 Shielding region 201 Upstream Region 202 Downstream region 203 Valve inflow passage 204 Valve region 204a Valve shaft 204b Valve inner region 204c Circular region cross-sectional circle 205 Valve seat surface 205a Valve seat inner edge line 205a 'Valve seat inner circle 205b Valve seat outer edge line 205b' Valve seat outer circle 206 Retainer 206a Retainer surface 207 Valve spring 208 Reference circle 3N0 N 3N0a N-angle circle 3N0b N-angle circle centroid 3N0c N-angle inner polygon 3N0d N-angle circle small diameter portion 3N0e N-angle circle large diameter portion 350 5-corner circle valve plate 330 Triangle circle valve plate 331 Pointed triangle circle Valve plate 332 Round triangle valve plate 333 Hole triangle valve plate 334 Cut triangle valve plate

Claims (9)

作動流体が存在する上流領域と下流領域の2つの流体領域を繋ぐ接続流路のうちで、前記上流領域側区間である弁流入路と前記弁流入路よりも前記下流領域寄りの区間を円柱状に拡大した弁領域と、
前記弁領域の前記弁流入路側端部である弁領域底面と、
前記弁流入路の前記弁領域側端部である弁流入口の周囲に前記弁領域の中心軸である弁軸に垂直な環状の弁座面と、
前記弁領域内で前記弁座面よりも前記下流領域側に配されるリテーナ面と、
前記弁領域の前記弁軸に垂直な断面である弁領域断面円に内在可能な形状寸法を有する弁板と、
前記弁領域内で前記弁座面と前記リテーナ面の間の前記弁領域である弁内領域に投入配置される弁板と、
からなる一方向弁において、
前記弁板の外縁である弁外形線を外形とする二次元図形の弁外形図形を、凸形状で図心に対して回転対称とし、前記弁外形線を、前記弁領域断面円の半径である弁領域断面半径Aよりも小さい曲率半径の線部である小径部と前記小径部の曲率半径よりも大きい曲率半径の大径部を有し、かつ、前記小径部上の任意点と該任意点から引いた法線が前記大径部と直交して交点を形成し、かつ、前記任意点と前記交点の距離である一般直径が常に同一となる、一般円とし、前記一般直径は、前記弁領域断面半径Aと前記弁座面の内縁線と前記弁軸との最大距離である弁座内半径ZIの和よりも一定の拡張量OVだけ大きくすること、を特徴とする一方向弁。
Of the connection flow paths connecting the two fluid regions, the upstream region and the downstream region where the working fluid exists, the upstream side region of the valve inflow passage and the portion closer to the downstream region than the valve inflow passage are cylindrical. An expanded valve area,
A valve region bottom surface which is an end portion of the valve region on the valve inflow path side;
An annular valve seat surface perpendicular to the valve shaft that is the central axis of the valve region around the valve inlet that is the end of the valve region on the valve region side;
A retainer surface disposed closer to the downstream region than the valve seat surface in the valve region;
A valve plate having a shape and dimension that can be inherent in a valve region cross-sectional circle that is a cross section perpendicular to the valve axis of the valve region;
A valve plate disposed in the valve region, which is the valve region between the valve seat surface and the retainer surface in the valve region;
In a one-way valve consisting of
A two-dimensional valve outline figure having an outer shape of the valve outline that is the outer edge of the valve plate is convex and rotationally symmetric with respect to the centroid, and the valve outline is the radius of the valve region cross-sectional circle. A small-diameter portion that is a linear portion having a radius of curvature smaller than the valve region cross-sectional radius A, a large-diameter portion having a radius of curvature larger than the radius of curvature of the small-diameter portion, and an arbitrary point on the small-diameter portion and the arbitrary point The normal drawn from is perpendicular to the large diameter portion to form an intersection, and the general diameter that is the distance between the arbitrary point and the intersection is always the same, and the general diameter is the valve. A one-way valve characterized in that it is made larger by a constant expansion amount OV than a sum of a region cross-sectional radius A, a valve seat inner radius ZI which is a maximum distance between an inner edge line of the valve seat surface and the valve shaft.
前記大径部の曲率半径を前記弁領域断面半径Aよりも大きくすること、を特徴とする請求項1に記載の一方向弁。   2. The one-way valve according to claim 1, wherein a radius of curvature of the large diameter portion is larger than a radius A of the valve region cross section. 前記拡張量OVは、前記弁座面の外縁線と前記弁軸との最大距離である弁座外半径ZOと前記弁座内半径ZIの差以下とすること、を特徴とする請求項2に記載の一方向弁。   3. The expansion amount OV is set to be equal to or less than a difference between a valve seat outer radius ZO that is a maximum distance between an outer edge line of the valve seat surface and the valve shaft, and the valve seat inner radius ZI. One-way valve as described. 前記一般円は、前記小径部の全てを曲率半径が0を含む同一値rの小円弧部とし、かつ、前記大径部の全てを曲率半径が同一値Rの大円弧部とし、かつ、前記回転対称の回数Nを3回以上の奇数回とし、一辺の長さがR−rの正N角形の図心と各頂点を通る直線を線対称軸とするように、各頂点からN角形の反図心側に頂角がπ/Nラジアンの前記小円弧部を配置し、かつ、各頂点からN角形の図心側に頂角がπ/Nラジアンの前記大円弧部を配置すること、を特徴とする請求項2または3に記載の一方向弁。   In the general circle, all of the small diameter portions are small arc portions having the same value r including a curvature radius of 0, all of the large diameter portions are large arc portions having the same radius of curvature R, and The number of rotational symmetry N is an odd number of 3 or more, and a regular N-angle centroid with a side length of Rr and a straight line passing through each vertex are used as a line symmetry axis. Disposing the small arc portion having an apex angle of π / N radians on the opposite centroid side, and disposing the large arc portion having an apex angle of π / N radians from each apex to the centroid side of the N-angle; The one-way valve according to claim 2 or 3, wherein 前記回転対称の回数Nを3とすること、を特徴とする請求項4に記載の一方向弁。   The one-way valve according to claim 4, wherein the rotational symmetry number N is set to 3. 5. 前記弁外形線を、前記一般円の外縁線のうちで前記弁内領域の円周面である弁領域側面と接触しない線部を前記一般円内部側オフセット量が前記拡張量以下としたオフセット線に置き換えること、を特徴とする請求項5に記載の一方向弁。   An offset line in which the general circular inner side offset amount is equal to or less than the expansion amount at a line portion that does not contact the valve region side surface that is a circumferential surface of the valve inner region among the outer edge lines of the general circle. The one-way valve according to claim 5, wherein 前記一般円を、凸形状とすること、を特徴とする請求項6に記載の一方向弁。   The one-way valve according to claim 6, wherein the general circle has a convex shape. 前記弁板を前記弁座面へ付勢するべく前記リテーナ面と前記弁板の間につるまき状圧縮ばねを備え、前記つるまき状圧縮ばねの外側半径であるばね外半径Bが弁座内半径よりも大きい場合には、前記弁座内半径ZIを前記ばね外半径Bに置き換え、かつ、前記ばね外半径Bが弁座外半径よりも大きい場合には、前記弁座外半径ZOも前記ばね外半径Bに置き換えること、を特徴とする請求項5乃至7に記載の一方向弁。   A helical compression spring is provided between the retainer surface and the valve plate to urge the valve plate toward the valve seat surface, and an outer radius B of the helical compression spring is greater than an inner radius of the valve seat. Is larger than the valve seat outside radius B, and when the spring outside radius B is larger than the valve seat outside radius, the valve seat outside radius ZO is also outside the spring outside. The one-way valve according to claim 5, wherein the one-way valve is replaced with a radius B. 請求項1から8何れか一項に記載の前記一方向弁を備えることを特徴とする、流体システム。   A fluid system comprising the one-way valve according to claim 1.
JP2014092209A 2014-04-28 2014-04-28 One-way valve and fluid system including the same Expired - Fee Related JP6298702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014092209A JP6298702B2 (en) 2014-04-28 2014-04-28 One-way valve and fluid system including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014092209A JP6298702B2 (en) 2014-04-28 2014-04-28 One-way valve and fluid system including the same

Publications (2)

Publication Number Publication Date
JP2015209925A true JP2015209925A (en) 2015-11-24
JP6298702B2 JP6298702B2 (en) 2018-03-20

Family

ID=54612279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014092209A Expired - Fee Related JP6298702B2 (en) 2014-04-28 2014-04-28 One-way valve and fluid system including the same

Country Status (1)

Country Link
JP (1) JP6298702B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019077704A1 (en) * 2017-10-18 2019-04-25 日立ジョンソンコントロールズ空調株式会社 Valve mechanism and scroll compessor equipped with same
JP7486509B2 (en) 2019-03-04 2024-05-17 ケアフュージョン 303、インコーポレイテッド Castle-like check valve

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4528869Y1 (en) * 1965-10-26 1970-11-06
JPS4899725A (en) * 1972-02-28 1973-12-17
JPS62177970U (en) * 1986-05-01 1987-11-12
JPH11132164A (en) * 1997-10-29 1999-05-18 Hitachi Ltd Scroll compressor
JP2004100685A (en) * 2002-09-05 2004-04-02 Lg Electronics Inc Reciprocating compressor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4528869Y1 (en) * 1965-10-26 1970-11-06
JPS4899725A (en) * 1972-02-28 1973-12-17
JPS62177970U (en) * 1986-05-01 1987-11-12
JPH11132164A (en) * 1997-10-29 1999-05-18 Hitachi Ltd Scroll compressor
JP2004100685A (en) * 2002-09-05 2004-04-02 Lg Electronics Inc Reciprocating compressor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019077704A1 (en) * 2017-10-18 2019-04-25 日立ジョンソンコントロールズ空調株式会社 Valve mechanism and scroll compessor equipped with same
JP7486509B2 (en) 2019-03-04 2024-05-17 ケアフュージョン 303、インコーポレイテッド Castle-like check valve

Also Published As

Publication number Publication date
JP6298702B2 (en) 2018-03-20

Similar Documents

Publication Publication Date Title
TW593893B (en) Dual volume-ratio scroll machine
JP6395059B2 (en) Scroll compressor
JP5870056B2 (en) Scroll compressor
JP5429353B1 (en) Compressor
JP2010106780A (en) Scroll compressor
WO2013186974A1 (en) Scroll compression device
EP3696375A1 (en) Scroll compressor with oldham&#39;s ring
US20170058900A1 (en) Lubrication system of electric compressor
JP5456099B2 (en) Rotary compressor
JP6298702B2 (en) One-way valve and fluid system including the same
CN105705790A (en) Compressor
KR100657038B1 (en) Fluid compressor
JP5993194B2 (en) Scroll compressor
JP2017120048A (en) Scroll compressor
JP6874331B2 (en) Compressor
JP6762113B2 (en) Scroll compressor and air conditioner
JP5789581B2 (en) Scroll compressor
JP5114708B2 (en) Hermetic scroll compressor
JP6913842B2 (en) Scroll compressor
JP6765263B2 (en) Scroll compressor
WO2018198811A1 (en) Rolling-cylinder-type displacement compressor
JP2014206060A (en) Scroll compressor
JP2008002422A (en) Scroll compressor
WO2021038738A1 (en) Scroll compressor
JP2008121623A (en) Scroll compressor

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170116

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170123

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180226

R150 Certificate of patent or registration of utility model

Ref document number: 6298702

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees